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Abstract

Modeling inter-temporal choice is a key problem in both computer science
and economic theory. The discounted utility model of Samuelson is currently
the most popular model for measuring the global utility of a time-series of
local utilities. The model is limited by not allowing the discount function
to change with the age of the agent. This is despite the fact that many
agents, in particular humans, are best modelled with age-dependent discount
functions. It is well known that discounting can lead to time-inconsistent
behaviour where agents change their preferences over time. In this paper
we generalise the discounted utility model to allow age-dependent discount
functions. We then extend previous work in time-inconsistency to our new
setting, including a complete characterisation of time-(in)consistent discount
functions, the existence of sub-game perfect equilibrium policies where the
discount function is time-inconsistent and a continuity result showing that
“nearly” time-consistent discount rates lead to “nearly” time-consistent be-
haviour.

Keywords: Rational agents; sequential decision theory; general
discounting; time-consistency; game theory.

1. Introduction

A rational agent, by definition, should choose its actions to maximise its
expected utility [NR10, OR94]. Discounting is used to construct a simple
model of global utility as a weighted sum of local utilities (well-being expe-
rienced at each time-step). The weighting usually assigns greater value to
earlier, rather than later, consumption.
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The discounted utility (DU) model, first introduced by Saumuelson
[Sam37], provides a framework for making decisions about inter-temporal
consumption. Samuelson assumed that the global utility of a sequence of
local utilities could be expressed as follows

Vk =
∞∑
t=k

dt−krt (1)

where rk, rk+1, · · · is an infinite sequence of expected local rewards (utili-
ties), Vk is the global utility at time k and dt−k is the weight assigned to
consumption at time-step t when in time-step k.

This model has a number of consequences:

1. Utility Independence: It assumes that global utility can be represented
as a discounted sum of local utilities, which removes the possibility
of preferring one utility structure over another. For example, there is
no way to distinguish between a relatively flat well-being profile and a
roller-coaster of ups and downs [FOO02].

2. Consumption Independence: In the simplistic models commonly used
in economic theory, the instantaneous utility of consumption at time k
is independent of previous consumption choices [Koo60, Sam57]. This
means that if pizza is preferred to chinese on one day then it will be
preferred every day. It is not possible to account for getting sick of
pizza.

3. Age Independence: The DU model denies the possibility that the dis-
count function may change over time.

4. Time Inconsistency: An agent choosing a plan to maximise its dis-
counted utility for the future may continuously change its plan over
time despite receiving no new information [Str55].

The first and third are limitations of the DU model while the last is a rational
consequence of an agent acting to maximise its discounted utility (in some
environments and with some discount functions). Despite these limitations,
the simple DU model is widely used in both computer science and economics.

In this paper we address all points above while updating the work of
[Str55] on time-inconsistency to our more general setting. The first two lim-
itations are largely eliminated by using a more general model than typically
considered by economists (see the first example in Section 2). The third
limitation is removed by allowing the discount function to change over the
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life-time of the agent. For each time-step k we assume the agent uses a
(possibly) different discount function dk. Utility can then be written

Vk =
∞∑
t=k

dkt rt (2)

This allows an agent to become more (or less) farsighted over time, which
is important for two reasons. First, because we frequently wish to model
humans that operate in this way, i.e, children plan only a few months, or at
most years ahead, whilst adults think also of retirement. Some studies have
shown this experimentally by empirically estimating discount rates [HLW02].
The second reason comes from computer science where we wish to construct
agents that behave in certain ways. Allowing an increasing effective horizon
may allow an agent to explore more effectively [Hut05]. For example, it is
well known that the Bayesian policy for learning unknown stochastic bandits
with geometric discounting suffers from linear regret, while other algorithms
enjoy logarithmic regret [Git79, LR85]. This occurs because a rational agent
discounting geometrically has no incentive to explore more than a certain
amount as the reward it receives from the extra knowledge occurs too far in
the future. Under certain conditions, however, a Bayesian agent with a more
farsighted discount function suffers sub-linear regret in the bandit setting, as
well as more general environment classes [Hut02].

It has been remarked that time-inconsistent behaviour can be a rational
consequence of discounting. This has been used to explain inter-temporal
preference reversals observed in humans. For example, many people express
a preference for $50 in three years and three weeks over $20 in three years,
but favour $20 now rather than $50 in three weeks [GFM94]. This effect is a
natural consequence of some discount functions (hyperbolic) but not others
(exponential).

Strotz showed that if the same discount function is used in each time-step
as in Equation (1), then only exponential discounting is guaranteed to lead to
time-consistent rational agents [Str55]. Strotz worked with continuous time
and assumed the utility V at time k could be written as

Vk =

∫ ∞
k

dt−kr(t)dt (3)

where r is now a continuous function. Formally he showed that if dt−k is not
proportional to γt−k for some γ ∈ (0, 1), then there exists an environment
where the policy that maximises utility changes over time.
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We extend this work to a complete classification of time-consistent dis-
count functions in the more general case where the discount function is per-
mitted to change with age. However, rather than using deterministic choices
of continuous consumption profiles as in [Str55], we use (stochastic) Markov
decision processes to model our environments [BT96, SB98]. This has a
number of implications:

1. Discrete time, rather than continuous.

2. Arbitrary utility and infinitely many consumption profiles choices.

The limitation of discrete time should not be seen as too problematic for
two reasons. First, because it is possible to use discrete time to approxi-
mate continuous time. Second, because our main Theorem regarding the
characterisation of time-consistent discount rates in discrete environments is
transferable to the continuous case with minimal effort.

Given that an agent may operate using a time-inconsistent discount func-
tion, it is reasonable to ask how they will behave, and also how they should
behave. If the agent is unaware that its discount function is time-inconsistent
then it will (if rational) take action to maximise its expected discounted util-
ity at the present time (ignoring that it may not follow its own plan due
to changing preferences). For time-inconsistent discount functions this can
lead to extremely bad behaviour in some environments (See Section 3 for an
example).

On the other hand, if the agent knows its discount function is time-
inconsistent, then blindly acting as if it were not is irrational. In this case
it may be optimal to take a course of action that restricts its own choices
in the future to ensure its future self does not act poorly according to its
current preferences. To illustrate the idea, a recovering alcoholic who knows
they become myopic in the evenings may choose to pour their alcohol away
in the morning and so remove temptation in the evening. This approach is
known as pre-commitment, and is a common strategy employed by humans
who know their preferences are changing [AW02].

The idea of pre-commitment is generalized using game theory where the
players are the current and future selves of the agent whose preferences are
changing. A number of authors have applied this idea in Strotz’s setting
to show the existence of game-theoretically optimal policies [PY73, Gol80,
Pol68]. We extend their results to show the existence of equivalently optimal
policies in our more general setting.
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Previous work on generalised discount rates has been limited. Strotz, and
others in the economics literature have considered discount rates of the form
dkt = dt−k (usually monotonic decreasing). In the computer science literature
there has been some analysis of discount rates of the form dkt = dt where∑∞

t=1 dt < ∞ [BF85, Hut02, Hut06]. We eliminate all of these restrictions
and allow arbitrary dkt , including no explicit requirements on summability.

Our new contribution is a generalisation of Strotz’s time-inconsistency re-
sults to arbitrary discount functions that change with age as in Equation (2).
This results in a large class of potentially interesting time-consistent discount
functions (Theorem 13). We show that discount rates that are “nearly” time-
consistent lead to policies that are only slightly differing in value (Theorem
15). Finally, we prove the existence of game-theoretically optimal policies for
agents that know their discount rates are time-inconsistent (Theorem 19).

The paper is structured as follows. First the required notation is in-
troduced (Section 2). Example discount functions and the consequences of
time-inconsistent discount functions are then presented (Section 3). We next
state and prove the main theorems, the complete classification of discount
functions and the continuity result (Section 4). The game theoretic view of
what an agent should do if it knows its discount function is changing is an-
alyzed (Section 5). Finally we offer some discussion and concluding remarks
(Section 6).

2. Notation and Problem Setup

The general reinforcement learning (RL) setup involves an agent inter-
acting sequentially with an environment where in each time-step t the agent
chooses some action at ∈ A, whereupon it receives a reward rt ∈ R ⊆ R and
observation ot ∈ O. The environment can be formally defined as a probability
distribution µ where µ(rtot|a1r1o1a2r2o2 · · · at−1rt−1ot−1at) is the probability
of receiving reward rt and observation ot having taken action at after history
h<t := a1r1o1 · · · at−1rt−1ot−1. For convenience, we assume for a given history
h<t and action at, that rt is fixed (not stochastic). We denote the set of all fi-
nite histories H := (A×R×O)∗ and write h1:t and h<t for histories of length
t and t−1 respectively. ak, rk, and ok are the kth action/reward/observation
tuple of history h and will be used without explicitly redefining them (there
will always be only one history “in context”).

A deterministic environment (where every value of µ(·) is either 1 or 0)
can be represented as a graph with edges for actions, rewards of each action
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attached to the corresponding edge, and observations in the nodes. For ex-
ample, the deterministic environment below represents an environment where
either pizza (p) or chinese (c) must be chosen at each time-step (evening).
An action leading to an upper node is eat pizza while the ones leading to
a lower node are eat chinese. The rewards are for a consumer who prefers
pizza to chinese, but dislikes having the same food twice in a row. The
starting node is marked as S. This example, along with all those for the re-
mainder of this paper, does not require observations. Note that this example
demonstrates how the history-based models can overcome the consumption
independence problem mentioned in the introduction.

S

p

c

p

c

p

c

1.0

0.8

0.7

0.81.0

0.5

0.7

0.81.0

0.5

The following assumption is required for clean results, but may be relaxed
if an ε of slop is permitted in some results.

Assumption 1. We assume that A and O are finite and that R = [0, 1].

Definition 2 (Policy). A policy is a mapping π : H → A giving an action
for each history. The set of all policies is denoted by Π.

Given policy π and history h1:t and s ≤ t, then the probability of reaching
history h1:t when starting from history h<s is P (h1:t|h<s, π).

P (h1:t|h<s, π) :=
t∏

k=s

µ(rkok|h<kπ(h<k)) (4)

If s = 1 then we abbreviate and write P (h1:t|π) := P (h1:t|h<1, π).
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Definition 3 (Expected Rewards). When applying policy π starting from
history h<t, the expected sequence of rewards Rπ(h<t) ∈ [0, 1]∞, is defined
by

Rπ(h<t)k :=
∑
ht:k

P (h1:k|h<t, π)rk.

If k < t then Rπ(h<t)k := 0.

While the set of all possible ht:k ∈ (A×R×O)k is uncountable due to the
reward term, we sum only over the possible rewards which are determined
by the action and previous history, and so this is actually a finite sum.

Definition 4 (Discount Vector). A discount vector d ∈ [0, 1]∞ is a vector
[d1, d2, d3, · · · ].

We do not insist that the discount vector be summable,
∑∞

t=k dt <∞.

Definition 5 (Expected Values). The expected discounted reward (or utility
or value) when using policy π starting in history h<t and discount vector d
is

V π
d (h<t) := Rπ(h<t) · d :=

∞∑
i=1

Rπ(h<t)idi =
∞∑
i=t

Rπ(h<t)idi.

The sum can be taken to start from t since Rπ(h<t)i = 0 for i < t. As the
scalar product is linear, a scaling of a discount vector has no affect on the
ordering of the policies. Formally, if V π1

d (h<t) ≥ V π2
d (h<t) then V π1

αd (h<t) ≥
V π2
αd (h<t) for all α > 0.

Definition 6 (Optimal Policy/Value). In general, an agent should choose a
policy π∗d to maximise V π

d (h<t). This is defined as follows.

π∗d ∈ Π∗d := arg max
π∈Π

V π
d ,

V ∗d (h<t) := V
π∗d
d (h<t),

where Π∗d is the set of optimal policies maximising V π
d . Typically the choice

of optimal policy is irrelevent, so if π∗d is written without clarification, then
it is chosen using some arbitrary rule.
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An agent can use a different discount vector dk at each time-step k. This
motivates the following definition.

Definition 7 (Discount Matrix). A discount matrix D is a ∞×∞ matrix
with discount vector dk for the kth column.

It is important that we distinguish between a discount matrix D (capi-
tal and italics), a discount vector dk (bold and italics) used at time k, an
arbitrary discount vector d (bold and italics), and a particular value in a
discount vector dkt (just italics).

Definition 8 (Sliding Discount Matrix). A discount matrix D is sliding if
dkk+t = d1

t+1 for all k, t ≥ 1.

Unfortunately, π∗
dk

need not exist without one further assumption.

Assumption 9. For all k ≥ 1, limt→∞ supπ∈Π

∑
h<t

P (h<t|π)V π
dk

(h<t) = 0.

Assumption 9 appears somewhat arbitrary. We consider:

1. For summable dk the assumption is true for all environments. With
the exception of hyperbolic discounting, all commonly used discount
vectors are summable.

2. For non-summable discount vectors dk the assumption implies a re-
striction on the possible environments. In particular, they must return
asymptotically lower rewards in expectation uniformly over all policies.
This restriction is necessary to guarantee the existence of an optimal
policy.

From now on, including in theorem statements, we only consider environ-
ments/discount vectors satisfying Assumptions 1 and 9. The following theo-
rem then guarantees the existence of π∗

dk
.

Theorem 10 (Existence of Optimal Policy). π∗
dk

exists for any environment

and discount vector dk satisfying Assumptions 1 and 9.

The proof of the existence theorem is in the appendix.

Definition 11 (Mixed Policy). The mixed policy is the policy where at each
time step t, the agent acts according to the possibly different policy π∗

dt
.

πD(h<t) := π∗dt(h<t) RD(h<t) := RπD(h<t).
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We do not denote the mixed policy by π∗D as it is arguably not optimal as
discussed in Section 5. While non-unique optimal policies π∗

dk
at least result

in equal discounted utilities, this is not the case for πD. All theorems are
proved with respect to any choice πD.

The policies can be summarised as follows. π∗d is the optimal policy with
respect to discount vector d. π∗

dk
is the optimal policy with respect to dk,

which is the discount vector used at time-step k. πD is the mixed policy con-
structed by followiing π∗

dk
at time-step k. Later we will introduce π∗D, which

is a game-theoretically optimal policy formalising the idea of precommitment
discussed earlier.

Definition 12 (Time Consistency). A discount matrix D is time consistent
if and only if for all environments and k, j ∈ N, Π∗

dk
= Π∗

dj
.

This means that a time-consistent agent taking action π∗
dt

(h<t) at each
time-step t will not change its plans. On the other hand, a time-inconsistent
agent may at time 1 intend to take action a should it reach history h<t
(π∗

d1(h<t) = a). However upon reaching h<t, it need not be true that
π∗
dt

(h<t) = a.

3. Examples

In this section we review a number of common discount matrices and
give an example where a time-inconsistent discount matrix causes very bad
behavior.

Constant Horizon. Constant horizon discounting is where the agent only
cares about the future up to H time-steps away, defined by dkt = [[t−k < H]].1

Shortly we will see that the constant horizon discount matrix can lead to very
bad behavior in some environments.

Fixed Lifetime. Fixed lifetime discounting is where an agent knows it will
not care about any rewards past time-step m, defined by dkt = [[t < m]].
Unlike the constant horizon method, a fixed lifetime discount matrix is time-
consistent. Unfortunately, the definition requires knowledge of the lifetime
of the agent ahead of time and also makes asymptotic analysis meaningless.

Hyperbolic. dkt = 1/(1 + κ(t − k)). The parameter κ determines how far-
sighted the agent is with smaller values leading to more farsighted agents.

1[[expr]] = 1 if expr is true and 0 otherwise.
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Hyperbolic discounting is often used in economics with some experimen-
tal studies explaining human time-inconsistent behavior by suggesting that
we discount hyperbolically [Tha81]. The hyperbolic discount matrix is not
summable, so may be replaced by the following (similar to [Hut05]), which
has similar properties for β close to 1.

dkt = 1/(1 + κ(t− k))β with β > 1.

Geometric. dkt = γt with γ ∈ (0, 1). Geometric discounting is the most
commonly used discount matrix. Philosophically it can be justified by as-
suming an agent will die (and not care about the future after death) with
probability 1− γ at each time-step. Another justification for geometric dis-
count is its analytic simplicity - it is summable and leads to time-consistent
policies. It also models fixed interest rates.

Power. dkt = t−β with β > 1. Power discounting is an example of a discount
matrix with increasing effective horizon. At time-step t an agent using power
discounting will consider O(t) time-steps into the future. Power discounting
is attractive since it is time-consistent without having to pre-commit to a
fixed (effective) horizon. It also leads to so-called self-optimising Bayesian
policies [Hut02]. Note that power discounting is beyond the scope of the
original DU model of Samuelson, which is a justification for using the more
general model introduced in this paper [Sam37].

No Discounting. dkt = 1, for all k, t. Legg and Hutter point out that
discounting future rewards via an explicit discount matrix is unnecessary
since the environment can capture both temporal preferences for early (or
late) consumption, as well as the risk associated with delaying consumption
[LH07, Leg08]. Of course, this discount matrix is not summable, but can be
made to work by insisting that all environments satisfy Assumption 9. This
approach is elegant in the sense that it eliminates the need for a discount
matrix, essentially admitting far more complex preferences regarding inter-
temporal rewards than a discount matrix allows. On the other hand, a
discount matrix gives the “controller” an explicit way to adjust the myopia
of the agent.

Time-Inconsistency. To illustrate the potential consequences of time-
inconsistent discount matrices we consider the policies of several agents acting
in the following deterministic environment.
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Let agent A use a constant horizon discount matrix with H = 2 and agent
B a geometric discount matrix with some discount rate γ.

In the first time-step agent A prefers to move right with the intention of
moving up in the second time-step for a reward of 2/3. At the second time-
step, however, the agent will change its plan by moving right again. This
continues indefinitely, so agent A will always delay moving up and receives
zero reward forever.

Agent B acts very differently. Let πt be the policy in which the agent
moves right until time-step t, then up and right indefinitely. V πt

dk
(h<1) =

γt (t+1)
(t+2)

. This value does not depend on k and so the agent will move right

until t = arg max
{
γt (t+1)

t+2

}
<∞ when it will move up and receive a reward.

The actions of agent A are an example of the worst possible behavior
arising from time-inconsistent discounting. Nevertheless, agents with a con-
stant horizon discount matrix are used in all kinds of problems. In particular,
agents in zero sum games where fixed depth mini-max searches are common.
In practise, serious time-inconsistent behavior for game-playing agents seems
rare, presumably because most strategic games don’t have a reward structure
similar to the example above.

4. Theorems

The main theorem of this paper is a complete characterisation of time
consistent discount matrices.

Theorem 13 (Characterisation). Let D be a discount matrix, then the fol-
lowing are equivalent.

1. D is time-consistent (Definition 12)

2. For each k there exists an αk > 0 such that dkt = αkd
1
t for all t ≥ k ∈ N.
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Recall that a discount matrix is sliding if dkt = d1
t−k+1. Theorem 13 can

be used to show that if a sliding discount matrix is used as in [Str55] then
the only time-consistent discount matrix is geometric. Let D be a time-
consistent sliding discount matrix. By Theorem 13 and the definition of
sliding, α2d

1
t+1 = d2

t+1 = d1
t . Therefore α2d

1
2 = d1

1 and α2
2d

1
3 = α2d

1
2 = d1

1

and similarly, αt−1
2 d1

t = d1
1 =⇒ d1

t ∝ γt with γ = 1/α2, which is geometric
discounting. This is the analogue to the results of [Str55] converted to our
setting.

The theorem can also be used to construct time-consistent discount rates.
Let d1 be a discount vector, then the discount matrix defined by dkt := d1

t

for all t ≥ k will always be time-consistent, for example, the fixed lifetime
discount matrix with dkt = 1 if t ≤ H for some horizon H. Indeed, all time-
consistent discount rates can be constructed in this way (up to irrelevant
scaling).

Proof of Theorem 13. 2 =⇒ 1: This direction follows easily from linearity of
the scalar product.

Π∗
dk

(h<t) ≡ arg max
π

V π
dk

(h<t) ≡ arg max
π

Rπ(h<t) · dk

(a)
= arg max

π
Rπ(h<t) · αkd1 = arg max

π
αkR

π(h<t) · d1

= arg max
π

Rπ(h<t) · d1 ≡ Π∗d1(h<t),

as required. Equality (a) follows from the assumption that dkt = αkd
1
t for all

t ≥ k and because Rπ(h<t)i = 0 for all i < t.
1 =⇒ 2: We use the deterministic environment below where the agent has

a choice between earning reward r at time t1 or reward 1 at time t2. In this
environment there are only two policies, π1 and π2, where Rπ1(h<k) = ret1
and Rπ2(h<k) = et2 with ei the infinite vector with all components zero
except the ith, which is 1.
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First we show that d1
t > 0 ⇔ dkt > 0 for all t ≥ k. Suppose without loss

of generality that d1
t > 0 and dkt = 0 for some t ≥ k. Then let r = 0

in the environment above and t2 = t. Then V π1
dk

(h<k) = V π2
dk

(h<k) = 0

implies that π1 and π2 are both optimal with respect to dk. On the other
hand, V π1

d1 (h<k) = 0 while V π2
d1 (h<k) = d1

t > 0, which implies that π1 is

not optimal with respect to dk, which contradicts the assumption that D is
time-consistent.

We now prove the main result by contradiction. Suppose there exists a k
such

∀α > 0, ∃t ≥ k : dkt 6= αd1
t

Let t1 be such that dkt1 , d
1
t1
> 0 and α := dkt1/d

1
t1

. Now let t2 > t1 be such
that β := dkt2/d

1
t2
6= α, which exists by assumption. Therefore

dkt2
dkt1

=
β

α

d1
t2

d1
t1

6=
d1
t2

d1
t1

Now let r := (dkt2/d
k
t1

+ d1
t2
/d1

t1
)/2. Then since d1

t2
/d1

t1
6= dkt2/d

k
t1

, either

d1
t2
/d1

t1
< r < dkt2/d

k
t1

or dkt2/d
k
t1
< r < d1

t2
/d1

t1
.

In the first case,

V π1
d1 (h<k) ≡ rd1

t1
> d1

t2
≡ V π2

d1 (h<k) and

V π1
dk

(h<k) ≡ rdkt1 < dkt2 ≡ V π2
dk

(h<k),

which is a contradiction of time-consistency since the agent discounting with
respect to d1 prefers π2 while the agent discounting with respect to dk prefers
π1. Case 2 is identical except the preferences are reversed. Therefore for all
k there exists an αk > 0 such that dkt = αkd

1
t for all t ≥ k as required.
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In Section 3 we saw an example where time-inconsistency led to very bad
behavior. The discount matrix causing this was very time-inconsistent. Is
it possible that an agent using a “nearly” time-consistent discount matrix
can exhibit similar bad behavior? For example, could rounding errors when
using a geometric discount matrix seriously affect the agent’s behavior? The
following Theorem shows that this is not possible. First we require a measure
of the cost of time-inconsistent behavior. The regret experienced by the
agent at time one from following policy πD rather than π∗

d1 is V ∗
d1(h<1) −

V πD
d1 (h<1). The regret measures the difference in expected discounted rewards

from following πD rather than the preferred π∗
d1 where rewards are discounted

with respect to the discount vector of the agent at time one. We also need a
distance measure on the space of discount vectors.

Definition 14 (Distance Measure). Let dk and dj be discount vectors, then
define a distance measure ∆ by

∆(dk,dj) :=
∞∑

i=max{k,j}

|dki − d
j
i |.

Note that this is almost the taxicab metric, but the sum is restricted to
i ≥ max {k, j}.

Theorem 15 (Continuity). Suppose ε ≥ 0 and ∆k,j := ∆(dk,dj) then

V ∗d1(h<1)− V πD
d1 (h<1) ≤ ε+

t−1∑
k=1

∆k,k+1

with t = min
{
t : supπ∈Π

∑
h<t

P (h<t|π)V π
d1(h<t) ≤ ε

}
, which for ε > 0 is

guaranteed to exist by Assumption 9.

Theorem 15 implies that the regret of the agent at time one in its future
time-inconsistent actions is bounded by the sum of the differences between
the discount vectors used at different times. If these differences are small then
the regret is also small. For example, it implies that small perturbations (such
as rounding errors) in a time-consistent discount matrix lead to minimal bad
behavior.

The proof can be found in the appendix. It relies on proving the result
for finite horizon environments and showing that this extends to the infinite
case by using a horizon t after which the actions of the agent are no longer
important.
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Example 16. Let D be a time-consistent summable discount matrix with
dkt = d1

t . For computation reasons it may be necessary to use a modified
discount matrix D̃ defined by

d̃kt =

{
dkt if t− k < N

0 otherwise

This may occur if values can only be computed by a depth N lookahead.
Now ∆k,k+1 = d1

k+N , so if Theorem 15 is applied to D̃ with ε = 0, then t = N
(since V ∗

d̃
1(h<N) = 0) and the Theorem shows that

V ∗
d̃
1(h<1)− V πD̃

d̃
1 (h<1) ≤

N−1∑
k=1

∆k,k+1 =
2N−2∑
i=N

d1
i .

However D is summable, so limN→∞
∑2N−2

i=N d1
i = 0. Therefore we can always

choose an N (sufficiently large) to guarantee a small regret.
This result is already well known for a single time-step [BT96], but the

example shows that errors do not compound in a very undesirable way over
time.

The bound in Theorem 15 is tight in the following sense.

Theorem 17. For any t ∈ N and any sufficiently small α > 0 there exists
an environment and discount matrix such that

(t− 2)(1− α) ≤ V ∗
d̃
1(h<1)− V πD̃

d̃
1 (h<1) ≤ t− 2 + 2α,

where t is as in Theorem 15 with ε = 0 and
∑t−1

k=1 ∆k,k+1 = t− 2 + 2α.

Theorem 17 shows that there exists a discount matrix and environment
where the regret due to time-inconsistency is nearly equal to the bound given
by Theorem 15.

Proof of Theorem 17. Define D by

dki :=


1 if k < i < t

α if i = t and k = t− 1

0 otherwise.

d1 = 0, 1, 1, 0, 0
d2 = 0, 0, 1, 0, 0
d3 = 0, 0, 0, α, 0
d4 = 0, 0, 0, 0, 0︸ ︷︷ ︸

Example if t=4
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Observe that

∆(dk,dk+1) =


1 if k < t− 2

1 + α if k = t− 2

α if k = t− 1

0 otherwise.

Therefore
∑t−1

k=1 ∆(dk,dk+1) = t − 2 + 2α. Now consider the environment
below.

S · · ·

..
.. . .

. . .

0 0 0 0 0

0

0

1− αt−21− α

1− α

1− α

1− α

1− α2

1− α2

1− α2

α

0

0

t nodes

For sufficiently small α, the agent at time-step one will plan to move right

and then down leading to R
π∗d
d1 (h<1) = [0, 1 − α, 1 − α, · · · ] and V ∗

d1(h<1) =
(t− 2)(1− α).

To compute RD, note that dkk = 0 for all k. Therefore the agent in
time-step k doesn’t care about the next instantaneous reward, so prefers to
move right with the intention of moving down in the next time-step when the
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rewards are slightly better. This leads to RD(h<t) = αet and so V πD
d1 (h<1) =

0. Therefore

V ∗d1(h<1)− V πD
d1 (h<1) = (t− 2)(1− α).

Furthermore, V ∗
d1(h<1)− V πD

d1 (h<1) ≤ t− 2 + 2α by Theorem 15 with ε = 0,
which completes the proof.

5. Game Theoretic Approach

What should an agent do if it knows it is time inconsistent? One option is
to treat its future selves as “opponents” in an extensive game. The game has
one player per time-step who chooses the action for that time-step only. At
the end of the game the agent will have received a reward sequence r ∈ R∞.
The utility given to the kth player is then r · dk. So each player in this
game wishes to maximise the discounted reward with respect to a different
discounting vector.

For example, let d1 = [2, 1, 2, 0, 0, · · · ] and d2 = [∗, 3, 1, 0, 0, · · · ] and
consider the environment below.

S

4

1

3

1

000

3

Initially, the agent has two choices. It can either move down to guarantee
a reward sequence of r = [4, 0, 0, · · · ] which has utility of d1 · [4, 0, 0, · · · ] = 8
or it can move right in which case it will receive a reward sequence of either
r′ = [1, 3, 0, 0, · · · ] with utility 5 or r′′ = [1, 1, 3, 0, 0, · · · ] with utility 9.
Which of these two reward sequences it receives is determined by the action
taken in the second time-step. However this action is chosen to maximise
utility with respect to discount sequence d2 and d2 · r′ > d1 · r′′. This
means that if at time 1 the agent chooses to move right, the final reward
sequence will be [1, 3, 0, 0, · · · ] and the final utility with respect to d1 will
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be 5. Therefore the rational thing to do in time-step 1 is to move down
immediately for a utility of 8.

The technique above is known as backwards induction. A variant of
Kuhn’s theorem proves that backwards induction finds sub-game perfect
equilibria in finite extensive games [OR94]. For arbitrary (infinite) exten-
sive games a sub-game perfect equilibrium need not exist, but we prove a
theorem for our particular class of infinite games.

A sub-game perfect equilibrium policy is one the players could agree to
play, and subsequently have no incentive to renege on their agreement during
play. It isn’t always philosophically clear that a sub-game perfect equilibrium
policy should be played. For a deeper discussion, including a number of good
examples, see [OR94].

Definition 18 (Sub-game Perfect Equilibria). A policy π∗D is a sub-

game perfect equilibrium policy if and only if for each t, V
π∗D
dt

(h<t) ≥
V π̃
dt

(h<t), for all h<t, where π̃ is any policy satisfying π̃(h<i) = π∗D(h<i)∀h<i
where i 6= t.

Theorem 19 (Existence of Sub-game Perfect Equilibrium Policy). For all
environments and discount matrices D satisfying Assumptions 1 and 9 there
exists at least one sub-game perfect equilibrium policy π∗D.

Many results in the literature of game theory almost prove this theorem.
Our setting is more difficult than most because we have countably many
players (one for each time-step) and exogenous uncertainty. Fortunately,
it is made easier by the very particular conditions on the preferences of
players for rewards that occur late in the game (Assumption 9). The closest
related work appears to be that of Drew Fudenberg in [Fud83], but our proof
is very different. The proof idea is to consider a sequence of environments
identical to the original environment but with an increasing bounded horizon
after which reward is zero. By Kuhn’s Theorem [OR94] a sub-game perfect
equilibrium policy must exist in each of these finite games. However the
space of policies is compact (Lemma 24) and so this sequence of sub-game
perfect equilibrium policies contains a convergent sub-sequence converging
to some policy π. Then it is not hard to show that π is a sub-game prefect
equilibrium policy in the original environment.

Proof of Theorem 19. For each t ∈ N choose πt to be a sub-game perfect
equilibrium policy in the modified environment obtained by setting ri = 0
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if i > t. That is, the environment that always gives zero reward after time
t. Note that πt exists by backwards induction where the policy is chosen
arbitrarily for histories longer than t. Since Π is compact, the sequence
π1, π2, · · · has a convergent subsequence πt1 , πt2 , · · · converging to some π
and satisfying:

1. πti(h<k) = π(h<k), for all h<k where k ≤ i.

2. πti is a sub-game perfect equilibrium policy in the modified environment
with reward rk = 0 if k > ti.

We write Ṽ πti for the value function of πti in the ti-modified environment. It
is now shown that π is a sub-game perfect equilibrium policy. Fix a t ∈ N
and let π̃ be an arbitrary policy with π̃(h<k) = π(h<k) for all h<k where
k 6= t. Now define policies π̃ti by

π̃ti(h<k) =

{
π̃(h<k) if k ≤ i

πti(h<k) otherwise

By point 1 above, π̃ti(h<k) = πti(h<k) for all h<k where k 6= t. Now for all
i > t we have

V π
dt(h<t) ≥ V

πti
dt

(h<t)− |V π
dt(h<t)− V

πti
dt

(h<t)| (5)

≥ Ṽ
πti
dt

(h<t)− |V π
dt(h<t)− V

πti
dt

(h<t)| (6)

≥ Ṽ
π̃ti
dt

(h<t)− |V π
dt(h<t)− V

πti
dt

(h<t)| (7)

≥ V π̃
dt(h<t)− |V

π
dt(h<t)− V

πti
dt

(h<t)|

− |V π̃ti
dt

(h<t)− Ṽ
π̃ti
dt

(h<t)| − |V
π̃ti
dt

(h<t)− V π̃
dt(h<t)| (8)

where (5) follows from arithmetic. (6) since V ≥ Ṽ . (7) since πti is a
sub-game perfect equilibrium policy. (8) by arithmetic. We now show that
the absolute value terms in (8) converge to zero. Since V π(·) is continu-
ous (Lemma 25) in π and limi→∞ πti = π and limi→∞ π̃ti = π̃, we obtain

limi→∞

[
|V π

dt
(h<t)− V

πti
dt

(h<t)|+ |V
π̃ti
dt

(h<t)− V π̃
dt

(h<t)|
]

= 0. Furthermore,

by Assumption 9 and the fact that π̃ti converges to π̃, limi→∞ |V
π̃ti
dt

(h<t) −
Ṽ
π̃ti
dt

(h<t)| = 0. Therefore taking the limit as i goes to infinity in (8) shows
that V π

dt
(h<t) ≥ V π̃

dt
(h<t) as required.

In general, π∗D need not be unique, and different sub-game perfect equilib-
rium policies can lead to different utilities. This is a normal, but unfortunate,
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problem with the sub-game perfect equilibrium solution concept. The policy
is unique if for all players the value of any two arbitrary policies is different.
Also, if ∀k(V π1

dk
= V π2

dk
=⇒ ∀jV π1

dj
= V π2

dj
) is true then the non-unique sub-

game equilibrium policies have the same values for all agents. Unfortunately,
neither of these conditions is necessarily satisfied in our setup. The problem
of how players might choose a sub-game perfect equilibrium policy appears
surprisingly understudied. We feel it provides another reason to avoid the sit-
uation altogether by using time-consistent discount matrices. The following
example illustrates the problem of non-unique sub-game perfect equilibrium
policies.

Example 20. Consider the example in Section 3 with an agent using a
constant horizon discount matrix with H = 2. There are exactly two sub-
game perfect equilibrium policies, π1 and π2 defined by,

π1(h<t) =

{
up if t is odd

right otherwise
π2(h<t) =

{
up if t is even

right otherwise

Note that the reward sequences (and values) generated by π1 and π2 are
different with Rπ1(h<1) = [1/2, 0, 0, · · · ] and Rπ2(h<1) = [0, 2/3, 0, 0, · · · ]. If
the players choose to play a sub-game perfect equilibrium policy then the
first player can choose between π1 and π2 since they have the first move. In
that case it would be best to follow π2 by moving right as it has a greater
return for the agent at time 0 than π1.

For time-consistent discount matrices we have the following proposition.

Proposition 21. If D is time-consistent, then V ∗
dk

= V πD
dk

= V
π∗D
dk

for all k
and choices of π∗

dk
and πD and π∗D.

The proof that V ∗
dk

= V
π∗D
dk

is trivial by noting that if D is time-consistent,
then all players in the game-theory setting have the same preferences. There-
fore any diversion from the optimal is non-credible. That V ∗

dk
= V πD

dk
follows

from a straightforward generalisation of Theorem 15 to discount vectors dk

rather than just d1.
Is it possible that backwards induction is simply expected discounted

reward maximisation in another form? The following theorem shows this is
not the case and that sub-game perfect equilibrium policies are a rich and
interesting class worthy of further study in this (and more general) settings.
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Theorem 22. ∃D such that π∗D 6= π∗d , for all d.

The result is proven using a simple counter-example. The idea is to
construct a stochastic environment where the first action leads the agent to
one of two sub-environments, each with probability half. These environments
are identical to the example at the start of this section, but one of them
has the reward 1 (rather than 3) for the history right, down. It is then
easily shown that π∗D is not the result of an expectimax expression because
it behaves differently in each sub-environment, while any expectimax search
(irrespective of discounting) will behave the same in each.

Proof. Observe the stochastic environment below where in the first time-
step the agent moves either right or left with probability 1

2
irrespective of

action. In either case it receives 0 reward. Otherwise the environment is
deterministic as in other diagrams.

S
4

0

0

00

1

3

1

3

4

0

0

0

1

1

1

3

Now let d1 = [1, 0, 0, 0, · · · ],d2 = [∗, 2, 1, 2, 0, · · · ] and d3 = [∗, ∗, 3, 1, 0, · · · ].
Using this we can compute the equilibrium policy by backwards induction.
The agent has no (meaningful) choice of actions at time-step 1. Actions that
form the sub-game perfect equilibrium policy are marked as solid arrows.
The sub-game perfect equilibrium policy is unique for all histories except the
first (where both actions are part of a sub-game perfect equilibrium policy).
We omit the computation, but notice that the left sub-game is the same as
the example at the start of this section, so has the same analysis.

Now suppose there exists a d such that π∗d is equal to the sub-game
perfect equilibrium policy. From the left part of the environment we see that
d ·([0, 4, 0, 0]−[0, 1, 1, 3]) > 0 while from the right part of the environment we
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see that d · ([0, 4, 0, 0] − [0, 1, 1, 3]) < 0, which is a contradiction. Therefore
no such d exists.

6. Discussion

Summary. We have generalised Samuelson’s DU model to allow the discount
vector used by an agent to vary with its age. In combination with a flexible
model choice this extension allowed us to address all four points made in
the introduction of this paper while substantially increasing the number of
time-consistent discount matrices.

Theorem 13 gives a characterisation of time-(in)consistent discount ma-
trices and shows that all time-consistent discount matrices follow the simple
form of dkt = d1

t . Theorem 15 shows that using a discount matrix that is
nearly time-consistent produces mixed policies with low regret. This is use-
ful for a few reasons, including showing that small perturbations, such as
rounding errors, in a discount matrix cannot cause major time-inconsistency
problems. It also shows that “cutting off” time-consistent discount matrices
after some fixed depth - which makes the agent potentially time-inconsistent
- doesn’t affect the policies too much, provided the depth is large enough.
When a discount matrix is very time-inconsistent then taking a game theo-
retic approach may dramatically decrease the regret in the change of policy
over time.

Some comments on the policies π∗
dk

(policy maximising expected dk-
discounted reward), πD (mixed policy using π∗

dk
at each time-step k) and

π∗D (sub-game perfect equilibrium policy).

1. A time-consistent agent should play policy π∗
dk

= πD for any k. In this
case, every optimal policy π∗

dk
is also a sub-game perfect equilibrium

policy π∗D.

2. πD will be played by an agent that believes it is time-consistent, but
may not be. This can lead to very bad behavior as shown in Section 3.

3. An agent may play π∗D if it knows it is time-inconsistent, and also
knows exactly how (I.e, it knows dk for all k at every time-step). This
policy is arguably rational, but comes with its own problems, especially
non-uniqueness as discussed.

Assumptions. We made a number of assumptions about which we make
some brief comments.
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1. Assumption 1, which states that A and O are finite, guarantees the
existence of an optimal policy. Removing the assumption would force us
to use ε-optimal policies, which shouldn’t be a problem for the theorems
to go through with an additive ε slop term in some cases.

2. Assumption 9 only affects non-summable discount vectors. Without it,
even ε-optimal policies need not exist and all the machinery will break
down.

3. The use of discrete time greatly reduced the complexity of the analy-
sis. Given a sufficiently general model, the set of environments with
continuous time should include all “discrete” environments with transi-
tions only occuring at times t = 1, 2, 3, · · · and flat reward/observation
signals between transitions. For this reason the proof of Theorem 13
should go through essentially unmodified. The same may not be true
for Theorems 15 and 19. The former may be fixable with substantial
effort (and perhaps should be true intuitively). The latter has been par-
tially addressed, with a positive result in [Gol80, PY73, Pol68, Str55].

Open Questions.

1. Given a discount matrix D, for which environment is the regret,
V ∗
d1(h<1)− V πD

d1 (h<1), maximised?

2. Improve the solution concept of sub-game perfect equilibrium policies in
Section 5. What is the rational choice of sub-game perfect equilibrium?

3. Extend all results to the continuous case in all generality.

Acknowledgements. We thank the reviewers for valuable feedback on
earlier drafts.
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Appendix A. Technical Proofs

Before the proof of Theorem 10 we require a definition and two lemmas.
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Definition 23. Let Π be the set of all policies and define a metric ∆ on Π
by T (π1, π2) := mint∈N {t : ∃h<t s.t π1(h<t) 6= π2(h<t)} or ∞ if π1 = π2 and
∆(π1, π2) := exp(−T (π1, π2)).

T is the time-step at which π1 and π2 first differ. Now augment Π with
the topology induced by the metric D.

Lemma 24. Π is compact.

Proof. We proceed by showing Π is totally bounded and complete.
Let ε = exp(−t) and define an equivalence relation by π ∼
π′ if and only if T (π1, π2) ≥ t. If π ∼ π′ then ∆(π, π′) ≤ ε. Note that
Π/∼ is the set of cylinders each consisting of policies that are identical up to
time-step t. This is set is finite because the sets of observations and actions
are finite and although the set of rewards is infinite, the reward rk depends
deterministically on h<k. Now choose a representative from each class in Π/∼
to create a finite set Π̄. Now

⋃
π∈Π̄ Bε(π) = Π, where Bε(π) is the ball of

radius ε around π. Therefore Π is totally bounded.
Next we show Π is complete. Let π1, π2, · · · be a Cauchy sequence with

∆(πi, πi+j) < exp(−i) for all j > 0. Therefore πi(h<k) = πi+j(h<k)∀h<k with
k ≤ i, by the definition of ∆. Now define π by π(h<t) := πt(h<t) and note
that πi(h<j) = π(h<j)∀j ≤ i since πi(h<k) = πk(h<k) ≡ π(h<k) for k ≤ i.
Therefore limi→∞ πi = π and so Π is complete. Finally, Π is compact by the
Heine-Borel theorem.

Lemma 25. Let d be a fixed discount vector and h<k a history sequence of
length k−1 When viewed as a function from Π to R, V π

d (h<k) is continuous.
(under Assumption 9 and using the metric of Definition 23).

Proof. Let π be an arbitrary policy and π′ satisfy ∆(π, π′) < exp(−t) for
some t ∈ N. By the definition of ∆, π and π′ are identical until time-step t.

V π
d (h<k)− V π′

d (h<k) = d ·
[
Rπ(h<k)−Rπ′(h<k)

]
=
∞∑
i=t

di

[
Rπ(h<k)i −Rπ′(h<k)i

]
=
∞∑
i=t

di

[∑
hk:i

(P (h1:i|h<k, π)− P (h1:i|h<k, π′))ri

]
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Now

∞∑
i=t

di
∑
hk:i

P (h1:i|h<k, π)ri =
∑
hk:t−1

P (h<t|h<k, π)
∞∑
i=t

di
∑
ht:i

P (h1:i|h<t, π)ri

=
∑
hk:t−1

P (h<t|h<k, π)V π
d (h<t)

≤ σt := sup
π∈Π

∑
hk:t−1

P (h<t|h<k, π)V π
d (h<k).

Similarly

∞∑
i=t

di
∑
hk:i

P (h1:i|h<k, π′)ri ≤ σt.

Therefore

−σt ≤ V π
d (h<k)− V π′

d (h<k) ≤ σt.

The proof is completed by noting that limt→∞ σt = 0 by Assumption 9.

Proof of Theorem 10. Let Π be the space of all policies with the metric of
Definition 23. By Lemmas 24/25 Π is compact and V is continuous. There-
fore arg maxπ V

π
dk

(h<1) exists by the extreme value theorem.

Proof of Theorem 15. Let t be the ε-effective horizon as defined in the state-
ment of Theorem 15 and πk be the policy obtained by following πD until
time-step k and then following π∗

dk
. We use the shorthand Rπ := Rπ(h<1) ∈

[0, 1]∞. Then

V ∗d1(h<1)− V πD
d1 (h<1)

≡ (Rπ1 −RπD) · d1 (A.1)

= (Rπ1 −RπD) · (d1 − d2) + (Rπ1 −RπD) · d2 (A.2)

≤ (Rπ1 −RπD) · (d1 − d2) + (Rπ2 −RπD) · d2 (A.3)

≤ (Rπt −RπD) · dt +
∑t−1

τ=1(Rπτ −RπD) · (dτ − dτ+1) (A.4)

≤ ε+
∑t−1

τ=1(Rπτ −RπD) · (dτ − dτ+1) (A.5)

≤ ε+
∑t−1

τ=1∆τ,τ+1, (A.6)
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where Equation (A.1) is the definition of the value function. Equation (A.2)
is algebra. Equation (A.3) follows because π1 and π2 are identical up to
time-step 1 at which point, if discounting with respect to d2, it is better to
follow π∗

d2 than π∗
d1 , which implies that Rπ2 · d2 ≥ Rπ1 · d2. Equation (A.4)

by iterating the argument in Equation (A.3). Equation (A.5) by noting that
πD and πt are identical until time-step t and then using the definition of
the effective horizon. Equation (A.6) follows by the definition of ∆τ,τ+1 and
because Rπ ∈ [0, 1]∞ for any π.

Appendix B. Table of Notation

Symbol Description
D Discount Matrix

(
dkt
)

dk Discount Vector k

dkt The tth component of discount vector dk (at time k reward rt is
discounted by dkt )

k, t Indices. k usually referring to a discount vector used at fixed time
k; t usually a time index.

i Summing index
ε, δ Small real numbers greater than zero
π, π′, πi Policies
Π The space of all policies
A,O,R Action, reward and observation spaces
h1:t, h<t History sequences of length t and t− 1
P (h1:t|h<k, π) The probability observing history h1:t given history h<k while fol-

lowing policy π
N,R The natural and real numbers respectively
Bε(·) A ball of radius ε
Rπ(h<t) The expected reward sequence when following π from history h<t
π∗
dk

The optimal policy when using discount vector dk

πD The mixed policy using discount matrix D
π∗D The sub-game perfect equilibrium policy using discount matrix D
Π∗

dk
The set of (equal valued) optimal policies with respect to discount
vector dk

V ∗
dk

(h<t) The value of the optimal policy π∗
dk

γ Discount rate for geometric discounting
αk A real valued scaling factor on a discount vector
κ Discount rate for hyperbolic discounting
H Horizon for constant depth discounting
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m Lifespan for fixed lifetime discounting
∆(π1, π2) The distance between policies π1 and π2 using the metric of Defi-

nition 23

∆(dk,dj) The distance measure between discount vectors dk and dj as de-
fined by Definition 14
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