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The fluctuation theorem gives an analytical expression for the probability of observing second law
violating dynamical fluctuations in nonequilibrium systems. At equilibrium, statistical mechanical
fluctuations are known to be ensemble dependent. In this paper we generalize the transient and
steady-state fluctuation theorems to various nonequilibrium dynamical ensembles. The transient and
steady-state fluctuation theorem for an isokinetic ensemble of isokinetic trajectories is tested
using nonequilibrium molecular dynamics simulations of shear flow.2@0 American Institute of
Physics[S0021-960600)50433-4

I. INTRODUCTION straightforward to apply the same procedure to an arbitrary
. _3 . initial ensemble, and an analytical form of the FT that is

f 'tl;]he Iﬂuctqz’:mn t?et(r)]reiln (ETE).?'tves etl-getr;]ertaltr]:orrrt].ula valid at all times can be obtained. In this paper we demon-
or the ogqn . m _O € probability ratio tha . € UME" sirate how the FT can be extended to an arbitrary system,
averaged dissipative flux takes a valulg, to minus the  ,nq 45 an example we derive a transient FT for the isokinetic

value,—Jy, in a nonequilibrium steady state. This formula is ponequilibrium response of an initial isokinetic ensemble.
an analytic expression that gives the probability, for a finite

system and for a finite time, that the dissipative flux flows in
the reverse direction to that required by the second law of
thermodynamics. For steady-state trajectory segments dk TRANSIENT FLUCTUATION THEOREM (TFT)
lengtht (i.e., those trajectory segments that are initiated long
after the application of a field so that the system has reache&m

a steady stajethe steady-state FISSFT) is only true in the internal energy of the system ilsIoEEiN:lpiZIZer(b(q)

long time limit. Evans and Searfebave shown that if tran- —K+®, whered(q) is the interparticle potential energy
sient trajectories are considered rather than steady-state tr\% § '

actori ¢ ient FITFT) that is t tall 1 b hich is a function of the coordinates of all the particlgs,
Jec .orles, afransien , a' IS true at all imes can be 54k is the total peculiar kinetic energy. In the presence of
derived. In the transient experiment the valueJpfis ob-

i ¢ ) . .an external field=,, the thermostatted equations of motion
tained by averaging along a trajectory segment that is inix e taken to be

tially (att=0) sampled from a known distributiofsuch as )
an equilibrium distributiohy but to which a field is subse- gi=pi/m+Ci(I)Fe,
=
gtuatigtli); i[r)];i)hed (=0). When the nonequmbnum_ steady . p=F(a)+D(I)Fe—a(D)p;,
que, one would expect the asymptotic conver

gence of the transient to the steady-state fluctuation theoremthereF;(q) = —d®P(q)/dq;, « is the thermostat multiplier,
since averages over transient segments should then approaghich in this case is applied to the peculiar momenta, @nd
those taken over nonequilibrium steady-state segment&ndD; represent the coupling of the system to the field. The
However, there has been some recent discu$siofi this  dissipative flux is given by, whereHng—J(F)VFe.
point and not all parties agree on asymptotic convergence.  The probability that a trajectory segment will be ob-

The transient FT considers the thermostatted response sérved within an infinitesimal phase space volume of size
an ensemble of systems to an applied dissipative field. ThéV=Iim g, s, .0 60x1 00y1 60,1 Qxo = SU,N SPx1" 0PN
system is thermostatted so that it may reach ahsteady staddoutl” at timet, Pr(6V(I'(t),t)) is given by
after a Maxwell time,r . In the original derivatiofiit was _
supposed that the initial ensemble was the microcanonical PI(OV(I(1),1) = fI'(1), HSVIT(D), 1), @
ensemble and the dynamics was isoenergetic. This initial erwhere f(I'(t),t) is the normalized phase space distribution
semble was chosen because the probability of observing trdunction at the point’(t) at timet. The Lagrangian form of
jectories originating in a specified phase volume is simplythe nonequilibrium Kawasaki distribution functfois given
proportional to the measure of that volume. However, it isby

Consider arN-particle system with coordinates and pe-
ar momenta{qg;,ds,.--.OnP1:---Pn=(0,p)=I. The

€y
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t Fot/2)I'(t/2)=MTI'(t). See Ref. 2 for further details. The
f(l“(t),t)=exp( - fOA(F(S))dS)f(F(O),O) point I'*(0) is related to the poinI'(t) by a time-reversal
mapping. This provides us with an algorithm for finding ini-
t tial phases, which will subsequently generate the conjugate
=exp< _J A(F(S))ds) f('(0),0), (3 segments. Since the Jacobian of the time-reversal mapping is
unity, the phase volum&V(I'(t),t) is equal to the phase
where A(I)=dI"-/T" is the phase-space compression factoryolume sV(I'* (0),0). The ratio of the probability of observ-
Now consider the set of initial phases in the volume elemen;ng| the two volume elements at time zero is
of size 6V(I'(0),0) aboutI’(0). At time t, these phases will
occupy a volumesV(I'(t),t). Since the number of ensemble Pr(6V(I'(0),0) - 1{I'(0),06V(0).0)

members within a comoving phase volume is conser(@d, Pr(sV(I'*(0),0))  f(I'™(0),006V(I'*(0),0)
can be used to show 1(1(0),0)
t =T 0.0 0) ;{ f A(I(s) )ds)
5V(F(t),t)=ex;< LA(F(S))dS) 6V(I'(0),0), 4
(5
which is simply the phase-space volume contraction alongvhere we have used the symmetry of the time-reversal map-
the trajectory, froml’(0) to I'(t). ping and Eq.(4) to obtain the final equality. This TFT is

Our aim is to determine the ratio of probabilities of ob- completely general and applies to any ensemble or type of
serving trajectory segments with time-averaged dissipationdynamics. If the initial phase-space distribution function is
of equal magnitude, but opposite sign. For any segment witknown (regardless of whether it is an equilibrium distribu-
a particular time-averaged dissipative flux, a segment thaion), we can then obtain an analytical expression for the
has an average of the same magnitude but has an opposfieobability ratio. Note that the phase-space distribution func-
sign can be constructed using a mapping, and the probabilityon in the numerator and denominator both refer to that at
of observing this trajectory segment from the initial phasetime zero, therefore it is readily applied to a system that is at
space distribution can be determined. We will refer to theequilibrium at time zero but moves away from equilibrium
trajectory starting af’(0) and ending al'(t) asI'p.;y. Ifwe  (when the distribution function may be intractable
advance time from O to/2 using the equations of motidf), For arbitrary initial ensembles and arbitrary dynamics
we obtain I'(t/2)=exp(L(I'(0),F¢)t/2)I'(0), where the (constant energy, temperature and/or pressure,ieis.con-
phase Liouvillian, iL(I',Fe) is defined asiL(I''Fe)  venient to define a general dissipation functi8(t’), so that
=q(I',F)-d/aq+p(I',F)-d/dp. Continuing to timet gives ‘ £('(0),0)

I'(t) =exp(L(I'(t/2) ,F)t/2)I'(t/2) = exp(L(I'(0), f dsB(F(s))=In<—')

Fo)t)I(0). Asdiscussed previousRa time-reversed trajec- 0 UQORY)

tory segment that is initiated at time zero, and for which ¢ _

I'f0=MT([y), whereM( is the time-reversal map- —f A((s))ds,=Bit, (6)
ping, can be constructed by applying a time-reversal map- 0

ping at the midpoint ofl'(t/2) and propagating forward we can obtain a formula for the probability ratio of observing
and backward in time from this point for a period o2  a particular value of3; and its negative. This is achieved by
in each direction. At time zero, this generatessumming over all appropriate regions of phase and a TFT for
I'* (0)=exp(—iL(I'™* (/2) F)t/2)T* (/2)=M T exp(L(I'(/2),  the propertyB is obtained® of the form

PiB=A)  Zi-aPrVi(I(0),0) _ Zia-aPIaVi((0),0)
TP—B=A) " Zijg-_aPoViT(0).0) = 5-aPH8V,(T*(0),0)
Zijg=aPr(6Vi(I'(0),0)) 3ij5=aP(8V;(I'(0),0)) _
- fa®.,0 T Ao BOPIOV,T(0),0)
S exp([HA (1(s))d9)PI(8V;(1(0),0) A : A

Zil5=AT(1(0).0)
(7)

where the notatioiX ;- is used to indicate that the sum is obtained by recognizing that since the summation is only
carried out over phase volumes for wh|6|p:A In (7) we  carried out over trajectory segments with particular values of

carry out the time-reversal mapping to obtain the second;, the exponential term can be removed from the summa-
equality, then substitute Eq&) and(6). The final equality is  tion.
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The equation(7) has previously been considered for a steady state is unique we can also gather the statistical infor-
system that is initially in a microcanonical ensemble and thaination on{J;, s¢ by studying the response of an ensemble of
undergoes isoenergetic dynamfé?® In this caseB(I')= initial phases, provided we wait several Maxwell times be-
—A(IN=-VFBJ(I') and simulations have verified the fore gathering “steady-state” data. After the transient re-
resulting TFT, that is, InPr{;=A)/Pr(—A;=A)=—At  sponse time, the instantaneous system properties will be
= —VF¢BJit, whereJ;=A/(VF¢B).%%>%80ur purpose in characteristic of the steady state. The{Set} averaged over
this paper is to derive equations equivalent(Tp for other  transient trajectory segments, starting from eqguilibrium
ensembles and dynamics. ensemble of phases will approach thmique steady-state

As an example, we consider a system initially in theset{J, s¢ with {J; 1}={J; sd +O(7u/t).
isokinetic ensemble and undergoing isokinetic dynamics. The transient flux,J; 1=J; ss+ O(/t), can be ex-
The isokinetic distribution function is panded using a Taylor series analysis and because at suffi-

f(I'(0),0)= f(I'(0),0) ciently long times the deviation af ssfrom its mean value

decreases a®(t~*?), Eq.(10) can be written as
_exp(— BHo(I'(0))) s(K(I'(0)) — Ko)

= . (8
J dI'exp(—= BHo(I') S(K(I') = Ko) — -
Substituting into Eq(5) gives O O n P r=A) =In Pl ss=A) +In(O( 7y /t)t)
(1%< ) ))q ; (I(0),008V(I'(0) 0 TR Pl A M
Prov(I'(0),0)  f(I'(0),06V(I'(0),0 _
PIOV(I(0),0)  T(I*(0),00V(I*(0).0) ~ ARV (0
- exp— AHo(I'(0))) Therefore since,, is finite, providedt is sufficiently long
exp(— BHo(I'(1))) and the steady state is unique, we expect
t
xex;{—f A(F(s))ds) —
0 1 Pr(J;,ss=A)
lim—In——————=—-AF3V. (12
t. e U Pi(Jpss=—A)
=exp(ﬂf CD(F(S))dS)
0
¢ Although there is some contention regarding this pbirihe
xex;{ —f A(F(s))ds), 9 numerical tests presented below support the possibility of
0

this convergence.
where we have used the symmetry of the mapping, In Table | we give transient FTs for various ergodically
Ho(I*(0))=Hy(T(t)), V@I*(0),0=V((t),t), and consistent ensemblésthat is, for systems where the zero
K(I™*(0),0=K(I'(t),t) to obtain the second equality and field dynamics preserves the initial ensemble:
HO(F(t))=HO(F(O))+IBH0(F(S))ds=HO(F(O))+f5¢)(F(s))ds af(F,O)/atlFe:0=O. We also give the exact form of the
to obtain the final equality. We see that steady-state FT derived from the transient FT by assuming
: the steady state is unique.

B(I)=pP(I") — A(I) == BIT)VFe, The steady-state FT, proposed and tested by Evans, Co-
and from(7) we therefore have hen, and Morrissand proven by Gallavotti and Cohen re-
ferred to particular conditionghat the dynamics is dissipa-

Pr(J;=A) tive, isoenergetié, reversible, and chaoticand may be

—————— = —AtF8V. 1
n Pr(J,=—A) thep (10 expressed by the formdla
The TFT given by Eq(10) is true at all times for the isoki- -
netic ensemble when all initial phases are sampled froman 1 prA,=A)
equilibrium isokinetic ensemble. lim—In =—-A. (13

. t =_
If the system reaches a unique steady state, then at long '~* PI(A=—A)

times the value of] will fluctuate about its steady-state

value. A set of nonequilibrium time-averaged currents,;n 5 Gaussian isoenergetic system the phase-space contrac-
{Ji,sd, can be generated by evolving time along a singleton rate is instantaneously proportional to both the entropy
phase space trajectory that starts at some initial phase, whigftoduction rate per unit volume and the dissipative flux, and
is consistent with the macroscopic conditidhs V, Tor E,  the fluctuations in these three properties will be directly re-
Fe, etc). One waits for a time that is much longer than the|ated. Alternative forms of the FT for the isoenergetic system
Maxwell time, 7y, which characterizes the transient re-in terms of the fluctuations of the dissipative flux or the
sponse, before one begins to analyze time contiguougntropy production rate per unit volume are therefore trivi-
“steady-state” trajectory segments and computes, for exally obtained. In the original work of Gallavotti and Cohen,
ample, the statistics of the sgl; s4- for example, the FT was expressed in terms of the entropy
__If the steady state is unique, the statistics of the seproduction rate per unit volunteFor a system undergoing
{J sq is independent of the original initial phases. Since theisokineticdynamics the dissipative flux is no longer instan-
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TABLE I. Transient fluctuation formula in various ergodically consistent enserfles.

Isokinetic dynamics PT(-I) _ ngd
——— =—JtF BV —JFeV= at
Pr(—=Jy)
Isobaric—isothermal PY(J_t) _ d|gd
P—=—J1IFE,8V —JFeV=—r
r(_Jt)
Isoenergetic PrJB o dHad
nB) —JBFV —JFev= —dto
Pr(—JBy
PI(A, —
or In A =—At
Pr(— Ay
Isoenergetic boundary-driven flow Pr(Kt) _
n =— At
P—A)
Nose-Hoover(canonical dynamics PT(J_t) o ngd
In =—JtF 8V —JFeV=—=
Pr(—Jy) t
Wall ergostatted field-driven flow PHIBuan 0 dH2d
Nn—— " =—JBya tFeV —JFev=—=
PI’( 7\]Bwall t)
Pr(A, —
or In A =—At
Pr(— Ay
Wall thermostatted field-driven fldw Pr(J,) _ dHed
In———=—J;tF 8V —JFeV=——
Pr(—Jy) B t
- In(<eXF{Att(1 - Bsystenlﬁwall)])?t)
§teady—?tfﬂe isoenergetic dynanfics. Pr(ﬁt) o ey ngd
=1f [lo s In———=—JBtFV —JFeV=——
Je=11 [273(s)ds, whereto> 7y P—35) BitFe T:
0
—In) {exp FaV f.](s),@(s)ds
0
o+t
+J_Z‘ J(9)B(s)ds
tott 3
t
1 Prdg, —
fim—n OB JBFV
U PI=JBY

4t is assumed that the limit of a large system has been taken s®f4) effects can be neglected. In the
Nose-Hoover dynamics, it is also assumed that the mass associated with the heat bath is an extensive variable.
PH, is the equilibrium internal energy arlg is the equilibrium enthalpy.

‘In these wall ergostatted/thermostatted systems, it is assumed that the energy/temperature of the full system
(wall and fluid is fixed.

dSimilar steady-state formula can be obtained for other ensemtyés the Maxwell time that characterizes the

time required for relaxation of the nonequilibrium system into a steady state.

taneously proportional to the phase-space contraction ratehere y is the applied strain rate, and is the Gaussian
[although the time-averaged values are proportional in thésokinetic thermostat multiplier:
limit t—o since A(I")=VF.BJ(I")+0O(1k)], and it is

N
therefore of interest to considét3) for the isokinetic dy- Zi-iFi-pi— Vpxipyi_

= 15
namics. =N pi-pi (15)
In this case the dissipative fluXis equal toP,,, the xy
IIl. NUMERICAL RESULTS FOR TRANSIENT AND element of the pressure tensor an()=—2Na(I)
STEADY-STATE SYSTEMS +0(1). All results below are presented in reduced units.

The simulations are carried out for systems under two con-
We test Eqs(10), (12), and(13) for systems consisting ditions. In the first case a temperatureTof 1.0, a particle
of N=32 WCA particles in two Cartesian dimensions under-density ofn=0.8 and an applied strain rate Bf=y=0.5
going isokinetic shear flow in two Cartesian dimensions usare employed. This applied strain rate is sufficiently high that
ing the SLLOD equations of motion for planar Couettewe are in the nonlinear regime and the shear thinning is
flow.” The equations of motion are approximately 12%. In the second case a temperature of
Gi=pi /mi+ivy:, =1.0, a particle density afi=0.4 and an applie'd ;train r'ate
_ (14) of F_e= v=0.01 are employed and the system is in the linear
pi=Fi—iypyi—ap;, regime.
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FIG. 1. The normalized logarithmic probability rat/(X) for the fluctua- il ]
. ; . - ; ’ S 1 = i
tions in a transient response numerical experiment Withl.0, n=0.8, N o
=32, y=0.5, and a transient trajectory segment of lerigtl0.6. The circles 0.8 1
are a test of the transient FT given by Efjl) and the crosses show that the : ]
limiting expression given by Eq13) is not applicable, at least at this value 0.6 h
of t. The straight line is the expected result from Edsl) and (13). : .
0.4 .
@ ]
For both sets of conditions, transient trajectories and 02 ° e ]
steady-state trajectory segments are considered. The transient R I R S T S
trajectories of length are initiated from an isokinetic equi- 0 100 200 300 400 500
librium ensemble and the time-averaged value of the thermo- t

stat muIt|pI|er and the dISSIpatlve flux is calculated for ea-ChFIG. 2. The squares show the slope of a straight line fitted through a plot of
trajectory. The steady-state trajectory segments are initiaté@,t) vs J,, as a function oft for the transient response of a two-
at equally spaced time origins along a single steady-stat@imensional system of 32 particles(a} T=1.0,n=0.8, andy=0.5 and(b)
trajectory. In this case the thermostat multiplier and the disT=1.0,n=0.4, andy=0.01. Equation(10) tests the TFT for this system and

: - : redicts a slope of 1 at all times, which is indeed observed. The circles show
|Selflgftlf\1/te flux are calculated for each trajectory segment Orhe slope of a straight line fitted through a plotf,(t) vs a,, as a function

) ) ) ) ) of t for the same system. Equati¢h3) says the slope will be 1 in the limit
Results for transient trajectories are shown in Figs. 1 andf long times.O(1/N) effects have been accounted for.

2. In Fig. 1, transient trajectory segments of leng#0.6 are
considered. The value of W;(t)=—In(Pr(3,)/Pr

(—J))/(tyBV) is plotted as a function of; to test Eq(10),  we expect that the steady-state FT given by @@) is trug].
andW,(t)=In(Pr(a)/Pr(— a;))/(2Nt) is plotted as a func- The steady-state trajectory segment averages are obtained
tion of «; to test Eq.(13). If the equations are valid, a from a single trajectory, sampled at different points along the
straight line of unit slope is obtained. As expected, the retrajectory, and consider the same state points as examined for
sults indicate that Eq(10) is valid, whereas Eq(13) is  the transient simulations. Clearly, convergence to the limit-
clearly not valid for an averaging timé=0.6. In Fig. 2 we  ing behavior predicted by Eq12) is observed. In contrast,
show how the slopes of the lines formed from a plot ofthe limiting behavior predicted by Eq13) has not been
W;(t) vs J; andW,(t) vs a; vary with averaging timet, We  realized, even at the longest times considered. The data in-
denote the slopes of these lin&g(t) and S,(t), respec- dicate thatif convergence does occur, it is very slow com-
tively. This figure demonstrates that the transient FT derivegbared to its convergence in an isoenergetic sygteste that
in this paper for a isokinetic systems and given (i) is  the n=0.8 state point is quite similar to that studied by
valid at all times, but that Eq13) is not valid at the times Evans, Cohen, and Morriswhere convergence to within
considered. The behavior &,(t) is consistent with a 4t  the error bars of the dat8%) was observed when the aver-
convergence to 1 for the system wheéfg=0.5: this is the aging time was 0.5 ang=0.5].
same rate at which the standard deviation of the distribution  The values ofS,(t) determined in the transient experi-
of the value ofa; goes to zero, however, it can also be fitedments are also shown in Fig. 3 to demonstrate the conver-
to other functional forms. The data for the system whereggence of the distribution of the averages over transient tra-
F.=0.01 do not appear to converge to a slope of 1, althouglectories to those over steady-state trajectory segments with
it has clearly not reached its limiting behavior at the timestime. Although(13) is not valid at the times considered, the
considered. values of S,(t) obtained from the transient experiments
In Fig. 3, we test the FT fosteady-statesimulations agree with those obtained from the steady-state trajectory
where neither Eq(10) nor (13) is true instantaneously, but segments at sufficiently long times. Furthermore, &)
we expect(10) to be true for times greater than a severalfor the transient and steady-state segments agree, and the
Maxwell times(7,,=0.084 forT=1.0,n=0.8, y=0.5) [i.e.,  TFT given by Eq.(10) and the steady-state expression given
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FIG. 3. The squares show the slope of straight line fitted through a plot oFIG. 4. Tests of the integrated fluctuation formulas given by Etf—(18)
W;(t) vs J;, as a function oft for a steady-state simulation of a two- for a two-dimensional system of 32 particles (@ T=1.0, n=0.8, and
dimensional system of 32 particles(ai T=1.0,n=0.8 andy=0.5 and(b) vy=0.5 and(b) T=1.0,n=0.4, andy=0.01. The squares show(t), which
T=1.0,n=0.4, andy=0.01. Equation(10) is the steady-state expression is predicted to be unity at all times by E@.6). If Eq. (17) is correct, then
corresponding to the TFT for this system and predicts a slope of 1 in ther(t), shown by the circles, should approach unity at long times. The
long time limit, which is consistent with the results. The circles show the crosses shoWN(;(t), which will equal unity at all times if(18) is valid.

slope of a straight line fitted through a plotWf,(t) vs a, as a function of | arge numerical errors ilf/,(t) are observed for the system at a large field,
t for the same system. The crosses show how the slope of a straight lings expected?

fitted through a plot ofW,(t) vs «, varies witht using data for a transient
experiment(as also shown in Fig.)2 Convergence of the transient and
steady-state results is observ€.1/N) effects have been accounted for.

by Eq. (12) are verified for the transient and Steady_Stateobservation that Eq13) is not valid for an isokinetic system

systems, respectively. These observations support the pos%t- equilibrium is r_u_)t n conflict W't.h Gallavott gnd_ th”en
bility that the steady-state relationships are correctly pre- ecause the e,q”"'*?””m s'ystem is both nondissipative and
dicted from the limiting behavior of the TFT expressions. It nomsoenerge’u&,a_s is required. _ N
implies that not only does the form of the TFT change when e note that it is difficult to test the FT in nonequilib-
isokinetic dynamics replaces isoenergetic dynamics, but thdtym systems ff_” long averaging tlmt_es, large f|e|d_s,, or Ia_rge
a corresponding new SSFT is obtained that is given by EqSYStems, since in these limits the variance of the distributions
(12). approach zero. Therefore, the fluctuations become so narrow
At equilibrium, Eq.(13) is clearly false for isokinetic ~that by the time the formula has converged to its asymptotic
dynamics for any finite. In this case the probability of ob- behavior, it is not possible to observe the second law violat-
serving positive and negative fluctuations Ay must be iNg trajectory segments either in a computer simulation or
equal and thereforeS,(t)=0 for all finite times. Equation experimentally. This highlights the utility of a transient
(13) incorrectly suggests that the logarithm of the probabilityrather than the steady-state FT. Tests of the asymptotic
ratio is proportional to the fluctuation, and th&g(t)=1.  steady-state FT can, of coursmly be carried out for long
The falsity of Eq.(13) at equilibrium is consistent with the averaging times. The transient FT, on the other hand, can be
results in Fig. 3, where the calculated valueSp{t) is less tested for arbitrarily short averaging times, where the prob-
than unity for the times considered and the departure igbility of spontaneous second law violations is much greater,
greater for the system which is subject to a smaller field. ltapproaching 0.5 as—0.
seems to indicate that either the convergence time becomes The integrated form of the fluctuation formul&T) also
infinite as the field goes to zero or thaf(t) converges to a provides a means of reducing the statistical error when test-
value less than unity. The behavior of the fluctuationd;iis  ing the FT for long periods of tim&The IFT corresponding
correctly predicted by Eq10), which becomes trivial. The to Eq.(11) is
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p(\]_t< ) _ _ . far from equilibrium in the nonlinear regime and for a sys-
=(exp(JttFe,8V)>jt>0=(exp(JttFe,BV)>J*t<o, tem in the linear regime. We find that the transient FT de-
(16) rived here and given by Eq10) for this ensemble/dynamics
_ _ combination is satisfied for all averaging times. From this
where p(J;>0) and p(J;<0) refer to the probabilities of transient FT we obtain a corresponding steady-state FT given
observing trajectory segments with positive or negative valby Eq.(12) for this system. It is observed that the form of the
ues of J;, respectively, and the notatior(s--)jPo and steady-state FT derived from the transient FT also varies

(-++)3,<0 refer to ensemble averages over trajectories withvith gnsemble. In the _Iimit of long avera_gi_ng times the com-
positive or negative values Q?t respectively. We define putational results again support the validity of the proposed

, - steady-state FT for this combination of ensemble and dy-
Y50 =(n(p(3>0)/p(3<0))~ 1)/(IN(eXPOFBV)30) i y

—1) and in Fig. 4 itis verified that/;(t)=1 at all times, in The major consequences of the TFT are that it explains
agreement with{16). [Note that subtraction of 1 in the nu- o second law of thermodynamics from a microscopic basis
merator and denominator is carried out to circumvent largeyng that it provides a very general but simple derivatfsh
statistical errors when the probabilities are almost equal. Thi§¢ sreen—Kubo and Einstein relations for linear transport
property therefore differs fromi(t) used to measure conver- qeficients. The theorem is more general than the Green—
gence of the IFT in Ref. $The time that can be considered g rejations because, in part, it applies outside the near
in the IFT is still I|m|tefj, particularly at high fields. equilibrium regime required for Green—Kubo and Einstein
By defining Y, (t)=(In(p(a<0)/p(«;>0))=1)/  rejations to be valid. Recently the fluctuation theorem has
(In((exp(=2Nagt))q~0)—1) an IFT corresponding tl3) is  pheen shown to be valid for a wide class of stochastic

p(J>0)

lim Y’ (t)= lim ((In(p(2< 0)/p(a;>0))— 1)/ systemg. Because fluctuations by their very nature are gen-

oo t—soo erally small and therefore hard to observe, a recently pro-
_ posediocal fluctuation theorefhthat applies to small subre-

(In{fexp( = 2Nat))z.~0— 1)) = 1. (17 gions of a larger system, may be amenable to an

The behavior ofy/(t) for the nonequilibrium systems exam- experimental test using light scattering techniques.

ined above is shown in Fig. 4. Convergence to the limiting
behavior indicated by17) has not occurred at the longest ACKNOWLEDGMENTS
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