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NONPARAMETRIC ESTIMATION OF MEAN-SQUARED
PREDICTION ERROR IN NESTED-ERROR

REGRESSION MODELS
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Australian National University and Iowa State University

Nested-error regression models are widely used for analyzing clustered
data. For example, they are often applied to two-stage sample surveys, and in
biology and econometrics. Prediction is usually the main goal of such analy-
ses, and mean-squared prediction error is the main way in which prediction
performance is measured. In this paper we suggest a new approach to es-
timating mean-squared prediction error. We introduce a matched-moment,
double-bootstrap algorithm, enabling the notorious underestimation of the
naive mean-squared error estimator to be substantially reduced. Our approach
does not require specific assumptions about the distributions of errors. Addi-
tionally, it is simple and easy to apply. This is achieved through using Monte
Carlo simulation to implicitly develop formulae which, in a more conven-
tional approach, would be derived laboriously by mathematical arguments.

1. Introduction. Unbalanced nested-error regression models often arise in
two-stage sample surveys, multilevel modeling, biological experiments and econo-
metric analysis. Beside the noise, a source of variation is added to explain the cor-
relation among observations within clusters, or subjects, and to allow the analysis
to borrow strength from other clusters. Such nested-error regression models are
particular cases of general linear mixed models, which often form the basis for
inference about small-area means or subject-specific values.

In this article we propose a new, nonparametric bootstrap technique for esti-
mating the mean-squared error of predictors of mixed effects. The new method
has several attractive properties. First, it does not require specific distributional
assumptions about error distributions. Second, it produces positive, bias-corrected
estimators of mean-squared prediction errors. (See [2] and [5] for discussion of
possible negativity.) Third, it is easy to apply. Although our emphasis is on small-
area prediction, our methodology is equally useful for other applications, such as
estimating subject- or cluster-specific random effects.

Standard mixed-effects prediction involves two steps. First, a best linear unbi-
ased predictor, or BLUP, is derived under the assumption that model parameters
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are known. Then, the model parameters are replaced by estimators, producing an
empirical version of BLUP. This approach is popular because it is straightforward
and, at this level, does not require distributional assumptions.

However, estimation of mean-squared prediction error is significantly more
challenging. The variability of parameter estimators can substantially influence
mean-squared error, to a much greater extent than a conventional asymptotic
analysis suggests. Moreover, the nature and extent of this influence is intimately
connected to the values of the design variables and to properties of the two error
distributions.

In this paper we point out that, in terms of the biases of estimators of mean-
squared prediction error, the two error distributions influence results predomi-
nantly through their second and fourth moments. This observation leads to a
surprisingly simple, moment-matching, double-bootstrap algorithm for estimat-
ing, and correcting for, bias. We show that this approach substantially reduces the
large degree of underestimation by the naive approach.

Kackar and Harville [20] and Harville and Jeske [18] studied various approx-
imations to the mean-squared prediction error of the empirical BLUP, assuming
normality in both stages. Prasad and Rao [27] pointed out that if unknown model
parameters are replaced by their estimators, then significant underestimation of
true mean-squared prediction error can still result. This difficulty can have signif-
icant impact on policy making. To alleviate it, Prasad and Rao [27] constructed
second-order correct mean-squared error estimators under normal models. Datta
and Lahiri [8] extended the Prasad–Rao approach to cases where model parameters
are estimated using maximum likelihood, or restricted maximum likelihood, meth-
ods. Das, Jiang and Rao [6] gave rigorous proofs of these results under normality.
Bootstrap methods in parametric settings have been suggested, for this problem,
by Booth and Hobert [3] and Lahiri [22], for example.

Jiang, Lahiri and Wan [19] proposed a jackknife-based bias correction of the
mean-squared error estimator. Again, unlike the approach taken in the present
paper, explicit parametric models are required. The problem of mixed-effects pre-
diction is in part one of deconvolution, and so conventional, nonparametric jack-
knife estimators of mean-squared error are not applicable; hence the need by Jiang,
Lahiri and Wan [19] for parametric assumptions. For convenient implementation
the methods proposed there also require a closed-form expression to be available
for the leading term in an expansion of mean-squared prediction error, as a func-
tion of unknown parameters. The main advantage of our technique is that it does
not require parametric assumptions about the distributions of the two sources of
error in the model, or an analytical partition of those sources.

On the other hand, the jackknife approach has advantages. Principal among
these are the fact that it can be used beyond the linear setting treated in the present
paper, for example in the case of generalized linear mixed models; and that, in
a parametric context, related methods might potentially be employed to construct
prediction intervals, rather than estimators of mean-squared prediction error. In the
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first of these settings, our method is confounded by nonlinear link functions. In the
second, aspects of the error distributions, beyond just low-order moments, play
necessary roles in constructing the prediction interval, and so again our moment-
matching bootstrap approach is not suitable. Further discussion of jackknife meth-
ods in the small-area estimation problem is given by Lahiri [23].

An approach alternative to that given in this paper would be to estimate the
two error distributions explicitly, and base a bootstrap algorithm on those estima-
tors. However, since we wish to treat both error distributions nonparametrically,
then the deconvolution problem would be quite nonstandard; the large literature
on nonparametric deconvolution is devoted almost entirely to the case where one
distribution is assumed known and the other is estimated. Early work in this area
includes that of Carroll and Hall [4] and Fan [12, 13], and more recent contribu-
tions can be accessed through citations by, for example, Delaigle and Gijbels [9].

Identifiability of the full, doubly nonparametric deconvolution problem rests on
the fact that some of the measurements are repeated. Methods for solution can be
developed, for example, by starting from the approaches introduced by El-Amraoui
and Goffinet [11] and Li and Vuong [26] in different contexts. However, in addi-
tion to the intrinsic difficulty, to a practitioner, of implementing a full deconvo-
lution approach, such a technique would involve choosing smoothing parameters,
which would have to be selected to optimize performance in a nonstandard prob-
lem where the target is bias reduction, not density estimation. By way of compar-
ison, the bootstrap approach suggested in the present paper is simple and explicit.
Only low-order moment estimators of the error distributions are required, and the
estimators are directly defined as functions of the data.

2. Methodology.

2.1. Model. We observe data pairs (Xij , Yij ) generated by the model

Yij = µ + X′
ij β + Ui + sijVij for 1 ≤ i ≤ n and 1 ≤ j ≤ ni,(2.1)

where each ni ≥ 2, Yij and µ are scalars, Xij is an r-vector, β is an r-vector
of unknown parameters, the scalar sij is known (generally as a function of
Xi1, . . . ,Xini

), the Ui ’s and Vij ’s are totally independent, the Ui ’s are identi-
cally distributed, the Vij ’s are identically distributed, E(Ui) = E(Vij ) = 0 for each
i, j , E(U2

i ) = σ 2
U and E(V 2

ij ) = σ 2
V . All inference will be conducted conditionally

on X, which denotes the set of explanatory data Xij for 1 ≤ i ≤ n and 1 ≤ j ≤ ni .
The model (2.1) is a generalization of the unbalanced nested-error regression

model [29, 31], and is commonly used to model two-level clustered data. For ex-
ample, Battese, Harter and Fuller [1] and Datta and Ghosh [7] used this model,
with sij ≡ 1, for predicting the areas under corn and soybeans for 12 counties
in North Central Iowa. Rao and Choudhry [30] studied the population of unin-
corporated tax filers from the province of Nova Scotia, Canada using (2.1) with
sij = X

1/2
ij .
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Of course, (2.1) arises through noise, in terms of the Vij ’s, being added to an
observation,

�i = µ + X′
iβ + Ui,

of the small-area modeling “parameter.” Here Xi = n−1
i

∑
j Xij . Our objective is

to make inference about estimators of the performance of predictors of the small-
area mean �i , or even just the random effect Ui (in the case µ = 0 and β = 0).

2.2. Formulae for predictors. Put X̄i = a−1
i

∑
j s−2

ij Xij and Ȳi = a−1
i ×∑

j s−2
ij Yij , where ai = ∑

j s−2
ij . The best linear unbiased predictor of �i is

�BLUP
i = µ + X′

iβ + ρi(Ȳi − µ − X̄′
iβ),

where ρi = σ 2
U/(σ 2

U +a−1
i σ 2

V ). Replacing µ and β by their weighted least-squares
estimators, µ̃ and β̃ say, defined under the temporary assumption that σ 2

U and σ 2
V

are known, we obtain an empirical version of �BLUP
i ,

�̃BLUP
i = µ̃ + X′

i β̃ + ρi(Ȳi − µ̃ − X̄′
i β̃).

Here,

µ̃ =
(

n∑
i=1

1′
iW

−1
i 1i

)−1 n∑
i=1

1′
iW

−1
i (Yi − X′

i β̃),

β̃ =
{

n∑
i=1

(X′
i − 1iX̄

′)′W−1
i (X′

i − 1i X̄
′)

}−1 n∑
i=1

(X′
i − 1i X̄

′)′W−1
i (Yi − Ȳ1i ),

where 1i is the vector of 1’s of length ni , Xi denotes the r × ni matrix with Xij as
its j th column, Wi is the ni ×ni matrix of which the (j1, j2)th component is σ 2

U +
δj1j2s

2
ij1

σ 2
V , δj1j2 is the Kronecker delta, Yi is the ni-vector with j th component Yij ,

and

X̄ =
(

n∑
i=1

1′
iW

−1
i 1i

)−1 n∑
i=1

XiW
−1
i 1i ,

Ȳ =
(

n∑
i=1

1′
iW

−1
i 1i

)−1 n∑
i=1

Y ′
i W−1

i 1i ,

denote an r-vector and a scalar, respectively.
A practical form of �̃BLUP

i is

�̂BLUP
i = µ̂ + X′

i β̂ + ρ̂i(Ȳi − µ̂ − X̄′
i β̂),
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where µ̂, β̂ and ρ̂i differ from µ̃, β̃ and ρi , respectively, in that σ 2
U and σ 2

V are
replaced by estimators, σ̂ 2

U and σ̂ 2
V say. We wish to construct a bias-corrected esti-

mator of the mean-squared prediction error,

MSEi = E{(�̂BLUP
i − �i)

2 | X}.(2.2)

2.3. Formulae for σ̂ 2
U and σ̂ 2

V . The estimators used here are borrowed
from [31]. Put

V̄i =
∑

j s−1
ij Vij∑

j s−2
ij

, X̄i =
∑

j s−2
ij Xij∑

j s−2
ij

, Ȳi =
∑

j s−2
ij Yij∑

j s−2
ij

,(2.3)

pij = s−1
ij (Xij − X̄i), qij = s−1

ij (Yij − Ȳi) and eij = Vij − V̄i . In this notation,

qij = p′
ij β + eij , 1 ≤ j ≤ ni,1 ≤ i ≤ n.(2.4)

Note too that E(eij ) = 0 and cov(eij1, eij2) = tij1j2σ
2
V , where

tij1j2 = δj1j2 − s−1
ij1

+ s−1
ij2

− 1∑
j s−2

ij

.

Let Pi = (pi1, . . . , pi,ni−1) be an r × (ni − 1) matrix, and let P = (P1, . . . ,Pn)

be an r × (N − n) matrix, where N = ∑
i ni . Let qi = (qi1, . . . , qi,ni−1)

′ and
ei = (ei1, . . . , ei,ni−1)

′ be (ni − 1)-vectors, and let q = (q ′
1, . . . , q

′
n)

′ and e =
(e′

1, . . . , e
′
n)

′ be (N − n)-vectors. Let Ti be the (ni − 1) × (ni − 1) matrix with
tij1j2 in position (j1, j2), and let T be the (N − n) × (N − n) matrix with blocks
T1, . . . ,Tn down the main diagonal and blocks of zeros elsewhere. Bearing in
mind linear relationships, the set of equations (2.4) is equivalent to

q = P′β + e,(2.5)

where E(e) = 0 and cov(e) = Tσ 2
V .

We shall assume that N − n > r , and that the matrices T and PT−1P′ are both
of full rank, N − n and r , respectively. Then, the sum of squares for error arising
from the regression model (2.5) is SSE1 = ê′T−1ê, where ê = q − P′β̂wls is the
vector of residuals and β̂wls = (PT−1P′)−1PT−1q is the weighted least-squares
estimator of β . It is shown in a longer version of this paper [17] that, under the
full-rank conditions,

E(SSE1) = (N − n − r)σ 2
V .(2.6)

This property motivates the estimator

σ̂ 2
V = SSE1

N − n − r
.(2.7)

In (2.6) and below we interpret expected value to be taken conditional on the set
X of design variables. That is, we drop the notation “|X” used at (2.2).
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Write p̄ij = s−1
ij Xij , q̄ij = s−1

ij Yij and ēij = s−1
ij Ui + Vij for the uncen-

tred versions of pij , qij and eij , and put t̄ij1j2 = (sij1sij2)
−1σ 2

U + δj1j2σ
2
V . Let

P̄i = (pi1, . . . , pi,ni
) be an r × ni matrix, let P̄ = (P̄1, . . . , P̄n) be an r × N

matrix, let q̄i = (q̄i1, . . . , q̄ini
)′ and ēi = (ēi1, . . . , ēi,ni

)′ be ni-vectors, and let
q̄ = (q̄ ′

1, . . . , q̄
′
n)

′ and ē = (ē′
1, . . . , ē

′
n)

′ be N -vectors. Let T̄i be the ni × ni ma-
trix with t̄ij1j2 in position (j1, j2), and let T̄ be the N × N block-diagonal matrix

with blocks T̄1, . . . , T̄n down the main diagonal. In this notation, the model at (2.1)
is equivalent to

q̄ = P̄′β + ē,(2.8)

where E(ē) = 0 and cov(ē) = T̄.
Assuming P̄ is of full rank, r , the sum of squares for error arising from (2.8)

is SSE2 = ˆ̄e′ ˆ̄e, where ˆ̄e = q̄ − P̄′β̂ols is a new vector of residuals, and β̂ols =
(P̄P̄′)−1P̄q̄ is the ordinary least-squares estimator. In a longer version of this pa-
per [17] it is proved that, analogously to (2.6),

E(SSE2) = Kσ 2
U + (N − r)σ 2

V ,(2.9)

where K = K1 − K2, K1 = ∑
i

∑
j s−2

ij and

K2 =
n∑

i=1

(
ni∑

j=1

s−2
ij Xij

)T(
n∑

i=1

ni∑
j=1

s−2
ij XijX

′
ij

)−1 ni∑
j=1

s−2
ij Xij .

Property (2.9) suggests the estimator

σ̂ 2
U = max[K−1{SSE2 − (N − r)σ̂ 2

V },0].(2.10)

Recall that the estimators σ̂ 2
U and σ̂ 2

V are substituted for σ 2
U and σ 2

V , re-
spectively, in formulae for µ̃ and β̃ , to obtain the estimators µ̂ and β̂ , respec-
tively. In particular, they are substituted for σ 2

U and σ 2
V in the formula Wi =

σ 2
UIni

+ σ 2
V diag(s2

i1, . . . , s
2
ini

), to obtain Ŵi say, and we need to invert Ŵi when
computing µ̂ and β̂ . In some problems, a realistic discrete model for U and V

can involve both taking the value zero with nonzero probability, and in this case
there is a nonzero probability that Ŵ−1

i is not well defined. More generally, there
might be concern about cases where the determinant of Ŵi is positive but close
to zero. To remove these theoretical pathologies it is sufficient to replace SSE1 by
max(SSE1, δn), where δn > 0 denotes a small ridge parameter. See Section 4 for
further discussion.

2.4. Expansions, and analytical estimators, of MSEi . Recall the definition
of MSEi at (2.2). It can be proved that �̂BLUP

i − �i = �i + Op(n−1/2), where
�i = ρiV̄i − (1 − ρi)Ui and V̄i is as at (2.3). This property suggests that MSEi =
E(�2

i ) + O(n−1). Indeed,

MSEi = E(�2
i ) + n−1ψ1(ξ1) + O(n−2),(2.11)
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where, here and below, ψj denotes a smooth function depending only on the
known design variables Xij and standard deviations sij , and ξ1 = (σ 2

U,σ 2
V ,EU4,

EV 4) is the vector consisting of second and fourth moments of U and V . See (4.2)
in Theorem 1 in Section 4.1 for a rigorous formulation of (2.11).

It is readily seen that

E(�2
i ) = σ 2

Ua−1
i σ 2

V

σ 2
U + a−1

i σ 2
V

,(2.12)

where ai = ∑
j s−2

ij is as in Section 2.2. Therefore, (2.11) can be written as

MSEi = ψ0(ξ0) + n−1ψ1(ξ1) + O(n−2),(2.13)

where ξ0 = (σ 2
U,σ 2

V ) and ψ0 is another known, smooth function.
From (2.13) it can be appreciated that, in order to estimate MSEi , we need only

compute estimators of the second and fourth moments of U and V , and substitute
them into the approximate formula, MSEi ≈ ψ0(ξ0) + n−1ψ1(ξ1). However, this
will introduce a bias of size n−1, since if ξ̂0 = (σ̂ 2

U, σ̂ 2
V ), then

E{ψ0(ξ̂0)} = ψ0(ξ0) + n−1ψ2(ξ1) + O(n−2),(2.14)

where ψ2 is a further known, smooth function. A rigorous formulation of (2.14) is
given in (4.3) in Theorem 1.

In fact, if we take ξ̂1 to be a vector of root-n consistent estimators of the respec-
tive components of ξ1, then, since

E{ψ1(ξ̂1)} = ψ1(ξ1) + O(n−1),(2.15)

the estimator

M̃SEi = ψ0(ξ̂0) + n−1ψ1(ξ̂1)(2.16)

will satisfy

E(M̃SEi ) = MSEi + n−1ψ2(ξ1) + O(n−2).(2.17)

We can correct for the term n−1ψ2(ξ1) on the right-hand side of (2.17) by moving
it to the left, and replacing ξ1 by its estimator,

E{M̃SEi − n−1ψ2(ξ̂1)} = MSEi + O(n−2).(2.18)

Here we have used the fact that

E{ψ2(ξ̂1)} = ψ2(ξ1) + O(n−1).(2.19)

[Result (4.4) in Theorem 1 gives (2.15) and (2.19) under explicit regularity condi-
tions.] Property (2.18) suggests a bias-corrected estimator,

M̃SEi
bc = M̃SEi − n−1ψ2(ξ̂1),(2.20)



1740 P. HALL AND T. MAITI

of MSEi , and argues that it has bias of order n−2:

E(M̃SEi
bc) = MSEi + O(n−2).(2.21)

See Section 4.1 for discussion. Of course, (2.20) is motivated by the fact that the
quantity

b̃iasi = n−1ψ2(ξ̂1)(2.22)

is an estimator of the bias of M̃SEi .
While the estimators at (2.16) and (2.20) might be satisfactory from a theoretical

viewpoint, they are impractical or unattractive on several grounds. First, although
the functions ψ1 and ψ2 are in principle known, they are very complicated func-
tions of the Xij ’s and sij ’s, and so implementing the estimators is not attractive to a
practitioner. Second, the additive and subtractive nature of the corrections implicit
in the procedures carries a risk that, in small to moderate samples, the estimators
of MSEi will be negative. Third, the complexity of the functions ψ1 and ψ2 would
lead one to suspect that the procedures will be highly asymptotic in character. In
particular, n will have to be quite large before reasonably unbiased estimators will
be obtained. Taken together, these difficulties motivate development of an alter-
native, bootstrap approach, which is likely to be more attractive. The bootstrap
algorithm suggested below uses Monte Carlo simulation to approximate the func-
tions ψ1 and ψ2, avoiding the need for explicit calculation.

2.5. Bootstrap estimators of MSEi . Results (2.13) and (2.14) imply that, in a
bootstrap approach to this problem, it is sufficient from some viewpoints to resam-
ple from empirical “approximations” to the distributions of U and V that have first,
second and fourth moments which are root-n consistent for the corresponding mo-
ments of U and V . In particular, we do not need the distributions from which we
resample to actually be consistent for the distributions of U and V . This is a vari-
ant of the moment-matching, or “wild,” bootstrap method, which almost invariably
addresses first, second and third, rather than first, second and fourth, moments. For
recent applications of the moment-matching bootstrap, see [10, 14–16, 21, 25, 28].

With this motivation, we consider the following bootstrap algorithm. Given
z2, z4 > 0 with z2

2 ≤ z4, let D(z2, z4) denote the distribution of a random vari-
able Z, say, for which E(Z) = 0 and E(Zj ) = zj for j = 2,4. Let D de-
note a class of such distributions, with exactly one member D(z2, z4) for each
pair (z2, z4). Given the estimators σ̂ 2

U and σ̂ 2
V at (2.10) and (2.7), as well as esti-

mators γ̂U and γ̂V of γU = E(U4) and γV = E(V 4), satisfying the standard mo-
ment conditions σ̂ 4

U ≤ γ̂U and σ̂ 4
V ≤ γ̂V , draw resamples U∗ = {U∗

1 , . . . ,U∗
n } and

V∗ = {V ∗
ij : 1 ≤ i ≤ n,1 ≤ j ≤ ni} by sampling independently from the distribu-

tions D(σ̂ 2
U, γ̂U ) and D(σ̂ 2

V , γ̂V ), respectively, the distributions being the uniquely
determined members of D . Mimicking the model (2.1), define

Y ∗
ij = µ̂ + X′

ij β̂ + U∗
i + sijV

∗
ij for 1 ≤ i ≤ n and 1 ≤ j ≤ ni.
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Let Z and Z∗ denote the set of all pairs (Xij , Yij ), and the set of all pairs (Xij , Y
∗
ij ),

respectively. Using the data in Z∗, compute the bootstrap versions µ̂∗, β̂∗, σ̂ ∗
U , σ̂ ∗

V ,
γ̂ ∗
U , γ̂ ∗

V and �̂∗BLUP
i of µ̂, β̂ , σ̂U , σ̂V , γ̂U , γ̂V and �̂BLUP

i , respectively, and put

M̂SEi = E{(�̂∗BLUP
i − �∗

i )
2 | Z};(2.23)

compare (2.2). In (2.23), �∗
i = µ̂ + X′

i β̂ + U∗
i . The quantity M̂SEi is our basic

estimator of MSEi . We shall prove in Section 4 that it has bias of order n−1.
To bias-correct M̂SEi we use the double bootstrap, as follows. Conditional on

U∗ and V∗, draw resamples {U∗∗
1 , . . . ,U∗∗

n } and {V ∗∗
ij : 1 ≤ i ≤ n,1 ≤ j ≤ ni} by

sampling independently from the distributions D{(σ̂ ∗
U)2, γ̂ ∗

U } and D{(σ̂ ∗
V )2, γ̂ ∗

V },
respectively. Let

Y ∗∗
ij = µ̂∗ + X′

ij β̂
∗ + U∗∗

i + sijV
∗∗
ij for 1 ≤ i ≤ n and 1 ≤ j ≤ ni,

and from the data pairs (Xij , Y
∗∗
ij ), compute the double-bootstrap version �̂∗∗BLUP

i

of �̂BLUP
i . Define

M̂SE
∗
i = E{(�̂∗∗BLUP

i − �∗∗
i )2|X,Z∗},

where �∗∗
i = µ̂∗ + X′

i β̂
∗ + U∗∗

i . Then M̂SE
∗
i is the direct bootstrap analogue

of M̂SEi . The bias of M̂SEi is estimated by

b̂iasi = E(M̂SE
∗
i | Z) − M̂SEi ,(2.24)

and a simple bias-corrected estimator is

M̂SEi
bc = M̂SEi − b̂iasi = 2M̂SEi − E(M̂SE

∗
i | Z).(2.25)

See Section 3 for discussion of other approaches.
The bootstrap estimators b̂iasi and M̂SEi

bc are analogues of the analytical esti-
mators b̃iasi and M̃SEi

bc, respectively, introduced in Section 2.4. We shall show in
Section 4.2 that the bootstrap estimators have the same orders of accuracy as their
analytical counterparts, in that

b̂iasi = b̃iasi + Op(n−2), E(b̂iasi ) = E(b̃iasi ) + O(n−2),(2.26)

M̂SEi
bc = M̃SEi

bc + Op(n−2), E(M̂SEi
bc) = E(M̃SEi

bc) + O(n−2).(2.27)

2.6. Distributions D(z2, z4). The simplest example of a distribution
D(1,p−1) of a random variable Z is perhaps the three-point distribution,

P(Z = 0) = 1 − p, P (Z = ±p−1/2) = 1
2p,(2.28)

where 0 < p < 1. Here, E(Z) = 0, E(Z2) = 1 and E(Z4) = p−1. Therefore we
may take D(z2, z4) to be the distribution of z

1/2
2 Z when p = z2

2/z4.
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The Pearson family of distributions has the potential for fitting the first four
moments. If (a) the first and third moments are zero, (b) the second is z2 = 1
and (c) the fourth is z4 > 3, implying that tails are heavier than those of the nor-
mal distribution, then the Pearson family distribution is rescaled Student’s t . The
number of degrees of freedom, r , is not necessarily an integer, and is given by
z4 = 3(r − 2)/(r − 4).

Section 3 reports results of a simulation study where both the three-point and
Student’s t distributions are used. While Student’s t can be employed only when
kurtosis is positive, this is the case in many practical situations.

2.7. Estimating fourth moments of U and V . A variety of methods can be
used; the one suggested here is based on estimating moments of residuals. Define

Wij1j2(s, t) = s
(
Ui + sij1Vij1

) + t
(
Ui + sij2Vij2

)
,

to which an empirical approximation is

Ŵij1j2(s, t) = s
(
Yij1 − µ̂ − X′

ij1
β̂

) + t
(
Yij2 − µ̂ − X′

ij2
β̂

)
.

The average value, W̄k(s, t), of Ŵij1j2(s, t)
k , over pairs (j1, j2) of distinct integers

1 ≤ j1, j2 ≤ ni and over 1 ≤ i ≤ n, is a root-n consistent estimator of the analogous
average value, wk(s, t) say, of E{Wij1j2(s, t)

k}. Now,

w4(1,−1) = 2a4E(V 4) + 6

∑
i (

∑
j s2

ij )
2 − ∑

i

∑
j s4

ij∑
i ni(ni − 1)

(EV 2)2,

where a4 = N−1 ∑
i

∑
j s4

ij . This suggests the estimator

γ̂V = max
[
(2a4)

−1
{
W̄4(1,−1) − 6

∑
i (

∑
j s2

ij )
2 − ∑

i

∑
j s4

ij∑
i ni(ni − 1)

σ̂ 4
V

}
, σ̂ 4

V

]
of γV = E(V 4), which leads in turn to an estimator of γU = E(U4),

γ̂U = max

[
N−1

{
n∑

i=1

ni∑
j=1

(Yij − µ̂ − X′
ij β̂)4

− 6σ̂ 2
U σ̂ 2

V

n∑
i=1

ni∑
j=1

s2
ij − γ̂V

n∑
i=1

ni∑
j=1

s4
ij

}
, σ̂ 4

U

]
.

3. Numerical properties. Recall, from (2.24), that the bias of û = M̂SEi is

estimated by b̂iasi = v̂ − û, where v̂ = E(M̂SE
∗
i | Z). The bias of û can be cor-

rected in a broad variety of ways. Perhaps the simplest is to take û− b̂iasi = 2û− v̂

as our estimator of MSEi . To avoid difficulties with the sign of this quantity we
might instead take as our bias correction û + n−1g{n(û − v̂)}, where g(t) is a
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smooth, symmetric, bounded function which equals t , or approximately t , when t

is not very far 0. One approach which incorporates this idea is to use

MSEi =
{

û + n−1g{n(û − v̂)}, if û ≥ v̂,
û2/[û + n−1g{n(v̂ − û)}], if û < v̂.

(3.1)

The two-case definition of MSEi ensures that this estimator is positive. The fact
that the high-order correction, û − v̂, is captured inside the bounded function g

limits the detrimental effects that stochastic variation of the correction can have on
overall variability, so removing the first drawback.

An elementary choice, which gives very good results in practice, is g(t) =
sgn(t)min(|t |, nc), where c is a positive constant. Perhaps surprisingly, g(t) =
arctan t also performs well. For the sake of brevity we shall report results only
for the latter estimator, although similar performance is obtained using other ap-
proaches.

In the remainder of this section we report results of a simulation study under
the regression model (2.1). We took r = 1, µ = 0, β = 1, each ni = 3, sij = 1 for
all i and j , and n = 60 or 100; and we generated the Xij ’s from the Uniform dis-
tribution on [1

2 ,1]. The objective was to estimate the mixed effects µ + Xiβ + Ui .
In problems of small-area estimation, this quantity can be treated as the small-area
mean.

Eight different models for the distributions of U and V were considered, in
each case centered so that both distributions had zero mean. Variances were
standardized so that the ratio σ 2

U/σ 2
V equaled 1

2 , 1 or 2, max(σ 2
U,σ 2

V ) = 1, and
min(σ 2

U,σ 2
V ) = 1

2 or 1. The models were M1: U and V are both normal; M2:

U and V are both
√

χ2
5 ; M3: U and V are both χ2

5 ; M4: U and V are both χ2
10;

M5: U and V are both exponential; M6: U is χ2
5 and V is −χ2

5 ; M7: U and V are
both Student’s t6; M8: U and V both have logistic distributions.

We used empirical measures of relative bias and coefficient of variation to quan-
tify the performances of our methods for different distributions. Relative bias of
the mean-squared error estimator was defined to be the average, over i, of

RBi = E(M̂SEi ) − SMSEi

SMSEi

,(3.2)

i = 1, . . . , n, where E(M̂SEi ) was estimated empirically as the average of values
of M̂SEi over replicates. (We shall also report the average of the absolute values
of the RBi ’s.) Likewise, SMSEi was defined as the average value of (�̂i − �i)

2

over replicates. The coefficient of variation of the MSE estimator was taken to be
the average, over i, of

CVi = {E(M̂SEi − SMSEi )
2}1/2

SMSEi

,
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i = 1, . . . , n, where E(M̂SEi − SMSEi )
2 was computed by averaging E(M̂SEi −

SMSEi )
2 over replicates.

Table 1 reports results in the case σ 2
U/σ 2

V = 1, and Table 2 gives results for
σ 2

U/σ 2
V = 1

2 and 2. For comparison, results for the “naive” mean-squared pre-
diction error estimator, without any bias correction, are reported in the column
headed RBN. The naive estimator is obtained by replacing σ 2

U and σ 2
V , in the for-

mula at (2.12), by σ̂ 2
U and σ̂ 2

V , respectively.
In the problem of estimating predictive mean-squared error, the naive estimator

is notoriously optimistic; it is significantly negatively biased. Erring by giving a
falsely positive impression of reliability can significantly affect the level of debate
about policy decisions based on predictions. Ideally, bias correction should remove
much of this effect, producing estimators that tend to err on the side of overesti-
mation of variance, and, against that background, to reduce the overall magnitude
of bias. The results in Tables 1 and 2 show that, to a substantial extent, our bias-
corrected estimator achieves this goal.

In Table 1, the average relative bias, across all models, is small, less than 10%
and, in some individual cases, less than 5%. The three-point distribution tends
to give lower relative bias than Student’s t in the case of skewed distributions,

TABLE 1
Relative bias and empirical coefficient of variation under different models

n = 60 n = 100

3pt t 3pt t

Model RB CV RB CV RBN RB CV RB CV RBN

M1 0.088 0.250 0.084 0.244 −0.147 0.082 0.238 0.078 0.142 −0.150
0.091 0.290 0.100 0.286 −0.131 0.098 0.280 0.080 0.162 −0.142

M2 0.062 0.262 0.099 0.253 −0.185 0.058 0.247 0.081 0.248 −0.181
0.089 0.289 0.103 0.291 −0.187 0.092 0.286 0.088 0.274 −0.142

M3 0.066 0.292 0.097 0.271 −0.200 0.040 0.262 0.053 0.264 −0.191
0.095 0.331 0.101 0.323 −0.200 0.067 0.298 0.048 0.301 −0.191

M4 0.064 0.272 0.062 0.258 −0.125 0.039 0.254 0.064 0.258 −0.103
0.076 0.312 0.099 0.305 −0.121 0.051 0.279 0.076 0.289 −0.117

M5 0.088 0.360 0.103 0.331 −0.141 0.070 0.295 0.090 0.278 −0.142
0.108 0.375 0.111 0.375 −0.163 0.079 0.327 0.100 0.315 −0.158

M6 0.006 0.283 0.109 0.282 −0.125 0.044 0.276 0.080 0.281 −0.112
0.075 0.317 0.121 0.316 −0.125 0.064 0.312 0.088 0.313 −0.112

M7 0.100 0.331 0.099 0.287 −0.158 0.028 0.262 0.015 0.246 −0.100
0.106 0.376 0.099 0.327 −0.166 0.036 0.280 0.036 0.268 −0.115

M8 0.104 0.299 0.065 0.260 −0.112 0.093 0.281 0.056 0.244 −0.080
0.100 0.326 0.119 0.318 −0.140 0.097 0.288 0.066 0.277 −0.114

The first line in each row gives median values, and the second line, means.
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TABLE 2
Relative bias and empirical coefficient of variation for models M3 and M7

3pt t

Model RB CV RB CV RBN

σ 2
U/σ 2

V = 1
2 M3 0.110 0.099 0.308 0.309 −0.181

0.103 0.081 0.324 0.346 −0.190

M7 0.124 0.100 0.289 0.304 −0.135
0.109 0.114 0.338 0.344 −0.135

σ 2
U/σ 2

V = 2 M3 0.099 0.104 0.310 0.307 −0.118
0.112 0.111 0.358 0.358 −0.140

M7 0.105 0.081 0.326 0.323 −0.116
0.111 0.099 0.379 0.366 −0.137

The first line in each row gives median values, and the second line, means.

although it has slightly higher coefficient of variation. For our method, both the
relative bias and the coefficient of variation tend to decrease as n increases.

In marked contrast, the naive estimator of mean-squared error suffers from
substantial underestimation, in the range 8%–20%. Indeed, the percentages of
cases where underestimation occurred, for models M1 to M8, respectively, and for
the pair (bias-corrected estimator, naive estimator), are (3,26), (5,56), (26,67),
(20,63), (13,59), (9,29), (3,52) and (0,73), respectively. The average percent-
ages of absolute bias, measured in terms of (median, mean), are (12.6,15.9) for
our bias-corrected estimator, and (18.8,24.4) for the naive method. All these re-
sults are for the case of moment-matching using the three-point distribution.

In Table 2, to save space we give results only for models M3 and M7. It can
be seen from those results that, for unequal variance components, both the relative
bias and the coefficient of variation tend to take higher values, compared to the
equal-variance case. However, the difference is not large. The three-point distrib-
ution, used to match moments, tends to give slightly better results here than the
Student’s t approach.

The performance of normal-theory bias corrections applied to nonnormal data is
well documented. For example, in the case of exponential data, use of normal the-
ory can result in relative bias of 19% [27]. The extent of overestimation evidenced
in Tables 1 and 2 is common in work on bias-correction in related problems; see
the simulation results of [24, 27, 32].

Finally we report on a comparison of our method with the parametric jackknife
approach suggested by Jiang, Lahiri and Wan [19]. The latter is awkward to imple-
ment unless there is a closed-form expression for the leading term in an expansion
of mean-squared prediction error, as a function of unknown parameters. Among
the models M1–M8, a closed-form expression exists only for the first (i.e., normal–
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normal) model. Moreover, only in this case does the best predictor (the small-area
estimator in the case of the jackknife) have a closed-form expression.

In the normal–normal model, and when σ 2
U/σ 2

V = 1 and n = 60, the median
(mean) relative bias and the median (mean) coefficient of variation are 0.035
(0.049) and 0.262 (0.298), respectively. When n = 100 the corresponding values
are 0.034 (0.047) and 0.156 (0.182). For unequal variance ratios the relative biases
are close to these values, while the coefficients of variation are higher.

Comparing these results with those in Table 1, it can be seen that the jackknife
method, which uses full knowledge of the error distributions, performs better in
terms of relative bias but is inferior in terms of coefficient of variation, relative
to the nonparametric bootstrap method. The impact of deviation from normality
of error distributions has been reported by Prasad and Rao [27] and Wang and
Fuller [32].

4. Theoretical properties.

4.1. Rigorous formulations of (2.11), (2.14), (2.15), (2.19) and (2.21). We
begin by stating, and discussing, regularity conditions. Of the ni’s, sij ’s, Xij ’s and
distributions of U and V we ask that:

(a) supi ni < ∞ and each ni ≥ 2, (b) C1 ≤ sij ≤ C2 for constants
0 < C1 < C2 < ∞ and for all i and j , (c) the vectors Xij

are conditioned-upon values of independent copies of the random
r-vector X, the distribution of which is continuous and satisfies
P(‖X‖ ≤ C3) = 1 for some 0 < C3 < ∞, (d) all moments of U and V

are finite, E(U) = E(V ) = 0 and σV > 0, and (e) the eigenvalues
of the ni × ni matrix Ti are bounded away from zero, uniformly in
1 ≤ i ≤ n < ∞.

(4.1)

The conditions on ni in (a) do not require any constraints on the long-run fre-
quencies of different values of the ni’s. As a result, the functions ψj in the expan-
sions in Section 2.4, which depend on n, may not converge as n → ∞. However,
they will converge if we assume in addition that the proportion of values of i,
1 ≤ i ≤ n, for which ni takes any given value between 2 and supi ni , converges
as n → ∞. Nevertheless, without this condition the functions ψj are uniformly
bounded.

Condition (c), in (4.1) and on the Xij ’s, can be weakened, and in particular it is
not essential to assume that the distribution of each Xij is the same for all i and j .
However, without that constraint, more complex assumptions have to be made in
order to ensure that the distributions of the Xij ’s do not become “asymptotically
degenerate” as n → ∞. If this occurs, then it could adversely affect assumptions
made in Section 2.3 about the rank of the matrices P and P̄; those assumptions
automatically hold, with probability 1 with respect to the process generating the
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Xij ’s, under the present conditions. Concerning assumption (d), it is not essential
to assume that σU > 0. Assumption (e) is a restriction on choice of the sij ’s.

As noted at the end of Section 2.4, in general it is necessary to introduce a
ridge parameter to ensure that Ŵi is nonsingular. We do this by replacing SSE1
by max(SSE1,B1n

−B2), for some B1 > 0 and B2 ≥ 2, in the definition of SSE1. It
will be assumed below that this has been done. Depending on the distributions of
U and V , this can slightly alter the definitions of σ̂ 2

V and σ̂ 2
U . The ridge parameter

is not necessary for Theorem 1 if the distribution of V is absolutely continuous.
Recall from Section 2.4 that ξ0 = (σ 2

U,σ 2
V ), ξ1 = (σ 2

U,σ 2
V , γU , γV ) and

ψ0(ξ0) = σ 2
Ua−1

i σ 2
V /(σ 2

U + a−1
i σ 2

V ), where γU = E(U4) and γV = E(V 4). Here,
and in (4.2)–(4.6) below, we suppress the dependence of the functions ψ0, ψ1 and
ψ2 on i, and expectations are interpreted as conditional on X.

THEOREM 1. If (4.1) holds, then, for a class of realizations of X that arises
with probability 1, and for k = 1,2,

MSEi = σ 2
Ua−1

i σ 2
V

σ 2
U + a−1

i σ 2
V

+ n−1ψ1(ξ1) + O(n−2),(4.2)

E{ψ0(σ̂
2
U, σ̂ 2

V )} = ψ0(ξ0) + n−1ψ2(ξ1) + O(n−2),(4.3)

E{ψk(σ̂
2
U, σ̂ 2

V , γ̂V , γ̂V )} = ψk(ξ1) + O(n−1),(4.4)

uniformly in 1 ≤ i ≤ n, where the functions ψ1 and ψ2 are determined solely by the
design variables Xij and weights sij for 1 ≤ i ≤ j ≤ n, depend on n, are bounded
in a neighborhood of ξ1, and are infinitely differentiable.

A proof of (4.2) is given in the web version of this paper [17]. Derivations of
(4.3) and (4.4) are similar but simpler. Together, (4.2)–(4.4) imply (2.21), which
asserts that M̃SEi

bc, defined at (2.20), has bias equal to O(n−2).

4.2. Theory for the bootstrap. In Sections 2.4 and 2.5 we discussed analytical
and bootstrap-based bias corrections, respectively. In particular, M̃SEi , at (2.16),
was an analytical estimator of MSEi ; the associated analytical bias estimator was
b̃iasi , at (2.22); and the bias-corrected estimator was M̃SEi

bc = M̃SEi − b̃iasi ,
at (2.20). In the same vein, M̂SEi , at (2.23), was a bootstrap estimator of MSEi ;
the corresponding bootstrap estimator of bias was b̂iasi , at (2.24); and the resulting
bias-corrected estimator was M̂SEi

bc, at (2.25).
The effectiveness of the bootstrap approach is reflected in the fact that it gives

a degree of correction that is identical to that provided by the analytical method,
up to terms of order n−2, as the next result shows. For definiteness we assume
there that the moment-matching bootstrap method is based on the three-point dis-
tribution at (2.28); the Student’s t model does not permit correction for negative



1748 P. HALL AND T. MAITI

kurtosis. We suppose too that the ridge parameter defined two paragraphs above
Theorem 1 is incorporated into the definition of σ̂ 2

V . (This turned out not to be nec-
essary in our simulation study, even though the three-point distribution has positive
mass at zero. That can be explained by noting that the probability of difficulty be-
ing caused by the positive mass at zero is exponentially small, as a function of
sample size, whereas we used only polynomially many bootstrap simulations.)

THEOREM 2. If (4.1) holds, and if the distribution at (2.28) is used to imple-
ment the moment-matching bootstrap, then for a class of realizations of X that
arises with probability 1,

M̂SEi − M̃SEi = Op(n−2), E{M̂SEi − M̃SEi} = O(n−2),(4.5)

b̃iasi − b̂iasi = Op(n−2), E{b̃iasi − b̂iasi} = Op(n−2),(4.6)

uniformly in 1 ≤ i ≤ n.

Results (4.2)–(4.4) established the efficacy of the analytical approach to bias
correction. In combination with those properties, (4.5) and (4.6) do the same for
the bootstrap approach, by establishing (2.26) and (2.27). A proof of Theorem 2 is
given by Hall and Maiti [17].
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