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The increasing reservoirs of energetic particles which drive high-frequency modes, together with
advances in the understanding of magnetohydrodynamics, have led to a need for higher-frequency
�50 kHz to �20 MHz� measurements of magnetic field fluctuations in magnetic fusion devices such
as tokamaks. This article uses transmission line equations to derive the voltage response of a Mirnov
coil at the digitizer end of a transmission line of length �. It is shown that, depending on the
terminations of the line, resonances can occur even for � /��1, with � the wavelength of a
fluctuation in the transmission line. A lumped-circuit model based on the approach of Heeter et al.
�R. F. Heeter, A. F. Fasoli, S. Ali-Arshad, and J. M. Moret. Rev. Sci. Instrum. 71, 4092 �2000�� is
extended to enable the inclusion simultaneously of both serial resistance and parallel conductance
elements. As originally proposed by Heeter et al. the lumped-circuit model offers the advantage of
remote calibration; this may be of particular value when upgrading existing systems to operate at
frequencies above the original design specification. It is formally shown that the transmission line
equations for the transfer function and measured impedance reduce to those of the lumped circuit
model of Heeter et al. under specific conditions. The result extends the use of the lumped-circuit
model of Heeter et al., which can be used to extract the transfer function from measurement of the
impedance, beyond the case of an open-circuit termination. Although the numerical procedure does
exhibit some problems associated with non-uniqueness, it provides a simple calibration method for
systems that are not well defined. Using typical parameters for a high-frequency Mirnov coil
installed on the Joint European Torus �JET� tokamak, the lumped-circuit approximation agrees with
the steady-state transmission line model to within 0.015° in phase and 22% in amplitude for
frequencies up to 1 MHz. A matched termination, though eliminating line resonances and reducing
the length of time for the system to reach steady state, is inappropriate for the JET-type coils which
exhibit significant temperature-dependent resistance. Finally, for fluctuations of finite duration, a
method of computing the discrepancy due to the simplifying assumption of Fourier-stationary
conditions is described. © 2005 American Institute of Physics. �DOI: 10.1063/1.2009107�
I. INTRODUCTION

The increasing energetic particle populations responsible
for driving high-frequency modes in magnetic fusion devices
such as tokamaks, and accompanying advances in the under-
standing of magnetohydrodynamics have led to a need for
measurements of magnetic field fluctuations at higher fre-
quencies in the range 50 kHz to �20 MHz. In many of these
devices there is a large base of installed hardware which was
designed mainly for low-frequency measurements. Often, the
design and installation of entirely new systems is cost pro-
hibitive, and the most feasible approach to high-frequency
measurements is to simply upgrade the digitizers on the older
hardware. In either the new-system or upgraded-system situ-
ations, the issue of high-frequency calibration is a major
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challenge, especially for ongoing operations, since the diag-
nostics on many devices are essentially inaccessible after in-
stallation. This article provides some important insights into
this issue.

Magnetic fluctuations well above 100 kHz driven by en-
ergetic particles are now commonly observed on tokamaks
with auxiliary heating. Types of activity reported include
shear Alfvén modes, for example, the toroidal and elliptical
Alfvén eigenmodes,1–3 formed in gaps of the continuous
Alfvén spectrum in which f =k�vA /2�, ion cyclotron eigen-
modes �ICE�4 and compressional Alfvén eigenmodes
�CAEs�5 with f = �k�vA /2�. Here k denotes the mode wave
number �k� is the component orientated with the magnetic
field� and vA is the local Alfvén velocity. For the normal
operating conditions in tokamaks, it is expected that these
instabilities should have frequencies in the range 50–400
kHz for shear Alfvén eigenmodes and extending up to above

the cyclotron frequency for CAEs ��4 MHz in the Mega-
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Amp Spherical Tokamak �MAST� and the National Spherical
Torus Experiment �NSTX�, and �20 MHz in the Joint Eu-
ropean Torus �JET��. Experimental measurements have con-
firmed these values. Shear Alfvénic activity has been seen on
JET around 250 kHz,6 on MAST up to 400 kHz,7 and on the
Small Tight Aspect Ratio Tokamak �START� between 50 and
350 kHz.8 Evidence of CAEs and ICE have been seen on
JET,9 START,8 NSTX10 and more recently on MAST.11

The simplest technique for the detection of magnetic
field fluctuations is by the use of magnetic Mirnov probes.12

Modern experimental practice is to connect the probes via a
twisted wire or coaxial cable to a digitizer. Due to the strin-
gent operating conditions within the vacuum vessel, the elec-
trical properties of the cables used inside the vessel and out-
side the vessel are not necessarily the same; also, in some
cases the distance between the vessel and the digitizer may
be connected with multiple cables again with varying elec-
trical properties. Generally, the inhomogeneity of the cables
only becomes important at higher frequencies due to trans-
mission line effects. Figure 1 shows a schematic diagram of
the circuit from the Mirnov coil to the digitizer. Although
Mirnov probes have been in use for many years, the focus
has been mainly on the detection of frequencies below 50
kHz where the effect of the connecting cable may be ne-
glected or at most be included as an effective capacitance.13

The possibility of resonances at low frequencies between the
line capacitance and probe inductance was recognized by
Lovberg14 in the early 1960s. Published analysis techniques
range from a complete neglect of line effects15 to considering
only the phase delays in the line.16 In the work of Heeter
et al.17 steady-state transmission line effects are taken into
account in an approximate manner using a discrete lumped-
circuit approach; they also describe an approach to the issue
of in-vessel calibration.

While this work is motivated by recent advances in tor-
oidal magnetic confinement, the techniques developed here
have application to other in situ measurements in space and
experimental plasmas. Magnetometers,18 which detect field
strength and orientation, are typically slow time scale
��1 ms� magnetic probes, used extensively in satellites.
While the variation in the detected field strength is often
attributable to changes in the local plasma properties �e.g.,
density, temperature and flow speed�, wave phenomena have
also been detected.19 In low-temperature low-pressure induc-
tively coupled plasmas, magnetic probes have been used to
map the B field spatial variation at the fundamental and har-
monics of the 0.5 MHz excitation frequency.20 Magnetic
fluctuation probes, also known as “B-dot” probes, have also
been used in vacuum arc rail-gun experiments to characterize

21

FIG. 1. Schematic diagram showing the Mirnov coil connected via a num-
ber of separate transmission line sections �three are shown in the figure� to
a digitizer.
the expanding metal plasma plume. On faster-time scales
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��0.1 �s�, arrays of magnetic probes have been used to
study the magnetohydrodynamics, stability of the imploding
plasma in a Z pinch.22 Finally, on a very fast time scale
��1 ns�, magnetic probes have been used to study the inter-
action of an externally applied magnetic field, a background
plasma, and a laser-produced plasma.23

In this work we apply transmission line theory to model
the wave propagation from a Mirnov coil along a single ter-
minated line. The analysis, valid for frequency-independent
circuit parameters and steady-state conditions, elucidates the
underlying physics. Extension of the theory to include the
effects of using multiple cables is a straightforward generali-
zation of the single cable case. Section II develops expres-
sions for the voltage transfer function, the system impedance
and the location of resonances. In Sec. III the lumped-circuit
method of Heeter et al.17 is generalized to include resistive
elements. Section IV examines the applicability of the
lumped-circuit model when transmission line effects are in-
cluded and shows that the model is valid providing that the
transmission line is distortionless, and the load impedance
real. For comparative purposes with the work of Heeter et al.
calculations presented in this article are in the frequency
range up to 1 MHz, however, it is valid to extend the fre-
quency range far higher until the frequency dependences of
the circuit parameters become significant. Finally, Sec. V
examines the validity of the transmission line analysis in the
case of finite-duration wave pulses.

II. TRANSMISSION LINE MODEL

Equations for the propagation of the voltage V�z , t� and
current I�z , t� along a transmission line are described by the
transmission-line equations24

�V

�z
= − L�I

�t
− IR , �1�

�I

�z
= − GV − C�V

�t
, �2�

where L ,C ,R, and G are the transmission line parameters:
inductance, capacitance, series resistance and parallel con-
ductance per unit length of the transmission line in the
z-direction, respectively. Alternatively, the transmission line
may be represented by an infinite cascade of identical
T-model circuit elements of the form shown in Fig. 2. The
equivalent-circuit representation of the transmission lines
shown in Fig. 1 consists of a separate infinite cascade of
identical T-model circuits for each section of transmission

FIG. 2. A single T-model circuit.
line.
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Instead of analyzing the electrical analog, we return to
the transmission line equations �1� and �2� to examine wave
propagation in a single transmission line section with termi-
nations as shown in Fig. 3. At z=0 there is an arbitrary
termination with impedance ZX connected in parallel to a
network analyzer represented by its Thévenin equivalent
circuit:25 an ideal voltage source Vs in series with an imped-
ance ZI. The network analyzer �for example, we have used a
Rohde & Schwarz ZVRE vector network analyzer26� has
been included to enable calibration;17 in normal operation it
is replaced by a high-impedance digitizer. Inclusion of the
termination impedance ZX allows adjustment of the wave
boundary conditions at the input end. At z=� there is a
Mirnov coil represented by an ideal voltage source Vm, and
the impedances Zs=Rp+ j�Lp and Zp=1/ j�Cp in which
Rp ,Lp and Cp are the resistance, inductance and stray
capacitance,27 respectively.

Below we consider the circuit characteristics of the cases
when �a� �Vs��0, Vm=0 �wave injected by the network ana-
lyzer�, and �b� �Vs�=0, ZI=�, Vm�0 �wave injected by
Mirnov coil with network analyzer not present�. In case �a�
our analysis solves for both the voltage transfer function Ts

= V�z=��	Vs between the end of the transmission line and
the network analyzer, and the impedance seen by the net-
work analyzer. In case �b� we solve the voltage transfer func-
tion Tm= V�z=0�	Vm between the digitizer and the Mirnov
coil.

Consider first the case of a wave injected by the network
analyzer. Waves injected into the transmission line have cur-

rent I= Ī exp j�t and voltage V= V̄ exp j�t where � is the

wave frequency and Ī and V̄ are the amplitudes of the voltage
and current waves, respectively. Assuming the transmission
line parameters are frequency-invariant, the system can be
reduced to two coupled ordinary differential equations

dV̄

dz
= − �j�L 
 R�Ī , �3�

dĪ

dz
= − �j�C 
 G�V̄ , �4�

which combined yield a wave equation for V̄

d2V̄

dz2 = �2V̄ , �5�

where �=��j�L
R��j�C
G� is the propagation constant

of the wave. The forward wave solution for V̄ �i.e., the wave

FIG. 3. Model of a transmission line showing details of the terminations at
z=0 and z=�.
propagating in the positive z direction� is
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V̄ = Ae−�z �6�

with A an arbitrary integration constant. Substituting for V̄ in
Eq. �3� yields

Ī =
Ae−�z

Z0
, �7�

where Z0=��j�L
R� / �j�C
G� is the characteristic im-
pedance of the transmission line. In terms of I and V

V = Aej�t−�z, �8�

I =
A

Z0
ej�t−�z �9�

and so the phase velocity of the wave is vphase=� /Im���.
From these equations for V and I it is seen that the input
impedance of the line encountered by a single wave propa-
gating from the external source V / I=Z0; hence

V�f ,0,z=0�

Vs
=

Z0�ZX

Z0�ZX + ZI
, �10�

where V�f ,0,z=0� is the forward propagating wave at z=0 with
zero previous reflections and X�Y 	1/ �1/X+1/Y�.

A wave injected into the line by the network analyzer
will in general be reflected multiple times, at z=0 and at z
=�, and the net voltage and current will be a superposition of
these waves. The voltage reflection coefficients28 for a wave
propagating towards z=� and z=0 are

�� =
Zp�Zs − Z0

Zp�Zs + Z0
, �11�

�0 =
ZI�ZX − Z0

ZI�ZX + Z0
, �12�

respectively. At z=0, the forward and backward waves can
be written as the summation of the number, n, of complete
transits of the wave within the line. That is,

Vb�z = 0� =
V�f ,0,z=0�

�0


i=0

n+1

��0��e−2���i, �13�

Vf�z = 0� = V�f ,0,z=0�

i=0

n−1

��0��e−2���i. �14�

The total voltage appearing at z=0 and z=� is obtained by
summing the forward and backward waves �Eqs. �13� and
�14��

V�z = 0� = V�f ,0,z=0��1 + ��e−2���

i=0

n−1

��0��e−2���i. �15�

Similarly, the voltage at z=� is

V�z = �� = V�f ,0,z=0��1 + ���e−��

i=0

n−1

��0��e−2���i. �16�

The currents I�z=0� and I�z=�� are obtained by replacing
V�f ,0,z=0� ,�� and �0 with I�f ,0,z=0� , −�� and −�0,

24
respectively. Expressions for the line impedance at z=0
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and the voltage ratio between the ends of the transmission
line follow:

Z�z = 0� 	
V�z = 0�
I�z = 0�

=
1 + ��e−2��

1 − ��e−2��Z0, �17�

T�z = 0� 	
V�z = ��
V�z = 0�

=
�1 + ���e−��

1 + ��e−2�� . �18�

The voltage transfer function between the voltage source and
the end of the transmission line, Ts=V�z=�� /Vs, can be ex-
pressed

Ts = T1T2; T1 =
V�f ,0,z=0�

Vs
T2 =

V�z = ��
V�f ,0,z=0�

, �19�

where T1 and T2 are given by Eqs. �10� and �16�, respec-
tively. Substituting for T1 and T2 yields

Ts 	
V�z = ��

Vs
=

Z0�ZX

Z0�ZX + ZI
�1 + ���e−��


i=0

n−1

��0��e−2���i

=
Z0�ZX

Z0�ZX + ZI



�1 + ����1 − ��0��e−2���n�e−��

1 − �0��e−2�� . �20�

Finally, the impedance seen by the network analyzer is, from
Eq. �17�

Z = ZX�� 1 + �le
−2��

1 − ��e−2��Z0
 =
Z0ZX�1 + ��e−2���

�Z0 + ZX� + �Z0 − ZX���e−2�� .

�21�

It should be noted that Z is independent of �0, i.e., it is
dependant on ZX but independent of the network analyzer
impedance.

We now turn attention to the case of a wave injected by
the Mirnov coil, with ZI=�, �Vm��0 �i.e., the network ana-
lyzer has been removed�. The results of the previous case
apply with the parameters �Vs ,ZI ,ZX ,�� ,�0� replaced by
�Vm ,Zs ,Zp ,�0 ,���. From Eq. �20� the transfer function is
therefore

Tm 	
V�z = 0�

Vm

=
Z0�Zp

Z0�Zp + Zs

�1 + �0��1 − ��0��e−2���n�e−��

1 − �0��e−2�� . �22�

In the case that ��1/ ��� , exp−���1; with ��0����1,
Eqs. �20�–�22� reduce to

Ts =
Zp�Zs�ZX

Zp�Zs�ZX + ZI
, �23�

Z = Zp�Zs�ZX, �24�

Tm =
Zp�ZX

Zp�ZX + Zs
. �25�

That is, as expected, the effect of the transmission line is

removed.
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Taking the Taylor series expansion to first order in ��
with R=G=0, Eq. �21� becomes

Z = ZX��Zp�Zs��Zc − Z0� +
Z0

2

Zp�Zs
�� Z0

2

Zc − Z0

 , �26�

where

Zc =
1

j�C�
. �27�

In the limit Zc�1, the second term becomes insignificant
and Eq. �26� reduces to

Z � ZX�Zp�Zs�Zc, �28�

i.e., the effect of the transmission line reduces to an addi-
tional parallel capacitance. This is the limit considered by
Lovberg.14

A more interesting situation results if, during the deter-
mination of impedance by the network analyzer, the value of
the impedance ZX is adjusted to have a value ZX�ZI where ZI

is here taken to be the impedance of the digitizer. That is,
with ZX→ZX�ZI, Eq. �21� can be written

Z =
Z0�1 + �0��1 + ��e−2���

2�1 − �0��e−2���
�29�

and Eqs. �22� �assuming finite dissipation and n→� so that
��0��e−2���n=0� and �29� can be expressed as

Tm =
1

D
, �30�

Z =
N

D
, �31�

where

N = 1
2 �A+ + A−� , �32�

D =
A+ − �0A−

Z0�1 + �0�
, �33�

A± = �Zs ± Z0�1 + Zs/Zp��e±��. �34�

The numerical method of Heeter et al. described in Sec.
III, which is based on a lumped circuit model, provides ex-
traction of the transfer function Tm from a rational polyno-
mial fit to Z with real coefficients in powers of s, i.e., N and
D are expressed in the form

N = �i=0
n ais

i �35�

D = �i=0
n bis

i �36�

in which s= j�, the ai and bi coefficients are real, and the
series is finite. Below we show that the lumped-circuit model
is valid in the case of a lossy but distortionless transmission
line �i.e., the line exhibits no dispersion� terminated at z=0
by a real impedance. The condition for a transmission line to
be distortionless is29

R
L =

G
C �37�
so that
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Z0 = �L/C , �38�

� = �RG + s�LC , �39�

vphase = 1/�LC . �40�

Recalling that Zp=1/sCp, Zs=Rp+sLp, we note that the co-
efficients multiplying e+�� and e−�� in Eq. �34� are polyno-
mials in s with positive integer exponents. As the input ter-
mination and Z0 are both real, �0 is real. The term e±�� can
be expanded as

e±�� = e±��RG�1 ± s��LC + ¯

+
�±s��LC��n−1�

�n − 1�!
+ Rn�s�
 , �41�

where

Rn�s� =
�±s��LC�n

n!
e±� �42�

is the Lagrangian form of the remainder,30 and 0� ���
�s��LC. The effect of truncating the series at a finite n is to
introduce errors of order �Rn�s�� / �ej���LC�= �Rn�s�� into �e���,
and hence the expressions for N and D. In the limit n
→� ,Rn�s�→0, and so a rational polynomial of finite, but
arbitrarily large order will contribute a vanishing error to N
and D.

Thus we have shown that expressions for N and D are
reducible to the polynomial forms shown in Eqs. �35� and
�36� providing that the line is distortionless and the terminat-
ing impedence at z=0 is real. Physically, this implies that the
attenuation and phase speed of an injected signal is indepen-
dent of its frequency. The required frequency independence
arises because in the lumped-circuit model every injected
frequency appears instantly at the output.

Before discussing the lumped-circuit model any further,
particularly in relation to providing a technique to extract the
transfer function Tm from measurements of Z, the special
case of D=0, corresponding to a resonance condition on Z,
warrants comment. In the case that the transmission line and
Mirnov probe are lossless �R→0,G→0,Rp→0� and �0=1,
the resonant condition may be expressed

�

�
=

1

2�
tan−1�Z0�1 − �2LpCp�

�Lp
� , �43�

where �=2� / ���LC� is the wavelength of the signal in the
transmission line. For frequencies well below the first self-
resonant frequency �i.e., ��1/�LpCp� Eq. �43� becomes

�

�
=

1

2�
tan−1� Z0

�Lp

, � �

1
�LpCp

. �44�

The above relations are useful for obtaining the line lengths
at which resonances occur for a given frequency. For � /�
�1 the frequency of the lowest resonance is obtained by a

Taylor expansion of Eq. �43�
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� =
1

�Lp�Cp + C��
. �45�

It is seen that the effect of the transmission line is to down-
shift the resonance of the Mirnov coil from its value in the
absence of the transmission line. For Cp��C the resonance
is between the probe inductance and line capacitance as rec-
ognized by Lovberg.14 Finally, from Eqs. �44� and �45� in the
limit Cp��C,

�

�
=

1

2�
tan−1�L�

Lp
�46�

from which it can be seen that line resonances with � /�
�1 occur with Lp�L�.

In summary, comparison of Z and Tm reveals that extrac-
tion of Tm=1/D from Z=N /D is valid provided �i� the trans-
mission line exhibits no dispersion and is terminated at z
=0 by a real impedance, and �ii� during the determination of
Z , ZX is adjusted to have a value ZX�ZI with ZI taken to be
the impedance of the digitizer. This result is valid for arbi-
trary boundary conditions at z=0 �i.e., there are no restric-
tions on the choice of ZI and ZX�. However, unless �0=0 line
resonances will be present and, depending on the choice of
terminations, these may occur well below the first self-
resonant frequency.

III. LUMPED-CIRCUIT MODEL

Analysis of the transmission line is considerably simpli-
fied if propagation delays are neglected. This was the ap-
proach of Heeter et al. who modeled the circuit of serially
connected transmission lines shown in Fig. 1 by the lumped-
circuit shown in Fig. 4 consisting of k T-model circuit ele-
ments. The circuit impedance at the digitizer end of the cir-
cuit can be written as the rational function Zk�s�
=Nk�s� /Dk�s� where Nk=
i=0

m−1ais
i and Dk=
i=0

m bis
i are poly-

nomials in the Laplace transform s. Here, m=2k is the num-
ber of poles in a kth order lumped circuit. The functions Nk

and Dk are constructed by the recurrence relations

Nk+1 = Nk + DkYk+1, �47�

Dk+1 = Dk + Xk+1Nk+1, �48�

where Xk=Gk+Cks and Yk=Rk+Lks; the transfer function for
k stages is always given by Hk=1/Dk. If Zk is expressed in
this form, Heeter et al. showed that the transfer function,
Hk=VM /Vs, is trivially obtained as Hk=1/Dk. This is a useful
relation as it suggests a means of obtaining the transfer func-
tion simply by measuring the circuit characteristics from one

FIG. 4. A kth order lumped-circuit representation of the Mirnov coil and
line sections proposed by Heeter et al. The voltage source Vs represents the
Mirnov coil induced signal; VM is the signal at the digitizer.
end of the transmission line.
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There are various techniques for obtaining a rational
function fit to a given data set. Perhaps the simplest is the
Padé rational approximation. A requirement here is that the
data can be represented by a Taylor series expansion with
coefficients of the rational function matched to the derivative
at the expansion point. The question of uniqueness was ad-
dressed by Walsh31,32 who showed that the requirement is
that �a� Nk and Dk have no common zeros and �b� a normal-
ization condition must be imposed. The normalization cho-
sen by Heeter et al. is b0=1. Like Taylor’s series, the accu-
racy of Padé approximations usually decreases rapidly away
from the expansion point. Other algorithms such as that used
by MATLAB

33 minimize the weighted sum of squared errors at
multiple data points �i.e., the error is minimized over a range
of frequencies�. The issue of uniqueness in this case is yet to
be addressed.

It is instructive to write down the general form of the
b0 term

b0 = 1 + �
i=1

k

RiGi + ��k − 2�

i1=1

k



i2=i1

k

Ri1
Gi2

+ ��k − 3�

i1=1

k−1



i2=i1

k−1



i3=i2+1

k



i4=i3

k

Ri1
Gi2

Ri3
Gi4

+ ��k − 4�

i1=1

k−2



i2=i1

k−2



i3=i2+1

k−1



i4=i3

k−1



i5=i4+1

k



i6=i5

k

Ri1
Gi2


Ri3
Gi4

Ri5
Gi6

+ ¯ , �49�

where ��k− j�=1 for k� j and is otherwise zero. The case
b0=1 can be seen to represent the limit when Rk=0 and/or
Gk=0. It is often the case that the finite series resistance must
be retained �i.e., Rk�0� but that Gk can be neglected in
which case taking b0=1 is reasonable. This is presumably
true for the JET probe systems considered by Heeter et al.

The procedure carried out by Heeter et al. is to obtain a
rational function fit to the data, to apply the normalization
b0=1, and hence the transfer function Hk. In the general case
when Rk�0 and Gk�0 it is necessary to compute b0 explic-
itly. This is not straightforward and there are at least three
possible approaches that can be used to obtain Hk given

TABLE I. Initial values of circuit components and computed values for
lumped circuits with k=1, k=2, k=3.

Exact k=1 k=2 k=3

R1��� 15 82.1 15.0 −2.30
L1�mH� 1 2.31 1.00 0.02
C1�nF� 50 1.03 50.0 224.0
G1�m�−1� 1.5 0.97 1.50 401.0
R2��� 5 5.01 16.91
L2�mH� 2.5 2.50 −0.02
C2�nF� 1 1.00 −3.71
G2�m�−1� 1 1.00 −48.6
R3�m�� 27.66
L3�mH� 2.50
C3�nF� 1.00
G3�m�−1� 1.00
Zmeas:
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�a� generate expressions for the coefficients of the polyno-
mials Nk and Dk in terms of the circuit components,
and vary the circuit component to obtain a least squares
fit to Zmeas;

�b� generate a rational function in terms of the set of vari-
ables Xk and Yk using the recurrence relations �47� and
�48� and vary Xk and Yk to obtain the least squares fit to
Zmeas;

�c� directly perform a least squares fit to Zmeas with a ra-
tional function Nfit /Dfit of undetermined and indepen-
dent coefficients �the method of unconstrained fit�,
and then eliminate the free multiplicative constant �
present in the ratio Zk=Nfit /Dfit= �Nk�� / �Dk�� to ex-
tract Hk=1/Dk.

Methods �a� and �b� are equivalent, and involve solving for
all 4k circuit components. In method �c�, the elimination of �
will also be, in general, equivalent to solving the equations
Nfit=Nk and Dfit=Dk for all circuit components. As such, the
complexity of the third method is equivalent to �a� and �b�.
In every case at least some if not all of the circuit compo-
nents need to be extracted to determine the transfer function
uniquely.

Finally, the transfer function is obtained for a second
order circuit with component values given in Table I using
the method of unconstrained fit with a simulated impedance
characteristic. The details of the procedure are contained in
the Appendix. Figure 5 shows the fit to a rational function
using the MATLAB invfreqs routine with k=1, k=2 and
k=3, respectively. Not unexpectedly, the fits to Zmeas for k
=2, k=3 overlay the original values Zmeas, whereas the fit for
k=1 is poor. The computed circuit components are listed in
Table I. Only in the case k=2 does the method successfully
recover all the circuit component values, and there are large
errors in the other cases. For k=3 several of the circuit com-
ponents are active suggesting the presence of voltage sources
within the network. Figure 6 shows the computed function
Hk for each case together with the exact value of the transfer
function, Hs. In the case k=2 Hk overlays Hs; however, in
the other cases there are large discrepancies. For example,

FIG. 5. Rational function fits of Zmeas compared to the exact values �indi-
cated by circles�. The cases k=2 and k=3 overlay.
with k=1, a significant feature around 20 kHz is not repre-
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sented, whereas for k=3, the magnitude of the computed
transfer function is too large by a factor of �10. Thus, al-
though rational functions corresponding to both the k=2 and
k=3 lumped circuits provide good fits to Zmeas, only the k
=2 case provides an accurate calculation of Hs.

These results show that the MATLAB invfreqs routine
does not always provide a unique rational function approxi-
mation and there may exist multiple rational functions that
can fit the data to the tolerance of the data, each yielding a
different Hk. More generally, Hk appears to converge with an
increasing number of passive circuit components, up to the
order of the circuit under test but diverges once active com-
ponents are found. Notwithstanding these limitations, when
performed carefully, the use of the method of unconstrained
fit, together with the elimination of the free multiplicative
constant, is a useful tool with which to extract the voltage
transfer function in established systems.

IV. COMPARISON OF THE LUMPED-CIRCUIT MODEL
WITH THE TRANSMISSION LINE MODEL

In this section we examine the accuracy of the lumped-
circuit model when transmission line effects are included.
Two examples are considered, both lossless transmission
lines terminated with an open circuit at z=0 �i.e., �0=1�.
These conditions were examined in Sec. II where it was
shown that for these conditions Z�s� can be expressed as a
rational function, and Tm by its denominator �i.e., the same
form as for the variables Z�s� and Hk defined in Sec. III�.
Since the coefficients of the rational functions representing
Z�s� are infinite series, the success of the lumped-circuit
model will depend on the rate of decay of successive terms.
Generally, the larger the number of terms in the rational
polynomial Zs, the larger the number of T-model circuits that
will need to be used in the lumped-circuit model which will
increase the likelihood that the extracted transfer function
will be in error.

In the first example, we consider the properties of a
lossless system in which transmission line effects are small
and good agreement would be anticipated using only a

FIG. 6. Computed transfer function Hk for k=1, k=2 and k=3 with exact
values, Hs, indicated.
few T-model circuits. Using parameters, Lp=Rp=0, L
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=166 nH/m, C=66.6 pF/m, and �=1 m, expressions for
Tm�s� and Z�s� �from Eqs. �32� and �33� with Zs=0� are
particularly simple:

Tm�s� = 1/D�s� , �50�

Z�s� = N�s�/D�s� , �51�

where

N =�L
C sinh ��LCs = L�s +

L2C��s�3

6
+

L3C2��s�5

120

+ O�s�7, �52�

D = cosh ��LCs = 1 +
���LCs�2

2
+

���LCs�4

24
+ O�s�6.

�53�

Figure 7 compares the results of the lumped circuit
model obtained using k=1 �i.e., one T-model circuit� with Tm

given in Eq. �50�. There is no discrepancy in phase between
the two approaches and the discrepancy in the magnitude is
less then 0.01%. The result for k=2 is shown in Fig. 8 and
displays a spurious 180° shift around 650 kHz. The reason
for the phase change is the existence of a common zero in
N�s� and D�s�.

FIG. 7. Transfer function computed for a lossless line with �0=1, Zs=0,
Z0=50 �, C=66.6 pF/m, L=166.6 nH/m and �=1 m using one T-model
circuit.

FIG. 8. Transfer function computed for a lossless line with �0=1, Zs=0,
Z0=50 �, C=66.6 pF/m, L=166.6 nH/m and �=1 m using two T-model

circuits.
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The second example examined is for a JET Mirnov coil
based on parameters contained in Heeter et al.17 The details
of the system examined are as follows. The cable has length
�=100 m in which waves travel with phase velocity vphase

=3
108 m/s �parameters given by Heeter et al.17�. For the
cable characteristics not given in Heeter et al.17 the following
are assumed: R=G=0 and Z0=50 � giving C=1/ �Z0vphase�
=66.6 pF/m. For the Mirnov probe, Lp=50 �H and Rp

=50 � �values given by Heeter et al.17�. The value of the
stray capacitance Cp is not given by Heeter et al.,17 so a
value of 10 pF is assumed, putting the coil self-resonant
frequency above 7 MHz. The input impedance of the JET
digitizer is 10 k�. As this is very large compared to the line
impedance, it will be neglected.

Figure 9 compares values of Hk and Tm defined in Eqs.
�30� and �33� for k=3 �i.e., three T-model circuits�. Using
k=3 provides the optimum physical solution; solutions with
k�3 were discarded as they included active circuit compo-
nents. The discrepancy in phase and magnitude increases
monotonically and approximately quadratically with fre-
quency reflecting the increasing importance of higher order
terms. Although the phase discrepancy is remarkably small
��0.015° for frequencies up to �1 MHz�, the discrepancy in
the magnitude is more significant: around 7% at 500 kHz and
22% at 1 MHz. An interesting feature seen in Fig. 9 is the
rapid change in phase and peaking in the magnitude of Tm

around 250 kHz. The appearance suggests it is the location
of a strongly damped resonance; application of Eq. �45�
�which is strictly valid in the case of no dissipative elements�
gives the resonant location at 275 kHz, close to the actual
peak. The case where the line is terminated at the digitizer
with a matching impedance is also shown in Fig. 9, evalu-
ated from Eq. �22� with n→� and �0=0. At this frequency,
from Eq. �44�, � /�=0.08. It is seen that the resonance has
now disappeared; however, at low frequencies the magnitude
of Tm has been reduced by a factor of 2.

The acceptable level of discrepancy between the
lumped-circuit and transmission line models will depend on

FIG. 9. Transfer function for a JET coil with open circuit ��0=1� at z=0
computed using the lumped-circuit model with three T-model circuits and
comparison with Tm. In this case R=0, G=0, Z0=50 �, C=66.6 pF/m and
L=166.6 nH/m. The dotted lines in �i� and �ii� are for a transmission line
with matched line conditions at z=0 ��0=0� computed using Eq. �30�.
context. For example, a common requirement in nuclear fu-
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sion research is to determine the spatial wavelength, and
phase of a traveling sinusoidal fluctuation.34 This requires
phase information at multiple spatial locations with the fluc-
tuation magnitude playing no role. If instead there are mul-
tiple sinusoidal fluctuations at a given frequency then the
measured fluctuation amplitude is significant. For example, a
recent algorithm developed by the authors to extract multiple
modes at a given frequency employs both magnitude and
phase.34

In summary, using the approach of Heeter et al. to com-
pute Tm for a JET Mirnov coil yields discrepancies of
�0.015° and �22% in the computed phase and magnitude,
respectively, for frequencies up to 1 MHz and a discrepancy
in the magnitude �5% for frequencies up to 500 kHz. The
existence of a system resonance around 250 kHz has been
identified and can be removed by correctly matching the line
at z=0. Care should be taken in interpreting any computed
singularities in Tm which may be due to the form of the
computed rational function introducing spurious resonances.
Finally, as stated in Sec. II, in the case of �0�1 it may not
be possible to relate Tm to the rational function representa-
tion of Z, and in this case it would be anticipated that the
discrepancy of the lumped-circuit approach may be signifi-
cantly larger.

V. EXTENSION TO WAVES OF FINITE DURATION

The results presented in the previous section assumed
Fourier-stationary conditions, namely, that a signal with con-
stant amplitude and varying as exp j�t is injected from time
t=0. The analysis takes into account the possibility that the
injected wave will be reflected n→� times. However, in
practice signals are of finite duration. The analysis of the
general situation can be modeled by writing the injected volt-
age �and current� in the form

V = 

i=1

�

V̄iH�t − �i�exp j��t − �i� , �54�

where H�t−�i� takes the value 1 for t��i and is otherwise
zero. In this treatment, however, once a signal appears it
never disappears, but is instead nulled out by another signal
injected at a later time. The time taken for the initial signal to
effectively disappear depends on the damping of the system.
Formal inclusion of all Fourier transients clearly adds an-
other level of complexity. It is therefore of interest to under-
stand when the steady-state approximation may be used.

Consider the time evolution of Tm following the launch
of a wave with constant frequency and amplitude at time t
=0 and of duration �T. From Eq. �22� Tm changes at discrete
intervals of time

�t =
2�

vphase
= �2��/�� . �55�

At time t=�T a Fourier-transient analysis would require two
signals to be injected, one to null out the initial signal, and a
second at the frequency and amplitude of the wave at this

time. The discrepancy of the steady-state approximation may
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be characterized by the function �=Tm�n=�T /�t�−Tm�n
→�� where Tm�n� denotes the value of Tm after n reflections.
Figure 10 plots the fractional discrepancy, �� /Tm�n=���, and
phase discrepancy, ��, for the JET Mirnov coil discussed in
Sec. IV. The number of transits n=1 and n=100 correspond
to �T=0.66 �s and �T=66 �s, respectively. The envelope
of the discrepancy increases with increasing frequency; for
�T=66 �s the maximum discrepancy in the magnitude and
phase of Tm is 1% and 1°, respectively. For �T=133 �s
these discrepancies decrease by nearly two orders. Figure 11
shows an identical calculation carried out for the same sys-
tem but with Rp reduced to 5 �. In this case, for a maximum
discrepancy of 1% and 1° in the magnitude and phase, re-
spectively, of Tm, n=1000 corresponding to �T=660 �s.
This illustrates the important role of a dissipative element in
reducing the time taken to reach Fourier-stationary condi-
tions. Without Fourier-stationary conditions the lumped-
circuit approach described in Sec. III cannot be used.

Finally, it is straightforward to apply the methodology
described in this section to construct a function describing
fractional discrepancies due to the assumption of Fourier-
stationary conditions in terms of the duration and frequency
of a fluctuation. This will make it possible via a look up table
or similar means to ascertain with little effort whether the
assumption of Fourier-stationary conditions is valid. Such a
technique is currently under development.

VI. DISCUSSION

The main advantage of using a lumped-circuit model to
represent a transmission line circuit is the possibility of being
able to deduce the voltage transfer function directly from the
electrical impedance measured from one end. This technique
of “remote calibration” was first suggested and implemented
by Heeter et al. In the present work we have extended the
earlier work to enable the simultaneous inclusion of both
serial resistance and parallel conductance elements in the
transmission line network. Specifically, we have considered
the case where b0, the first coefficient in the denominator of
the rational function fit to Z �see Eq. �49��, is not unity. As in
Heeter et al.,17 the rational function fit is obtained using

35

FIG. 10. Error in Tm computed for a JET Mirnov coil with Rp=50 �.
MATLAB. In this work the symbolic processor Mathematica
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is used to eliminate the free multiplicative constant. The case
when b0=1 �which arises, for example, when the admittance
terms Gk can be neglected� is much simpler as the use of
Mathematica is not required.

In this article we have formally proved that for the case
of a lossy non-dispersive transmission line terminated with
an arbitrary real impedance, Tm may be extracted from the
measurement of Zm provided that during the determination of
Z ,ZX is adjusted to have a value ZX�ZI with ZI taken to be
the impedance of the digitizer. This result extends the use of
the lumped-circuit model of Heeter et al. beyond the case of
an open-circuit termination.

Transient analyzes carried out have related the duration
of a wave to the discrepancy in the magnitude and phase of
the voltage transfer function using the steady-state approxi-
mation. In particular, for the JET Mirnov coil, the magnitude
and phase of the transfer function can be determined to
within 1% and 1°, respectively, for a wave of duration 66 �s.
Using a matched termination, waves will make only one pass
down the transmission line before being completely damped,
so the steady-state assumption is reached after only 0.66 �s.

The most obvious application of the lumped-circuit ap-
proach, requiring no a priori information on the system, is
for circuits terminated by an open circuit. In this case it has
been demonstrated that the system is subject to a resonance
which for the JET Mirnov coil is around 275 kHz. In con-
trast, employing a matched termination avoids all line reso-
nances and optimizes the transient response, however, it re-
quires the transmission line characteristics to be known in
advance to enable line matching, possibly lessening the value
of remote calibration. It should be noted that the JET coils
exhibit significant temperature-dependent resistance which
precludes using a matched termination at the digitizer.36 In-
cluding resistive elements into the lumped-circuit model �if
Rk�0 and Gk�0� adds considerably to the complexity of
the lumped-circuit model since individual circuit elements
must then be extracted.

Nevertheless, the results of the lumped-circuit approach
for the extraction of the transfer function should be used with

FIG. 11. Discrepancy in Tm computed for a JET Mirnov coil with Rp

=5 �.
care. This is clear from the results of tests using data derived
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from a two-stage T-model circuit showing that multiple ra-
tional functions may be generated that fit the measured im-
pedance profile well, while yielding widely different transfer
function characteristics. Many of these solutions contain un-
physical active circuit components, and it is generally found
the most accurate transfer function is obtained using the
highest order rational function containing solely passive
components. Applying the lumped-circuit model to a trans-
mission line circuit, it has been shown that the lumped-
circuit model can introduce spurious resonances due to the
existence of a common zero in the numerator and denomina-
tor of the rational function fit to the impedance. With care,
however, the lumped-circuit model has been successfully ap-
plied to obtain the transfer function of a JET Mirnov coil
with the phase determined to within 0.1° for frequencies up
to 1 MHz.

The work described in this article has been restricted to a
single transmission line section connected to a Mirnov coil.
In a practical system there may be multiple serially con-
nected transmission line sections. For the design of a new
diagnostic system it is preferable to minimize resonances by
using matching terminations and choosing and constructing
the voltage transfer function based upon expressions devel-
oped in this article and to reserve the lumped-circuit model
for providing a check on data consistency.
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APPENDIX: CALCULATION OF THE TRANSFER
FUNCTION, Hk

The method of unconstrained fit was employed in this
work, due mainly to the availability of rational function fit-
ting packages �e.g., MATLAB

33�.
The procedure employed was as follows:

�i� A rational function with denominator, Dfit, order k and
numerator, Nfit, order k−1 was fitted to Zmeas. The
value of k was assigned the value 2 in the initial pass
and incrementally increased by 2 for each subsequent
pass. In this work, the fit to the rational function was
carried out by MATLAB, and normalized such that the
coefficient of the leading power in Dfit was unity, so
that �=1/b0.

�ii� With the aid of a symbolic processor �Mathematica35�,
explicit functional forms for Nk and Dk were con-
structed using the recurrence relations �47� and �48�,
and normalized the way as in �i�.

�iii� Expressions for the normalized coefficients obtained
in �ii� were equated to the fitted coefficients deter-
mined in �i� to obtain a set of linear equations which
were solved to obtain values for the circuit compo-
nents.

�iv� Steps �i� to �iii� were repeated until any one of the
extracted circuit components were active.
�v� Using the largest set of physical �i.e., passive� circuit
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components, the factor b0 was calculated and the
transfer function Hk=1/Dk=� /Dfit determined.

Fitting of the transfer function and the extraction of cir-
cuit components was tested by generating the impedance
profile for a known circuit. In each case the output circuit
components were found to be equal to the test circuit to
within numerical error.
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