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Abstract

We formulate and solve the analogue of Slepian spatial-spectral concentration problem on the three-dimensional
ball. Both the standard Fourier-Bessel and also the Fourier-Laguerre spectral domains are considered since
the latter exhibits a number of practical advantages such as spectral decoupling and exact computation. The
Slepian spatial and spectral concentration problems are formulated as eigenvalue problems, the eigenfunc-
tions of which form an orthogonal family of concentrated functions. Equivalence between the spatial and
spectral problems is shown. The spherical Shannon number on the ball is derived, which acts as the analog
of the space-bandwidth product in the Euclidean setting, giving an estimate of the number of concentrated
eigenfunctions and thus the dimension of the space of functions that can be concentrated in both the spatial
and spectral domains simultaneously. Various symmetries of the spatial region are considered that reduce
considerably the computational burden of recovering eigenfunctions, either by decoupling the problem into
smaller subproblems or by affording analytic calculations. The family of concentrated eigenfunctions forms
a Slepian basis that can be used be represent concentrated signals efficiently. We illustrate our results with
numerical examples and show that the Slepian basis indeed permits a sparse representation of concentrated
signals.

Keywords: Slepian concentration problem; band-limited function; eigenvalue problem; harmonic analysis;

ball

1. Introduction

It is well-known that functions cannot have finite support in both the spatial (or time) and spectral (or
frequency) domain at the same time [42, 41]. The fundamental problem of finding and representing the
functions that are optimally energy concentrated in both the time and frequency domains was solved by

Slepian, Landau and Pollak in the early 1960s [42, 18, 19, 43]. This problem, herein referred to as the Slepian
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spatial-spectral concentration problem, or Slepian concentration problem for short, gives rise to the orthogonal
families of functions that are optimally concentrated in the spatial (spectral) domain and exactly limited
in the spectral (spatial) domain. These families of functions and their multidimensional extensions [40, 39]
have been used extensively in various branches of science and engineering (e.g., signal processing [46, 25],
medical imaging [15], geophysics [48], climatology [47], to name a few). Notably, they have been used in
linear inverse problems [13], interpolation [28, 35, 34], extrapolation [53] and in solving partial differential
equations [5, 7]. Indeed, in many scientific and engineering applications, these functions have become the
preferred spatial or spectral windows for the regularization of quadratic inverse problems of power spectral
estimation from spatially limited observations [48, 31].

Although the Slepian spatial-spectral concentration problem was initially formulated and solved in the
Euclidean domain, generalizations for various geometries and connections to wavelet analysis have also been
well-studied (e.g., [27, 11, 8, 12, 3, 29, 30, 51, 36]). We note that the Slepian concentration problem for
functions defined on the two-sphere S? has been thoroughly revisited and investigated [3, 36, 51]. The
resulting orthogonal family of band-limited spatially concentrated functions have been applied for localised
spectral analysis [52] and spectral estimation [10] of signals (finite energy functions) defined on the sphere.
There are also many applications [22, 38, 37] where signals or data are defined naturally on the three-
dimensional ball, or ball for short. For example, signals defined on the ball arise when observations made on
the sphere are augmented with radial information, such as depth, distance or redshift. Recently, a number
of signal processing techniques have been tailored and extended to deal with signals defined on the ball (e.g.,
[38, 21, 22]).

In this paper, we pose, solve and analyse the Slepian concentration problem of simultaneous spatial
and spectral localisation of functions defined on the ball. By considering Slepian’s quadratic (energy)
concentration criterion, we formulate and solve the problems to: (1) find the band-limited functions with
maximum concentration in some spatial region; and (2) find the space-limited functions with maximum
concentration in some region of the spectral domain. Each problem is formulated as an eigenvalue problem,
the solution of which gives the orthogonal family of functions, referred to as eigenfunctions, which are
either spatially concentrated while band-limited, or spectrally concentrated while space-limited. These
eigenfunctions serve as an alternative basis on the ball, which we call a Slepian basis, for the representation
of a band-limited or space-limited signal. We show, and also illustrate through an example, that the
representation of band-limited spatially concentrated or space-limited spectrally concentrated functions is
sparse in the Slepian basis, which is the essence of the Slepian spatial-spectral concentration problem. We
also derive the spherical Shannon number as an equivalent of the Shannon number in the one dimensional
Slepian concentration problem [43, 31], which serves as an estimate of the number of concentrated functions
in the Slepian basis.

For the spectral domain characterization of functions defined on the ball we use two basis functions: (1)
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spherical harmonic-Bessel functions, which arise as a solution of Helmholtz’s equation in three-dimensional
spherical coordinates, and are referred to as Fourier-Bessel® basis functions; and (2) spherical harmonic-
Laguerre functions, which are referred to as Fourier-Laguerre basis functions. We consider the Fourier-
Laguerre functions in addition to the standard Fourier-Bessel functions as the Fourier-Laguerre functions
serve as a complete basis for signals defined on the ball, enable the decoupling of the radial and angular
components of the signal, and support the exact computation of forward and inverse Fourier-Laguerre
transforms [22]. We show that the eigenvalue problem to find the eigenfunctions or the Slepian basis can
be decomposed into subproblems when the spatial region of interest is symmetric in nature. We consider
two types of symmetric regions: (1) circularly symmetric regions; and (2) circularly symmetric and radially
independent regions.

As Slepian functions on the one-dimensional Euclidean domain [42, 18, 19, 43|, and other geome-
tries [40, 27, 3, 30, 36], have been widely useful in a diverse variety of applications, we hope that the
proposed orthogonal family of Slepian eigenfunctions on the ball will find similar applications in fields such
as cosmology, geophysics and planetary science, where data/signals are often inherently defined on the ball.
For example, the band-limited spatially concentrated eigenfunctions can be used as window functions to de-
velop multi-window spectral estimation techniques [46, 47, 10, 51] for the estimation of the signal spectrum
from observations made over the limited spatial region.

We organize the remainder of the paper as follows. The mathematical preliminaries for functions on the
ball are presented in Section 2. The Slepian concentration problem is posed as an eigenvalue problem in
Section 3 and the resulting eigenfunctions are analysed in Section4. The decomposition of the eigenvalue
problem into subproblems for the case of special, but important, symmetric spatial regions is presented
in Section5. The representation of spatially concentrated band-limited functions in the Slepian basis is

discussed and illustrated in Section 6. Concluding remarks are made in Section 7.

2. Mathematical Preliminaries

We review the mathematical background of signals defined on the ball in this section. After defining
coordinate systems, measures and inner products, we then review harmonic analysis on the ball, focusing
on both the Fourier-Bessel and Fourier-Laguerre settings. We conclude this section by reviewing important

subspaces and operators related to the ball.

2.1. Signals on the Sphere and Ball
We define the ball by B3 £ R* x S2, where Rt denotes the domain [0,00) on the real line and S? £

{y € R3: |ly|| = 1} denotes the unit sphere. A vector r € B® can be represented in spherical coordinates

3A more appropriate terminology would be spherical harmonic-Bessel basis, however we adopt the established convention

of using the term Fourier to denote the spherical harmonic part.
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asr =7(r,0,¢) 2 (rsinfcos ¢, rsinfsin ¢, rcosf)T, where (-)T denotes matrix or vector transpose. Here,
r £ ||r|| € [0,00) represents the Euclidean norm of », § € [0, 7] represents the co-latitude or elevation
measured with respect to the positive z-axis and ¢ € [0,27) represents the longitude or azimuth and is
measured with respect to the positive z-axis in the z-y plane. The unit norm vector # = #(6, ¢) 2 r/||r|| =
(sin 6 cos ¢, sinfsin ¢, cos )™ € R3 represents a point on the unit sphere S2.

The space of square integrable complex-valued functions defined on R*, S? and B? form Hilbert spaces,

denoted by L2(RT), L2(S?) and L?(B?), respectively, equipped with the inner products defined by
(9o 2 [ do)0) 570, )
(f.9) ® [ o)1) 6" (5), e
(.0 2 [ ) )"0, Q)

where f, g are functions respectively defined on RT, S? and B? in (1), (2) and (3), dv(r) = r2dr, d*v(7) =
sinf#df d¢ and dsu(r) = r2sin @ dr df d¢ represents infinitesimal length, area and the volume element re-
spectively, (-)* denotes complex conjugation and the integration is carried out over the respective domain.
The inner products in (1), (2) and (3) induce norms || f|| £ (f, f)'/2. Throughout this paper, the functions

with finite induced norm belonging to one of these spaces are referred to as signals.

2.2. Harmonic Analysis on the Ball
We review harmonic analysis on the ball, starting with the spherical Bessel and Laguerre transforms on
the positive real line R* and the spherical harmonic transform on the unit sphere S?, before combining these

to recover the Fourier-Bessel and Fourier-Laguerre transforms on the ball, respectively.

2.2.1. Spherical Bessel Transform
The spherical Bessel functions, which arise as radial solutions to the Helmholtz equation in spherical
coordinates, form a basis for functions on the non-negative real line RT. In this work, we consider spherical
Bessel functions of the first kind, denoted by j, defined on RT, where ¢ denotes the order. The spherical
Bessel functions satisfy the closure relation [49]
[ vt r)ih'n) = 5 60~ ), ()
for r € R* and k € RT, and where §(k — k') denotes the one-dimensional Dirac delta. Consequently, we can
represent a signal f € L2(R") using the following /-th order spherical Bessel inverse and forward transform,

respectively,

flir)y= \/Z - dkfo(k)kje(kr) with fo(k) = \/Z - dv(r) f(r)kje(kr), (5)

where fy(k) denotes the spherical Bessel trasnform.



2.2.2. Spherical Laguerre Transform

The Laguerre polynomials, solutions to the Laguerre differential equation [32, 50], are well known for
their various applications, notably in the quantum mechanical treatment of the hydrogen atom [14], and
form a basis for functions on the interval RT. We adopt the spherical Laguerre transform and associated
normalisation presented by [22], defining the spherical Laguerre basis functions of non-negative integer radial

degree p by

Ky(r) 2| g e 100, 0

where L,(,z) (r) represents the p-th generalized Laguerre polynomial of second order, defined by

ey (P g

—q !
—\r-3j) J!

Since we use the spherical Laguerre basis functions for the expansion of signals defined on RT with differential
measure dv(r) = r2dr, we have chosen the second order generalized Laguerre polynomial. The basis functions
Kp(r) in (6) are orthonormal on R*, that is, (K, Kq),, = 0p¢, where 6, denotes the Kronecker delta.
The spherical Laguerre polynomials defined in (6) serve as complete basis functions on RT, where the
completeness stems from the completeness of generalized Laguerre polynomials and therefore we can expand
a signal f € L2(R™") using the following spherical Laguerre inverse and forward transform, respectively,

oo

f(?‘) = prKp(T) with  fp £ <fa Kp>]g+ﬂ (8)

p=0

where f,, denotes the spherical Laguerre coefficient of radial degree p.

2.2.3. Spherical Harmonic Transform
The spherical harmonic functions, which arise as angular solutions to the Helmholtz’s equation in spher-
ical coordinates, are denoted Y;"(&) = Y, (0, ¢), for integer degree £ > 0 and integer order |m| < ¢ and are

defined by [9, 33, 16]
2041 (£ —m)!
dr (L +m)!

Yo (7) = Yo (6, 6) = P} (cos§)e"™?, (9)

where P;" denotes the associated Legendre function of degree ¢ and order m with Condon-Shortley phase
included [16]. With the above definition, the spherical harmonic functions, or simply the spherical harmonics,
form a complete orthonormal basis for L?(S?) and therefore a signal f € L?(S?) can be expanded using the
following spherical harmonic inverse and forward transform, respectively,

) 4

f(ﬁ) = Z Z ffmnm(ﬁ) with f@m £ <fa }/Em>527 (10)

=0 m=—4¢



where fp,, denotes the spherical harmonic coefficient of angular degree ¢ and order m. We note that the
spherical harmonic functions follow the conjugate symmetry property Yy, (7#) = (—1)’”Y£E_m) (7). We further

note that the function f is real valued if its spherical harmonic coefficients satisfy the conjugate symmetry

property fum = (—1)™ fi_.)-

2.2.4. Fourier-Bessel Transform
We define the Fourier-Bessel functions, which arise as a solution of Helmholtz’s equation in three-

dimensional spherical coordinates, as [6, 23, 1]

Xy (kyr) 2 \/zkjg(kr)ng(@, @), r=r(rb ). (11)

With the above definition, the Fourier-Bessel functions form a complete, orthogonal basis for L?(B?), satis-
fying the orthogonality relation
A u(r) X, (k) X5, (K 7)) = 6(k — E)ou S - (12)
B3
By the completeness of the Fourier-Bessel functions, a signal f € L?(B*) can be decomposed in the Fourier-

Bessel basis by

r:/ dengm ) Xom (K, 1)

£=0 m=—¢
\f / Y Z Fem (k) kjie(kr) Yom (6, 6) (13)
BY =0m=—¢
where f,,. (k) denotes the Fourier-Bessel coefficient, of degree ¢, order m and radial harmonic variable

k € R*, given by

o) 2f2 [ @t 0 k4012, 0,0, (19

The Fourier-Bessel coefficients constitute a spectral domain representation of signals defined on the ball.
Such a spectral domain is to referred as the Fourier-Bessel spectral domain.

The Fourier-Bessel transform is the natural (standard) harmonic transform on the ball since the Fourier-
Bessel functions are the eigenfunctions of the spherical Laplacian and thus the Fourier-Bessel transform
corresponds to the standard three-dimensional Fourier transform in spherical coordinates. However, the
Fourier-Bessel transform suffers from a number of practical limitations [22], motivating alternative harmonic

representations of the ball, such as the Fourier-Laguerre transform.

2.2.5. Fourier-Laguerre Transform
In the Fourier-Bessel transform, the spherical Bessel functions are used for the decomposition of a signal
along the radial line R*. Alternatively, we can use the spherical Laguerre basis functions for the expansion
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of a signal along RT. Combining the spherical Laguerre basis functions and spherical harmonic functions,

we define the Fourier-Laguerre basis functions for a signal as

ZEmp(r) £ KP(T)YZm(Qa ¢), r=r(r0,0). (15)
By the completeness of both Laguerre polynomials and spherical harmonics, any signal f € L?(B?) can be
expanded as [22]

oo oo 4
=200 > FompZemp(r), (16)

p=04=0 m=—¢

where fy,;, is the Fourier-Laguerre coeflicient of radial degree p, angular degree ¢ and angular order m, and

is obtained by the Fourier-Laguerre transform

Fomp 2 F Zomg)ss = [ ) F5) 27, (17)

These Fourier coefficients constitute another spectral domain representation of signals defined on the ball,
which we refer to as the Fourier-Laguerre spectral domain.

The Fourier-Laguerre transform exhibits a number of practical advantages over the Fourier-Bessel trans-
form, namely: (1) the angular and radial components of signals are decoupled in harmonic space; and (2)
exact quadrature can be developed, leading to theoretically exact forward and inverse Fourier-Laguerre

transforms [22].

2.2.6. Dirac Delta on the Ball
The Dirac delta function on the ball is defined by

S(r,r') 2 (r2 sin 9)71 S(r—r"8(0 —0"d(¢p — ¢'), (18)
and satisfies the sifting property
[ dutrw)arr) = s (19)

The Dirac delta has the following expansion in terms of Fourier-Bessel basis functions

5(r,7") = Z Z / dkX,,, (k,v) X}, (k7'
=0 m=—4

1 aGEE 250(kr)je(fr
g3 2o PG ([ akkstiniin). (20)

and has the following expansion in terms of Fourier-Laguerre basis functions

l
Z Zémp mep( /)

p”qg
hE

a(r,r)
p=0£¢=0 m=—¢
) ) (e’ 2 +1 0rn
= ZKp(T)Kp(T )Z?Pe (F-7), (21)
p=0 £=0



where 7 - # denotes the three dimensional dot product between unit vectors # and #' and we have noted the

addition theorem for the spherical harmonics.

2.8. Important Subspaces of L?(B?)

Define %ZK 1, as the space of band-limited functions such that the signal is band-limited in the Fourier-
Bessel spectral domain within the spectral region AKL £ {0<E<KO0O<{<L-—1}for L € Z1 and
K € R*. Due to the continuous Fourier-Bessel spectral domain &, %ZK 7, is an infinite dimensional subspace
of L?(B?). Define 5, as the space of band-limited functions such that the signal is band-limited in the
Fourier-Laguerre spectral domain within the spectral region Apy 2 {0 < p < P—1,0 < ¢ < L — 1} for
P L € Z*. #pyp is a finite dimensional subspace of L?(B3) with size PL?. Also define /#% as the space
of finite energy space-limited functions confined within the region R C B3. J#% is an infinite dimensional

subspace of L?(B3).

2.4. Important Operators of L*(B?)
Define an operator S for signals on the ball by the general Fredholm integral equation [16]
S0 = [ d )t £6), (22)
where S(r,r’) is the kernel for an operator S defined on B* x B?.

Definition 1 (Spatial Selection Operator). Define the spatial selection operator Sgr, which selects the func-

tion in a volume region R C B3, with kernel Sg(r,r’) as
Sr(r,r’) 2 Ig(r)é(r,r"), (23)

where Ig(r) =1 for r € R and Ir(r) = 0 for r € B3\ R is an indicator function of the region R. Sg projects
the signal f € L?(B?) onto the subspace 5#%.

Definition 2 (Fourier-Bessel Spectral Selection Operator). Define the spectral selection operator SKL, which

selects the harmonic contribution of functions in the Fourier-Bessel spectral domain Axr, by its kernel
Skr(r,7) Z Z / dkX,,, (k) X5 (k,r'). (24)
{=0 m=—¢
The operator Sk, projects a signal onto the subspace of Fourier-Bessel band-limited functions H L.
Definition 3 (Fourier-Laguerre Spectral Selection Operator). Define the spectral selection operator Spy,

which selects the harmonic contribution of functions in the Fourier-Laguerre spectral domain Apy, by its

kernel

70
Ju
|h
[

14
Spr(r,r’) £ > Zimp(r) Ziy(r). (25)

0 m=—¢

hS]
I
=
&~
Il

The operator Spy, projects a signal onto the subspace of Fourier-Laguerre band-limited functions H#py .
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Since both the spatial and spectral selection operators are orthogonal projection operators, they are
idempotent and self-adjoint in nature. By noting the expansions of the Dirac delta in (20) and (21), it is
evident that the kernels of the spectral selection operators in (24) and (25) are Dirac delta functions that

are band-limited in the appropriate basis.

3. Simultaneous Concentration in Spatial and Spectral Domain

By virtue of the uncertainty principle, no function can be space-limited and band-limited simultaneously.
In other words, a signal f € L?(B?) cannot belong to the subspace .##%; and the subspaces #p, or A1, at
the same time. In this section we first develop a framework to determine band-limited functions f € #p or
fe A1, that are optimally concentrated in some spatial region R C B3. We then formulate the problem to
determine space-limited functions g € .#% that are optimally concentrated within the spectral region Ag,
or Apy. Later, we show the equivalence between these two problems and provide the harmonic domain

formulations of the problems.

3.1. Spatial Concentration of Band-Limited Functions

Let f € L?(B?) be a band-limited signal, that is, f € S or f € #py. The energy concentration of
the function f within the spatial region R C B? is given by

Srf,S
)\:<Rf Rf>’ (26)
(£ 1)
which, by noting that the signal f is band-limited, can also be equivalently expressed as
SrSkLf SRS
)\:< R~KLf Sk KLf>’ fenk (27)
(Skrf.Skrf)
SrSpLf,SrS
\— < rSPL[, Sk PLf> e Aoy, (28)

(Sprf,Sprf)

where we have used the fact that both the spectral selection operators, Sk, and Spy, are idempotent oper-
ators. It is well-known that the band-limited function f that renders the Rayleigh quotient (26) stationary

is a solution of following Fredholm integral equations (eigenvalue problems), given by

SkrSrSkLf =\f, [fe A, (29)

SprSrSpLf = Af, f € Hpr. (30)

The solution of each of the eigenvalue problems in (29) and (30) yields band-limited eigenfunctions. Since
the composite operator SgSrSK L (or Spr,.SrSpr) is a self-adjoint projection operator, these eigenvalues
are positive and bounded above by unity. The eigenvalue associated with each eigenfunction serves as a
measure of energy concentration of the eigenfunction in the spatial region R. We discuss the properties of

the eigenfunctions in Section 4.



3.2. Spectral Concentration of Space-Limited Functions

Here we consider the dual of the problem posed in the previous subsection. Instead of seeking band-
limited spatially concentrated functions, we seek space-limited functions with optimal concentration in some
spectral region. Let g € % be the space-limited function within the spatial region R. We maximize the
concentration of ¢ in the spectral region Agy or Apy, depending on the basis functions chosen for the
characterization of the spectral domain (Fourier-Bessel or Fourier-Laguerre, respectively). To maximize the
concentration of the space-limited signal g within the spectral region Ay in the Fourier-Bessel spectral

domain, we maximize the ratio

5 = <SKLSR9,SKLSR!J>7 g€ Hn, (31)
<SR97SRQ>

Similarly, to maximize the concentration within the spectral region Apy in the Fourier-Laguerre spectral

domain, we maximize the ratio

(SpLSRY; SPLSRY)
<SRg7 SRg> ,

Following a similar approach to the spatial concentration problem above and noting Srg = g, the Fourier-

A= g € %R- (32)

Bessel concentration problem in (31) results in the following eigenvalue problem
SrSKLSR G = Ag. (33)
Similarly, the Fourier-Laguerre problem in (32) gives rise to the following eigenvalue problem
SrRSPLSRY = Ag. (34)

The solution of each of the eigenvalue problems presented in (33) and (34) provides space-limited eigen-
functions. Again, the eigenvalues are positive and bounded above by unity since the both SpSp;Sr and
SrSk1LSk are self-adjoint projection operators. The eigenvalue associated with each eigenfunction serves
as a measure of concentration of the eigenfunction in the spectral region Apy, or Ak, as we show later in

Section 4.

3.3. Equivalence of Problems

Here we show that the concentration problems to find the spatially concentrated band-limited functions
and spectrally concentrated space-limited functions have equivalent solutions. Equivalence is shown explic-
itly only for the Fourier-Bessel spectral domain; however, the same result also holds for the Fourier-Laguerre

spectral domain.
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By defining a composite operator U £ Sk1SrSk1 with kernel representation given by

U(r,r'):/d3u('r”)S’KL(T,T")S'KL(T",T')
R

L-1 ¢ L-1
= Z Z Z / dk‘/ dk’ Xém k ’I“) XZ’ ,(k‘ )/ dS,U/(T”) sz(k,'f’”)Xg/m/(k/,’P”),
(=0 m=—0 £'=0 m/=—¢ k=0 = R
(35)
we can write the eigenvalue problem in (29) as
Uf =/, (36)

or equivalently

| / 5SS X)X (s f7) = Af(r), 7 B (37)
R (=0 m=—t
Also, we define the composite operator V2 SpSx .Sk with kernel representation given by

Vr,r') = Ig(r)Ig(r Z Z/ dkX,, (k,7v) X} (k7"

{=0 m=—1¢
= IR(T)SKL(T‘7TI)a (38)
using which the eigenvalue problem in (33) can be expressed as

Vg = \g. (39)

or equivalently
/ a2 / dk Z Z Xy (b, ™) X5 (k7)) g (') = Mg(r), 7€ R. (40)
£=0 m=—¢
It is evident that this eigenvalue problem formulated for space-limited (analytic) function g € #% is equiv-
alent to the problem in (37) for band-limited function f € /X over the domain » € R. Consequently, the

eigenvalue problems in (36) and (39) have the same solution, with the same eigenvalue, within the region

R, that is,
g(r) = (Srf)(r), reRCB. (41)

For a signal band-limited in the Fourier-Laguerre spectral domain, the equivalent of the eigenvalue

problem in (36) is
Wf=Af, (42)

where W £ Sp;SpSpy is the composite operator with kernel representation given by
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and the analogous result holds.

Remark 1. The equivalence of the spatial and spectral concentration problems implies that we only need
to solve the eigenvalue problem presented in (36) or (42) to obtain the band-limited spatially concentrated
eigenfunctions and the space-limited spectrally concentrated eigenfunctions then can be obtained using (41),

e., by setting the space-limited eigenfunctions to the band-limited eigenfunctions in the region R and zero

elsewhere.

3.4. Harmonic Domain Analysis

So far the eigenvalue problems have been formulated in the spatial domain. Here we present the spectral
domain formulation of the eigenvalue problems presented in (36) and (42). By taking the Fourier-Bessel
transform of (37) with respect to spatial variable r, we obtain the following formulation of the eigenvalue

problem in the Fourier-Bessel spectral domain

Z 3 L W Ka a8 ) ) = A ), (1)

=0 m'=—4¢
with
Kot (b 1) = / ()X o (ks 1) X s (7). (45)
R

Similarly, the eigenvalue problem (42) can be formulated in the Fourier-Laguerre spectral domain as

P L-1 ¢
Z Z Z ZZ’m 'p’, Zmpf(’m p — )\fémpa (46)
p'=04£4"=0 m'=—+¢'
with
Dpmp trmrp = /Rdgu(r)ngp(r)ZZ‘,m,p, (r). (47)
By defining the vector f = (fooo, fools - -+, f(L_l)(L_l)(p_l))T of length PL? as the spectral representation

of the signal f and the matrix Z of size PL? x PL? with entries given by (47), (46) can be written compactly

in matrix form as
Zf = M. (48)
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Mercer's theorem

_ g g L
U = SkLSRSKL \ Properties of band-limited eigenfunctions:
e}
U(r,r) = 32 Aafo(r) (f(r)" = ¢ / ' 5 *
= akfe (k B) = 6us
Composite operator e=il [go m;[ L fom (k) (flm( )) 8
\ [, utn) o) (£09)" = s
B3
Eigenvalue problem: Uf = \f Eigenfunctions: f* a=1,2,... / ABu(r) f(r) (fS(T')>* = Aabap
Solution R
Maximize spatial concentration Eigenvalues: 1 > A\ > A\p41 >0
of band-limited functions

Equivalence of o L (g, fa
problems Y \/E( &f%)
Eigenvalue problem: Vg = Ag Eigenfunctions: g%, o =1,2,...
. . Solution
Maximize spectral concentration Eigenvalues: 1> Aa > Aat1 >0 Properties of space-limited eigenfunctions:
of space-limited functions L1 &
/ S % [ k) (97,0)" = dadus

=0 m=—¢ J k=0

[, &) ()" = 0
B3
[ eutmra ) (7)) = dus

Composite operator oo .
V(r,r') = 32 dag®(r) (9%(r"))
a=1

V =SrSkiSk N 7

Mercer's theorem

Figure 1: Concept map of Slepian spatial-spectral concentration problem for Fourier-Bessel spectral domain
summarising the Slepian concentration problems, presented in Section 3, to find spatially concentrated band-limited functions
and spectrally concentrated space-limited functions. The relation between the band-limited and space-limited eigenfunctions
arising as a solution of each problem is also presented. Furthermore, the key properties of the eigenfunctions, presented in
Section 4 are summarised. Employing Mercer’s theorem [16], we have also shown the (convergent) representation of the kernel of
the operator U or V in terms of eigenfunctions of the respective operator. The equivalent concept map can also be constructed

for the Slepian spatial-spectral concentration problem for the Fourier-Laguerre spectral domain.

Thus, the spectral representation f of the band-limited spatially concentrated signal f can be obtained as a
solution of an algebraic (finite dimensional) eigenvalue problem of size PL? x PL?. Due to the continuous
nature of the Fourier-Bessel harmonic space (i.e. k is continuous), an equivalent finite-dimensional matrix
formulation cannot be written for the Fourier-Bessel setting.

For the eigenvalue problems (36) and (42), which are expressed in terms of the spatial domain represen-
tation of the signal, we have obtained here the equivalent harmonic formulations (44) and (48) respectively.

In the next section, we discuss the properties of band-limited and space-limited eigenfunctions.

3.5. Review

In the present section, we first formulated two types of eigenvalue problems: (1) problem (29) and (30)
to find band-limited spatially concentrated functions f; and (2) problems (33) and (34) to find space-limited
functions g with optimal concentration within a spectral region. We then showed that the eigenfunctions
that arise as a solution of both problems are the same, up to a multiplicative constant, within the spatial
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region R and spectral region Apj, or Agr. Due to the equivalence of the spatial and spectral concentration
problems, we are only required to solve the eigenvalue problem presented in (36) (Fourier-Bessel domain) or
(42) (Fourier-Laguerre domain) to obtain the band-limited spatially concentrated eigenfunctions. For these
eigenvalue problems (36) and (42), which are expressed in terms of the spatial domain representation of
the signal, we have also obtained the equivalent harmonic formulations (44) and (48) respectively. For the
concentration problems for Fourier-Bessel spectral domain, we encapsulate the key developments presented
in this section in the form of concept map presented in Fig.1, where we have also summarised the key
properties, presented in detail in the next section, of the band-limited and space-limited eigenfunctions.

The equivalent concept map for the Fourier-Laguerre spectral domain is analogous.

4. Analysis of Eigenfunctions and Eigenvalue Spectrum

We first study the properties of the both band-limited and space-limited eigenfunctions in this sec-
tion, both for the Fourier-Bessel and Fourier-Laguerre scenarios. In both of these scenarios we also study
the eigenvalue spectrum and calculate the analog of the Shannon number in the one dimensional Slepian

concentration problem.

4.1. Properties of Fourier-Bessel Band-Limited Eigenfunctions

The Fourier-Bessel band-limited and spatially concentrated eigenfunctions are recovered in the spectral
domain by solving the eigenvalue problem given in (44). That is, we obtain f, (k) for 0 < k < K,
0</¢<L-1and|m| <{ In practice [24, 23, 21], the spectrum along k € R* is discretized to solve
the eigenvalue problem in (44) as an algebraic eigenvalue problem (we further elaborate this in Section 5).
Since both (36) and (44) are equivalent and the operator U, with kernel given in (35), is a self-adjoint
composition of projection operators, the eigenfunctions are orthogonal and the associated eigenvalue of each
eigenfunction is real, positive and bounded above by unity. We choose the eigenfunctions to be orthonormal.
Since the spectral response is continuous along k, the number of eigenfunctions is (theoretically) infinite and
depends on the resolution of the discretization of the spectrum along k. We order eigenfunctions f1, f2, ...
and eigenvalues A1, Ag, ... such that 1 > XA > Xa > ... > 0.

The eigenfunctions f¢ € L?(B?) in the spatial domain can be recovered from their spectral representation
through the inverse Fourier-Bessel transform (13), where a is used to index the eigenfunctions. Since
the Hermitian symmetry property Xem pm/(k, k') = (Xermr om(K', k)" is satisfied, as is directly apparent
from (45), it follows that the eigenvalues are real and the eigenfunctions orthogonal. The band-limited

eigenfunctions are orthonormal in both the Fourier-Bessel spectral domain and in the entire spatial domain

14



B3, that is,

[ ) ()" = 6. (50)

The eigenfunctions are also orthogonal (but not orthonormal) within the spatial region R, with

/R Eu(r) 2 () (5 (1) = Mabos, (51)

which is obtained using the spectral domain formulation of the eigenvalue problem in (44) and the or-
thonormality relation in (49). It is clear from (51) that the eigenvalue A associated with each unit energy

band-limited eigenfunction provides a measure of energy concentration within the spatial region R.

4.2. Properties of Fourier-Laguerre Band-Limited Eigenfunctions

The Fourier-Laguerre band-limited and spatially concentrated eigenfunctions are recovered in the spectral
domain by solving the eigenvalue prob