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A theoretical study of the collective excitation associated with plasmon modes is presented for a
two-dimensional electron gas in the presence of spin ¢8f) interaction induced by the Rashba
effect. In such a case, the plasmon excitation can be achieved via intra- and inter-SO electronic
transitions. As a result, three branches of the plasmon oscillations can be observed. It is found that
inter-SO plasmons depend strongly on sample parameters and, at a long-wavelength limit, are
optic-like, in contrast to intra-SO ones. The interesting features of these plasmon modes are
examined. ©2003 American Institute of Physic§DOI: 10.1063/1.1541098

The recent proposals for potential applications of elecelectronic subband is present is considered, thugq)
tronic systems with finite spin splitting at zero magnetic field = dz, [ dz,| o(21)|?| ¥0(22) |? exp(—qlzi—2]) with o(2)
to important devices such as spin-transistors, being the electron wave function along the growth direction.
spin-waveguide$, spin-filters® quantum computers,etc.  From electron energy spectrum obtained from the solution of
have opened up a field of research known as “spintronics.” ltthe Schrdinger equation, we can derive the retarded and
is known that in, e.g., InAs-based two-dimensional electroradvanced Green’s functions for electrons. Applying these
gas(2DEG) systems, the zero-field spin splitting can be re-Green’s functions an¥ ,4(k,q) to the diagrammatic tech-
alized from surface electric field induced by the presence ohiques to derive effective e—e interaction under the random-
the heterostructures, known as the Rashba effebihe  phase approximation, the element of the dielectric function
strength of the spin-orbi{iSO) coupling in these systems can matrix is obtained as
be controlled and altered by, e.g., applying a gate voltage,
varying the sample gr_owth parametérstc. In order to un- 6aﬁ(Q'q):5a’B—E V (K, ) 4(Q;K,Q), (2a)
derstand these material systems more deeply and to explore k
their further applications to the practical devices, it is necesyhere
sary and significant to examine the roles which many-body
effects can play in a 2DEG with SO coupling, and itis the ;). a)= flEq (K+a)]=f[Ex(K)] (2b)
prime motivation of the present study. SARAREE AQ+E (k+q)—E (k)+id8
o S, I case of clementay lectonc XCIANOs r par bbbl in e absence of e-e coupling 6

. . . .~~~ the Fermi—Dirac function. Furthermore

For a typical 2DEG in they plane in narrow gap semicon-
ductors, such as InGaAs/InAlAs quantum wells, the single-  E,(k)=E,(k) =A2k?/2m* + cagk (20
eIecFron Sch"rdinger equation including thg lowest orFier of is the energy spectrum of a 2DEG in the presence of SOI,
SO interaction(SO) can be solved analyticalfyApplying with m* being the electron effective mass angd being the

:he_ ele_ct(rjon v(\j/at\)/e tLun((::tlor}s t% thet e;el n;rt]eractlon |l;mm!l'Rashba parameter which measures the strength of the SOI.
onian induced by the Loulomb potential, the space Ou”eéecauseEkquHa,a(Q;k,q)=0, the dielectric function ma-

transgormbof. thz matrix element for the bare e—e interactioqrix of a 2DEG with Rashba spin splitting is obtained, setting
can be obtained as 1=(++),2=(+-),3=(—+) and 4=(——), as

Vas(K,0) = V4Fo(@)Gap(k,q). (D 14a, 0 0  a
Here,a= (o' o) with o= =1 referring to different SOsk 0 1+a, as 0
=(ky,ky) is the electron wave vector along the 2D plane, [e(Q,q)]= 3)
g=(dyx,qy) is the change ok during a scattering eveny, 0 a; 1l+as O
=2me?/ kq with « being the dielectric constant, and a; 0 0 l+a,
1 kq i aByq In Eq. (), aj=—[V4Fo(@)/2]Z (1= Axg) 11;(2;k,q) where
Gop(k,a)= 2 o, pt 2 (1= 6q,p) upper(lower) case refers tp=1 or 4 for intra-SO transitions

(j=2 or 3 for inter-SO transitions The determinant of the

with A= (k+qcosd)/k+al, Bg=gsind/k+al, and &  giclectric function matrix is

being the angle betwednandq. Furthermore, in the present
study, the case of a narrow quantum well in which only one  |€(Q,q)|=(1+a;+a,)(1+a,+as). (4)

The modes of elementary electronic excitations are de-
dElectronic mail: wen105@rsphysse.anu.edu.au termined by Rp(Q,g)|—0. In the presence of SOI, the col-
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FIG. 1. Electron density in different SOs ) and plasmon frequency),

and Q. induced, respectively, by intra- and inter-SO excitatios the FIG. 2. Electron distribution and plasmon frequency as a function of total
Rashba parametewg) at a fixed total electron density, and a fixedw,, electron density for fixedrr and w,, .

=(2me?n.q/km* )2,

spin-up channel is shifted to the higher energy regime in
r2:ompar|son to that for spin-down one. Thus, the electron

DOS and, consequently, the electron distribution in different
SOs can be different. With increasingy, more and more
electrons are in the spin-down channel because it has a lower

different spin channels. At long wavelendite., q<1) and
low temperaturdi.e., T—0) limit, the plasmon frequencies
induced by intra- and inter-SO excitation are given, respec-

tively, by energy. A relatively big difference between andn, has
w_—w, |\ been measured experimentdilWe see from Fig. 1 tha(1)
Q0:“’p( 1- W) , (58 0, induced by intra-SO excitation differs from, and de-
) creases slowly with increasingi [also see Eq5a)]; (2) () _
and by solving induced by inter-SO excitation increases almost linearly with
Q+o_ Q-0 o ag; (3) Q. induced by inter-SO excitation as well first in-
In( O-o Ote.l” o2 (5b) creases then decreases with increasipg (4) 1. can be
_ + Wy .
much larger than()l, and Q) is always larger tha}, ,

Here,w,= (2me?nq/ km*)*2is the plasmon frequency of a which indicates that high-frequency plasmon excitation can

2DEG in the absence of the SOho=16mnA/m*, w.  be achieved in a spin-split 2DEG via inter-SO electronic

=4ag|mn./h andn,=n_ +n_ is the total electron density transitions;(5) the larger differences between andn, ,

of the 2DEG. Moreover, the electron density in different spinQ); andw,,, and betweerf)_ andQ), can be observed at a

channels larger value ofag; and(6) 2. depends much more strongly
_ _ I — on ag than( does.

N+ =(Nef2)F (Ko /2m) V27— K, © In Fig. 2, the electron distribution in different SOs and
is obtained from the condition of electron number conservaplasmon frequency due to different excitation modes are
tion for case ofng>k2/7 with k,=m*ag/h?. Whenn, plotted as a function of total electron density for fixeg
<k?/m, only spin-down states are occupied by electronsand w,. The more pronounced differences betweenand
and, therefore, the system is spin polarized.,n, =0 and n,, {_ and(,, and betweerf), and w, can be seen at
n_=ng). It can be seen from Eq(5b) that at a long- relatively lower electron densitie§) /w, increases almost
wavelength limit, two branches of the inter-SO plasmon carlinearly with n,, whereas() , /w, increases more rapidly
be observed whef) . — w-. and{().. depends generally aqp  with n.. Again, Q. depends much more strongly ap than
via oy, . ), does and().. can be much larger thafl,. Since plas-

In Fig. 1, the electron density in different SOs and plas-mon excitation from an electron gas is achieved by electronic
mon frequency induced by intra- and inter-SO excitation ardransition around Fermi leveH;), changing sample param-
shown as a function of the Rashba parameter at a fixed eters such aag andn, implies thatEr is varied and, s}
and a fixedw, for an InGaAs-based 2DEG. The nature of theand() .. depend ornxg andn,. Furthermore, a nonparabolic
energy spectrum for a 2DEG with S@lee Eq(2c)] implies  subband structure of the 2DEG with S8ke Eq(2¢c)] leads
that although the direction of the spin can change when ato an () different from that obtained from a parabolic one
eiectron moves irk space, the density of statéBOS) for [see Eq.(5a].
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10 T T 7 three plasmon modes can be generated. The inter-SO plas-
g | ne=1011cm-2 a /I- mons )_ and(),) depend s_trongly on the strength of the
aR=1.6x10-11 eVm 0 /! SOI and total electron density of the system, whereas the
= 6h Q/ i intra-SO one {);) depends much more weakly on these
I / sample parameters. The plasmon freque@specially() )
= 4 B 7 -7 J of a 2DEG in the presence of SOI can differ significantly
G oy Q. from w, obtained from a conventional 2DEG. In InAs-based
2F . 2DEGs,(). andQ_—Q, can reach up to THz. This sug-
gests that these systems can be used as semiconductor THz
0 L I L ] generators and detectors. At long-wavelength limit, in sharp
0.01 0.1 1 10 100 contrast toQo~ w,~q*% Q. depends very little omg and
wp (THz) therefore is optic-like. Experimentally, it is not so easy to

measurav, for a 2DEG because,~q*? where techniques
FIG. 3. Dependence of the plasmon frequencyugr= (2me’neg/ km* )2 such as grating couplers have to be u$étbwever, optic-
for fixed ag andn, . Herew . =4agmn. /% and note different scales fér like plasmons excited via inter-SO transitions in a 2DEG
andwp . should be more easily observed through, e.g., optical
absorptior?, Raman spectrurtf, ultrafast pump-and-probe

The dependence of plasmon frequency due to intra- oexperiment$, etc. | therefore hope that the theoretical pre-
inter-SO excitation onw, or g is shown in Fig. 3 for fixed dictions in this letter can be verified experimentally.
ag andng, whereq is the change of electron wave vector
(or momentum during a scattering event. At a long-
wavelength limit,Q~ w,~q? [see Eq(5a)] similar to the
case in the absence of the SOI. Although. should, in
principle, depend om via w, [see Eq.(5b)], the numerical
results shown here suggest that at a long-wavelength limit,
over a wide rggime Ok, O g, Qi._)“’i:A'aRW_ni/ﬁ 1B. Datta and S. Das, Appl. Phys. LeB6, 665 (1990
Fiepends very Ilttle.oq or wp, espeC|a!Iy fO@* - The most Zx: F. Wang, P. Vasilc;pouloé, and. F. M.YPeeters, Phys. Res5,B165217
important conclusion drawn from Fig. 3 is that at long- (2002.
wavelength limit, inter-SO plasmons are optic-like, in sharp *T. Koga, J. Nitta, H. Takayanagi, and S. Das, Phys. Rev. Bft126601
contrast to intra-SO plasmon and to those observed in a con;(szggaég Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno
v_entlonal 2DE_G. It should be noted thak gnd ne used in and D. D. Awschalom, Néturé_on’doﬁ) 402 790(’19§9_ o ’
Fig. 3 are typical sample parameters realized from InGaASFE. I. Rashba, Sov. Phys. Solid St2e1109(1960.
INAIAs quantum well$’ For these parameter§) .. ~THz 6J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. L28}.
and. Q__Q+.~1 THz (or 4 meV or 300um) can be 7§?iig%gﬁnl\./lunekata, F. F. Fang, and P. J. Stiles, Phys. Rel\l, B685
achieved, which suggests that these plasmon modes are megy g
surable by using recently developed long-wavelength lasefsee, e.g., M. VoRebger, H. G. Roskos, F. Wolter, C. Waschke, and H.
and optoelectronic technologies. ,Kurz, J. Opt. Soc. Am. B3, 1045(1996.
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