# GEOCHEMISTRY AND GEOCHRONOLOGY OF THE IGNEOUS SUITE ASSOCIATED WITH THE KELIAN EPITHERMAL GOLD DEPOSIT, INDONESIA

Bambang Tjahjono Setiabudi

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University

July 2001

The work presented in this thesis was carried out while I was a full-time student at the Research School of Earth Sciences, The Australian National University, between August 1997 and July 2001. Except where noted in the text, the research described here is my own. This research has also been refined and immensely improved by the input of many people who are mentioned in the acknowledgements. No part of this thesis has been submitted to any other university or similar institution.

Bambang Tjahjono Setiabudi

## ACKNOWLEDGEMENTS

This dissertation could not have been completed without the support and help of many people from various institutions. I would like to thank and acknowledge them for their assistance and efforts during the research project. This PhD study was financially supported by the Australian Sponsored Training Scholarships organised by the Australian Agency for International Development (AusAID). The logistical and financial supports during the fieldworks in the Kelian gold mine and regional prospects were provided by PT. Kelian Equatorial Mining (KEM), Rio Tinto Indonesia (RTI) and the Research School of Earth Sciences (RSES), ANU.

First of all, I would like to thank Ian H. Campbell, my chief supervisor, for the guidance, instruction and supervision throughout my course of study. Ian has given the largest influence in this work. His encouragement, insights and enthusiasm are greatly appreciated.

I wish to thank J. Michael Palin (my adviser) and John Mavrogenes (my supervisor) for their advices and supervision during the research and preparation of this thesis. Michael Palin has helped in the field of U-Th-Pb zircon geochronology, particularly in the development of data reduction procedures for U-Th-Pb zircon dating. John Mavrogenes has read manuscripts of the following chapters, criticized and given many suggestions in which improvements might be made. John Mavrogenes has also encouraged and supervised me during the preliminary analysis of melt inclusions.

I am particularly grateful to Charlotte Allen for her invaluable help in many things and for her expertise in analytical geochemistry. Charlotte Allen has assisted in numerous analytical sessions, especially whole-rock geochemical analysis using both excimer lasermode and solution-mode inductively coupled plasma mass spectrometer. I also thank Charlotte for helping me in the PGE sample preparation in the Clean Lab, and also for running analyses and dating zircon samples of the Kelian tuff and Han and Plata andesites.

I would like to thank Theo van Leeuwen, John Baldwin and Steve Hunt of Rio Tinto for their supports and encouragement in the early stages of this work, particularly during the establishment of the field projects. Theo has established this project and given permission to join the RTI exploration team at Ritan, Muyup, Han and Batu Utul. John

i

Baldwin was the Chief Geologist and Exploration Manager during my 5-year assignment at the Kelian Gold Mine. John introduced me to the geology of Kelian, Magerang-Imang and Nakan.

I am also indebted to the exploration and mine geologists of PT. Kelian Equatorial Mining and Rio Tinto Exploration for their guidance, discussions and logistical supports. These people are Greg Hartshorn for supervising the entire fieldwork in Kalimantan; Tulus Butar-Butar for his assistance during the fieldwork in the Kelian, Magerang-Imang, Muyup, Ritan, Han and Batu Utul areas; Brendan Howard and Roger Norris for their help and supervision during the fieldwork at Ritan; KEM's geologists: Yudi Nurcahyana, Ewa Rappe and Seno Aji for their help during the fieldwork at the Kelian Gold Mine. Special thanks are due to my field assistant, Santukius and my exploration team at Kelian for their boundless help and friendship.

All the laboratory experiments and analyses have been made possible with the assistance of several experts from the Research School of Earth Sciences, ANU. I wish to thank Bill Hibberson and Dean Scott for helping in the high-temperature furnace laboratory works; Barbara Fairchild for introducing me to the glass fusion technique, sample preparation and ICP-MS data reduction for trace elements, PGE and gold analysis; Les Kinsley and Mike Shelley for their help and advice in the Laser-ICP-MS lab works; Shane Paxton, John Mya and Shally for their help in whole-rock sample preparation and zircon mineral separation; Nick Ware for his help in the electron microprobe analysis; Shally Stowe for the use of Scanning Electron Microscope at RSBS; Graham Mortimer for providing spikes solution and assisting in chemical works in the clean lab. I also acknowledge Ulrich Sennf for the X-Ray Fluorescent analysis and John Vickers for preparing thin sections and polished sections at the Department of Geology, ANU. Many thanks to Ross Wylde-Browne and Duncan Bolt for giving technical support, backing up data and fixing computer problems.

The arguments and interpretation presented in this thesis have much benefited from many productive discussions over the last four years with a number of geologists and geochemists. Steve Eggins gave many suggestions in the ELA-ICPMS analysis and interpretation of trace element geochemistry, provided trace element data for boninites and read the drafts of chapters; Candace Martin helped in data reduction and discussion on the Platinum Group Element and gold analysis; Robert Loucks has provided copies of relevant papers and suggestions on the trace element geochemistry; Thanks to David Green and Stephen Cox for the advice and discussion during the course of this study. Special thanks

ii

are also due to Bruce Rohrlach for introducing me to Canvas software, Julian Ballard for helping with Kaleidagraph, zirconology and geochemical modeling. There are also numerous PhD students and friends at RSES who have helped me in various ways and shared good times; they include Christ Heath, Allistar Hacks, Linda Henley, Heather Scott-Gagan, Lois Taylor and Mike Gagan.

I am indebted to the Directorate of Mineral Resources; in particular Kingking Margawidjaja, Abdurrochman and Koswara Yudhawinata for their supports.

During this study, I have had great times with many friends from the Indonesian Embassy, the Indonesian Postgraduate Student Association and the Indonesian Moslem Student Association; in particular Aria Jalil, Akhdiyat Kartamiharja, Wahdiyudhi, Marpudin Azis, Abrar Yusuf, Teddy Mantoro, A. Kusworo and Edwin Arifin. I acknowledge their helps and supports.

Finally, the most important factor for finishing this job has been undoubtedly the support and encouragement of the "Setiabudi family". My deepest thanks go to Ninuk 'mademoiselle' Sundarsih, Aussie 'dreamcast' Bhaskoro and Dio 'pokemon' Pramudya Bumi for their patience and confidence.

This thesis is dedicated to all of the geologists who worked very hard at Kelian during the exploration period, especially Basuki, Yusuf Laleno and Sihotang of the Directorate of Mineral Resources.

# ABSTRACT

The Kelian gold deposit, located 250 km west of the provincial capital of Samarinda, East Kalimantan, is Indonesia's principal gold producer. The deposit is an intrusive-related low sulphidation system, situated within the Central Kalimantan Continental Arc, which consists of andesitic to rhyolitic volcanics and intrusives of Miocene age. Hydrothermal activity produced extensive brecciation, porphyry- to epithermal-style alteration and gold and base metals mineralisation. The nature of genetic relations is the main aspect of this study and is approached through the geochemical evolution of the calc-alkaline suites in relation to the metallic mineralisation.

Geochemical evolution in the Miocence calc-alkaline suites from the Kalimantan volcanic arc exhibit two distinctive trends of magmatic differentiation The first trend is defined by a series of "productive" igneous suites such as Kelian, Muyup and Ritan, and is a "typical" calc-alkaline series characterised by low Mg, moderate K, relatively high Ti and Al and depletion in Cr and Sc. The second trend is defined by the chemical variations of the Magerang-Imang and Nakan suites which have remarkably high concentrations of MgO. Major and trace element geochemistry of the high Mg andesites from Magerang-Imang and Nakan is comparable with that of low-Ca type-2 boninites. The Kelian Igneous Complex is characterised by positive Zr and Hf anomalies in the trace element patterns which is uncommon for calc-alkaline subduction zone magmas. The chemical diversity in the Magerang-Imang and Nakan suite might have been generated by a combined wallrock assimilation and fractional crystallisation process involving a parental basaltic magma and a Zr-rich cumulate. It is suggested that the Magerang-Imang and Nakan high Mg andesites were fed by magma chambers that formed deep in the crust, and were emplaced into pre-existing intrusions of felsic composition that formed as part of the Kelian Igneous Complex cycle. The shallow level stocks at Magerang-Imang and Nakan were generated by intrusions that melted the walls and roofs of related, but pre-existing intrusions, and extracted abundant xenocrystic zircons during the assimilation process.

This study represents the first Platinum Group Element data for a fractionated suite of calc-alkaline andesite. The technique developed in this study represents a breakthrough in our ability to monitor important ore elements in felsic igneous system. The PGE distribution patterns in the Magerang-Imang hornblende andesite are sub-parallel to each other over a range of concentrations that vary by about a factor of 20.

iv

All the Magerang-Imang samples are depleted in Ru, Ir and Os concentrations relative to Re, Pd, Pt and Rh concentrations and have Pd/Ir values of 15 to 54 and Ru/Ir ~1. The PGE concentrations decrease with increasing SiO<sub>2</sub>, showing that they are depleted by fractional crystallisation. Gold is depleted by an order of magnitude and relative to Re and Pd. The low concentration of gold in the igneous rocks associated with the Kelian gold deposit is unexpected. Most metal deposits are found in association with rocks that are already enriched in the metal of interest. It is therefore surprising to find a major gold deposit in host rocks that are depleted in Au. It is also interesting that Au and PGE ratios change little during fractionation. This is surprising because it implies either that the partition coefficients for the PGEs into the sulphides are similar, which seems unlikely, or that Au and the PGEs are not being depleted by simple equilibrium fractional crystallisation of sulphide. Alternatively, the gold and PGE fractionation are due to the assimilation of crustal material. This appears to be the most plausible process for the gradual depletion of Au and all of the PGE at Kelian. It is suggested that simple dilution with crustal material that contains no Au or PGE is the most likely process that will decrease the abundance of all of the PGE equally.

Zircon U-Th-Pb isotope dates were determined in situ using excimer laser ablation ICP-MS. The two different bodies of the Magerang hornblende andesite yielded a single age of  $19.38 \pm 0.12$  Ma and  $19.62 \pm 0.21$  Ma, while the Nakan andesite gave an age of  $20.01\pm 0.15$  Ma. The Central Andesite porphyry at Kelian gave 3 populations of U-Pb zircon dates:  $21.2 \pm 0.32$  Ma,  $20.5 \pm 0.12$  Ma and  $19.7 \pm 0.12$  Ma. The youngest date (19.7 Ma) is interpreted as the emplacement age and the two older zircon populations represent the age of inherited zircons coming from the previous thermal event that affected the source region of the andesite. The U-Pb zircon dating for the Runcing Rhyolite porphyry also yielded 3 distinctive date populations: the youngest date of zircon population  $(19.3 \pm 0.1 \text{ Ma})$  is interpreted as the emplacement age and the other two populations ( $20.0 \pm 0.2$  Ma and  $20.8 \pm 0.1$  Ma) represent the ages of inherited zircons.

The emplacement age of the Magerang-Imang andesite implies that the highsulphidation Cu-Au mineralisation at Magerang is younger than the low-sulphidation Au deposit at Kelian. The Kelian and Magerang andesites have a relatively short interval of emplacement ages suggesting that the duration of magmatism and related epithermal mineralisation in the larger Kelian region was between 0.5 - 1 Ma. During this period, the magmatic-hydrothermal system has produced 2 distinctive types of epithermal mineralisation: firstly, low-sulphidation Au deposit at Kelian and secondly highsulphidation Cu-Au mineralisation at Magerang-Imang.

Detrital zircons from the Mahakam and Kelian rivers were dated to obtain the overall duration of volcanism in the region. These zircons are dominated by Pliocene, Miocene, Cretaceous, Triassic, Permian and Carboniferous zircons. The youngest detrital zircon from the Kelian river gave an age of  $1.7 \pm 0.1$  Ma and the oldest one gave an age of 373 Ma. Within the Tertiary zircon population, there are age spectra peaks at Pliocene (from 1.7 Ma to 2.8 Ma) and Miocene (from 15.8 Ma to 21.7 Ma). The Cretaceous zircon population ranges from 67.6 to 126.3 Ma and peaks at 105 Ma. The gold mineralisation at Kelian occurs toward the end of the Miocene volcanism and took place locally within the Kelian region as this Miocene volcanism is not recorded in the zircon component from the larger Mahakam river.

The two large inheritance populations in both the Central Andesite and Runcing Rhyolite lie within the time range of the Kelian igneous complex as defined by the Kelian River detrital zircons. They must be derived from crustal intrusions that formed as part of the Kelian cycle. It is suggested that both the Kelian Andesite and Runcing Rhyolite were fed by 2 magma chambers that formed deep in the crust, each of which were long lived. The magma chambers that fed the Kelian Andesite and Runcing Rhyolite were emplaced into pre-existing intrusions of similar composition that formed as part of the Kelian igneous complex. The abundance of xenocrystic zircons in both units suggests that these earlier intrusions were still hot, or perhaps even partially molten, at the time of magma emplacement. That is the shallow level stocks and diatremes at Kelian were fed by nested, cannibalistic intrusions deep in the crust that melted the walls and roofs of related, but pre-existing intrusions, and inherited abundant xenocrystic zircons in the process. Both the Kelian Andesite and the Runcing Rhyolite have two populations of inherited zircons, which indicate that the pre-existing intrusions formed in two distinct episodes, 0.7 to 0.8 m.y. apart. The difference between the emplacement age and the age of the oldest of the inherited zircon populations shows that this cannibalistic activity took place over 1.5 m.y. The interval of magmatic activity in these chambers corresponds to the period of peak activity in the Kelian igneous complex as defined by the detrital zircons.

# **TABLE OF CONTENTS**

-

| Chapter 1:                                                          |    |
|---------------------------------------------------------------------|----|
| Introduction                                                        | 1  |
| 1.1 Objectives of This Study                                        | 2  |
| 1.2 Scope of This Study                                             | 3  |
| 1.3 Thesis Organisation                                             | 4  |
| 1.4 Field Research                                                  | 5  |
| Chapter 2:                                                          |    |
| Overview of the Characteristics of Epithermal Mineralisation with   |    |
| Special Reference to the Kelian Gold Deposit and Regional Prospects | 8  |
| 2.1 Introduction                                                    | 8  |
| 2.2 Characteristic Features of the Epithermal-Type Ore Deposits     | 10 |
| 2.3 Genetic Models                                                  | 12 |
| 2.4 Geology of the Kelian Regional Prospect                         | 17 |
| 2.4.1 Magerang-Imang Prospect                                       | 17 |
| 2.4.2 Nakan Prospect                                                | 21 |
| 2.4.3 Han Prospect                                                  | 22 |
| 2.4.4 Plata Prospect                                                | 22 |
| 2.5 Geology of the Kelian Gold Deposit.                             | 23 |
| 2.6 Geology of the Muyup Gold Deposit                               | 27 |
| 2.7 Geology of the Ritan Prospect                                   | 29 |
| Chapter 3:                                                          |    |
| Major and Trace Element Geochemistry of The Calc-Alkaline           | 20 |
| Igneous Suites from The Kelian Gold Mine and Regional Prospects     | 30 |
| 3.1 Introduction                                                    | 30 |
| 3.2 Analytical Methods                                              | 31 |
| 3.2.1 Major Elements                                                | 31 |
| 3.2.2 Trace Elements                                                | 31 |
| 3.2.2.1 Sample preparation : Development of a new glass fusion      |    |
| techniques for whole-rock analysis by ELA-ICP-MS                    | 32 |
| 3.2.2.2 Excimer laser ablation inductively coupled plasma mass      |    |
| spectrometry                                                        | 33 |
| 3.2.2.3 Data reduction                                              | 35 |
| 3.3 Igneous Suites                                                  | 36 |
| 3.4 Major Element Chemistry                                         | 37 |
| 3.4.1 Classification of Rock Types                                  | 37 |
| 3.4.2 Variation of Major Element Composition                        | 38 |

| 3.5 Trace Element Chemistry                                                                                                         | 44   |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------|--|
| 3.6 Evidence for Two Magmatic Differentiation Trends                                                                                |      |  |
| 3.7 Geochemical Evolution of the Kelian Igneous Complex                                                                             | 61   |  |
|                                                                                                                                     |      |  |
| Chapter 4:                                                                                                                          |      |  |
| Geochemical Model of Rare Earth Elements in Calc-Alkaline                                                                           |      |  |
| Igneous Suites from the Kelian Region                                                                                               | 67   |  |
| 4.1 Introduction                                                                                                                    | 67   |  |
| 4.2 Partition Coefficient                                                                                                           | 68   |  |
| 4.3 Trace Element Analyses of Selected Phenocryst-Matrix Pairs of the                                                               |      |  |
| Magerang-Imang and Nakan Andesit                                                                                                    | 69   |  |
| 4.4 Rare Earth Element Model                                                                                                        | 70   |  |
|                                                                                                                                     |      |  |
| Chapter 5:<br>Platinum Crown Floments Phonium and Cold Systematics in                                                               |      |  |
| Andesite Dornhyries of The Kelien Igneous Compley                                                                                   | 78   |  |
| Andesite 1 of physics of 1 ne Kenan Igneous Complex                                                                                 | 70   |  |
| 5.1 Introduction                                                                                                                    | 78   |  |
| 5.2 Analytical Methods                                                                                                              | 79   |  |
| 5.2.1 Sample Preparation                                                                                                            | 80   |  |
| 5.2.2 ICPMS measurement                                                                                                             | 81   |  |
| 5.2.3 Data Processing                                                                                                               | 81   |  |
| 5.3 Analytical Results                                                                                                              | 82   |  |
| 5.4 Platinum Group Elements, Rhenium and Gold Distributions in                                                                      |      |  |
| Andesite Porphyries of Kelian Igneous Complex                                                                                       | 82   |  |
| 5.5 Depletion of Gold, Copper and Group Elements in the Host Intrusive                                                              |      |  |
| Andesite of the Kelian Gold Deposit: An Unexpected Result                                                                           | 88   |  |
| 5.6 Discussion                                                                                                                      | 90   |  |
| Chanter 6.                                                                                                                          |      |  |
| Geochronology of the Kelian Igneous Complex and Associated                                                                          |      |  |
| Epithermal Gold Mineralisation                                                                                                      | 92   |  |
|                                                                                                                                     |      |  |
| 6.1 Introduction                                                                                                                    | 92   |  |
| 6.2 Principles of U-Pb Zircon Geochronology                                                                                         | 93   |  |
| 6.3 Analytical methods of U-Pb zircon dating by excimer laser ablation<br>inductively coupled plasma mass spectrometer (ELA-ICP-MS) | 96   |  |
| 6.4 Data Reduction                                                                                                                  | 99   |  |
| 6.5 Samples                                                                                                                         | 101  |  |
| 6.6 Analytical Results                                                                                                              | 104  |  |
| 6.6.1 Single age populations                                                                                                        | 104  |  |
| 6.6.2 Multiple age populations                                                                                                      | 110  |  |
| 6.6.3 Detrital zircons                                                                                                              | 111  |  |
| 6.7 Time constraints on the emplacement of the Kelian igneous complex                                                               |      |  |
| and associated epithermal gold mineralisation                                                                                       | 111  |  |
| 6.8 Nested Cannibalisistic Intrusion Below the Kelian Gold Deposit:                                                                 | 1.00 |  |
| Discussions                                                                                                                         | 113  |  |

| Chapter 7:<br>Summary a | nd Conclusions 117                                                                                                                                                                          |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| References              | 124                                                                                                                                                                                         |
| Appendices              |                                                                                                                                                                                             |
| Appendix 1:             | List of samples for whole-rock geochemistry.                                                                                                                                                |
| Appendix 2:             | Sample preparation techniques.                                                                                                                                                              |
| Appendix 3:             | Major and trace element chemistry of whole-rock samples.                                                                                                                                    |
| Appendix 4:             | Major and trace element composition of selected mineral.                                                                                                                                    |
| Appendix 5:             | The preferred set of values (ppm) for the standards used in this strudy.                                                                                                                    |
| Appendix 6:             | Partition coefficients of trace elements between mineral and liquid in andesite.                                                                                                            |
| Appendix 7:             | Summary of the U-Pb zircon dates analysed by ELA-ICP-MS.                                                                                                                                    |
| Appendix 8:             | Summary of the U-Pb detrital zircon dates analysed by ELA-ICP-MS.                                                                                                                           |
| Appendix 9:             | Tables 5.1 Instrumental operating conditions; Table 5.2 Interference elements and correction factors; Table 5.3 The PGE, Au and Cu abundances in the intrusive andesite of the Kelian area. |

# Chapter 1

# INTRODUCTION

The occurrences of several major gold deposits in addition to significant Cu-Au mineralisation in the volcanic corridor of the Central Kalimantan Arc have been targeted for scientific research. Previous work has mainly focused on regional tectonics and exploration geology. In contrast, there has been little effort to understand the ore forming systems in the Kalimantan gold belt. In particular, the link between the metallic deposits and volcanism has not been convincingly resolved. The nature of genetic relations is the main aspect of this study and is approached through the geochemical evolution of the intermediate-felsic igneous rocks in relation to the metallic mineralisation.

The genesis of the Kelian gold deposit has never been clearly resolved. The interpretation of the ore forming process is speculative due to the lack of laboratory-based research. There are three possibilities regarding the ore genesis of the Kelian gold deposit. First, the gold mineralisation involved meteoric fluids driven by heat sourced from a highlevel intrusion. Gold and other metals were mainly derived from tuff, volcaniclastic sandstone and carbonaceous siltstone. The Kelian andesite porphyry might have provided some metals. Second, the gold mineralisation at Kelian has been controlled by phreatomagmatic processes that have formed the Runcing maar-diatreme complex (Sillitoe, 1993a). The maar-diatreme was possibly generated in relation to the Runcing rhyolite magmatism. The Runcing diatreme contains fragments of fine-grained felsic igneous rocks derived from a high-level porphyry body at depth. This suggests that gold was deposited by hydrothermal fluids derived from a rhyolite porphyry and that there is no genetic link with the andesite porphyry at Kelian. The third possibility is that the gold mineralisation is genetically related to a specific event in the evolution of the andesite porphyry intrusions. Gold has been concentrated by fractionation processes before and during the emplacement of andesite porphyries.

# 1.1 Objectives of this study

Although the Kelian gold deposit contains features of a porphyry type environment, the chemical process of mineralisation and emplacement of the andesite intrusions are not clear. It is therefore possible to test whether the gold mineralisation was formed by a hydrothermal fluid system driven by the late stage andesite magmatism or by processes related to the phreatomagmatic rhyolite activity as part of a maar-diatreme complex. Igneous suites of the Kelian region and immediate prospects such as Han, Plata, Muyup and Ritan will be studied utilising analytical geochemistry and geochronology to resolve these questions.

The principle objectives of this study are to document the geochemical evolution of the calc alkaline igneous suite associated with the gold mineralisation and show its variation through time. The project was carried out at a regional scale centred on the Kelian Gold Mine and surrounding prospects. The aim is to test the hypothesis that there is a genetic link between the mineralisation and the evolution of the igneous rocks. Selected drill core and outcrop samples were analysed for major elements by X-ray fluorescence (XRF), trace elements by Excimer Laser Ablation Inductively Coupled Plasma Mass Spectrometer (ELA-ICP-MS) and noble metals by isotope dilution ICPMS methods. If there is a direct magmatic link between gold and the igneous porphyries in the Kelian region, gold must be concentrated by fractional crystallisation and this can only occur if the parent magma that gave rise to the Kelian andesite became vapour saturated before it became sulfide saturated. Special emphasis will therefore be placed on the chalcophile elements, copper, gold, rhenium and platinum-group elements (PGE) to see if there is evidence of sulfide saturation. Alternatively, Kelian may be interpreted as an epithermal deposit involving a meteoric-hydrothermal system driven by heat from highlevel intrusions and having no direct, magmatic fluid component.

The behaviour of platinum group elements (Pd, Pt, Rh, Ru, Ir and Os) is a particular focus of the study for two reasons. Firstly, the PGE partition more strongly into sulfides than Au, with extreme partition coefficients, possibly in excess of 10<sup>5</sup> (Keays and Campbell, 1981; Campbell and Barnes, 1984; Bezmen et al., 1994). Thus, PGE are more sensitive indicators of sulfide fractionation than Cu and Au. The ELA-ICP-MS has been used to analyse the primary igneous phases in the rocks to identify any minerals that are

fractionating chalcophile elements. Secondly, the PGE are more resistant to mobilisation by hydrothermal fluids than Au or Cu, and more likely to record primary igneous values. If there is fractional differentiation, the PGE concentrations are dropped significantly with the increasing silica content.

In order to resolve the temporal and genetic relations between calc-alkaline magmatism and hydrothermal mineralisation at Kelian, this study attempts to determine absolute ages of the various igneous rocks using the U-Th-Pb zircon dating method by excimer laser ablation ICP-MS. It also aims to examine possible magmatic links between the low-sulfidation gold deposit at Kelian and the high-sulfidation gold-copper mineralisation at Magerang-Imang, a prospect located 4 km NW of the Kelian Mine.

## 1.2 Scopes of this study

This study aims to document the geochemical characteristics of the least altered intrusive and volcanic rocks in the Kelian Gold Mine and surrounding prospects including Magerang, Muyup, Ritan, Plata and Han areas. The effects of alteration on the chemistry of the wall rocks in the Kelian Gold Mine are also investigated as part of this study.

Selected samples of intrusive rocks as well as detrital zircons were dated by the U-Pb zircon ELA-ICP-MS method in order to constrain the timing of the chemical evolution of the igneous suite. In addition, detrital zircons from the Mahakam and Kelian rivers were dated to constrain the overall duration of magmatism in the region.

Platinum group elements, gold and rhenium have been analysed in samples from the highly altered host rocks of the Kelian deposit and from two adjacent prospects that show only little evidence of alteration: the hornblende phyric Magerang-Imang suite and the pyroxene phyric Nakan suite. This PGE study is used to evaluate a possible hypothesis that the Kelian deposit formed because the parent magma that gave rise to the Kelian andesites became vapour saturated before it became sulfide saturated. If this happens, gold and the PGE are expected to concentrate in the parent magma chamber whereas if the chamber becomes sulfide saturated first, Au and the PGE may be stripped from the magma before it becomes vapour saturated and unavailable to form a magmatichydrothermal deposit. Variations in the PGE concentration in a fractionated suite of andesites may therefore provide a method to distinguish between ore-bearing and barren igneous suites, where ore-bearing suites concentrate PGE with increased fractionation whereas barren suites do not.

# **1.3 Thesis Organisation**

In order to achieve the above objectives, this study will be subdivided as follows:

Chapter 1: Introduction; to define the research topics, background, objectives and methodology.

**Chapter 2:** An overview of the characteristic features of epithermal ore systems with special reference to the Kelian gold deposit and regional prospects; to provide tectonic and geological aspects of epithermal mineralisation and to describe the geology and mineralisation of the research areas.

**Chapter 3:** Major and trace element geochemistry of the calc-alkaline igneous suite associated with the Kelian gold deposit; to describe the chemical characteristics of the igneous rocks, wall rock alteration and mineralisation, tectonic significance and genesis of primary magmas as inferred from trace element geochemistry; to establish a genetic link between the variably fractionated igneous rocks in the region.

**Chapter 4:** Geochemical model of rare earth elements in the Kelian Igneous Complex; to identify the cumulus phases responsible for the geochemical evolution of the igneous suite in the Kelian region.

**Chapter 5:** Platinum-group elements (PGE), Re and Au geochemistry; to document the characteristics of noble metals in the igneous suite and their distribution on both regional and local/district scales and to evaluate the behaviour of the PGE, Re and Au during fractional crystallisation and hydrothermal mineralisation.

**Chapter 6:** Geochronology of the andesite-rhyolite suites of the Kelian Igneous Complex and regional prospects; to present age data for the igneous rocks, to constrain the timing of magmatic-volcanic events, and to relate the chemical evolution of the igneous suite to the gold mineralisation.

**Chapter 7:** Summary and Conclusions; a brief summary of the main conclusions from this study, particularly on the geochemical evolution and geochronology of the igneous

suite associated with the gold mineralisation. The future work is proposed including stable isotope analysis, radiogenic isotope dating of the mineralisation events and melt inclusion analysis to study the characteristics of trace elements and metals and the ore forming conditions, especially the magmatic processes related to the development of the Runcing Rhyolite and the diatreme complex.

### 1.4 Field Research

The Kelian gold deposit is located in the nearby Kelian River, a tributary of the Mahakan River, which is situated approximately 250 km west of the provincial capital of Samarinda, East Kalimantan (Figure 1.1). The area can be reached in 7 hours by speedboat from Samarinda or 70 minutes by helicopter from Balikpapan. The deposit is currently being mined as an open pit using drill and blast techniques and heavy equipment by PT. Kelian Equatorial Mining.

This study was commenced in September 1997 and the field project was established by the Research School of Earth Sciences, Australian National University, Kelian Equatorial Mining (KEM) and Rio Tinto Indonesia (RTI). The first session of field work was conducted in the Kelian, Muyup and Ritan areas during the period of 22 September 1997 to 26 November 1997. The second field work was conducted in the Kelian Gold Mine and the regional prospects such as Han and Batu Utul during the period of 6 November 1999 to 6 December 1999. The study was financially assisted by the Australian Agency for International Development (AusAID) and the Research School of Earth Sciences (RSES), ANU. During the field work, domestic transport, logistics and accommodation were supported by RTI and KEM.

The field work at Kelian accomplished a review of the regional geology of the greater Kelian areas (Kelian Regional) including the areas of Magerang, Sopandua, Imang and Nakan, observation of the mine pit geology, sampling and documentation of exploration drill cores and pit exposures. The author worked for KEM and RTI in the Kelian Gold Mine and regional exploration programs from 1991 to 1995. All samples were collected from outcrops, exploration drill cores and pit exposures.

The field work in the Ritan and Muyup prospects was jointly carried out and supported by the regional follow-up exploration team of RTI. This included geological mapping and rock-chip sampling, particularly in the mineralisation area of Mejuk and local mine area at Muyup. All the samples of Ritan and Muyup were collected from surface exposures as no drill core samples were available.



Figure 1.1: Location map of the study area



Plate 1.1 : View looking north over the East Prampus Pit, the Kelian Gold Mine. The west wall of barren, propylitic andesite (left), the Runcing Rhyolite (top centre), and pyroclastic and volcaniclastic units (right).



Plate 1.2: On the north wall of the East Prampus Pit. Pyroclastics are intruded by basaltic dykes of Pleitocene age.



Plate 1.3: Sharp contact between tuff and the Runcing muddy breccia diatreme on the north eastern part of the East Prampus Pit.



Plate 1.4: The barren, propylitic andesite on the west wall of the East Prampus Pit

#### Chapter 2

# OVERVIEW OF THE CHARACTERISTICS OF EPITHERMAL MINERALISATION WITH SPECIAL REFERENCE TO THE KELIAN GOLD DEPOSIT AND REGIONAL PROSPECTS

## 2.1 Introduction

Studies of major gold deposits and geothermal systems have greatly improved our understanding of ore geology and the geochemistry of epithermal systems. As a result, classification, genetic models and interpretation of the epithermal-type deposits have been refined. This extensive research has also established well-defined geological and geochemical frameworks in which many aspects of ore genesis may be reviewed. This chapter summarises general characteristics of epithermal gold deposits in volcanic terranes and presents the Kelian gold deposit, Kelian Regional, Muyup and Ritan prospects as case studies.

The term *epithermal* was originally proposed as a class of hydrothermal deposits formed by ascending hot waters near the surface in or near volcanic rocks at relatively low temperature and pressure (Lindgren, 1922, 1933). Epithermal deposits generally emplaced at a shallow depth; commonly less than 1500 metres (Schmith, 1950). Several authors have attempted to review the use of the term *epithermal* and restrict its use to the deposits having textural and mineralogical characteristics of a low temperature of formation; from 100°C to 320°C, typically 170°C to 280°C, from dominantly meteoric hydrothermal fluids (White and Hedenquist, 1990; Henley, 1991 and White et al., 1995). Gold and silver are the most valuable ore elements in epithermal ore deposits. They may also contain minor amounts of iron and base-metal sulfides, tellurium and mercury. The ores occur with quartz, carbonates, barite and clays as veins, breccia filling, stock-works and disseminations.

There have been at least three ways to classify epithermal deposits in volcanic terranes:

 <u>Classification based on hydrothermal vein and alteration minerals</u> (Hayba et al., 1985; Heald et al., 1987):

i. adularia-sericite type (e.g. Creede, Eureka, Guanajuato, Round Mountain districts) ii. acid-sulfate type (e.g. Summitville, Goldfield, Red Mountain and Julcani districts) This classification was derived from the detailed evaluation of characteristics of the Au-Ag vein deposits in the North America. It has been slightly modified into adularia-sericite (illite) type and alunite-kaolinite-pyrophillite type (Berger and Henley, 1989). The adulariasericite assemblage indicates the fluid chemistry of near neutral pH, whereas the alunitekaolinite indicates the acid pH - fluids. The Kelian and Muyup gold deposits can be assigned to the adularia-sericite (illite)-type deposits, while the Magerang-Imang, Plata and Ritan gold mineralisation are of the alunite-kaolinite-pyrophyllite-type.

2. Classification based on the redox state of the sulfur present in the hydrothermal fluid (White and Hedenquist, 1990):

i. low sulfidation type

ii. high sulfidation type

This classification was proposed by Hedenquist (1987) to distinguish deposits which can not be grouped using diagnostic minerals (e.g. adularia, base-metals and sulfide contents). In general, low sulfidation-type deposits display an alteration assemblage of quartzadularia-sericite (illite)-pyrite, in contrast to high sulfidation-type deposits which are commonly characterised by an alteration assemblage of alunite-kaolinite-pyrophyllite. Low sulfidation refers to the lowest oxidation state of sulfur (-2) which commonly occurs in near-neutral geothermal systems, while high sulfidation refers to the high oxidation states of sulfur (+4, +6) which is commonly present as SO<sub>2</sub> or sulfate (SO<sub>4</sub><sup>2</sup>) in volcanic hydrothermal discharge. The low sulfidation type may be subdivided into three different sub-types (Sillitoe, 1993b): sulfide-poor associated with sub-alkalic rhyolitic rocks; sulfide-poor associated with alkalic rocks; and sulfide- (and base-metal) rich associated with sub-alkalic andesitic to rhyodacitic rocks. The Kelian and Muyup gold deposits are representatives of low sulfidation epithermal mineralisation, while the Magerang-Imang and Ritan prospects are of the high sulfidation type.

#### 3. Classification based on genetic (conceptual) models:

i. epithermal vein model as proposed by Buchanan (1981)

ii. hot-springs and open vein deposition models as proposed by Berger and Eimon (1983) Genetic concepts for epithermal mineralisation (White et al., 1971) involve convection cells of meteoric and late magmatic water circulating through volcanic and sedimentary sequences, where water becomes heated, ascends until boiling causes precipitation of metals and minerals. The epithermal vein model emphasises the importance of the level of boiling at a particular depth under hydrostatic conditions. The vertical extent may vary, depending on the irregularities of paleotopography, structures, isothermic and isobaric conditions, but typically within a range of 300-400 m. The hot-spring model is assigned to deposits formed by very hot solution at or near surface which is characterised by intense silicification and brecciation, adularia-sericite vein alteration, hydrothermal breccias and low-temperature clay alteration. In contrast, the open vein deposition types form at greater depth than the hot-spring type and are characterised by large tonnage of high-grade ore, high base-metal contents and less brecciation. The open vein system may be subdivided into a stacked-cell convection system and a closed-cell convection system.

## 2.2 Characteristic Features of Epithermal-Type Ore Deposits

The emplacement of epithermal deposits is temporally and spatially related to the extensional tectonic setting and magmatic activity at convergent plate boundaries above subduction zones. The deposits are generally found in areas with well-developed tensional fracture systems or structures related to large-scale volcanic collapse (Panteleyev, 1986, Sillitoe, 1993b). Both adularia-sericite and acid-sulfate types form in similar tectonic settings. Adularia-sericite type deposits occur in the back-arc regions where more potassic and silicic magmatic activities occur within areas of extensional faulting (Berger and Henley, 1989). Kaolinite-alunite types are more likely related to changes in magmatic compositions. Most of the Western United States deposits are associated with structurally complex volcanic domes, particularly along the margins of felsic caldera (Hayba et al., 1985). However, it was thought that calderas are not a pre-requisite for the formation of epithermal deposits since only a few calderas of the Western United States are mineralised. Ore mineralisation commonly occurs near the end of volcanism. This

indicates that hydrothermal processes resulting in ore deposition may result from volcanism, most likely during the waning stages.

Most epithermal gold - silver deposits form in Tertiary volcanic rocks such as subaerial pyroclastics and near-surface intrusions. Older epithermal deposits are less common due to either erosional or metamorphic processes. Heald et al. (1987) have distinguished geological characteristics of 16 major deposits of North and South America into 2 different types; adularia-sericite and acid-sulfate types. Adularia-sericite types have various compositions of host rocks ranging from rhyolite to andesite. They may form in several lithologies within a deposit. Acid-sulfate-type deposits such as Goldfield, Summitville in Colorado and Red Mountain in Nevada are more commonly associated with porphyritic, rhyodacitic rocks. Ore deposition is possibly genetically related to the host rock as indicated by the age of mineralisation which is very close (less than 0.5 Ma) to the formation age of the host rock. The field characteristics of epithermal deposits are listed in Table 2.1.

In terms of mineralogy, adularia-sericite (low sulfidation) types are characterised by the vein assemblage of quartz+adularia+sericite+rhodochrosite+hematite. Wall rock alteration, dominantly sericitic (illite-smectite), borders a silicified zone near vein and grades outward into propylitic alteration. The presence of chlorite, selenite and fluorite are also characteristic of this type. In contrast, the typical minerals in acid-sulfate (high sulfidation) type deposits are assemblages of enargite+pyrite±covellite. The ore is typically associated with advanced argillic (kaolinite-alunite) alteration. The kaolinite alteration grades outward into argillic and silicic alteration. Alunite may be developed in adularia-sericite types as a supergene mineral in which case it is not related to the oreforming processes. Precious-metals occur as native gold, native silver, electrum, silver sulfides and silver sulfosalts, with varying silver to gold ratios. Low sulfidation type deposits generally have high silver to gold ratios. However, some high sulfidation type deposits such as Julcani, Mexico; Red Mountain, Nevada and Lake City, Utah also show high silver to gold production ratios (>10) (Heald et al., 1987).

The adularia-sericite or low sulfidation type is generated from near neutral, sulfurpoor, reduced fluids, whereas the acid-sulfate or high sulfidation type is generated from acid, sulfur-rich, oxidised fluids. Fluid salinities range from 0 to 13 eq. wt% NaCl with the limited data on acid-sulfate types showing a wider range of 5 to 24 eq. wt% NaCl. These deposits are interpreted to have formed at palaeodepths of 300 to 1400 metres.

# Table 2.1

# **Characteristics of epithermal deposits**

(From Sillitoe, 1993b)

|                                     | High Sulfidation<br>(Acid-Sulfate)                                                                                                          | Low Sulfidation<br>(Adularia-Sericite)                                                                                                         |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Host rocks                          | Mainly andesite - rhyodacite                                                                                                                | Andesite - rhyodacite - rhyolite                                                                                                               |
| Alteration zone                     | Areally extensive (commonly<br>several km <sup>2</sup> ) and visually<br>prominent                                                          | Commonly restricted and visually subtle                                                                                                        |
| Key proximal<br>alteration minerals | Crystalline alunite; pyrophyllite<br>at deeper levels                                                                                       | Sericite or illite <u>+</u> adularia; roscoelite<br>(V-mica) in deposits associated<br>with alkalic rocks; chlorite in few<br>cases            |
| Quartz gangue                       | Fine-grained, massive, mainly<br>replacement origin; residual,<br>slaggy ("vuggy") quartz<br>commonly hosts ore                             | Chalcedony and/or quartz<br>displaying crustiform, colloform,<br>bladed, cockade and carbonate-<br>replacement textures; open-space<br>filling |
| Carbonate gangue                    | Absent                                                                                                                                      | Ubiquitous, commonly<br>manganoan                                                                                                              |
| Other gangue                        | Barite widespread with ore;<br>native sulfur commonly fills<br>open spaces                                                                  | Barite and/or fluorite present locally; barite commonly above ore                                                                              |
| abundance                           | 10-90 vol.%, mainly fine-<br>grained, partly laminated pyrite                                                                               | 1-20 vol.%, but typically <5 vol.%, predominantly pyrite                                                                                       |
| Key species                         | Cu sulfosalts (enargite, luzonite)<br>and Cu + Cu-Fe sulfides<br>(chalcocite, covellite, bornite)<br>common; generally later than<br>pyrite | Sphalerite, galena and tetrahedrite<br>common; Cu present mainly as<br>chalcopyrite                                                            |
| Metals present                      | Cu, Au, As (Ag, Pb)                                                                                                                         | Au and/or Ag (Zn, Pb, Cu)                                                                                                                      |
| Metals present locally              | Bi, Sb, Mo, Sn, Zn, Te (Hg)                                                                                                                 | Mo, Sb, As (Te, Se, Hg)                                                                                                                        |

Boiling, oxidation and fluid mixing processes are considered as the effective mechanism for ore deposition. Sources of fluids are predominantly meteoric water with possibly minor amounts of magmatic water. The ore and gangue minerals are deposited mostly as vein or breccia filling with banded, crustiform, vuggy, colloform textures.

## 2.3 Genetic Models

Epithermal mineralisation occurs in hydrothermal convecting systems where meteoric water circulates deeply into volcanic or sedimentary piles. As the fluid becomes heated, metals, sulfur, chloride and other rock components become soluble. The mineralising fluid rises through fractures, reacts with wall-rocks and precipitates ore and gangue minerals as veins and breccia filling, as well as disseminations. Effective fluid conduits may be provided by high- and low-angle faults, volcanic ring fractures, coarse pyroclastic or volcaniclastic rocks, and hydrothermal breccias (Sillitoe, 1993b). The genetic model for vein-type deposits (Buchanan, 1981; Figure 2.1) emphasises the relation of ore deposition with oxidation and boiling due to decreased pressure. Precious-metals are likely deposited at and above the boiling zone, while base-metal sulfides mostly form below and at the boiling level. Boiling and mineralisation commonly occur periodically and result in distinctive, layered and banded ore textures. Boiling causes separation of volatiles such as SO<sub>2</sub> and H<sub>2</sub>S into liquid and vapour. Progressive boiling results in increasing pH, salinity and oxygen fugacity in the remaining liquid. This condition allows precipitation of silver minerals along with quartz, carbonates, sericite and adularia. The loss of CO<sub>2</sub> and H<sub>2</sub>S also increases the activity of S<sup>2-</sup> and HS<sup>-</sup>, which in turn leads to the formation of thiocomplexes with gold and other metals. This is true in some situations, but the more important point is that boiling causes a loss of sulfur from the system, which results in deposition of gold. Gold is precipitated in the upper part or nearer the palaeosurface in a highly oxidised environment where the thiocomplexes are destabilised by oxidation.

Boiling of the solution results in loss of complexing agent for gold, pH increase and oxidation, all of which favour gold deposition. The possible exchange reactions involved in the precipitation of gold from solution as a bisulfide complex are :

| Boiling :       | $Au(HS)_2 + \frac{1}{2}H_2 + H^+ = Au + 2 H_2S$                                       |
|-----------------|---------------------------------------------------------------------------------------|
|                 | $\mathrm{HCO}_{3}^{-} + \mathrm{H}^{+} == \mathrm{H}_{2}\mathrm{O} + \mathrm{CO}_{2}$ |
| Oxidation :     | $Au(HS)_2^- + \frac{1}{2}H_2O + \frac{15}{4}O_2 = Au + 2H_2S + \frac{1}{4}O_2$        |
| pH increase :   | $Au(HS)_2^- + \frac{1}{2}H_2O = Au + 2 HS^- + H^+ + \frac{1}{4}O_2$                   |
| pH decrease :   | $Au(HS)_2^- + H^+ + \frac{1}{2}H_2O = Au + 2H_2S + \frac{1}{4}O_2$                    |
| Pyrite precipit | ation : $Fe^{2^+} + 2 Au(HS)_2^- = 2 Au + FeS_2 + 2 H^+ + 2 HS^-$                     |





Conceptual models presented by Berger and Eimon (1983) include Hot-Springs and Open Vein Deposition Models. In the hot-spring model (Figure 2.2), precious-metals are deposited at very shallow depths below vents and in breccias as a result of the sudden



Figure 2.2 : Schematic cross-section of hot spring-type epithermal deposits (after Berger and Eimon, 1983)

release of abnormally high fluid temperatures and pressures. The ore deposits are associated with the deposition of silica sinter at the surface. High-grade precious-metals are found in closest proximity to the vents and possibly in bedded zones in the sinter resulting from multiple periods of metal transport in the hydrothermal fluids. In contrast, the open vein model (Figures 2.3a and 2.3b) shows that ore deposits form as veins at deeper levels compared to the hot spring type and contain high grade gold and base-metals. Brecciation is less developed in this system. Examples of the hot-springs- type deposits are Round Mountain in Nevada, DeLamar in Idaho and McLaughlin in California, while the open vein type deposits are represented by the Creede district (Colorado) and Guanajuato (Mexico).







Figure 2.3b : The closed-cell convection model including two levels of mineralisation resulting in stacked orebodies, separated by a barren zone (after Berger and Eimon, 1983).

# 2.4 Geology of The Regional Prospects

The Kelian, Muyup and Ritan districts are located within the northwestern part of the Kutai Basin. The Basement rocks which outcrop at the western boundary of the Kutai Basin, comprise volcanic, sedimentary and metamorphic rocks of Late Jurassic to Early Cretaceous age. The Kutai basin stratigraphy (Pieters, 1999) is given in Figure 2.4.

The regional prospects cover all of the exploration areas including the sub-economic prospects of Magerang-Imang, Nakan, Sopandua and Buan, which are located immediately surrounding the Kelian Gold Mine and situated within the Contract of Work of the Kelian Equatorial Mining and Rio Tinto Indonesia. In addition, the other districts such as Han, Plata and Batu Utul are also included as parts of the regional prospects, because they are included in the early regional exploration programs and they are conveniently accessible from the Kelian Gold Mine.

The regional prospects are situated within the Central Kalimantan Continental Arc (Figures 2.4 and 2.5) which is made up of andesitic to trachyandesitic rocks of Late Oligocene - Middle Miocene age. This magmatic-volcanic arc is considered to be related to the southward dipping subduction zone in northwest Sarawak (Carlile and Mitchell, 1994) and hosts several low-sulfidation, epithermal gold deposits, including the deposits of Mirah, Gunung Mas, Mt. Muro, Masupa Ria, Kelian and Muyup. High-sulfidation epithermal alteration and mineralisation were also discovered in Masupa Ria (Central Kalimantan), Ritan and Magerang areas, spatially and possibly genetically related to the same porphyry system.

#### 2.4.1. Magerang – Imang Prospect

Magerang-Imang is located 4 kilometres northwest of the Kelian Gold Mine. Geology, alteration and mineralisation of the Magerang-Imang area were mapped in detail during the Regional Exploration period of 1991-1994 (Setiabudi, 1994). The Magerang lithology comprises a series of fine-grained sandstone with intercalated siltstone, a Quarternary basalt flow and intrusive andesite (Figure 2.6). The sediments intruded by andesite at shallow depth show silicification, disturbed bedding and minor mineralisation.



Figure 2.4 : Regional geology of the Kutai Basin (Pieters, 1999), showing stratigraphic formation, geologic and geophysical structures and location of the prospect areas.

Chapter 2: Overview of the characteristics of epithermal mineralisation



Figure 2.5 : Oligocene palaeogeography and magmatic arcs of the Indonesian region (after Carlile and Mitchell, 1994)



Figure 2.6 : Simplified geological map of the Kelian regional area.

In addition, a diatreme of muddy breccia is exposed in the eastern area and a Quarternary basalt plug forms the Magerang hill. The intrusive andesites that are found in the eastern part of Magerang-Imang and in drillholes under basalt in the southern area show very little evidence of alteration. The least-altered andesite of Magerang-Imang has a mediumgrained, porphyritic texture, formed mainly by plagioclase and hornblende, with rare pyroxene phenocrysts set in a fine-grained, holocrystalline matrix of feldspar and mafic minerals. The phenocrysts and groundmass have undergone alteration along cracks and grain boundaries to sericite, chlorite and carbonate.

Hydrothermal alteration extends widely along 1000m E-W and 2000m N-S and ranges from propylitic (quartz-sericite-chlorite) grading to pervasive phyllic - argillic (quartz+illite+kaolinite/dickite). In some places, the remnants of highly altered vuggy silicified rock are common, showing advanced argillic alteration of quartz-alunite-diaspore-pyrophyllite. Mineralisation is confined to the southern section of Magerang and is localised by N-S trending fault along the sediment-intrusive contact. Sub-economic Cu-Mo-Au mineralisation associated with andesite intrusive bodies consists mainly of chalcopyrite and molybdenite with minor covellite, chalcocite and bornite. This alteration-mineralisation type indicates a high sulfidation system as a result of an upflow of relatively hot (>250°C), acidic (pH<3) fluids, possibly derived from a porphyry source at depth (Leach, 1991).

#### 2.4.2 Nakan Prospect

The Nakan prospect, located a kilometre southwest of the Kelian Gold Mine is dominated by tuffaceous sandstone, fine-grained quartz sandstone and andesite porphyries. The least altered andesite shows a medium-grained, porphyritic texture, characterised by plagioclase and pyroxene phenocrysts set in fine-grained feldspar and mafic groundmass. Clinopyroxene and plagioclase phenocrysts are slightly altered to sericite, chlorite and calcite. Rare small grains of hornblende are slightly altered to chlorite. The fine-grained groundmass has been partially replaced by sericite, chlorite and carbonate.

Hydrothermal alteration at Nakan is confined to the fault contact zone of the andesite and tuffaceous sediments, which is interpreted to be the southern extention of the West Prampus Fault at Kelian. It was thought that the dextral movement of the West Prampus Fault led to the development of a NE-SW trending dilational zone similar to the

structure of the Kelian West Prampus orebody. However, the exploration drilling did not intersect any significant gold mineralisation (Hartshorn, 1995).

#### 2.4.3 Han Prospect

The district geology lies in a northeasterly trending anticline formed predominantly by Oligocene sedimentary sequences of calcareous sandstone, mudstone, limestone, tuffaceous quartz-sandstone. High-level subvolcanic rocks occur as andesite porphyry, rhyodacite porphyry and heterolithic breccia. The least altered andesite exhibits a mediumto coarse-grained, porphyritic texture and is composed of predominantly plagioclase (labradorite) and mafic mineral phenocrysts in a fine grained quartz-feldspathic matrix. Both phenocryst and groundmass are partly altered to sericite, calcite and chlorite. Four alteration stages of a high-temperature porphyry system have been observed in the Han igneous suite (Corlett, 1999). The early potassic-type assemblage of quartz+albite+Kfeldspar+biotite+anhydrite+magnetite overprinted by propylitic-type assemblages of chlorite+calcite+sericite+epidote+quartz+rutile and phyllic-type assemblages of quartz+sericite+andalusite (a) and quartz+sericite+chlorite+calcite+ tourmaline+rutile (b). The argillic-type assemblages of sericite+kaolinite+smectite also overprinted potassic alteration. The metallic mineralisation is mainly chalcopyrite and pyrite in the phyllic-altered wallrocks and magnetite associated with potassic altered andesite.

#### 2.4.4 Plata Prospect

Lithologies of the Plata district consist of andesite lavas, coarse-grained lapilli and bedded vitric to crystal tuff, high-level intrusions of dacite porphyry, hydrothermal and phreatomagmatic breccias. The least altered andesite lava is composed mainly of plagioclase (oligoclase to andesine) with either hornblende or clinopyroxene in a finegrained feldspar and mafic mineral groundmass. The dacite porphyry shows slightly altered phenocrysts of plagioclase, K-feldspar and hornblende in a fine-grained matrix of quartz, altered feldspar and mafic minerals. Pervasive alteration developed as concentric zones which grade vertically and laterally from vughy quartz+alunite in the centre part, through wide zones of silicification and quartz+alunite, quartz+alunite+pyrophyllite/dickite/ diaspore, quartz+dickite/pyrophyllite/diaspore and quartz+sericite, to an outer propylitic assemblage of chlorite+calcite (Leach and Corlett, 1999). High sulfidation epithermal-type mineralisation at Plata is localised as fracture and breccia filling, dominated by pyrite, enargite, chalcopyrite<u>+</u>tennantite and molybdnite.

#### 2.4.5 Batu Utul Area

Sub-volcanic rocks in the Batu Utul area are composed of andesite and rhyolite porphyries. The phyllic altered-rhyolite shows quartz and altered feldspar phenocrysts in a fine grained sericitised groundmass. The andesite shows a medium-coarse texture made of weakly altered plagioclase and pyroxene phenocrysts in a fine grained feldspathic and mafic minerals. The phenocrysts and groundmass are partly altered to sericite, chlorite and iron oxide minerals.

# 2.5 Geology of The Kelian Gold Deposit

The stratigraphic sequence of the Kelian mine area comprises a series of intercalated Eocene felsic tuffs and volcaniclastic to epiclastic sediments in the lower section, overlain by fine- to medium-grained quartz-sandstones, shales with intercalated limestone (Figure 2.7). The pyroclastics and sedimentary rocks were uplifted and faulted during Late Oligocene to Early Miocene and intruded by Miocene stocks of andesite and rhyolite. After a period of erosion, Plio-Pleistocene basaltic volcanism took place producing lava and dykes.

The largest intrusive bodies, named Central Andesite and Eastern Andesite show vertical to inward-dipping contacts to the west and south, and hydrothermal contact breccia along the eastern margin of the Central Andesite. Although most of the Kelian Mine andesites have been variously altered, there are few samples from the southeastern area (Tepu) that show little alteration. These Tepu andesites are medium-grained, porphyritic


Figure 2.7 : Geology map of the Kelian mine area, based on the pit exposure map in October 1999.

and contain plagioclase, hornblende, minor K-feldspar and rare pyroxene phenocrysts within fine-grained, altered and devitrified groundmass.

Several types of breccia, including intrusion breccias, hydrothermal breccias, fault breccias and phreato-magmatic breccias, crosscut the older rock unit. The phreato-magmatic breccias are composed mainly of dark grey fragments of milled carbonaceous shale with lesser quantities of tuff, andesite and fine-grained rhyolite within an altered clay matrix. These breccias occur as several hundred meter scale, oval-shaped bodies, locally called the Runcing and Tepu muddy breccias and are interpreted as diatreme complex (Sillitoe, 1993a). The Runcing diatreme breccia is intruded by a quartz rhyolite porphyry composed of quartz and strongly sericitised feldspar phenocrysts set in a fine-grained, highly-altered groundmass. The Runcing rhyolite porphyry can be distinguished from the fine-grained rhyolite clasts in the diatreme breccia by its distinctive grained size and phenocrist content.

The Kelian Gold Deposit, the largest disseminated gold deposit in Indonesia, has a resource potential of >97 Mt ore at an average grade of 1.85 g/t Au, including >53.5 Mt mineable ore at 1.97 g/t Au (Van Leeuwen, 1994). The deposit consists of two main orebodies, named West Prampus and East Prampus, and have a range of low-grade gold content (1-3 g/t) with Au/Ag ratios vary from 1:1 to 1:4. In addition, several high-grade mineralised zones (the 255, 339, 383, 393, and 394 Zones) contain 3-6 g/t gold. Gold mineralisation occurs in a dilational jog at the intersection of NS and NE trending fault structures (Corbett, 1993) and is localised within the margins of the andesite intrusions and a diatreme breccia. The hydrothermal alteration and mineralisation is typical of intrusiverelated low sulfidation systems. The replacement and vein alteration are separated into four main assemblages based on paragenetic stages (Van Leeuwen et al., 1990). Firstly, chlorite+carbonate+ sericite+quartz+epidote assemblages (propylitic alteration - Stage 1) occur mainly as replacement alteration in the central part of the andesite intrusions. The second, phyllic alteration is characterised by sericite+quartz+adularia assemblages (Stage 2) and occurs as replacement and vein alteration in andesite, pyroclastics and muddy breccia. The third assemblage is phyllic with predominantly base-metal and carbonate minerals (Stage 3) as veins and breccias. The last, argillic alteration is a kaolinite+siderite assemblage (Stage 4) which occurs as replacement minerals, cavity fillings and veins. Kaolinite commonly overprints sericite and carbonate of earlier stages.

Sulfide minerals include pyrite with lesser sphalerite and galena, and are mainly disseminated within the matrices of the andesite and pyroclastic units, but are also found in fracture and cavity fillings in hydrothermally brecciated andesite and tuff, and in veins crosscutting the massive andesite. The high-grade gold is generally associated with phyllic alteration, particularly with carbonate and base-metal veins and breccias.

25

The geological model proposed by Van Leeuwen et al. (1990) demonstrates a relation between gold mineralisation and the andesite intrusion. It was thought that the hydrothermal fluid was generated by a mixing of cooling intrusive fluids with circulating meteoric water within the fractures and pyroclastic units. This relatively hot and dilute hydrothermal fluid reacted with the pyroclastics and andesite forming propylitic to phyllic alteration which resulted in deposition of sericite-adularia-pyrite and possibly gold due to boiling. The distribution of sericite-adularia is interpreted to indicate a progressive increase in gas content with time, and condensation of gases upon boiling at shallow levels (Corbett and Leach, 1995). While at a deeper level, fluid flow resulted in quartz-carbonate-sericite alteration. Stage 3 is associated with a second episode of hydrothermal activity that produced a hot, saline, CO<sub>2</sub>-rich, magmatic-dominated fluid that carried gold and base-metals. This high-pressure fluid flow caused intensive brecciation and hydrofracturing and deposited gold and base-metals, particularly in the 255 Zone at East Prampus. Gold and base-metals were deposited together with carbonate and quartz under highly complex and variable time/space conditions involving boiling, mixing and rapid quenching.

However, gold mineralisation, particularly the high grade 394 Zone in the northeast Kelian may be related to the Runcing diatreme and concentrated in the upward-flared southern contacts of the diatreme (Sillitoe, 1993a). Gold deposition is closely associated with fault controlled base-metal veining and Mn-carbonate in tension gash veins formed between faults. Quenching in the faults may lead to isolated elevated gold grades. The 394 Zone is localised by NW trending dilation at the Runcing diatreme margin (Corbett, 1993).

The Kelian deposit shows magmatic - epithermal transitional features similar to the Porgera gold deposit, Papua New Guinea. At Porgera, the Stage I event is characterised by intense phyllic alteration associated with pyrite-sphalerite-galena-chalcopyrite (Corbett et al., 1995). Fluid inclusion data indicate fluids of magmatic origin with salinities of 7-12 eq. wt. % NaCl and temperatures of 200°-350°C (Richards, 1992). This is similar to Stage 2 at Kelian. Porgera's Stage II (quartz-roscoelite-dolomite) alteration formed by low salinity (4-8 eq. wt. % NaCl) and low temperature (~180°C) fluids is similar to Kelian's Stage 3 alteration-mineralisation, except that rhodochrosite is more developed and roscoelite is absent at Kelian. Porgera's Stage I mineralisation represents a more evolved fluid derived from a deeper magmatic source which has equilibrated with black shale during ascent (Cameron et al., 1995). Similar processes may have occured at Kelian, particularly in the 255 Zone and West Prampus orebody.

Some interpretations on structural controls seem to be oversimplified. The West Prampus fault has probably played an important role as an active structure providing pathways for fluid flow. The normal movement on the West Prampus fault may have formed a half graben rather than a narrow graben since the pyroclastics gradually changed to purely clastic sediments to the east. The formation of the Runcing diatreme may be responsible for the 394 mineralisation zone. However, an alternative possibility is to relate the 394 zone and the deeper level 393 Zone with the Burung fault as an active feeder structure and the fluid source at depth beneath the 393 Zone.

## 2.6 Geology of The Muyup Gold Deposit

The oldest sequence of the Muyup area comprises a series of Palaeogene sediments, termed as the Pamaluan Formation. This formation is made of quartz sandstone, conglomerate, mudstone and carbonaceous shale and siltstone. The Pamaluan Formation is overlain unconformably by Early Miocene volcanics, Muyup Volcanic Formation, made of welded and laminated rhyolite and andesitic tuffs. The Muyup Volcanic Formation is overlain by Pliocene sedimentary rocks, Kampung Baru Group, consisting of quartz sandstones, shale and coal (Wake, 1991). These volcanics are intruded by Middle to Early Miocene andesite porphyries (Figure 2.8). The youngest stratigraphic sequence in the Muyup area is the Plio-Plistocene Basalt, which occurs mainly in the northern part of the Muyup prospect.

Six isolated zones of epithermal-type mineralisation are located in the Buluh, Bengeh, Uping, Basran, Hairani and Benghok areas. The gold and minor base metal mineralisation is hosted by the andesite porphyry, rhyolitic tuff and volcaniclastic units. The mineralisation occurs at various stratigraphic levels and are exposed at a palaeodepth of 200-400m (Allen, 1988). The Muyup gold deposit has been estimated about 0.3 Mt with an average grade of 2.3 g/t Au (Wake, 1991, Van Leeuwen, 1994), mainly associated with hydrothermal breccias (with a high grade of 10-100 g/t Au) and quartz stockwork veins (grading up to 1 g/t Au) within the andesite volcanics. The quartz veins are mainly fine grained, chalcedony with minor adularia, carbonate and minerals, overprinted by the assemblage of kaolinite, dickite and siderite. The near surface epithermal environment is evidenced by the clay alteration, low fluid inclusion temperature (230°C), the occurrence of a silica cap, as well as the enrichment in As, Sb and Hg.



Figure 2.8 : Simplified geological map of the Muyup prospect (after Allen, 1988)

# 2.7 Geology of The Ritan Prospect

The Ritan prospect is located about 80 km NE of Kelian and has recently been explored in detail by Rio Tinto Indonesia, revealing a promising target of Cu-Au mineralisation within the northeast extension of the existing major ore deposits corridor. District geology comprises the Tabang Ridge volcanics of Early Miocene formed by andesite volcanic breccias, dacitic and andesitic lava flows, unconformably underlain by laminated siltstone and volcaniclastic sandstone. The Tabang volcanics are intruded by a basalt plug. Epithermal alteration is confined to the Mejuk area and comprises predominantly argillic assemblages of smectite-illite-kaolinite-pyrite and quartz-illitekaolinite to an advanced argillic assemblage of quartz-alunite. Gold mineralisation occurs in vuggy silica rocks and a 5-7m-wide hydrothermal andesite breccia vein of the Tabang Ridge Formation, assayed about 6 ppm Au and 50 ppm Ag. In addition, elevated grades of lead and zinc were also identified from the hydrothermal breccia vein.

## Chapter 3

# MAJOR AND TRACE ELEMENT GEOCHEMISTRY OF THE CALC-ALKALINE IGNEOUS SUITES FROM THE KELIAN GOLD MINE AND REGIONAL PROSPECTS

## 3.1 Introduction

Previous petrological studies have indicated a temporal and spatial association between calc-alkaline andesite-rhyolite-dacite suites and gold-copper deposits in the Kalimantan magmatic belt (Van Leeuwen et al., 1990; Thompson et al., 1994; Abidin, 1996). Kelian, the most productive gold deposit in Indonesia, is of special interest because its association with the subduction zone magmatism has been regarded as significant in understanding the aspects of ore forming systems (Carlile and Mitchell, 1994). Geochemical studies of arc systems can therefore provide important information for assessments of mineral potential of the arc system. In particular, the regional variation in geochemistry of the sub-volcanic rocks from the East Kalimantan provides insight into the tectonic setting, origin of primary magmas and the magma source components.

This chapter deals with geochemistry of the calc-alkaline igneous suites from the East Kalimantan volcanic arc with a particular focus on the andesitic-rhyolitic intrusive rocks associated with the Kelian gold - base-metal mineralisation. Geochemical characteristics of the igneous rocks in the Kelian mine district and the other regional prospects, such as Magerang-Imang, Muyup, Ritan, Batu Utul, Han and Plata, are documented. In addition, the effect of alteration upon the chemistry of the host and country rocks is assessed. The Miocene magmatism of the Kelian region, which include the Kelian mine, Nakan and Magerang-Imang andesites and Kelian mine rhyolite (locally named as *Runcing Rhyolite*), will be referred to as the *Kelian Igneous Complex*. The Kelian mine andesites includes intrusive rock units locally named as *Central Andesite, Eastern Andesite and Tepu Andesite*.

## **3.2 Analytical Methods**

#### 3.2.1 Major Elements

All of the samples selected from outcrops and drill cores were crushed using a hydraulic plate crusher and pulverised in an agate ring mill for whole-rock geochemical analysis. The major element (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) concentrations in fresh and altered samples were determined by X-Ray Fluorescence spectrometry at the Department of Geology, the Australian National University, using the method of Norrish and Hutton (1969). The reported results are accurate to better than 1% for concentrations of Si, Ti, Al, Fe, Mg and Ca, and better than 2% for concentrations of Mn, Na, K and P.

In addition, major element compositions in 35 of the samples were determined from glass samples by electron microprobe (EMP) methods using a Camebax (Microbeam) system. In this quantitative EMP analysis, x-ray intensities were measured by energy-dispersive spectrometer (EDS) using lithium-drifted silicon detectors (Ware, 1991). The samples were analysed using a 15 keV accelerating voltage and a 6-7 nA beam current with the beam focused to 1 micron, with a counting time of 80 live seconds (~120 real seconds) and an output count rate of ~8000 cps. The energy resolution of the EDS is 148 eV (full-width at half maximum intensity on Mn K $\alpha$ ). The data reduction were carried out on-line using a software package for empirical energy dispersive spectroscopy (SPEED).

#### 3.2.2 Trace Elements

Whole-rock trace element concentrations were determined by excimer laser ablation inductively coupled plasma mass spectrometer (ELA-ICP-MS) on fused glass samples. ELA-ICP-MS has been applied to the *in situ* determination of a wide range of trace elements in geological materials over the last few years (Loucks et al., 1995; Sylvester and Ghaderi, 1997, Sinclair et al., 1998). The UV excimer laser, as an alternative technique for sample introduction to ICP-MS, has several advantages over the Infra Red laser sampling (Perkins and Pearce, 1995). It is less dependent on the physical and chemical properties of the analysed materials, does not produce significant element fractionation and has a more predictable beam profile.

# 3.2.2.1 Sample Preparation: Development of a New Glass Fusion Technique for Whole-Rock Analysis by ELA-ICP-MS

Quantitative analysis of trace elements in rocks by ELA-ICP-MS requires the sample to be converted to homogenous glass prior to analyses. It has therefore been necessary to develop a new sample preparation technique for a wide range of igneous rocks to produce the homogenous glass beads required for precise and accurate analyses.

The glass method for trace element analyses by ELA-ICP-MS has several advantages over solution-nebulisation ICP-MS. Firstly, ELA-ICP-MS analysis using whole-rock glass is fast and more convenient. Secondly, refractory mineral phases, such as zircon, which are difficult to dissolve in solution, are readily dissolved in glasses. Thirdly, molecular interferences caused by oxides, as commonly encountered in solution-mode ICP-MS analysis, are negligible in ELA-ICP-MS analyses of glasses.

The new procedure involves mixing powdered whole-rock sample with lithium metaborate flux spiked with <sup>169</sup>Tm and <sup>235</sup>U. The lithium metaborate flux effectively dilutes the sample and lowers its melting temperature and the viscosity of the melt. The addition of these spikes enables correction for instrumental drift encountered during ICPMS analysis. Optimum results were achieved using a 2:1 mixture of rock powders and spiked flux, and fusing at 1200°C for 20 minutes. The high temperatures and long times of fusion may cause the loss of some volatile elements in samples.

In the final procedure for producing glass for the Kelian samples, 0.6666 g of whole-rock powder was mixed with 0.3333 g of spiked flux on a weighing paper until the powder had a uniform colour. The spiked sample was then transferred into a clean, 3 cm-wide carbon crucible and pre-heated in a Kanthal Super Rapid Furnace at 600°C for 30 minutes. Following this initial pre-heating, the carbon crucible with powder was placed in a Kanthal High Temperature Melting Furnace for pre-heating at 800°C for 5 minutes prior to fusing. After 5 minutes, the temperature was raised to 1200°C and maintained at this temperature for 20 minutes to facilitate complete fusion and homogenisation. An Ar gas flow of 2.5 litre/minute was used during both preheating (800°C) and melting (1200°C) to prevent oxidation of the samples. At the end of this sequence, the carbon crucible with molten rock was removed from the furnace and rapidly quenched into a beaker of water. The glass was dried overnight, and a 2-3 mm piece of glass shard was mounted in epoxy and polished prior to laser ICP-MS analysis. Details of the preparation procedure are given in Appendix 2. In order to test the homogeneity of glass, multiple electron microprobe (EMP) analyses of the glasses have been carried out on selected samples. The

## **3.2 Analytical Methods**

#### 3.2.1 Major Elements

All of the samples selected from outcrops and drill cores were crushed using a hydraulic plate crusher and pulverised in an agate ring mill for whole-rock geochemical analysis. The major element (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) concentrations in fresh and altered samples were determined by X-Ray Fluorescence spectrometry at the Department of Geology, the Australian National University, using the method of Norrish and Hutton (1969). The reported results are accurate to better than 1% for concentrations of Si, Ti, Al, Fe, Mg and Ca, and better than 2% for concentrations of Mn, Na, K and P.

In addition, major element compositions in 35 of the samples were determined from glass samples by electron microprobe (EMP) methods using a Camebax (Microbeam) system. In this quantitative EMP analysis, x-ray intensities were measured by energy-dispersive spectrometer (EDS) using lithium-drifted silicon detectors (Ware, 1991). The samples were analysed using a 15 keV accelerating voltage and a 6-7 nA beam current with the beam focused to 1 micron, with a counting time of 80 live seconds (~120 real seconds) and an output count rate of ~8000 cps. The energy resolution of the EDS is 148 eV (full-width at half maximum intensity on Mn K $\alpha$ ). The data reduction were carried out on-line using a software package for empirical energy dispersive spectroscopy (SPEED).

#### 3.2.2 Trace Elements

Whole-rock trace element concentrations were determined by excimer laser ablation inductively coupled plasma mass spectrometer (ELA-ICP-MS) on fused glass samples. ELA-ICP-MS has been applied to the *in situ* determination of a wide range of trace elements in geological materials over the last few years (Loucks et al., 1995; Sylvester and Ghaderi, 1997, Sinclair et al., 1998). The UV excimer laser, as an alternative technique for sample introduction to ICP-MS, has several advantages over the Infra Red laser sampling (Perkins and Pearce, 1995). It is less dependent on the physical and chemical properties of the analysed materials, does not produce significant element fractionation and has a more predictable beam profile.

# 3.2.2.1 Sample Preparation: Development of a New Glass Fusion Technique for Whole-Rock Analysis by ELA-ICP-MS

Quantitative analysis of trace elements in rocks by ELA-ICP-MS requires the sample to be converted to homogenous glass prior to analyses. It has therefore been necessary to develop a new sample preparation technique for a wide range of igneous rocks to produce the homogenous glass beads required for precise and accurate analyses.

The glass method for trace element analyses by ELA-ICP-MS has several advantages over solution-nebulisation ICP-MS. Firstly, ELA-ICP-MS analysis using whole-rock glass is fast and more convenient. Secondly, refractory mineral phases, such as zircon, which are difficult to dissolve in solution, are readily dissolved in glasses. Thirdly, molecular interferences caused by oxides, as commonly encountered in solution-mode ICP-MS analysis, are negligible in ELA-ICP-MS analyses of glasses.

The new procedure involves mixing powdered whole-rock sample with lithium metaborate flux spiked with <sup>169</sup>Tm and <sup>235</sup>U. The lithium metaborate flux effectively dilutes the sample and lowers its melting temperature and the viscosity of the melt. The addition of these spikes enables correction for instrumental drift encountered during ICPMS analysis. Optimum results were achieved using a 2:1 mixture of rock powders and spiked flux, and fusing at 1200°C for 20 minutes. The high temperatures and long times of fusion may cause the loss of some volatile elements in samples.

In the final procedure for producing glass for the Kelian samples, 0.6666 g of whole-rock powder was mixed with 0.3333 g of spiked flux on a weighing paper until the powder had a uniform colour. The spiked sample was then transferred into a clean, 3 cm-wide carbon crucible and pre-heated in a Kanthal Super Rapid Furnace at 600°C for 30 minutes. Following this initial pre-heating, the carbon crucible with powder was placed in a Kanthal High Temperature Melting Furnace for pre-heating at 800°C for 5 minutes prior to fusing. After 5 minutes, the temperature was raised to 1200°C and maintained at this temperature for 20 minutes to facilitate complete fusion and homogenisation. An Ar gas flow of 2.5 litre/minute was used during both preheating (800°C) and melting (1200°C) to prevent oxidation of the samples. At the end of this sequence, the carbon crucible with molten rock was removed from the furnace and rapidly quenched into a beaker of water. The glass was dried overnight, and a 2-3 mm piece of glass shard was mounted in epoxy and polished prior to laser ICP-MS analysis. Details of the preparation procedure are given in Appendix 2. In order to test the homogeneity of glass, multiple electron microprobe (EMP) analyses of the glasses have been carried out on selected samples. The

results confirm that the glasses are homogenous within the precision of the measurements. The glasses were analysed for 37 trace elements by laser ablation ICP-MS with a precision of better than 4% for most elements. The reproducibility of ICP-MS data from multiple analyses for the least altered andesite (Nakan andesite) demonstrates the extent to which glass homogeneity has been obtained using this method (Figure 3.1).

#### 3.2.2.2 Excimer Laser Ablation Inductively Coupled Plasma Mass Spectrometry

The Excimer Laser Ablation Inductively Coupled Plasma Mass Spectrometry (ELA-ICP-MS) system at RSES, ANU has been described by Loucks et al. (1995) and Eggins et al. (1998). A schematic diagram of the ELA-ICP-MS system is illustrated in Figure 3.2. Glass samples were ablated utilising a pulsed ArF excimer laser (Lambda Physik LPX 120I) emitting at 193nm with a nominal pulse width of 20ns and a pulse stability of  $\pm$  5%. In this study, laser sampling was carried out using a 84 micron diameter spot at a constant voltage mode of 21-23 kV with a laser output energy of 100 mJ and a repetition rate of 5 Hz. Both sample and standard discs were loaded in a translational stage in an air-tight sample cell and are viewed via a video monitor. Ablation is undertaken in Helium and both helium and argon gases are used to flush the sample cell, with a He flow rate of 300 ml/minute and Ar flow rate of 1100 ml/minute.

Data acquisition for 37 isotopes was carried out by peak hopping in pulse counting mode (3 points per peak) with a dwell time of 30 ms, obtaining data on signal intensity for each of the analysed isotopes. The glass samples were ablated for 80 seconds following a 40 second interval of background acquisition with the laser off, resulting in ~120 data scans for a penetration depth of ~40 microns (approximately 0.1 microns of material was ablated per laser pulse). The ablated materials, together with carrier gas, were transported to the ICP through a custom-made signal homogeniser. The international reference material NIST 612, a synthetic silicate glass, was used as an external calibration standard and it was analysed at the start and repeatedly measured after every a batch of 10-12 unknown samples. In addition, a second in-house standard glass, made from a Kilauea basalt (93-1487) powder spiked with 3.28 ppm <sup>235</sup>U and 109.7 ppm <sup>169</sup>Tm, was run after every 5-6 unknown samples. In order to correct intensity variations during an analytical session and temporal variations in instrument signals (instrumental drift), the <sup>43</sup>Ca peak (0.135 % of total Ca) was used as an internal standard. The Nakan andesite (Sample No.123187) was used as an additional in-house standard and was analysed in each

33



Figure 3.1 : The reproducibility of LA-ICPMS data from 5 analytical sessions using the Kelian standard sample (Nakan Andesite), showing that the glasses are homogenous to within the precision of the instrument.

analytical session, in order to monitor the quality of data. The measured isotopes and preferred values for the standards are listed in Appendix 5.



Figure 3.2: Schematic diagram of Excimer Laser Ablation Inductively Coupled-Plasma Mass Spectrometry at Research School of Earth Sciences.

#### 3.2.2.3 Data Reduction

All data reduction was carried out off-line using a Microsoft Excel worksheet. This includes background subtraction, normalisation to Ca or Tm, correction for instrumental drift and calculation of trace element concentration. The procedure of data reduction employed in this study is modified from that described by Eggins et al. (1997, 1998).

Raw counts were recorded as counts per second (cps) data for each of ~1 second time slices by the ICP-MS computer program. Average background intensities were subtracted for the raw count rates for each isotope measured. Intensities of trace elements measured by ICP-MS were normalised to that of <sup>43</sup>Ca whose concentration has previously been determined by X-ray fluorescence methods. The element concentrations were calculated using the following formula (Sylvester and Ghaderi, 1997):

 $C_{ueu} = C_{seu} \times (I_{ueu}/I_{seu}) \times (C_{ues}/C_{ses}) / (I_{ues}/I_{ses})$ 

Where : Cseu = the concentration of the internal standard element (Ca) in the unknown,

 $I_{ueu}/I_{seu}$  = the ratio in the unknown of the intensity of an isotope to be measured relative to that of an isotope of the internal standard element (<sup>43</sup>Ca)

 $C_{ues}/C_{ses}$  = the ratio of concentration of element in the standard to that of the chosen internal standard element

 $I_{ues}/I_{ses}$  = the ratio in the standard of the intensity of an isotope to be measured in the unknown relative to that of the chosen isotope of the internal standard element.

A total of 137 whole-rock samples has been analysed for 37 trace elements using the ELA-ICP-MS method (Eggins, et al., 1997). The first batch of 20 samples was analysed using a HP4500 Series ICP-MS, batches 2, 3 and 4 (totally 87 samples) were analysed using a Fisons VG PlasmaQuad II+ ICP-MS, and the last batch (30 samples) was analysed using an Agilent 7500s ICP-MS.

## 3.3 Igneous Suites

The drill core and outcrop samples of intrusive and extrusive rocks were collected from the Kelian mine and surrounding prospects (Magerang-Imang and Nakan) as well as the Muyup, Ritan, Batu Utul, Han and Plata prospects (Plate 3.1). Petrographic and chemical analyses of the igneous suites indicate fine to medium grained textures with compositions that range from basaltic andesite, through andesite to rhyolite. Although most samples show some degree of alteration, a suite of 50 samples which show minimal disturbance to their whole-rock chemical composition has been picked as the least altered samples. In the these samples, original igneous textures are well preserved, phenocrysts of plagioclase, hornblende and pyroxene exhibit only slight alteration along rims and fractures, and plagioclase twins are clearly visible (Plate 3.2). The whole-rock chemical compositions are listed in Appendix 3.

The Kelian mine andesites (i.e. *Central Andesite, Eastern Andesite and Tepu Andesite*) have been variously altered, but there are few samples from the southeastern area (Tepu) that show little alteration (Plate 3.2). The Tepu Andesite is medium-grained, porphyritic and contains plagioclase, hornblende, minor K-feldspar and rare pyroxene phenocrysts within a fine-grained, altered and devitrified groundmass. The phenocryts are partially altered to sericite and chlorite. This mineral mode is similar to that of the Central Andesite.

The andesite porphyries that are found in the eastern part of Magerang-Imang and in drillholes under basalt in the southern area show very little alteration. The andesite has a medium-grained, porphyritic texture, formed mainly by plagioclase and hornblende,



Plate 3.1: Central Andesite showing phyllic (Stage 2) alteration; quartz, sericite and calcite replacement minerals (a). Phyllic altered andesite; quartz, sericite and carbonate replacement minerals, brecciated in some places (b). Central Andesite showing propylitic (Stage 1) alteration overprinted by phyllic (Stage3) alteration. Carbonate and base-metal veinlets contains gold as indicated from the elevated gold grade (3 ppm Au) in this section (c). Central Andesite showing prophylitic alteration consisting of quartz, chlorite and minor sericite assemblage. A few calcite veinlets occur in places (d)



Plate 3.2: Fragment of quartz, siltstone and volcanic rocks in silty matrix of the Runcing muddy breccia. Sample 123221 G Runcing 1110RL (a). Slightly altered Magerang andesite showing phenocrysts of plagioclase, hornblende and pyroxene set in a fine grained feldspar matrix (b). Slightly altered Magerang andesite showing plagioclase, hornblende and pyroxene as phenocrysts set in a fine sericitised feldspar matrix (c). Phyllic altered andesite showing replacement alteration of sericite, carbonate and pyrite (d). Field of view 2.6 x 1.8 mm

with rare pyroxene phenocrysts set in a fine-grained, holocrystalline matrix of feldspar and mafic minerals (Plate 3.2). The phenocrysts and groundmass have undergone some replacement along cracks and grain boundaries to sericite, chlorite and carbonate.

The least altered Nakan andesite has a medium-grained, porphyritic texture and is characterised by plagioclase and pyroxene phenocrysts in fine-grained feldspar and mafic groundmass. Clinopyroxene and plagioclase phenocrysts are slightly altered to sericite, chlorite and calcite. Rare small grains of hornblende are slightly altered to chlorite. The fine-grained groundmass has been partially replaced by sericite, chlorite and carbonate.

The Han andesite (sample No.1103) is a weakly altered porphyry exposed on the Han river and is chiefly composed of plagioclase and minor pyroxene phenocrysts set in a fine grained quartz-feldspathic groundmass. The phenocryst and groundmass are slightly altered to sericite, chlorite and calcite.

The Plata dacite (sample No. 1121), collected from the drillcore of the Plata prospect (Chapter 2, Figure 2.4), shows plagioclase and hornblende phenocrysts within a fine-grained quartz, feldspar and mafic groundmass. The feldspar and mafic minerals have been slightly altered to sericite and chlorite.

### **3.4 Major Element Chemistry**

#### 3.4.1 Classification of rock types

Major element compositions were normalised to 100 wt% on a volatile-free basis to allow comparison of variably altered samples. Only the least altered samples were used for classifying the igneous rocks. On the basis of the FeO\*/Mg - SiO<sub>2</sub> variation diagram (Miyashiro, 1974) all the igneous samples follow the calc-alkaline trend with the exception of the Ritan andesite (Sample 123301), which plots in the tholeiite field (Figure 3.3a). Within the calc-alkaline field, the Kelian mine andesites (Tepu Andesite) show a distinctive trend as indicated by a higher ratio of FeO\*/MgO (1.9-2.1), compared to the Magerang-Imang and Nakan suites (FeO\*/MgO = 0.8-1.5), over a range of 56 to 63 wt% SiO<sub>2</sub>.

Igneous samples, which show fine to medium grained textures, have been classified using the  $K_2O-SiO_2$  and total alkali silica (TAS) criteria (Le Maitre et al., 1989). On the TAS diagram the igneous rocks range in composition from basaltic andesite, through andesite and dacite to rhyolite. The Kelian suite plots mostly at the boundary of

low K and medium K andesite over a range in silica from 56 to 63 wt%; the volcanic suite of Muyup is medium K dacite to rhyolite, while the Ritan volcanic suite is grouped into low to medium K andesite and low K dacite to rhyolite (Figures 3.3b and 3.3c).

#### 3.4.2 Variation of major element composition

The least-altered samples show well-defined, curvi-linear trends when major and minor elements are plotted against SiO<sub>2</sub> (Figures 3.4a to 3.4j), with MgO, Fe<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> and CaO decreasing and Na<sub>2</sub>O, K<sub>2</sub>O and P<sub>2</sub>O<sub>5</sub> increasing with increasing SiO<sub>2</sub>. The Magerang-Imang suite has a slightly wider range of SiO<sub>2</sub> (56.1-64.0 wt%) than the Nakan (57.6-63.2 wt% SiO<sub>2</sub>). Both the Magerang-Imang and Nakan andesites display increasing Al<sub>2</sub>O<sub>3</sub> concentrations with increasing SiO<sub>2</sub>. The Tepu and Ritan andesites have higher TiO<sub>2</sub> (0.58-0.70 wt%) and Al<sub>2</sub>O<sub>3</sub> (18.1 wt%) compared to the Magerang-Imang (0.42-0.56% TiO<sub>2</sub>; 15.5-17.5 wt% Al<sub>2</sub>O<sub>3</sub>) and Nakan (0.40-0.49 wt% TiO<sub>2</sub>; 14.5-16.5 wt% Al<sub>2</sub>O<sub>3</sub>) and esites. In contrast, within the range of 56-62 wt% SiO<sub>2</sub>, the Magerang-Imang and Nakan andesites have relatively high MgO (4.5-8.1 wt%) compared to the Tepu (3.1-3.5 wt%) and Ritan andesites (2.7 wt%). These differences result in two different trends for the Magerang-Imang - Nakan and the Tepu - Ritan suites, as shown in the Harker diagrams (Figures 3.4a, c and d). However, there are no distinctive variations for the other major elements between the Kelian (Tepu) igneous suites from the Kelian (Tepu) and suites from other regions.

The effects of hydrothermal alteration on major elements of the Kelian mine andesites can be assessed by comparing the chemistry of the Tepu least altered andesite with the samples from the Kelian mine that have undergone different intensities of alteration (Figures 3.5a to 3.5i). In general, samples that have undergone low-grade propylitic alteration have element concentrations that are closest to the concentrations of the Tepu least altered andesites and show less dispersion than samples that have undergone higher grade phyllic and argillic alteration. Propylitic altered samples show no evidence of Ti, Al, Fe, Ca, Mg or P oxide mobility. Data for these elements plot in a tight cluster on Harker variation diagrams, close to the Tepu least altered andesites. On the other hand, Na<sub>2</sub>O decreased during propylitic alteration, in association with the break down of feldspar, and K<sub>2</sub>O and MnO increased. As the intensity of alteration increases from propylitic through phyllic to argillic alteration, the mobile elements show increasing dispersion. Calcium, Na and Mg oxides show variable depletion and Fe, K and Mn oxides

38

show variable enrichment. Phosphor, Al and Ti oxides appear to be immobile, even in the most highly altered samples.



Figure 3.3: Rock classification for the Kelian Igneous Complex and regional prospects [after Miyashiro, 1974 (a) and Le Maitre et al., 1989 (b and c)].



Figure 3.4 (a-f) : Harker variation diagrams for the least altered rocks from the Kelian Igneous Complex and regional prospects.

Chapter 3: Major and Trace Element Geochemistry



Figure 3.4 (g-j): Harker variation diagrams for the least altered rocks from the Kelian Igneous Complex and regional prospects.

41

Chapter 3: Major and Trace Element Geochemistry



Figure 3.5 (a-e) : Harker variation diagrams for the intrusive andesites from the Kelian mine area.



Figure 3.5 (f-i) : Harker variation diagrams for the intrusive andesites from the Kelian mine area. Symbols as in Figure 3.5 (a-e).

## 3.4 Trace Element Chemistry

The trace element concentrations of the least altered samples indicate that the Kelian and the other suites cluster in the field of destructive plate margin basalt on a Hf-Th-Ta diagram (Figure 3.6) and within the field of volcanic arc related magmatism on plots of Nb-Zr-Y and plots of Ba/La against La/Sm , consistent with their calc-alkaline origin (Figures 3.7 and 3.8).

The geochemistry of the least altered rocks from the Kelian Igneous Complex and regional prospects is compared using variation diagrams of trace elements versus SiO<sub>2</sub> (Figures 3.9a to 3.9x). In the Magerang-Imang suite, highly incompatible elements such as Th, U, Zr, Hf, Rb, Sr and Ba increase with increasing SiO<sub>2</sub>, resulting in a distinctive, positive trend. Light rare earth elements (LREE), such as La, Ce and Pr also increase with increasing SiO<sub>2</sub> but weakly incompatible REE show no increase and some, such as Sm, Ho and Y actually decrease. In the Nakan suite, the REE display similar trends as those in the Magerang-Imang suite, but the trend of incompatible elements, such as U, Th, Zr, Hf does not change significantly with increasing SiO<sub>2</sub>. Compatible elements such as V, Sc and Cr rapidly decrease with increasing SiO<sub>2</sub>. Chromium is depleted in the Tepu, Han and Ritan andesites, but it is relatively high in the Magerang-Imang and Nakan andesites within the similar range of SiO<sub>2</sub>, indicating different trends of magmatic differentiation. Base metal abundances including Cu, Pb, Zn, W and Mo are highly variable in the least altered samples.

The Kelian Igneous Complex, including the intrusive andesite and rhyolite, have a wide range of silica contents (50-80 wt% SiO<sub>2</sub>) and have undergone variable and often intense alteration so that many major elements, including SiO<sub>2</sub>, Na<sub>2</sub>O and K<sub>2</sub>O, were extensively mobilised during phyllic replacement and vein formation (stages 2 and 3). It is therefore not possible to use SiO<sub>2</sub> as an index of differentiation for the Kelian suite of similar age, chemistry and petrology. However, similar rock sequences occur in the Tepu, Nakan and Magerang–Imang regions and show minimal disturbance to their whole-rock chemical composition and therefore are suitable for detailed geochemical study. In the least-altered samples of Magerang-Imang, highly incompatible elements, such as U and Th correlate well with SiO<sub>2</sub> (Figures 3.9m and 3.9n). Because Th is much less mobile



Figure 3.6 : Hf/3-Th-Ta tectonomagmatic diagram for the igneous suites of the Kelian Regional and Ritan areas (after Wood et al., 1979)



Figure 3.7 : 2Nb-Zr/4-Y tectonomagmatic diagram for the igneous suites of the Kelian Regional and Ritan areas (after Meschede, 1986).

Chapter 3: Major and Trace Element Geochemistry



than  $SiO_2$  during hydrothermal alteration, it has been used as monitor of fractionation for the altered samples from the Kelian mine.

Figure 3.8: Chondrite normalised Ba/La versus La/Sm for the least altered rocks from the Kelian Igneous Complex and regional prospects (after Perfit et al., 1980; Arculus and Powell, 1986).

In the least-altered samples from Magerang-Imang, incompatible, immobile elements, such as U, Zr, Hf, Nb, Ta and light REE, increase with increasing Th concentration (Figure 3.10a to 3.10f). In the Kelian mine altered samples, these immobile elements consistently increase with increasing differentiation as shown by a positive trend, similar to that of the least altered samples. The data are more scattered in the highly altered andesite from the mine area suggesting that alteration has produced some mobility for the elements which are normally regarded as immobile (Figures 3.8a to 3.8p). Strontium and Eu have been removed during feldspar alteration, whereas Rb and Cs have been added during phyllic to argillic alteration.

In order to compare the REE patterns between rock suites and alteration types, the REE compositions were chondrite normalised using the recommended values from McDonough and Sun (1995). The chondrite normalised REE patterns in the least altered andesites of the Nakan, Magerang-Imang and Kelian mine (Tepu) regions display a concave up, light REE enriched array from La to Lu (Figures 3.11a to 3.11c).

46



Figure 3.9 (a-h) : Variation diagrams of REE, Y, Rb, Sr and Ba vs  $SiO_2$  for the least altered rocks from the Kelian Igneous Complex and regional prospects.

Chapter 3: Major and Trace Element Geochemistry



Figure 3.9 (i-n) : Variation diagrams of incompatible elements vs  $SiO_2$  for the least altered rocks from the Kelian Igneous Complex and regional prospects. Symbols as in Figure 3.9 (a-h).



Figure 3.9 (o-v) : Variation diagrams of metals vs  $SiO_2$  for the least altered rocks from the Kelian Igneous Complex and regional prospects. Symbols as in Figure 3.9 (a-h).



Figure 3.10 (a-f) : Variation diagrams of immobile elements versus Th for the Kelian mine altered andesites. The Tepu least altered samples are shown for comparison.



Figure 3.10 (g-n) : Variation diagrams of mobile elements versus Th for the Kelian mine altered andesites. The Tepu least altered samples are shown for comparison. Symbols as in Fig. 3.10 (a-f).

The concentrations vary consistently among these suites suggesting a genetic relation possibly through fractional crystallisation. In contrast, the REE abundance in the felsic volcanics of Batu Utul, Han, Plata, Muyup and Ritan (Figures 3.11d and 3.11f) exhibit a more curved, coherent array showing greater enrichment in light REE and depletion in heavy REE. In propylitic and phyllic altered andesite the REE, with the exception of Eu, do not appear to be affected by hydrothermal alteration and continue to form a coherent array (Figures 3.12a and 3.12b and 3.13a). Phyllic altered andesite and rhyolite show a depletion in Eu concentrations probably due to plagioclase alteration. Europium is also slightly depleted in andesite which has undergone Stage-3 phyllic (sericite-carbonate-base metal) and Stage-4 argillic (kaolinite) alteration, except for one sample from the ore zone that shows a positive Eu anomaly (Figures 3.12c and 3.12d). Strongly mineralised samples from Stage-3 phyllic andesites show an increase in light REE, relative to heavy REE suggesting that these elements may have been mobilised by the hydrothermal fluids (Figure 3.12c). Similar effects of hydrothermal alteration are also observed in the altered igneous samples from the other regional prospects (Figure 3.13).

Incompatible trace element concentrations were primitive mantle normalised (Sun and McDonough, 1989) in order to interpret the trace element characteristics and to provide a reference frame in which the concentrations in the different igneous suites can be compared. In general, primitive mantle-normalised element concentrations for the least altered andesite display patterns showing enrichment in the large ion lithophile elements (LILE), particularly Ba, K, U, Th and Sr relative to the heavy REE. In the least altered andesites, all the elements form a coherent array (Figures 3.14a to 3.14f.). The enrichment in Cs, Rb, Ba, K and Th and depletion in Nb, Ta and Ti are characteristic of calc-alkaline arc magmas (Tatsumi et al., 1986; McCulloch and Gamble, 1991; Hawkesworth et al., 1994). However, the andesites are also characterised by pronounced positive anomalies of Zr and Hf, which are less common in calc-alkaline arc magmas.

In propylitic and phyllic altered andesites, immobile elements such as Ta, Nb, Y, Ti and the REE are not affected by alteration and continue to form a coherent array. In contrast, the concentrations of elements such as Rb, Sr and K, which are regarded as mobile during hydrothermal alteration exhibit large variations depending on the type of alteration. Andesite suites that have undergone propylitic alteration are variably depleted in K and Ba and enriched in Cs and Rb (Figures 3.15a and 3.16a), whereas andesites with phyllic alteration show a significant increase in K and Rb, and depletion in Sr and possibly Ti. (Figures 3.15b-3.15f and 3.16b).



Figure 3.11: REE patterns of the least altered igneous suites. Chondrite normalised values are taken from McDonough and Sun (1995)



Figure 3.12: REE patterns of the Kelian altered igneous suites. Chondrite normalised values are taken from McDonough and Sun (1995)

Chapter 3: Major and Trace Element Geochemistry



Figure 3.13: REE patterns of the altered igneous suites from the Magerang-Imang, Muyup and Ritan areas. Chondrite normalised values are taken from McDonough and Sun (1995).


increasing affinity for melt during mantle melting and crystallisation

Figure 3.14 (a-c) : Primitive mantle normalised multi element patterns for the least altered andesite from the Kelian igneous complex. Primitive mantle concentrations were taken from Sun and McDonough (1989).



Figure 3.14 (d-f) : Primitive mantle normalised multi element patterns for the least altered andesite from the Han, Plata, Batu Utul, Muyupand Ritan prospects



increasing affinity for melt during mantle melting and crystallisation

Figure 3.15 (a-c) : Primitive mantle normalised multi element patterns for the Kelian altered igneous rocks.



increasing affinity for melt during mantle melting and crystallisation

Figure 3.15 (d-f) : Primitive mantle normalised multi element patterns for the Kelian altered igneous rocks.

Chapter 3: Major and Trace Element Geochemistry



Figure 3.16: Primitive mantle normalised multi element patterns for the altered igneous suites from the Magerang-Imang, Muyup and Ritan prospects. The least altered samples of the Magerang-Imang andesite are shown as shaded patterns on the Figure 3.16a and 3.16b.

60

Chapter 3: Major and Trace Element Geochemistry



Figure 3.16: Primitive mantle normalised multi element patterns for the altered igneous suites from the Magerang-Imang, Muyup and Ritan prospects. The least altered samples of the Magerang-Imang andesite are shown as shaded patterns on the Figure 3.16a and 3.16b.

60

### 3.5 Evidence for Two Magmatic Differentiation Trends

Geochemical evolution in the Miocene calc-alkaline suites from the Kalimantan volcanic arc exhibits two distinctive trends of magmatic differentiation. The first trend is defined by a series of *productive* igneous suites from Tepu (Kelian; this study), Mount Muro (Simmons and Browne, 1990), Masuparia (Thompson, et al., 1994) and West Kalimantan (Harahap, 1993). This trend is a typical calc-alkaline series and is consistent with the differentiation trend for arc lavas, as shown by the Rinjani calc-alkaline trend (Foden, 1983; Figure 3.17). It is characterised by low Mg, moderate K, relatively high Ti and Al and depletion in Cr and Sc, relative to the second trend, which is defined by the chemical variations of the Magerang-Imang and Nakan suites. The Magerang-Imang and Nakan andesites have remarkably high concentrations of MgO compared to the productive igneous suites and common calc-alkaline andesites. Major and trace element geochemistry of the high Mg andesites from Magerang-Imang and Nakan is comparable with that of the Ryukyu high Mg andesite and low Ca type 2 boninites (Figures 3.17 and 3.18). Both the Magerang-Imang andesites and boninites have similar characteristics of high Mg, positive anomalies of U, Sr, Zr and Hf, and negative anomalies of Nb, Ta and Ti. Similar high Mg andesites have also been documented in the West Kalimantan (Harahap, 1993). However, the boninite suites have lower incompatible trace element concentrations than the andesites from the Kelian Igneous Complex.

### 3.6 Geochemical Evolution of The Kelian Igneous Complex

In the Kelian Igneous Complex, the simultaneous depletion of MgO, Fe<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> and CaO and enrichment in Na<sub>2</sub>O, K<sub>2</sub>O and P<sub>2</sub>O<sub>5</sub> within the suites could be controlled either by magma mixing or by fractional crystallisation. If chemical variation within the igneous suites was formed by mixing of two parental magmas, the variation of major elements should define linear lines of depletion or enrichment of oxides with increasing SiO<sub>2</sub> (Wilson, 1995) so long as they were not concurrently fractionating. Alternatively, if the suites were formed by fractional crystallisation, the variation in major elements should lie on a curved trend on Harker diagrams. Fractional crystallisation can also be distinguished using compatible elements which decrease rapidly with increasing silica

Chapter 3: Major and Trace Element Geochemistry



Figure 3.16: Primitive mantle normalised multi element patterns for the altered igneous suites from the Magerang-Imang, Muyup and Ritan prospects. The least altered samples of the Magerang-Imang andesite are shown as shaded patterns on the Figure 3.16a and 3.16b.



Figure 3.17 : Selected Harker variation diagrams for the Miocene calc-alkaline suites in Kalimantan. Geochemical data for the Masuparia (Thompson et.al., 1994), Mt. Muro (Simmons and Browne, 1990), West Kalimantan (Harahap, 1993), Ryukyu (Shinjo, 1999), Boninites (Crawford et al., 1989) and Rinjani (Foden, 1983) igneous suites were plotted for comparison.

early in the crystallisation history. In the Tepu, Han and Ritan suites, the declin  $\sqrt[4]{trend}$  in the abundance of Mg oxide and depletion in Cr and Sc with the increasing SiO<sub>2</sub> (Figures 3.19) follow typical trends in calc-alkaline arc suites and suggest chemical evolution by fractional crystallisation of pyroxene (Wilson, 1989) and amphibole (Foden, 1983) rather than mixing between melt and restite (Koyaguchi, 1986; Chappell, 1996; Chappell, 1997). The evidence of chemical evolution by fractional crystallisation is clearly indicated by major element trends as well as trace element trends as shown by plots of Cr, Sc, Ce/Yb and Eu/Eu\* (Figure 3.19). The dominant mafic phenocryst of hornblende and the linear

horizontal trend of Eu/Eu\* with the increasing La/Yb ratio indicate that amphibole fractionation dominated the evolution of the Magerang-Imang suite. On the other hand, the Nakan suite shows little variation in La/Yb ratios and contains pyroxene phenocrysts but no hornblende, and therefore, pyroxene fractionation may have played a more important role than amphibole and feldspar. This problem will be discussed further in Chapter 4.



Figure 3.18 : Primitive mantle normalised multi element patterns for the Kelian Igneous Complex compared to the patterns for boninite-type rocks (Eggins, unpublished data). The high Mg andesites of the Magerang-Imang and Nakan regions closely resemble the low Ca type 2 boninites.

A striking feature of the incompatible trace element geochemistry of the Kelian Igneous Complex andesites is the presence of positive Zr and Hf anomalies in the trace element patterns (Figure 3.14) which is unusual for calc-alkaline subduction zone magmas. One possible explanation is that the parent magma had fractionated clinopyroxene prior to ascending into the upper crust. However, in the Magerang-Imang and Nakan suites, the notable curve-linear decline trend with increasing SiO<sub>2</sub>, can not be explained either by simple liquid-crystal fractionation or by a two-magma mixing process. The chemical diversity in the Magerang-Imang and Nakan suite, with their relatively high concentrations of Mg oxide, Sc and Cr, and concave down curvi-linear evolution trends, might have been generated by combined wallrock assimilation and fractional crystallisation (De Paolo, 1981). Zr/Sm ratios in the Magerang-Imang andesite (Figure 3.20) range from 34 to 59, higher than that in the andesite from the other regions (17-46).



Figure 3.19 : Variation diagrams for the least altered andesites from the Kelian Igneous Complex and regional prospects. The Magerang-Imang and Nakan suites demonstrate trends of chemical evolution by combined wallrock assimilation and fractional crystallisation, whereas the other prospects demonstrate trends of chemical evolution by normal fractional crystallisation.

If the Magerang-Imang andesite is derived by a combined assimilation and fractional crystallisation, this would require a parental basaltic magma, assuming normal arc basalt, which has less than 55 wt% SiO<sub>2</sub>,  $\sim$ 10 wt% MgO and a Zr/Sm ratio of 25-30 to assimilate

a Zr-rich cumulate which has more than 65 wt% SiO<sub>2</sub>, 1-2 wt% MgO and Zr/Sm ratios of 50-55. This assimilant possibly has similar composition to the Plata and Muyup dacites but with cumulus zircon to raise its Zr/Sm ratio from the Plata and Muyup ratios of 37-46 to the required ratios of 50-55. However, the Plata and Muyup dacites have Zr/Sm ratios of 37-46 which are lower than the number expected. Alternatively, the Magerang-Imang and Nakan high Mg andesite may have been derived from a primary magma which had a high Zr/Sm ratio and a composition similar to other boninite-type rocks.



Figure 3.20: Plots Zr/Sm ratios versus SiO2 showing chemical evolution of the Magerang-Imang high Mg andesite produced by combined wallrock assimilation and fractional crystallisation.

The combined wallrock assimilation and fractional crystallisation process is consistent with the zircon geochronology of the Kelian Igneous Complex (see Chapter 6). The U-Th-Pb zircon dating indicates the presence of two large populations of inherited zircon in the Kelian mine intrusions. This requires the magma to have assimilated large amounts of slightly older zircon-bearing andesite (see Chapter 6). The Kelian mine andesites also have positive Zr and Hf anomalies. It is therefore possible that the Magerang-Imang and Nakan high Mg andesites were fed by magma chambers that formed deep in the crust, and were emplaced into pre-existing intrusions of felsic

65

composition that formed as part of the Kelian Igneous Complex cycle. It is suggested that the shallow level stocks at Magerang-Imang and Nakan were generated by intrusions that melted the walls and roofs of related, but pre-existing intrusions, and extracted abundant xenocrystic zircons during the assimilation process. This resulted in positive anomalies of Zr anf Hf in the Magerang-Imang and Nakan suites.

In the case of the Magerang-Imang and Nakan andesites the inherited zircons were not preserved, suggesting that the magma was not zircon saturated at the time of assimilation. This suggestion is consistent with the higher MgO content and therefore higher temperature of the Magerang-Imang and Nakan andesites compared with the Kelian mine andesites.

Trace element chemistry of the least altered samples exhibit systematic trends suggesting a single magma body. If one fractionating igneous system is represented at Kelian, then it is appropriate to further investigate the role of platinum group elements and gold in this system in order to establish the link, or lack thereof, between the igneous system and the Kelian gold deposit. The systematic trends presented in this chapter suggest that this is the case.

### Chapter 4

# GEOCHEMICAL MODEL OF RARE EARTH ELEMENTS IN CALC-ALKALINE IGNEOUS SUITES FROM THE KELIAN REGION

#### 4.1 Introduction

The principal factors controlling the diversity of trace elements in calc-alkaline andesites in subduction zone environment are: (i) variations in the mantle melting processes that lead to different parental basaltic magmas, (ii) fractional crystallisation of the parental basaltic magma, and (iii) assimilation of crust or mixing with crustal melts (Best, 1969; Boettcher, 1973; Gill, 1981). The previous chapter used major and trace element data to show that fractional crystallisation and assimilation have played an important role in the genesis of the calc-alkaline suite from the Kelian region. This chapter focuses on the rare earth elements (REE) evolution of the Kelian Igneous Complex. The REE are modelled using the Rayleigh fractionation equation to constrain the nature of the cumulus phases that produced the observed trends. Detail modelling is confined to the Magerang-Imang and Nakan intrusive suites because they are the least affected by alteration and because they cover a broad range of REE concentrations. The Magerang-Imang andesites contain phenocrysts of hornblende whereas the Nakan andesites have pyroxene phenocrysts. One of the hypotheses to be tested is whether differences in the REE trends for Magerang-Imang and Nakan can be explained by hornblende being the dominant cumulus phase controlling REE geochemistry in the Magerang-Imang suite and clinopyroxene being the dominant phase in the Nakan suite. It should be emphasised that the modelling presented in this chapter is semi-quantitative. It is aimed at identifying the cumulus phases responsible for the observed REE trends, with the minimum number of assumptions, rather than producing a detailed quantitative model.

The modelling makes a number of simplifying assumptions. Firstly, it is assumed that the whole rock composition of the least altered samples represents the melt

67

composition from which they are crystallised. Secondly, that the most primitive sample analysed based on major and trace elements, is the parent to all other melts from the same suite. Thirdly, the role of assimilation and mixing with crustal melts has been ignored. Finally, it is assumed that the analysed phenocrysts yield D values that are appropriate for melt composition and P and T of the modelled fractionation.

### 4.2 Partition Coefficient

In order to model the quantity of trace elements in a closed magma chamber, it is necessary to understand the behaviour of trace elements, particularly how they are partitioned into a melt during fractional crystallisation. A trace element has a low concentration in a system so that changing its concentration will not affect the stability of any phase in the system (Hanson and Langmuir, 1978) and therefore its distribution between any two phases in the system can be estimated using a partition coefficient of mineral-melt (D) without considering the element concentration in any other phase in the system.

The partition coefficient (D) for a given element (i) between a solid phase (S) and the coexisting silicate liquid or melt (L) depends on the temperature, pressure and the composition of the mineral and melt. It is a measure of the degree of compatibility and can be expressed as follows:

$$D_{i,S/L} = \frac{C_i^S}{C_i^L}$$

where:  $C_i^S$  = weight concentration of element i in solid phase

 $C_i^L$  = weight concentration of element i in the coexisting liquid (melt)

Elements that are preferentially concentrated in the crystalline phase will have D>1 and are termed "compatible", whereas elements that are preferentially retained in the liquid phase during crystallisation will have D<1 and are termed "incompatible". However, an element may change its behaviour from incompatible to compatible during the course of magma differentiation.

Partition coefficients can be determined by two different methods: (i) synthetic crystallisation experiments (Nicholls and Harris, 1980; Green and Pearson, 1985; Nielsen et al., 1992) and (ii) partitioning between phenocrysts and a glassy matrix in volcanic rocks (Fujimaki et al., 1984; Irving and Frey, 1984; Dunn and Sen, 1994). The results of experimental studies of trace element partitioning between common igneous minerals and silicate melts have been reviewed by Irving (1978) and Green (1994). The phenocrysts and glass matrix are representatives of composition of mineral formed in equilibrium with the coexisting melt at the time of emplacement or eruption. In this study, the partition coefficients for trace elements between amphibole, clinopyroxene and plagioclase phenocrysts and groundmass in andesite were determined by ELA-ICP-MS analyses of suitable Magerang-Imang and Nakan samples. The solid/melt partition coefficients of the minerals were calculated by dividing the concentrations in minerals by those of the matrix (groundmass), assuming that the phenocrysts are in chemical equilibrium with the groundmass. These partition coefficients are preferred to experimentally determined values because their application minimises any uncertainty arising from variation in D with melt composition.

## 4.3 Trace Element Analyses of Selected Phenocryst-Matrix Pairs of The Magerang-Imang and Nakan Andesites

In order to determine partition coefficients between cumulate minerals and andesite melt several phenocrysts were analysed for major and trace elements using polished thin sections. These phenocrysts include amphibole, clinopyroxene and plagioclase selected from the Magerang-Imang hornblende andesite (Sample 123144) and the Nakan pyroxene andesite (Sample 123187). Major element compositions of the phenocrysts were determined by Camebax electron microprobe methods using energy-dispersive spectrometer (EDS), same as the system that was used for the whole rock analysis.

Trace element compositions of the phenocrysts were determined using polished thin sections, by excimer laser ablation inductively coupled plasma mass spectrometer (ELA-ICP-MS). The procedures for data acquisition and reduction are the same as that described

69

in Chapter 3. The partition coefficients resulted from this study and the other partition coefficients from published sources used in this modelling are listed in Appendix 6.

### 4.4 Rare Earth Element Model

The approach taken in this study is to assume that the intrusions of the Magerang-Imang and Nakan suites are each fed by magma chambers deeper in crust. Fractionation within those chambers is then modelled using the standard formula (Arth, 1976):

$$C_{L} = C_{O} F^{(D-1)}$$

Where C<sub>0</sub>: the concentration of the element in the parental magma

F: the fraction of liquid remaining

D: the bulk distribution coefficient for the crystallising solids and the coexisting liquid.

The bulk distribution coefficient (D) is calculated from the individual mineral distribution coefficients for each element by summing the mineral distribution coefficients after multiplying each by the weight fraction of that mineral.

$$D = \sum (X_1D_1 + X_2D_2 + X_3D_3 + \dots + X_nD_n)$$

Where  $X_1$ ,  $X_2$ ,  $X_3$ ,...,  $X_n$  are the weight fraction of the minerals in the crystallising assemblages and  $D_1$ ,  $D_2$ ,  $D_3$ ,...,  $D_n$  are the mineral-liquid partition coefficients of elements.

The partition coefficients of REE (D values) in andesite melt for amphibole, clinopyroxene and plagioclase measured for this study, together with the previously published partition coefficients used in the modelling, are presented in Figures 4.1.

Chapter 4: Geochemical model of rare earth elements in calc-alkaline igneous suites



Figure 4.1 REE partition coefficients for selected cumulus phases in andesite

In order to assess the effect of fractionation of the individual cumulus phases of the REE evolution of the melt, REE patterns produced by mono mineral assemblages have been calculated. The results are shown in Figure 4.2. Plagioclase fractionation produces an increase in the concentrations of all of the REE in the melt, with the exception of Eu, which develops a negative anomaly due to the compatible behaviour of Eu in plagioclase. Clinopyroxene and orthopyroxene fractionations similarly concentrate all of the REE in the residual melt. Crystallisation of even a small amount of garnet has a profound effect on the REE concentration of the residual melt. The HREE are strongly depleted and the LREE are weakly enriched, resulting in a cross-over at Sm. For melts involving crystallisation of amphibole, the middle REE, with the exception of Eu, are more depleted than the LREE and HREE, leading to a concave upwards shape in the MREE to HREE part of the pattern. This characteristic feature of amphibole fractionation allows its presence to be readily identified in a cumulate assemblage. Apatite fractionation shows a





similar concave downward pattern, but the LREE are more depleted compared to amphibole fractionation. Zircon fractionation is characterised by a flat pattern of decreasing the LREE, but a steep pattern of the HREE depletion. This means that only a small fraction of zircon crystallisation (less than 3%) will significantly deplete the HREE concentration in the residual melt.

The chondrite normalised REE pattern for the Magerang-Imang suite is a concave upwards shape with the REE becoming more enriched with fractionation between La and Nd and more depleted between Sm and Lu (Figures 3.11a). The consistent enrichment of the LREE relative to the HREE suggests crystallisation of plagioclase, clinopyroxene and orthopyroxene, and therefore these cumulus phases were used in the initial model. As shown in Figure 4.3a, the fractionation of plagioclase, clinopyroxene and orthopyroxene caused enrichment in all of the REE. The addition of 5% amphibole into the cumulus assemblage enriched the LREE and HREE but resulted in little change in the MREE concentrations (Figure 4.3b). Enrichment of the HREE relative to the MREE is mainly controlled by fractionation of orthopyroxene. It is therefore necessary to remove orthopyroxene from the cumulus assemblage to affect depletion in the HREE. Modelling using an assemblage of plagioclase(65%)-clinopyroxene(25%)-amphibole(10%) resulted in a pattern that shows a reasonable agreement with the observed REE pattern, but the modelled MREE are slightly more depleted than the observed values(Figure 4.3c). These small differences in the observed and modelling REE patterns are probably due to the choice of the D values used and the other factors, especially assimilation, not taken into account in the modelling. The presence of garnet in the fractionating melt causes more depletion in the HREE relative to the MREE than the observed (Figure 4.3d). The crystallising assemblage is therefore constrained to contain less than 1% garnet. An interesting feature of the data is that extensive plagioclase fractionation produces no detectable negative Eu anomaly. This is because the effects of plagioclase, with its positive Eu anomaly are balanced by amphibole fractionation, which has a negative anomaly. Although the negative anomaly of amphibole is much smaller than the positive anomaly in plagioclase, the concentration of Eu in amphibole is an order of magnitude higher, allowing it to effectively balance plagioclase.



La Ce Pr Nd SmEuGdTbDyHoErTmYbLu La Ce Pr Nd SmEuGdTbDyHoErTmYbLu

Figure 4.3 : The effects of crystal-liquid fractionation of mono-mineral in andesite magmas. Andesite sample No. 123108 from Magerang-Imang is used for the most primitive composition (Co).

The observed trend of the REE in the Nakan suite indicates decreasing concentrations of REE with increasing differentiation. Fractionation of plagioclase and pyroxene produces a REE trend that shows increasing concentrations of the REE in the residual melt, and the additional fractionation of hornblende causes depletion in the HREE and enrichment in the LREE resulting in a cross-over at a point between Nd and Sm.

Fractionation of these phases can not produce the decrease in REE with fractionation seen in the Nakan suite.

In andesitic melt compositions, the REE behave as compatible elements in accessory phases such as zircon, apatite and allanite. These phases have very high partition coefficients and may strongly influence the REE pattern, and produce REE depletion, even when they are present in small quantities (less than 0.5%). Apatitite fractionation depletes the MREE relative to the LREE and HREE (Figure 4e), zircon fractionation depletes the HREE relative to the LREE, and allanite fractionation depletes the LREE relative to be required to produce the decreasing trend of REE with fractionation in the Nakan andesite. A calculation using a cumulus assemblage of plagioclase(60%) - orthopyroxene(20%) - clinopyroxene(13%) - amphibole(6%) - apatite (0.4%)-zircon(0.15%)-allanite(0.027%) produced a REE pattern which matchs the observed trend. A comparison between the modelled and observed REE trends is shown in Figures 4.4 and 4.5. The modelled REE trends demonstrate good agreement with the observed trends indicating that the fractionation of the selected cumulus assemblages can simulate the chemical evolution of the Magerang-Imang and Nakan calc-alkaline suites.

As stressed throughout this chapter, the modelling presented here ignores many of the complications likely to have affected the geochemistry of the intrusive andesite suites that make up to Kelian Igneous Complex. In particular, it ignores the effects of assimilation. The occurrence of xenocrystic zircons was used in Chapter 6 to argue that the magma chambers, which are believed to feed the Kelian andesite suites, intruded into slightly older related intrusions, which also formed during the Kelian igneous event. Because these intrusions crystallised from closely related magmas, their REE patterns are likely to be similar to those of the new pulses of intruding magma. Assimilation of this material may change the REE concentration in samples but it should not change the slope of the patterns. Changes in the LREE to HREE ratio and the decrease in REE abundances with increasing SiO2 in the Magerang-Imang and Nakan andesite suites respectively, are almost certainly due to fractional crystallisation. However, it is not clear whether the required fractionation occurs during crystallisation of the new pulse of magma or whether it was acquired from early fractionation in the assimilated andesite. What it clear is that the change in slope of the Magerang-Imang REE patterns requires crystallisation of an assemblage that included plagioclase, clinopyroxene and about 10% amphibole. The concentration of garnet in this assemblage, if it was present at all, can not exceed 1%.



Figure 4.4 Chondrite-normalised REE pattern for the Magerang-Imang andesite compared with the modelled REE pattern produced by fractional crystallisation of cumulus phase assemblages of plagioclase, clinopyroxene and amphibole.



Figure 4.5 Chondrite-normalised REE pattern for the Nakan andesite compared with the modelled REE pattern produced by fractional crystallisation of cumulus phase assemblages of plagioclase, clinopyroxene, orthopyroxene, amphibole, apatite, zircon and allanite. Similarly, the decrease in the REE concentrations in the Nakan suite appears to require the presence of small amounts of apatite, zircon and allanite. These phases may also have been present during the fractionation of the Magerang-Imang melt but if they were, their presence is obscured by the dominating influence of amphibole. The presence of inherited zircons and positive Zr and Hf anomalies in the trace element patterns, show that zircon became saturated early in the fractional crystallisation of these magmas.

### Chapter 5

# PLATINUM GROUP ELEMENTS, RHENIUM AND GOLD SYSTEMATICS IN THE ANDESITE PORPHYRIES OF THE KELIAN IGNEOUS COMPLEX

#### 5.1 Introduction

The correlation between epithermal gold deposits and calc-alkaline volcanism is well known (Hayba et al, 1985; White and Hedenquist, 1990; Simon et al., 1999). What is less well understood is the cause of this relationship. Is the gold of magmatichydrothermal origin, with the gold deposited from hydrothermal fluids released during the final stages of fractionation of a calc-alkaline system, or do the andesitic or rhyolitic stocks that are commonly associated with the gold merely act as a heat source that drives the ore-forming hydrothermal system? If the ore is deposited from a magmatichydrothermal fluid, do the associated calc-alkaline rocks follow a fractionation trend that leads to the concentration of gold in the residual melt?

Igneous intrusions associated with gold deposits are commonly highly oxidised (White and Hedenquist, 1990). If this is an important geochemical factor, it might be that magmatic-hydrothermal deposits are produced by extreme fractional crystallisation of oxidised calc-alkaline magma systems. Gold is chalcophile and will partition strongly into an immiscible sulfide phase. As a consequence, if the magma becomes sulfur saturated during fractionation, gold will be rapidly depleted in the fractionating system. Sulfur saturation during fractional crystallisation is common in mafic–intermediate igneous rocks (Wendlandt, 1982, Hoatson and Keays, 1989, Keays, 1995) and Au is generally thought to complex with S and to be concentrated by this process (Seward, 1991, Hedenquist and Lowenstern, 1994). Alternatively, if the magma is highly oxidised, sulfur will reside in the magma as sulphate rather than sulfide and gold will complex with Cl instead of bisulfide and therefore behave as an incompatible element concentrated during fractionation (Loucks and Mavrogenes, 1999).

In order to test the hypothesis that gold is concentrating during the fractional crystallisation of the calc-alkaline systems associated with major gold deposits, Au, Cu

and platinum group elements (PGE) were analysed in the igneous suite associated with the Kelian gold deposit, a typical epithermal gold deposit associated with calc-alkaline intrusions.

The behaviour of PGE (Pd, Pt, Rh, Ru, Ir and Os) are the focus of this study for two reasons. Firstly, the PGE partition more strongly into sulfides than Au with partition coefficients that are very high, possibly in excess of 10<sup>5</sup> (Keays and Campbell, 1981, Campbell and Barnes, 1984, Bezmen et al., 1994) These elements are therefore more sensitive indicators of sulfide fractionation than Cu and Au. This factor, together with their relative immobility during alteration, make them ideal elements for testing the importance of sulfur saturation on chalcophile element geochemistry in a fractionating calc-alkaline system. If it can be shown that the PGE (and by inference Au) are concentrated by fractional crystallisation, it could provide strong support for the magmatic-hydrothermal hypothesis for epithermal gold deposits.

Secondly, the PGE are more resistant to mobilisation by hydrothermal fluids than Au or Cu, and more likely to record primary igneous values. The andesites that host the gold at Kelian are highly altered, which raises the possibility that the PGE may have been mobilised during alteration. The Kelian analyses have therefore been supplemented by PGE analyses of andesites from two adjacent prospects, Magerang-Imang and Nakan, which are of similar age and geochemistry to the Kelian andesites, but are less altered. Alteration in the samples selected from these prospects is minimal and they allow the effects of igneous processes on PGE geochemistry to be assessed free of the influence of alteration.

After first establishing that the Kelian igneous rocks are a single, continuous fractionating, it is the logical next step to monitor Au, Cu and PGE during fractionation. This study represents the first PGE data for a fractionated suite of calc-alkaline andesite. Until recently, low level trace elements were impossible to analyse in felsic igneous rocks. The development of this technique represents a breakthrough in our ability to monitor important ore elements in felsic igneous system.

### 5.2 Analytical Methods

Platinum-group elements (PGE) and gold were concentrated using the nickelsulfide fire assay method which has been widely used for PGE analysis; for example Hoffman et al. (1978), Gregoire (1988), Martin (1990) and Jackson et al. (1990). This study employed a modified version of this method with pre-fusion spiking for isotope dilution, similar to that described by Ravizza and Pyle (1997). The analysis used mixed spike solutions of PGE (<sup>185</sup>Re, <sup>105</sup>Pd, <sup>195</sup>Pt, <sup>99</sup>Ru and <sup>191</sup>Ir) and <sup>190</sup>Os prior to sample fusion. The procedure involved spiking the sample-NiS borax mixture, fusion of the powdered sample, NiS bead digestion, filtration, filter-paper digestion and final solution preparation for PGE analysis by ICPMS. Concentrations of PGE and gold were determined by isotope dilution for all PGE except the mono-isotopic elements rhodium and gold. Concentrations of Rh and Au were calculated using <sup>106</sup>Pd and <sup>194</sup>Pt, respectively. The assumption being that any losses of Rh and Au during processing were similar to losses of Pd and Pt, respectively.

#### 5.2.1 Sample Preparation

The spike was weighed accurately in 7ml clean teflon vials on a fine balance in a clean laboratory. Five grams of whole-rock powdered sample were weighed into a Coors ceramic crucible. The spike was poured into the sample and dried at 70°C for an hour. It was then tipped from the crucible onto a weighing paper and mixed by rolling the spiked sample until a homogenous mixture was obtained. The spiked sample was then replaced in the crucible and mixed thoroughly with 5 grams of lithium metaborate flux, 0.5 grams Ni (Aldrich nickel powder) and 0.25 grams S (sublimated, sulfur powder). The crucible was placed inside a second 50 ml crucible, covered with a lid and fused in a pre-heated furnace at  $1050^{\circ}$ C for 1.5 hours, except for the fusion blank which was fused for 1 hour. After heating, the crucible was removed from the furnace, cooled, opened and the NiS bead was recovered. The bead was weighed and stored in a disposable aluminium dish. Recovery was generally 85 - 95%.

Bead digestions and filtrations were carried out in a laminar flow hood on a hot plate in a clean laboratory. Clean 15 ml Teflon vials were weighed before bead digestion, and prepared for filter-paper storage after filtration. The beads were placed in 150ml 6N HCl in clean Erlenmeyer flasks, covered with a watch glass and boiled (at ~150°C) to degas the HCl. The dissolution was regularly checked to maintain acid levels, prevent vigorous boiling and to keep the bead fizzing gently. This process normally took 2 to 6 hours. When the bead was completely dissolved as indicated by the absence of H<sub>2</sub>S gas production, the flask was removed from the hot plate and allowed to cool. In few samples fine flakes of grey insoluble materials floated on the acid surface. The solution was filtered through millipore filter paper using an assembly of Erlenmeyer flask, stopper, clean Pyrex funnel and hand pump. Milli-Q water was used to rinse the funnel rim and wall at the end of filtration. The filter paper was transferred into a weighed 15 ml Teflon vial and the filtrate was discarded. After filtration was completed, 3ml of 6N HNO3 was added into each vial, which was sealed well and refluxed at about  $100^{\circ}$ C for 2 hours until digeston was complete. When the papers were digested and there was no visible residue, the vials were opened and dried down to approximately 120 µL. The samples were then diluted with 6 ml of Milli-Q water and refluxed at 100°C for 2 hours, allowed to cool and stored overnight before ICPMS analysis.

#### 5.2.2 ICPMS measurement

The measurements were made using an Agilent 7500 series ICPMS with an attached autosampler. Data were acquired in peak jumping mode and the counts at each mass were calculated from the average of measured rates at the three channels across the peak top. The following 28 masses were measured: <sup>59</sup>Co, <sup>62</sup>Ni, <sup>65</sup>Cu, <sup>66</sup>Zn, <sup>89</sup>Y, <sup>90</sup>Zr, <sup>99</sup>Ru, <sup>101</sup>Ru, <sup>102</sup>Ru, <sup>103</sup>Rh, <sup>105</sup>Pd, <sup>106</sup>Pd, <sup>108</sup>Pd, <sup>180</sup>Hf, <sup>181</sup>Ta, <sup>185</sup>Re, <sup>187</sup>Re, <sup>188</sup>Os, <sup>189</sup>Os, <sup>190</sup>Os, <sup>191</sup>Ir, <sup>192</sup>Os, <sup>193</sup>Ir, <sup>194</sup>Pt, <sup>195</sup>Pt, <sup>196</sup>Pt, <sup>197</sup>Au, <sup>202</sup>Hg. Instrumental calibration was carried out using a 10 ppb tuning solution containing a range of masses from 7 to 238. Common instrument operating conditions are listed in Table 5.1. Sensitivity varied from 248000 cps (1.6 %RSD) for mass 24, 348000 cps (<2 %RSD) for mass 115, and 220000 cps (1.35 %RSD) for mass 238, all at the 10 ppb level. LaO (155) to La (139) ratio was 0.6 - 0.75%. Washing between samples was 26 minutes, consisting of 2 minutes dilute triton, 5 minutes H<sub>2</sub>O, 5 minutes 1N HCl, 5 minutes 5%HNO<sub>3</sub> and 5 minutes 2%HNO<sub>3</sub>. All washes were at the rate of ~3 ml per minute. Molecular interferences on the analyte isotopes were corrected by measuring the interference solutions consisting of Ni+Y, Cu+Zr, Zn, Ta and Co elements before analysis of unknown. Samples were introduced to the ICPMS in automatic mode at a rate of about 1 ml / minute.

#### 5.2.3 Data Processing

Raw count data of ICP-MS were processed in a Microsoft Excell worksheet. Reported PGE concentrations are calculated after blank substraction, interference solution correction factors and mass fractionation correction factors were applied. The interference elements and correction factors are listed in Table 5.2.

### 5.3 Analytical Results

A total of 19 andesite samples were selected from 3 different intrusive bodies of the Magerang-Imang, Nakan and Kelian mine areas and analysed for PGE and gold (Figure 5.1). A fusion blank (FB) was prepared and analysed in every session of ICPMS measurement. Concentrations of PGE, except Os in the FB were consistently lower than those measured in samples. The Os values are high in the FB, possibly due to overspiking. Copper concentrations in the samples were measured by a glass fusion technique with the laser ablation ICPMS. The concentrations of PGE, Au and Cu in the Kelian, Magerang-Imang and Nakan andesites are presented in Table 5.3. Tables 5.1, 5.2 and 5.3 are given in Appendix 9. The primitive mantle normalised PGE, Au and Cu concentrations are presented in order of increasing melting points and degree of compatibility in Figure 5.2.

# 5.4 Platinum Group Elements, Rhenium and Gold Distributions in The Andesite Porphyries of The Kelian Igneous Complex

In the Magerang-Imang hornblende andesite, patterns are sub-parallel over a range of PGE concentrations that vary by a factor of 20 (Figure 5.2a). All the Magerang-Imang samples are depleted in Ru, Ir and Os relative to Re, Pd, Pt and Rh and have moderate Pd/Ir ratios of 15 to 54. Slopes of the patterns flatten between Ru and Ir so that Ru/Ir  $\sim$ 1 and Ir/Os <1 on the normalised plot. Iridium and Os concentrations vary more erratically than the other PGE, and this variation is probably due to the difficulty of analysing Ir and Os at concentrations close to their detection limits. The concentration of all PGE decrease with increasing SiO<sub>2</sub> (Figures 5.3) and with increasing Th (Figure 5.4), suggesting that they are depleted by fractional crystallisation. Gold is depleted by an order of magnitude relative to Re and Pd, the adjacent elements on the mantle-normalised PGE diagram.

The Nakan pyroxene andesite shows similar pattens to the Magerang-Imang andesite but with a more restricted range in PGE concentrations. This is consistent with a more restricted range in  $SiO_2$  and therefore less fractional crystallisation (Figure 5.2b). Slopes of the normalised patterns between Ru and Ir do not show the turn around seen in



Figure 5.1: Simplified geological map of the Kelian area and location of the PGE samples



Figure 5.2 : Mantle-normalised metal abundances for the igneous suites from Magerang-Imang, Nakan and Kelian. Mantle values are taken from Barnes et al.(1988).



Figure 5.3 : Variation diagrams of PGE vs  $SiO_2$  for the Magerang-Imang hornblende andesite and Nakan pyroxene andesite



Figure 5.4 : Variation diagrams of PGE vs Th for the Magerang-Imang hornblende andesite, Nakan pyroxene andesite and Kelian altered andesite

the Magerang-Imang suites so that the order of concentration of PGE is Ru > Ir > Os. As a consequence, Pd/Ir values are 60 –129 for the Nakan suite, which is greater than those for the Magerang-Imang suite. Plots of Ir versus Pd display a strong positive correlation in the Magerang-Imang suite and indicate that the Nakan suite is depleted in Ir (Figure 5.5). The higher Pd/Ir ratio in the Nakan andesite is therefore due to Ir depletion rather than Pd enrichment relative to the Magerang andesite.

In the Kelian mine samples, the PGE values tend to be more erratic than those in the Magerang-Imang and Nakan samples (Figure 5.2c). This may be due to mobility of the PGE during the extreme alteration associated with the gold mineralisation. Plots of PGE against Th show that PGE are generally lower at a given level of fractional crystallisation for Kelian than for the Magerang-Imang and Nakan suites (Figure 5.4). A notable exception is sample 123492 which has high Re and moderate Pd, Rh and Os. It may be significant that this is the most fractionated of the analysed samples as indicated by its high Th concentration. The Pd/Ir ratio in the Kelian mine andesite varies widely. The Central Andesite, for example, has a Pd/Ir ratio of 174 due to Pd and Au enrichment, which contrasts with a Pd/Ir ratio of 2 for the Tepu propylitic andesite due to the anomalous Ir value. The slightly altered samples from the Kelian mine area show a negative anomaly of Au similar to that of the Magerang-Imang suite, whereas the highly altered andesite exhibits a positive anomaly of Au, probably because Au was introduced by the ore-forming hydrothermal fluid. Os abundance in the Kelian mine samples are very low and close to the FB value. However, Os concentrations increase with increasing degree of fractionation as indicated by the Th content in the Kelian andesites.

In a fractional crystallisation system, if olivine, chromite and clinopyroxene have crystallised, Pd and Pt are expected to behave as incompatible elements, but Pd and Pt do not correlate with the lithophile incompatible elements (Barnes and Picard, 1993). Palladium, Pt and Rh tend to remain in the silicate melt until sulfur saturated, when the sulfide melt extracts the Pd, Pt and Rh. The PGE behave more compatible relative to Au and Cu as indicated by depletion in PGE relative to Au and Cu in the andesite samples. In the Kelian andesite suite, Pd, Pt and Rh behave as compatible elements, but tend to be more mobile with increasing degrees of fractional crystallisation. Whereas Ir and Os behaviour is less consistent, but tends to be more enriched with increasing differentiation. The metal distribution pattern of the Kelian altered andesite suggests that Au and Cu have been affected by hydrothermal fluid. Although alteration is not a major factor in the PGE

fractionation (Barnes et al., 1985), Pd is probably also mobile as indicated by the low Pd/Ir ratio in the Kelian altered andesite.



Figure 5.5 : The ratio of Pd/Ir in the Magerang-Imang, Nakan and Kelian suites indicating the low abundance of Ir in the Nakan andesite relative to the Magerang-Imang andesite (a) causing high ratios of Pd/Ir in the Nakan andesite.

# 5.5 Depletion of Gold, Copper and Platinum Group Elements in The Host Intrusive Andesite of The Kelian Gold Deposit: An Unexpected Result

A feature of the mantle-normalised Cu-Au-PGE patterns, for the least altered samples from the Kelian region, is that Au is depleted by about an order of magnitude relative to the adjacent elements, Re and Pd. A plausible interpretation for the Au depletion in the Nakan and Magerang-Imang samples is that the Au was stripped during the hydrothermal event that gave rise to the gold at Kelian. There are, however, two observations that are inconsistent with this hypothesis. Firstly, the Nakan and Magerang-Imang samples selected for analysis show little sign of alteration. Secondly, the magnitude of the Au depletion is similar in samples of variable SiO<sub>2</sub> content, including the most primitive samples. It is concluded that the gold depletion developed prior to emplacement of the andesites into the upper crust and that these values were not significantly affected by alteration.

The low concentration of gold in the igneous rocks associated with the Kelian gold deposit is unexpected. The host rocks to most metal deposits are already enriched in the metal of interest, e.g. Au in Archaean greenstone, Ni in komatiites and basalt, Fe in banded iron formation, Cr in gabbros, etc. It is therefore surprising to find a major gold deposit in host rocks that are depleted in Au.

Another unexpected feature of the data is that Au and the PGE decrease with increased fractional crystallisation. This relationship suggests that the calc-alkaline magmas in the Kelian region became sulfur saturated early in their crystallisation history. If the gold at Kelian has a magmatic-hydrothermal origin, the reverse might be expected to be true. It might be argued that the Nakan and Magerang-Imang prospects are not associated with major gold deposits and have a different sulfur saturation history to the calc-alkaline rocks directly associated with the mineralisation at Kelian. However, plots of PGE against Th show that the Kelian andesites have even lower PGE concentrations at a given level of fractionation than their Nakan and Magerang-Imang equivalents. These observations, together with the low Au content of the host rocks make it difficult to reconcile the mineralisation with a magmatic-hydrothermal hypothesis that links the gold with the Kelian andesites.

Another enigmatic feature of the data is that the Cu-Au-PGE patterns remain parallel as their concentrations decrease with increasing SiO<sub>2</sub>. The Au and PGE ratios change little during fractionation. This is surprising because it implies either that the partition coefficients for the PGE into the sulfides are similar, which seems unlikely, or that Au and the PGE are not being depleted by simple equilibrium fractional crystallisation of sulfide. This is unlikely to be due to simple equilibrium of fractional crystallisation involving an immiscible sulfide melt. If the immiscible sulfide melt maintains equilibrium with the magma in the chamber, the Cu-Au-PGE patterns can only remain parallel if partition coefficients for Cu, Au and all of the PGE between immiscible sulfide and silicate melts are the same which is unlikely. Most of the sulfides in layered intrusions are found near the margins of the intrusions where the magma chamber is loosing heat through its wall (Keays and Campbell, 1981). A more realistic explanation for the parallel Cu-Au-PGE patterns is that the chalcophile element depletion in the Nakan, Magerang-Imang and Kelian andesites is due to a non-equilibrium process. It is possible that sulfide precipitation occurs in a narrow boundary layer of cool magma at the margins of the intrusion.
The implication is that sulfide precipitation in the parent intrusion to the Kelian andesites can not have been an equilibrium process. Sulfide precipitation in a layered intrusion is concentrated at the margins where the magma cools against the sides of the intrusion (Keays and Campbell, 1981). It is possible that sulfide precipitation in the Kelian parent magma chamber occurred rapidly, under disequilibrium conditions at the cooling margin of the intrusion.

#### 5.6 Discussion

The fact that Au and the PGE decrease in a similar manner during the evolution of the Kelian igneous suite is difficult to explain. There are four possible explainations for gold and PGE fractionation in igneous suites. First, Au, Cu and PGE are fractionated due to sulfur saturation during fractional crystallisation. As chalcophile elements with very high partition coefficients, gold and PGE show extremely compatible behaviour in mafic magma system and would be preferentially concentrated in the sulfide fraction. Based on the magmatic theory of ore formation, a sulfide liquid segregates from silicate magma, carrying the gold and PGE with it and discrete precious metal minerals subsequently form from the products of fractional crystallisation. Evidence for this chalcophile tendencies is clearly observed in the PGE sulfide phases associated with Ni-Cu sulphide ores (Naldrett et al, 1979, Campbell et al., 1983). The sulfur saturation possibly originates in the magma source region (Wendlandt, 1982). Second, Au, Cu and PGE are fractionated due to fluid saturation. Third, in the absence of sulfide phases, PGE fractionation may be governed by their solubility and partitioning behaviour in oxide and silicate phases (Capobianco and Drake, 1994; Nell and O'Neill, 1997). It has been recognised that PGE, in particular Ru, Rh (Capobianco and Drake, 1990), Pd and Ir partition into spinel (Mitchell and Keays, 1981). Partitioning of gold in titanomagnetite during fractional crystallisation has been observed in island-arc tholeiitic rocks (Togashi and Terashima, 1997). However, in these three processes, whereby Au and PGE are physically removed, none of these processes remove Au and individual PGE to the same degree. For instance, Ru partitions readily into spinel but Ir does not (Nell and O'Neill, 1997). Thus, spinel crystallisation strongly fractionates Ru, from Ir, which is not shown in the Kelian suite. Similarly, partition coefficients between silicate and sulfide melts for Re and Ir differ by

orders of magnitude, such that sulfur saturation would quantitatively deplete the melt of Ir, but not Re. Again, the Kelian data do not support such a process. Although less well understood, exsolution of a hydrothermal fluid efficiently transports Au, Cu, Sn and W, but has not been shown to be an effective carrier of Pt or Ir. Fourth, assimilation of crustal material. This appears to be the most plausible process for the gradual depletion of Au and all of the PGE at Kelian. It is suggested that simple dilution with crustal material that contains no Au or PGE is the most likely process that will decrease the abundance of all of the PGE equally. This conclusion is consistent with the results obtained from major and trace element geochemistry (Chapter 3) and geochronology (next Chapter 6).

Chapter 6: Geochronology of The Kelian Igneous Complex

### Chapter 6

# GEOCHRONOLOGY OF THE KELIAN IGNEOUS COMPLEX AND ASSOCIATED EPITHERMAL GOLD MINERALISATION

#### 6.1 Introduction

The Kelian disseminated gold deposit is mostly hosted by the andesite porphyries, locally named Central Andesite and Eastern Andesite, and this relation suggests that the mineralisation is genetically associated with a specific event in the evolution of the Kelian igneous complex. The presence of quartz and sulfide veins cutting the Central Andesite (Van Leeuwen et al., 1990) may indicate that the emplacement of the andesite took place shortly before the main hydrothermal event. Near-surface convective systems that produce hydrothermal ore deposits are likely to cool on a time scale of few tens of thousands of years up to 100 thousand years (Cathles et al., 1997). It is therefore possible that the gold mineralisation at Kelian is related to the emplacement of the Kelian igneous complex. However, the time constraint of the host rocks and mineralisation is not known, nor has it been established whether the gold mineralisation was formed by a hydrothermal fluid system driven by the andesitic magmatism or by processes related to the phreatomagmatic activity associated with the intrusion of a maar-diatreme complex (the Runcing diatreme) that occurs in close spatial association with the ore. Alternatively, the gold mineralisation may be post the Kelian igneous complex and related to a later thermal event at depth.

The absolute age of the various igneous rocks at Kelian has not been established. The volcaniclastic rock units have been assigned a Late Eocene age (Van Leeuwen et al., 1990), based on the biostratigraphic age of intercalated limestones. The Central Andesite and Eastern Andesite join at depth and contain xenoliths of tuff and volcaniclastic sediments indicating that they are younger than those units. The Tepu diatreme breccia is clearly younger than the andesites as it contains fragments of andesite near its margins. The Central Andesite, Eastern Andesite and the Runcing diatreme breccia are cut by mineralised veins indicating that all three units are older than mineralisation. The absence of Au-bearing veins in the Runcing Rhyolite porphyry suggests that this unit was emplaced after the main gold mineralisation event. Thus, on the basis of geologic relations, the gold mineralisation is younger than the Central Andesite but older than the Runcing Rhyolite.

This chapter describes ELA-ICP-MS U-Pb zircon dates for andesite and rhyolite intrusions from the Kelian area and attempts to relate the ages obtained with published K-Ar age for the mineralisation at Kelian. If there is a resolvable age difference between the andesite and rhyolite porphyries, it may be possible to relate the mineralisation with either the andesite or maar-diatreme emplacement. Alternatively, if they have similar ages, both andesite and rhyolite may have been derived from a single evolving magmatichydrothermal system that can be related to the mineralisation. This study also tests possible temporal links between the low sulfidation Kelian gold deposit and high sulfidation mineralisation at Magerang-Imang, by dating the host rocks to both types of mineralisation. In addition, samples of andesite-dacite porphyries from the Nakan, Han and Plata prospects were dated in this study to constrain the timing of calc-alkaline magmatism in these areas. Two sets of detrital zircons from the Kelian and Mahakam rivers were also dated to constrain the overall duration of regional-scale magmatic events in the Kelian and Mahakam areas and to relate the timing of the gold mineralisation to these events.

#### 6.2 Principles of U-Pb Zircon Geochronology

Unstable radioactive elements, such as uranium, thorium and lead, decay by the spontaneous emission of alpha and beta particles from their nuclei through chain reactions of unstable atoms ending with stable daughter isotopes. Each radioactive isotope has a decay constant ( $\lambda$ ) and a half-life which is an interval of time for a radioactive isotope to

decay to half of the original number of parent atoms. By measuring daughter to parent atom ratios, the age of a mineral can be determined using the following equation:

$$t = \frac{1}{\lambda} \ln(1 + \frac{D^*}{N})$$

Where: t is time,  $\lambda$  is a decay constant, D\* is the number of daughter atoms and N is the number of remaining parent atoms.

There are three radioactive isotopes of uranium: <sup>238</sup>U, <sup>235</sup>U and <sup>234</sup>U and one radioactive isotope of thorium: <sup>232</sup>Th. <sup>238</sup>U, <sup>235</sup>U and <sup>232</sup>Th decay to <sup>206</sup>Pb, <sup>207</sup>Pb and <sup>208</sup>Pb, respectively via a series of short-lived intermediate daughter products. In addition, lead has an isotope of <sup>204</sup>Pb which is weakly radioactive but not radiogenic. <sup>204</sup>Pb is commonly used as a stable reference isotope for rationing the other radiogenic U-Pb isotopes. In a system that has remained closed to uranium, thorium and lead during the history of crystallisation, the lead isotopes produced by the decay of uranium and thorium can be determined by the following equations (Faure, 1977):

$$\frac{^{206}Pb}{^{204}Pb} = \left(\frac{^{206}Pb}{^{204}Pb}\right)_{o} + \frac{^{238}U}{^{204}Pb}(e^{\lambda_{238}t} - 1)$$

$$\frac{^{207}Pb}{^{204}Pb} = \left(\frac{^{207}Pb}{^{204}Pb}\right)_{o} + \frac{^{235}U}{^{204}Pb}(e^{\lambda_{235}t} - 1)$$

$$\frac{^{208}Pb}{^{204}Pb} = \left(\frac{^{208}Pb}{^{204}Pb}\right)_{o} + \frac{^{232}Th}{^{204}Pb}(e^{\lambda_{232}t} - 1)$$

where  $\frac{206}{204}Pb$ ,  $\frac{207}{204}Pb$ ,  $\frac{208}{204}Pb$  = isotope ratios of lead in the mineral at the time of analysis,

 $\left(\frac{206Pb}{204Pb}\right)_{o}$ ,  $\left(\frac{206Pb}{204Pb}\right)_{o}$ ,  $\left(\frac{206Pb}{204Pb}\right)_{o}$  = initial isotope ratios of lead incorporated into the

mineral at the time of its formation,

 $\frac{^{238}U}{^{204}Pb}, \frac{^{235}U}{^{204}Pb}, \frac{^{232}Th}{^{204}Pb} = \text{isotope ratios in the mineral at the time of analysis,}$  $\lambda_{238}, \lambda_{235}, \lambda_{232} = \text{decay constants,}$ 

t = time elapsed since closure of the mineral to U, Th, Pb and all intermediate daughters.

The ultimate parent-daughter pairs of uranium and thorium with their decay constants are given as follows (Jaffey et al., 1971):

| Decay series                         | Half-life (billion years) | Decay constant $\lambda$ (year <sup>-1</sup> ) |  |  |
|--------------------------------------|---------------------------|------------------------------------------------|--|--|
| <sup>238</sup> U → <sup>206</sup> Pb | 4.47                      | 1.55125 x 10 <sup>-10</sup>                    |  |  |
| $^{235}$ U $\rightarrow$ $^{207}$ Pb | 0.704                     | 9.8485 x 10 <sup>-10</sup>                     |  |  |
| $^{232}$ Th $\rightarrow ^{208}$ Pb  | 14.01                     | 0.49475 x 10 <sup>-10</sup>                    |  |  |

By using appropriate values of initial lead isotope ratio, the date can be defined based on the decay of <sup>238</sup>U to <sup>206</sup>Pb as

$$H_{206} = \frac{1}{\lambda} \ln \left[ \frac{\frac{206 Pb}{204 Pb} - \left(\frac{206 Pb}{204 Pb}\right)_{o}}{\frac{238 U}{204 Pb} + 1} \right]$$

The other dates, based on the decay series of <sup>232</sup>Th/<sup>208</sup>Pb and <sup>235</sup>U/<sup>207</sup>Pb, can be solved using the similar formulas. If these three independent ages are equal, they are named as "concordant", then they represent the age of mineral within a closed, undisturbed U-Pb system.

Zircon minerals (ZrSiO<sub>4</sub>) in various crustal rocks contain trace amount of uranium and thorium concentrations, in order of a few hundred to a few thousand parts per million, which allow for relatively precise and accurate measurement of Pb/U and Pb/Pb ratios by a mass spectrometer. The decay of uranium to lead in zircon has become one of the most widely used geochronometer with a relatively high closure temperature of 900°C (Lee et al., 1997). Zircon minerals are resistant to hydrothermal processes and weathering as well, so they are therefore suitable to dating altered rocks and to constrain the duration of magmatism in a region.

## 6.3 Analytical Methods of U-Pb Zircon Dating by Excimer Laser Ablation Inductively Coupled Plasma Mass Spectrometer

Zircons were separated from whole-rock samples using standard magnetic and heavy liquid separation techniques. Sample and standard zircons were mounted in epoxy, polished and photographed in transmitted and reflected light. A scanning electron microscope was used to produce cathodoluminescence (CL) images of all mounts. Standards used in this study were the synthetic glass NIST 612 (Pearce et al., 1997) and zircon grains from the Temora gabbro which has an age of 417 Ma (Black et al., 2000). Zircon U-Th-Pb isotope dates were determined in situ using ELA-ICP-MS.

Zircons were ablated using a pulsed ArF excimer laser (Lambda Physik LPX 1201) emitting at 193nm with a nominal pulse width of 20ns and a pulse stability of about 5%. For this zircon dating, laser sampling was carried out using a 48 micron diameter spot, at a constant voltage of 21-23 kV and a repetition rate of 5 Hz. The sample discs were loaded in a translational stage in a gas-tight sample cell that can be viewed through a video monitor. The sample cell is flushed by He at a flow rate of 300 ml/minute and Ar at a flow rate of 1100 ml/minute. Targets for laser ablation were chosen as near as possible to the rims of zircons, which were clear, unfractured and free of inclusions, as can be seen on the photomicrograph and CL image (Figure 6.1 and 6.2). The zircon crystals were ablated for 50 seconds following a 20 second interval of background acquisition with the laser off, resulting in ~100 data scans for a penetration depth of ~25 microns. The ablated material, together with carrier gas, was transported to an Agilent 7500 (HP) Series-ICPMS through a custom-designed signal homogeniser.

Data were acquired for 8 isotopes (<sup>29</sup>Si, <sup>31</sup>P, <sup>96</sup>Zr, <sup>206</sup>Pb, <sup>207</sup>Pb, <sup>208</sup>Pb, <sup>232</sup>Th and <sup>238</sup>U) was carried out by peak hopping in pulse counting mode. The <sup>204</sup>Pb isotope was not measured due to a high background of <sup>204</sup>Hg. Temora standard zircon and NIST 612 standard glass were measured twice after every 10 and 20 analyses of unknown samples, respectively. The unknowns were measured on a rotational order consisting of two laser ablation spots on each grain from each sample making batches of 10 unknowns per rotation. In this study, U-Pb zircon dates were based on 26 to 32 spot analyses for each

igneous rock sample and 127 and 153 spot analyses for the Kelian and Mahakam river detrital samples, respectively.

-



Figure 6.1: Cathodoluminescene (CL) images of zircon samples from the Kelian region



Figure 6.2: Cathodoluminescene (CL) images of zircon samples from the Kelian mine and regional prospects, and the Temora standard zircon .

Chapter 6: Geochronology of The Kelian Igneous Complex

#### 6.4 Data Reduction

Data reduction was processed offline in a Microsoft Excel 98 spreadsheet, which allowed background subtraction, outlier detection, isotope ratio calculation for standard zircon (Temora) and glass (NIST 612) and U-Pb date calculation for each spot analysis (Palin et al., 1998, Ballard et al., 2001). The first 5-10 data scans obtained after switching on laser had high common Pb from surface contamination and were excluded from the calculation. U-Pb date calculation for each spot analysis involved calculation of background-subtracted and mass fractionation-corrected ratios of 206Pb/238U, and calculation of common Pb corrected ratios of 206Pb/238U. Depth-related elemental fractionation of U-Th-Pb (e.g. Hirata and Nesbitt, 1995; Horn et al., 2000) and instrumental mass bias were corrected using measured <sup>207</sup>Pb/<sup>206</sup>Pb, <sup>206</sup>Pb/<sup>238</sup>U and <sup>208</sup>Pb/<sup>232</sup>Th ratios in the Temora zircon standard (Black et al., 2000) averaged over the course of an analytical session. Drift in instrumental mass bias was calculated from correlated variations between <sup>206</sup>Pb/<sup>238</sup>U and <sup>29</sup>Si/<sup>96</sup>Zr in the standard zircon over the course of the analytical session. Common lead corrections were made following the method employed by Compston et al. (1984). <sup>206</sup>Pb/<sup>238</sup>U ratios were then corrected for common Pb using <sup>207</sup>Pb/<sup>206</sup>Pb, assuming that the measured <sup>206</sup>Pb/<sup>238</sup>U and <sup>208</sup>Pb/<sup>232</sup>Th were concordant within analytical error.

Reported U-Pb ages for the igneous rocks are weighted averages of data selected from individual spot analyses. Uncertainties for the individual spot analyses, at the 95% confidence level, were calculated by two methods to obtain what we have called observed and expected errors. The observed error was calculated from the observed variance in the individual dates calculated for each of the  $\sim$  80 data scans made during the analyses of individual grains, whereas the expected error was obtained from the counting statistics. All grains which had individual MSWD values larger than 2 or had ratios of observed/expected error larger than 3 are excluded from age calculation. Only data that lie within 95% of concordance at the 1  $\sigma$  level were used for the age calculation.

There is evidence of multiple age populations in some samples. In order to test this possibility, the data from each sample were examined using cumulative probability diagrams. If the data represent a single age population, most points will lie on a straight

line with the possible exception of short tails at each end due to the expansion of the scale in this region. Outliers lying above this line at old ages were assumed to represent inherited zircons and outliers falling below the line at young ages were ascribed to lead loss and were rejected. Statistical calculations were done after these outliers were excluded and the population that represents the age of sample was selected. The mean square of weighted deviates (MSWD) was then calculated in order to test whether the selected grains formed a statistically acceptable single population. If the observed deviations from the sample mean are within analytical error and there is no geological error due to inhomogenity in the sample, the expected (mean) value of MSWD is about 1 (Wendt and Carl, 1991). Estimated minimum and maximum expected values of MSWD were also calculated at the 95% confidence level according to formulas in Wendt and Carl (1991). Age populations have MSWD values above the expected maximum value if the analytical errors are underestimated or if the dates for the grain give a range of ages that lie outside analytical uncertainty. If the weighted average date for a population have higher MSWD values than the upper limit of the estimated MSWD values, the MSWD of the population can be reduced by excluding the grains which contribute most to the high MSWD values. The mean and  $2\sigma$  error are given in Table 6.1 for both populations. The less selective data are considered in the discussion.

The data from samples that yield multiple age populations, such as the Central Andesite, Runcing Rhyolite and Kelian Tuff, were initially processed the same way as for single population data. The data for these samples form two or more straight line-segments separated by *S* shaped curves on probability plots. Individual populations are separated by points of inflection between the straight lines. The mean age of each population was calculated using the *Mix* program written by Gallagher and Sambridge (1992) for processing multi-component data sets.

Detrital zircon raw data were reduced using the similar method of date calculation as for igneous zircon samples, but the grains were treated individually and the population MSWD criteria were not applied.

Chapter 6: Geochronology of The Kelian Igneous Complex

### 6.4 Data Reduction

Data reduction was processed offline in a Microsoft Excel 98 spreadsheet, which allowed background subtraction, outlier detection, isotope ratio calculation for standard zircon (Temora) and glass (NIST 612) and U-Pb date calculation for each spot analysis (Palin et al., 1998, Ballard et al., 2001). The first 5-10 data scans obtained after switching on laser had high common Pb from surface contamination and were excluded from the calculation. U-Pb date calculation for each spot analysis involved calculation of background-subtracted and mass fractionation-corrected ratios of <sup>206</sup>Pb/<sup>238</sup>U, and calculation of common Pb corrected ratios of 206Pb/238U. Depth-related elemental fractionation of U-Th-Pb (e.g. Hirata and Nesbitt, 1995; Horn et al., 2000) and instrumental mass bias were corrected using measured <sup>207</sup>Pb/<sup>206</sup>Pb, <sup>206</sup>Pb/<sup>238</sup>U and <sup>208</sup>Pb/<sup>232</sup>Th ratios in the Temora zircon standard (Black et al., 2000) averaged over the course of an analytical session. Drift in instrumental mass bias was calculated from correlated variations between <sup>206</sup>Pb/<sup>238</sup>U and <sup>29</sup>Si/<sup>96</sup>Zr in the standard zircon over the course of the analytical session. Common lead corrections were made following the method employed by Compston et al. (1984). <sup>206</sup>Pb/<sup>238</sup>U ratios were then corrected for common Pb using <sup>207</sup>Pb/<sup>206</sup>Pb, assuming that the measured <sup>206</sup>Pb/<sup>238</sup>U and <sup>208</sup>Pb/<sup>232</sup>Th were concordant within analytical error.

Reported U-Pb ages for the igneous rocks are weighted averages of data selected from individual spot analyses. Uncertainties for the individual spot analyses, at the 95% confidence level, were calculated by two methods to obtain what we have called observed and expected errors. The observed error was calculated from the observed variance in the individual dates calculated for each of the  $\sim$  80 data scans made during the analyses of individual grains, whereas the expected error was obtained from the counting statistics. All grains which had individual MSWD values larger than 2 or had ratios of observed/expected error larger than 3 are excluded from age calculation. Only data that lie within 95% of concordance at the 1  $\sigma$  level were used for the age calculation.

There is evidence of multiple age populations in some samples. In order to test this possibility, the data from each sample were examined using cumulative probability diagrams. If the data represent a single age population, most points will lie on a straight

line with the possible exception of short tails at each end due to the expansion of the scale in this region. Outliers lying above this line at old ages were assumed to represent inherited zircons and outliers falling below the line at young ages were ascribed to lead loss and were rejected. Statistical calculations were done after these outliers were excluded and the population that represents the age of sample was selected. The mean square of weighted deviates (MSWD) was then calculated in order to test whether the selected grains formed a statistically acceptable single population. If the observed deviations from the sample mean are within analytical error and there is no geological error due to inhomogenity in the sample, the expected (mean) value of MSWD is about 1 (Wendt and Carl, 1991). Estimated minimum and maximum expected values of MSWD were also calculated at the 95% confidence level according to formulas in Wendt and Carl (1991). Age populations have MSWD values above the expected maximum value if the analytical errors are underestimated or if the dates for the grain give a range of ages that lie outside analytical uncertainty. If the weighted average date for a population have higher MSWD values than the upper limit of the estimated MSWD values, the MSWD of the population can be reduced by excluding the grains which contribute most to the high MSWD values. The mean and  $2\sigma$  error are given in Table 6.1 for both populations. The less selective data are considered in the discussion.

The data from samples that yield multiple age populations, such as the Central Andesite, Runcing Rhyolite and Kelian Tuff, were initially processed the same way as for single population data. The data for these samples form two or more straight line-segments separated by S shaped curves on probability plots. Individual populations are separated by points of inflection between the straight lines. The mean age of each population was calculated using the *Mix* program written by Gallagher and Sambridge (1992) for processing multi-component data sets.

Detrital zircon raw data were reduced using the similar method of date calculation as for igneous zircon samples, but the grains were treated individually and the population MSWD criteria were not applied.

Chapter 6: Geochronology of The Kelian Igneous Complex

### 6.5 Samples

Rock samples dated in this study were collected from the Kelian igneous complex, including Magerang-Imang and Nakan, and the Han and Plata prospects. The samples were selected based on the spatial relationship between the igneous intrusions and hydrothermal mineralisation (Figure 6.3). These included two hornblende andesite porphyries from Magerang-Imang; a pyroxene andesite porphyry from Nakan; and the Central Andesite porphyry, the Runcing Rhyolite porphyry and lithic-crystal tuff from the Kelian mine. Samples were collected from exploration drill cores, with the exception of the Central Andesite (sample 123200), Runcing Rhyolite (sample 123218) and Magerang-Imang andesite (sample 123226) which were collected from pit exposures and outcrops. The Magerang-Imang andesites (samples 123158 and 123226) have porphyritic textures, formed by medium-grained phenocrysts of mainly plagioclase, K-feldspar and hornblende set in a fine-grained, holocrystalline groundmass of feldspar and mafic minerals. Both phenocrysts and groundmass have been slightly altered to sericite, chlorite and carbonate along cracks and grain boundaries. The Nakan andesite (sample 123187) exhibits a porphyritic texture, characterised by medium-grained phenocrysts of plagioclase and pyroxene set in fine-grained groundmass of feldspar and mafic minerals. Clinopyroxene and plagioclase phenocrysts are slightly altered to sericite, chlorite and calcite and rare small grains of hornblende are slightly altered to chlorite. The fine-grained groundmass has been partially replaced by sericite, chlorite and carbonate. The Central Andesite (sample 123200) has undergone propylitic alteration as indicated by partial alteration of the phenocrysts and groundmass of feldspar and mafic minerals to sericite, chlorite and calcite. The Runcing Rhyolite (Sample 123218) has undergone phyllic- to argillic-type alteration and is composed of quartz and sericitised feldspar phenocrysts set in a fine-grained, strongly altered groundmass.

The Han andesite (sample 1103) is a weakly altered porphyry exposed on the Han River and is chiefly composed of plagioclase and minor pyroxene phenocrysts set in a fine grained quartz-feldspathic groundmass. The phenocryst and groundmass are slightly altered to sericite, chlorite and calcite. The Plata dacite (sample 1121), collected from the drillcore



Figure 6.3 : Simplified geological map of the Kelian region and location of the zircon samples. Samples 123158, 123187 and 123366 were collected from drillcores.

of the Plata prospect, shows plagioclase and hornblende phenocrysts within a fine-grained quartz, feldspar and mafic groundmass. The feldspar and mafic minerals have been slightly altered to sericite and chlorite.

Two detrital zircon samples were collected to constrain the duration of magmatism on local and regional scales. The first set of detrital zircons (Sample 123230) was collected by panning fluvial sediment from a point bar of the Kelian River, located 1.5 km southeast down-stream of the Kelian gold mine. This sample was assumed to be representatives of zircons derived from magmatic events which occurred locally within the Kelian drainage system. The second set was panned from a point bar of the Mahakam River, the largest river in East Kalimantan, located approximately 20 km down stream from the point of entry of the Kelian River (Figure 6.4).



Figure 6.4 : Location of detrital zircon samples

Chapter 6: Geochronology of The Kelian Igneous Complex

### 6.6 Analytical Results

The pooled population ages with uncertainties, number of grains analysed and MSWD values for the rock samples are listed in Table 6.1. The complete data for the igneous and detrital zircons are given in the Appendix 7. Tera-Wasserburg concordia diagrams for each sample are presented in Figures 6.5 and 6.6. Zircons from the Magerang-Imang, Nakan, Han andesites and Plata dacite exhibit pooled single population ages. For each of these samples, most of the data lie on a single straight line when plotted on a probability diagram. The pooled population ages, which were calculated based on the criteria of spot MSWD and the ratio of observed/expected error, have higher MSWD values than that expected for a single normal distribution at 95% confidence level, with the exception of sample No. 1121(Table 6.1-A). Population ages with acceptable values of MSWD were obtained by excluding the grains which contribute most to the high MSWD values. This approach did not significantly change the age, but the MSWD values and uncertainties are reduced (Table 6.1-B). In this paper, the results of both calculations are presented, but we use the more complete date sets (Table 6.1-A and 6.1-C) for our age interpretations.

#### 6.6.1 Single age populations

The first Magerang-Imang andesite (sample 123158) yielded a single age population of 19.62 Ma  $\pm$  0.21 (28 of 32 spots; MSWD = 6.59). Four of 32 spot analyses were excluded on the basis of the within-spot MSWD values being greater than 2. There are no inherited zircons in this sample. The second Magerang-Imang andesite (sample 123226) was measured in two different analytical sessions. The two sets of data were calculated separately and the results are consistent with each other, giving single age populations (Figures 6.7a, 6.7b). The first session included 32 spots and yielded an average date of 19. 29 Ma  $\pm$  0.16 (30 of 32 spots; MSWD = 2.78) with 2 spots excluded due to the within-spot MSWD values being greater than 2. The second session included 26 spots and yielded a date of 19.45 Ma  $\pm$  0.19 (23 of 26 spots; MSWD = 3.04) with 3 spots excluded on the basis of the plot of probability distribution which indicated that these grains were

| at         | ole 6.1 : U-Pl                                                                                       | b zircon ages | for the Keli | an Igneous Co | mplex and reg | gional pr | ospects  |      |                             |           |
|------------|------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|---------------|-----------|----------|------|-----------------------------|-----------|
|            |                                                                                                      |               |              | 0             |               |           |          |      |                             |           |
| ١.         | Weighted average dates calculated from single date populations based on probability plots            |               |              |               |               |           |          |      |                             |           |
|            | Sample No.                                                                                           | Location      | Rock Type    | Population    | Date (Ma)     | ±2se      | N        | MSWD | max MSWD                    |           |
|            | 123158                                                                                               | Magerang      | Andesite     | 1             | 19.62         | 0.21      | 28 of 32 | 6.59 | 1.54                        |           |
|            | 123226                                                                                               | Magerang      | Andesite     | 1             | 19.38         | 0.12      | 53 of 58 | 2.95 | 1.39                        |           |
|            | 123187                                                                                               | Nakan         | Andesite     | 1             | 20.01         | 0.15      | 30 of 32 | 5.59 | 1.53                        |           |
|            | 1103                                                                                                 | Han           | Andesite     | 1             | 19.31         | 0.16      | 25 of 26 | 5.17 | 1.58                        |           |
|            | 1121                                                                                                 | Plata         | Dacite       | 1             | 18.52         | 0.07      | 23 of 26 | 1.55 | 1.60                        |           |
| <b>B</b> . | Weighted average dates after excluding the grains which give highest contribution to the MSWD values |               |              |               |               |           |          |      |                             |           |
|            | Sample No.                                                                                           | Location      | Rock Type    | Population    | Date (Ma)     | ±2se      | N        | MSWD | max MSWD                    |           |
|            | 123158                                                                                               | Magerang      | Andesite     | 1             | 19.69         | 0.12      | 19 of 32 | 1.45 | 1.67                        |           |
|            | 123226                                                                                               | Magerang      | Andesite     | 1             | 19.33         | 0.11      | 46 of 58 | 1.38 | 1.42                        |           |
|            | 123187                                                                                               | Nakan         | Andesite     | 1             | 20.06         | 0.09      | 21 of 32 | 1.52 | 1.63                        |           |
|            | 1103                                                                                                 | Han           | Andesite     | 1             | 19.26         | 0.13      | 20 of 26 | 1.52 | 1.65                        |           |
| <b>C</b> . | Weighted average dates calculated from multiple date populations using the "Mix" program             |               |              |               |               |           |          |      |                             |           |
|            | Sample No.                                                                                           | Location      | Rock Type    | Population    | Date (Ma)     | +2se      | N        | MSWD |                             |           |
|            | 123200                                                                                               | Central And.  | Andesite     | Population1   | 19.7          | 0.12      | 23       | 0.94 | (2 youngest spots excluded) |           |
|            |                                                                                                      | Central And.  | Andesite     | Population2   | 20.5          | 0.12      | 23       | 0.45 |                             |           |
|            |                                                                                                      | Central And.  | Andesite     | Population3   | 21.2          | 0.32      | 14       | 1.30 |                             |           |
|            | 123218                                                                                               | Runcing       | Rhyolite     | Population1   | 19.3          | 0.12      | 10       | 1.34 |                             |           |
|            |                                                                                                      | Runcing       | Rhyolite     | Population2   | 20.0          | 0.20      | 7        | 1.33 | (2 oldest spots e           | excluded) |
|            |                                                                                                      | Runcing       | Rhyolite     | Population3   | 20.8          | 0.14      | 8        | 1.82 | (6 oldest spots excluded)   |           |
|            | 123366                                                                                               | Kelian mine   | Tuff         | Population1   | 70.0          | 0.34      | 13       | 5.91 |                             |           |
|            |                                                                                                      | Kelian mine   | Tuff         | Population2   | 76.5          | 0.40      | 8        | 6.38 | (5 oldest spots of          | excluded) |

Chapter 6: Geochronology of The Kelian Igneous Complex



Figure 6.5 : Tera-Wasserburg concordia diagrams for the igneous zircons from the Kelian igneous complex and regional prospects



Figure 6.6 : Tera-Wasserburg concordia diagrams for the igneous zircons from the Central Andesite and Runcing Rhyolite



Figure 6.7 : Cumulative probability plots for the Magerang-Imang andesite sample 123226 and the Central Andesite sample 123200 dated in two different courses of analytical sessions

inherited zircons. These grains had ages of 59.4 Ma, 67.4 Ma and 103.6 Ma and were probably derived from Cretaceous volcanic and sedimentary rocks in the basement. The combined data set resulted in an age of 19.38 Ma  $\pm$  0.12 (53 of 58 spots; MSWD = 2.95) (Figure 6.8b).

The Nakan pyroxene and esite (sample 123187) yielded a single age population of 20.01 Ma  $\pm$  0.15 (30 of 32 spots; MSWD = 5.59). Two out of 32 spots were rejected based on the within-spot MSWD values being larger than 2. There were no inherited zircons recorded in this sample (Figure 6.8c).

The Han andesite (sample 1103) yielded a single age population of 19.31 Ma  $\pm$  0.16 (25 of 26 spots; MSWD = 5.17) (Figures 6.8d). One spot was excluded from the age calculation for the Han sample due to the within-spot MSWD value being larger than 2.



Figure 6.8 : Cumulative probability plots for the igneous zircons from the Kelian igneous complex and regional prospects

The Plata dacite (sample 1121) gave a single age population of  $18.52 \pm 0.07$  (23 of 26 spots; MSWD = 1.55). There were 3 of 26 spots excluded from the calculation for the Plata zircon population on the basis of the plot of the probability distribution (Figure 6.8e). These grains, which yielded dates of 19.2 Ma, 20.1 Ma and 20.2 Ma, were considered to be inherited zircons.

#### 6.6.2 Multiple age populations

The age of the Central Andesite porphyry was measured during two different analytical sessions. These 2 data sets were calculated separately and the consistency of the results again demonstrates the reproducibility of U-Pb zircon dating by ELA-ICP-MS. Data from both the first and second analytical sessions do not lie on a single straight line on a cumulative probability plot, but have 3 distinct populations separated by points of inflection (Figures 6.7c and 6.7d). Ages were calculated for each of these populations using the "Mix" program of Gallagher and Sambridge (1992).

The average ages of populations were  $19.7 \pm 0.16$ ,  $20.5 \pm 0.12$  and  $21.2 \pm 0.54$  Ma, obtained from 32 spot analyses in the first session and  $19.6 \pm 0.20$ ,  $20.4 \pm 0.26$  and  $21.2 \pm 0.28$  Ma obtained from 26 spot analyses in the second session. There were 4 spots excluded from the age calculation; 2 spots were rejected due to their high values of the within-spot MSWD and the other 2 spots were rejected based on the probability plot as outliers that lay below the line at the young end population, possibly due to Pb loss. The two sets of data were then combined and the final dates obtained were  $19.7 \pm 0.12$  Ma,  $20.5 \pm 0.12$  Ma and  $21.2 \pm 0.32$  Ma (Figure 6.8f).

The Runcing Rhyolite sample also yielded 3 distinct age populations:  $19.3 \pm 0.12$ ,  $20.0 \pm 0.2$  and  $20.8 \pm 0.14$  Ma (Figure 6.8g). The ages were calculated following the same method used for the Central Andesite sample. In this sample, all grains which had withinspot MSWD values greater than 4 were excluded. Two additional spots were excluded from the calculation of the second population based on the probability plot. The six oldest spots were excluded from the calculation of the calculation of the third population because of inherited zircons or high common Pb.

The Kelian Tuff sample yielded 2 distinct populations of dates from 26 spot analyses:  $70.0 \pm 0.34$  Ma and  $76.5 \pm 0.40$  Ma (Figure 6.8h). Five grains were excluded from the calculation of the second population. These oldest grains were dated 85.3, 86.2, 429, 434 and 1680 Ma. They are interpreted to be inherited zircons derived from the basement rocks. This sample shows high MSWD values due to a wide range of dates as might be expected in a pyroclastic rock. The Cretaceous age of the tuff indicates that this unit is the basement of the Kelian rock sequences which is consistent with the previous interpretation (Van Leeuwen et al., 1990).

#### 6.6.3 Detrital zircons

Two sets of detrital zircons from the Kelian and Mahakam rivers yielded a wide spectra of U-Pb zircon dates ranging from 1.7 Ma to 373 Ma, dominated by Pliocene, Miocene, Cretaceous, Triassic, Permian and Carboniferous populations (Figure 6.9). The Tertiary zircon populations range from 1.7 to 2.8 Ma and 15.8 to 21.7 Ma, while the Cretaceous population ranges from 67.6 to 126 Ma with a large peak at 105 Ma. The complete data are given in Appendix 7.

# 6.7 Time Constraints on The Emplacement of The Kelian Igneous Complex and Associated Epithermal Gold Mineralisation

The U-Pb zircon dating for the Central Andesite porphyry produced 3 distinct age populations. The oldest population  $(21.2 \pm 0.32 \text{ Ma})$  is interpreted to represent the age of an inherited zircon population that formed during a previous thermal event in the melt source region. The other age populations have 2 possible interpretations. First, the intermediate age population  $(20.5 \pm 0.12 \text{ Ma})$  could be assigned to the emplacement of the andesite and the youngest zircon population  $(19.7 \pm 0.12 \text{ Ma})$  to a period of Pb loss due to hydrothermal activity. However, this possibility is unlikely because the hydrothermal alteration and mineralisation at Kelian occured only a short time after emplacement of the andesite and the zircons do not have excessively high concentration of uranium so the



Figure 6.9 : Histrograms showing U-Pb age distributions for the Mahakam (a and c) and Kelian (b and d) detrital zircons; n is the number of analytical spots

zircons could not have been metamict. Furthermore the temperature of the hydrothermal fluid (270°-330°C; Van Leeuwen et al., 1990) was close to the fission track annealing temperature and far below the closure temperature for Pb diffusion (Cherniak and Watson, 2000) of zircon making it unlikely that the U-Pb system in zircon was reset during mineralisation. The second, and more likely interpretation is that the youngest zircon age population (19.7  $\pm$  0.12 Ma) is the emplacement age of the Central Andesite porphyry and the intermediate age population (20.5  $\pm$  0.12 Ma) represents a second population of inherited zircons.

The Runcing Rhyolite sample also yielded 3 distinct zircon age populations. Following the same line of reasoning as above, the youngest age population  $(19.3 \pm 0.12 \text{ Ma})$  is interpreted to be the emplacement age of the Runcing Rhyolite porphyry and the older two populations  $(20.0 \pm 0.20 \text{ Ma} \text{ and } 20.8 \pm 0.14 \text{ Ma})$  to represent ages of inherited zircons. The emplacement age for the Runcing Rhyolite, which is younger than that of the Central Andesite  $(19.7 \pm 0.12 \text{ Ma})$ , coupled with the absence of the quartz and base metal veining in the Runcing Rhyolite suggest that the Runcing Rhyolite formed after the main stage of hydrothermal mineralisation and is, therefore, not be directly related to the formation of the Kelian gold deposit. The age of gold mineralisation must be younger than 19.7 Ma, the age of the Central Andesite, but older than 19.3 Ma, the age of the Runcing Rhyolite (Figure 6.10). Thus, although gold mineralisation took place during the Kelian igneous event, its genetic relationship to the Central Andesite remains uncertain. The K-Ar age of adularia associated with mineralisation hosted by the Central Andesite is  $20.2 \pm 0.3$  Ma (Van Leeuwen et al., 1990), slightly older than the U-Pb age for the central Andesite but is comparable within stated error, assuming the uncertainty for K-Ar age is  $1\sigma$ . These differences are probably due to the presence of excess <sup>40</sup>Ar trapped from the original magmas as encountered in the Porgera gold deposit (Richards and McDougall, 1990) or from fluid inclusion introduced with the mineralisation.

The emplacement age of the Magerang-Imang andesite implies that the highsulfidation Cu-Au mineralisation at Magerang is the same age or younger than the host rocks to the low-sulfidation Au deposit at Kelian. The age difference between the Kelian and Magerang-Imang andesites suggests that the duration of magmatism and related epithermal mineralisation in the larger Kelian region, was between 0.5 - 1 Ma (Figure 6.10). During this period, the magmatic-hydrothermal system has produced 2 distinctive types of epithermal mineralisation: firstly, low sulfidation Au deposit at Kelian and secondly, high sulfidation Cu-Au mineralisation at Magerang-Imang.

## 6.8 Nested Cannibalistic Intrusions Below The Kelian Gold Deposit: Discussions

The magma sequence indicated by U-Pb zircon geochronology of the Kelian igneous complex matches with that expected for andesites. The Magerang-Imang hornblende andesite is younger than the Nakan pyroxene andesite, which is consistent with clinopyroxene preceeding hornblende in the normal crystallisation sequence for an andesitic magma (Green, 1972). Furthermore, the geochemically most evolved Magerang-Imang andesite is the youngest of the two dated samples. The Kelian andesites exhibit trace

element characteristics of hornblende crystallization and are intermediate in age between the Nakan and Magerang-Imang andesites. If all these units form part of a single fractionating system, then the life span was at least 0.7 m.y.



Figure 6.10 : U-Pb zircon ages showing the temporal relationships among the Kelian igneous complex and the regional prospects. Three ages of the Central Andesite and Runcing Rhyolite come from 3 different populations which the two oldest ages being inherited zircons. Two ages of the Magerang-Imang andesite come from 2 different intrusive units.

The study of detrital zircons from the Kelian River shows that the Kelian igneous complex was active for about 3.5 m.y. Gold mineralisation appears to have occurred toward the end of this activity (Figure 6.9). The Kelian igneous complex is not represented in the Mahakam detrital grains, indicating that it was not geographically widespread on a region scale. It is surprising that a major gold deposit occurs in association with a period of igneous activity that is insignificant on a region scale.

The inheritance pattern in the Kelian andesite and Runcing Rhyolite is unusual. The Kelian andesite stocks and Runcing diatreme, intrude into 70 - 76 Ma pyroclastics and sediments. Unless there is an unrecognised thrust underlying the Kelian region, the crust below the deposit must therefore consist of rocks that are Cretaceous and older. Under these conditions the expected pattern of inheritance is one or more small populations, often consisting of a single grain, with ages of 70 Ma or older. The total number of inherited grains is usually small compared with the number of grains in the emplacement population. The occurrence of two populations of inherited grains in the Kelian andesite and Runcing Rhyolite, which are sub-equal in size to, and less than 1.6 m.y. older than the zircon population age that defines their emplacement age, is therefore unexpected.

The two large inheritance populations in both the Central Andesite and Runcing Rhyolite lie within the time range of the Kelian igneous complex as defined by the Kelian River detrital zircons. They must be derived from crustal intrusions that formed as part of the Kelian cycle. It is suggested that both the Kelian Andesite and Runcing Rhyolite were fed by 2 magma chambers that formed deep in the crust, each of which were long lived. This is not unexpected. Magmas rise in the crust until they reach their own density level (the neutral buoyancy level) where they spread out to form a magma chamber (Ryan, 1987). Provided the density structure of the crust remains the same, successive batches of magmas of similar composition should pond at the same crustal level. This is particularly true if there is a laterally extensive intrusion which will act as a density barrier that prevents these new batches of magma ascending to the upper crust (Huppert and Sparks, 1980).

It is suggested that the magma chambers that fed the Kelian Andesite and Runcing Rhyolite were emplaced into pre-existing intrusions of similar composition that formed as part of the Kelian igneous complex. The abundance of xenocrystic zircons in both units suggests that these earlier intrusions were still hot, or perhaps even partially molten, at the time of magma emplacement. That is the shallow level stocks and diatremes at Kelian were fed by nested, cannibalistic intrusions deep in the crust that melted the walls and roofs of related, but pre-existing intrusions, and inherited abundant xenocrystic zircons in the process. The ages of the inherited zircons are interpreted as the ages of these earlier intrusions. Both the Kelian Andesite and the Runcing Rhyolite have two populations of inherited zircons, which indicate that the pre-existing intrusions formed in two distinct episodes, 0.7 to 0.8 m.y. apart. The difference between the emplacement age and the age of the oldest of the inherited zircon populations shows that this cannibalistic activity took

place over 1.5 m.y. The interval of magmatic activity in these chambers corresponds to the period of peak activity in the Kelian igneous complex as defined by the detrital zircons (Figure 6.9).

## Chapter 7 SUMMARY AND CONCLUSIONS

This Chapter summarises the major results of this study, particularly geochemical and geochronological aspects of the igneous suites associated with the Kelian gold deposit.

The Kelian Igneous Complex and regional prospects show a calc-alkaline trend and range in composition from basaltic andesite, through andesite and dacite to rhyolite. The Kelian suite plots mostly at the boundary of low K and medium K andesite over a range in silica from 56 to 63 wt%. In the Magerang-Imang suite, highly incompatible elements such as Th, U, Zr, Hf, Rb, Sr and Ba increase with increasing SiO<sub>2</sub>, resulting in a distinctive, positive trend. Light rare earth elements (LREE), such as La, Ce and Pr also increase with increasing SiO<sub>2</sub> but weakly incompatible REE show no increase and some, such as Sm, Ho and Y actually decrease. In the Nakan suite, the REE display similar trends as those in the Magerang-Imang suite, but the trend of U, Th, Zr, Hf does not change significantly with differentiation. Compatible elements such as V, Sc and Cr rapidly decrease with increasing SiO<sub>2</sub>. Chromium is depleted in the Tepu, Han and Ritan andesites, but it is relatively high in the Magerang-Imang and Nakan andesites within the similar range of SiO<sub>2</sub> indicating different trends of magmatic differentiation.

The Kelian Igneous Complex has undergone variable and often intense alteration so that many major elements were extensively mobilised during phyllic alteration. Propylitic Central Andesites have element concentrations that are closest to the concentrations of the least altered Tepu andesites and show no evidence of Ti, Al, Fe, Ca, Mg or P oxide mobility. On the other hand, Na<sub>2</sub>O decreased during propylitic alteration, in association with the break down of feldspar, and K<sub>2</sub>O and MnO increased. As the intensity of alteration increases from propylitic through phyllic to argillic alteration, the mobile elements show increasing dispersion. Phosphor, Al and Ti oxides appear to be immobile, even in the most highly altered samples. In propylitic and phyllic altered andesites, immobile elements such as Ta, Nb, Y, Ti and the REE are not affected by alteration. On the contrary, the concentrations of elements such as Rb, Sr and K are mobile during hydrothermal alteration and exhibit large variations depending on the type of alteration. Andesite suites that have undergone propylitic alteration are variably depleted in K and Ba and enriched in Cs and Rb, whereas andesites with phyllic alteration show a significant increase in K and Rb, and depletion in Sr and Ti.

The primitive mantle-normalised element concentrations for the least altered andesite display patterns showing enrichment in the large ion lithophile elements (LILE), particularly Ba, K, U, Th and Sr relative to the heavy REE. In the least altered andesites, all the elements form a coherent array. The enrichment in Cs, Rb, Ba, K and Th and depletion in Nb, Ta and Ti are characteristic of calc-alkaline arc magmas. However, the andesites are also characterised by pronounced positive anomalies of Zr and Hf, which are less common in calc-alkaline arc magmas.

Geochemical evolution in the Miocence calc-alkaline suites from the Kalimantan volcanic arc exhibits two distinctive trends of magmatic differentiation The *normal* trend is a "typical" calc-alkaline series defined by the *productive* igneous suites such as Kelian, Mount Muro, Masuparia and Muyup. This suite is characterised by low Mg, moderate K, relatively high Ti and Al and depletion in Cr and Sc and is consistent with the differentiation trend for arc lavas in general. The second trend is defined by the chemical variations of the Magerang-Imang and Nakan suites showing remarkably high concentrations of MgO compared to the productive igneous suites and common calcalkaline andesites. Major and trace element geochemistry of the high Mg andesites from Magerang-Imang and Nakan is comparable with that of the Ryukyu high Mg andesite and low Ca type 2 boninites. Both the Magerang-Imang andesites and boninites have similar characteristics of high Mg, positive anomalies of U, Sr, Zr and Hf, and negative anomalies of Nb, Ta and Ti.

The evidence of chemical evolution by fractional crystallisation is clearly indicated by major element trends as well as trace element trends as shown by plots of Cr, Sc, Ce/Yb and Eu/Eu\*. The dominant mafic phenocryst of hornblende and the linear horizontal trend of Eu/Eu\* with the increasing La/Yb ratio indicate that amphibole fractionation dominated the evolution of the Magerang-Imang suite. On the other hand, the Nakan suite shows little variation in La/Yb ratios and contains pyroxene phenocrysts but no hornblende, and therefore, pyroxene fractionation may have played a more important role than amphibole and feldspar.

The incompatible trace element geochemistry of the Kelian Igneous Complex andesites is characterised by the presence of positive Zr and Hf anomalies in the trace element patterns which is unusual for calc-alkaline subduction zone magmas. The chemical diversity in the Magerang-Imang and Nakan suite, with their relatively high concentrations of Mg oxide, Sc and Cr, and concave down curvi-linear evolution trends, might have been generated by combined wallrock assimilation and fractional crystallisation. The Magerang-Imang andesite is derived by fractional crystallisation of a parental basaltic magma mixed with a Zr-rich cumulate. Alternatively, the Magerang-Imang and Nakan high Mg andesite may have been derived from a primary magma which had a high Zr/Sm ratio and a composition similar to other boninite-type rocks.

Geochemical modelling using an assemblage of plagioclase(65%)-clinopyroxene (25%)-amphibole(10%) yielded in a pattern that shows a good agreement with the observed REE pattern, but the modelled MREE are slightly more depleted than the observed values. Plagioclase fractionation produces no detectable negative Eu anomaly because the effects of plagioclase, with its positive Eu anomaly, are balanced by a negative anomaly of amphibole fractionation and the high concentration of Eu in amphibole. The observed trend of the REE in the Nakan suite indicates decreasing concentrations of REE with increasing differentiation. A calculation using a cumulus assemblage of plagioclase (60%) - orthopyroxene(20%) - clinopyroxene(13%) amphibole(6%) - apatite(0.4%) - zircon(0.15%) - allanite(0.027%) produced a REE pattern which matchs the observed trend. The modelled REE trends demonstrate good agreement with the observed trends indicating that the fractionation of the selected cumulus assemblages can simulate the chemical evolution of the Magerang-Imang and Nakan calc-alkaline suites. Changes in the LREE to HREE ratio and the decrease in REE abundances with increasing SiO2 in the Magerang-Imang and Nakan andesite suites respectively, are due to fractional crystallisation.

The combined wallrock assimilation and fractional crystallisation process is consistent with the zircon geochronology of the Kelian Igneous Complex. The U-Th-Pb zircon dating indicates the presence of two large inherited zircon populations in the Kelian mine intrusions. This requires the magma to have assimilated large amounts of slightly

older zircon-bearing andesite. The Kelian mine andesites also have positive Zr and Hf anomalies. It is therefore possible that the Magerang-Imang and Nakan high Mg andesites were fed by magma chambers that formed deep in the crust, and were emplaced into preexisting intrusions of felsic composition that formed as part of the Kelian Igneous Complex cycle. It is suggested that the shallow level stocks at Magerang-Imang and Nakan were generated by intrusions that melted the walls and roofs of related, but preexisting intrusions, and extracted abundant xenocrystic zircons during the assimilation process. This resulted in positive anomalies of Zr and Hf in the Magerang-Imang and Nakan suites. Zircon U-Th-Pb isotope dates have been determined in situ using excimer laser ablation ICP-MS methods. The two different bodies of the Magerang hornblende andesite yielded ages of  $19.3 \pm 0.13$  Ma and  $19.7 \pm 0.12$  Ma, while the Nakan pyroxene and esite, gave an age of 20.1 + 0.09 Ma. The U-Pb zircon dating for the Central And esite porphyry produced 3 distinct age populations. The older two populations (21.2 Ma and 20.5 Ma) represent the age of inherited zircon populations that formed during a previous thermal event in the melt source region. The youngest age population  $(19.7 \pm 0.12 \text{ Ma})$  is the emplacement age of the Central Andesite porphyry. The Runcing Rhyolite sample also yielded 3 distinct zircon age populations. The youngest age population  $(19.3 \pm 0.12 \text{ Ma})$  is interpreted to be the emplacement age of the Runcing Rhyolite porphyry and the older two populations (20.0 Ma and 20.8 Ma) represent ages of inherited zircons. The emplacement age for the Runcing Rhyolite, which is younger than that of the Central Andesite (19.7 Ma), coupled with the absence of the quartz and base metal veining in the Runcing Rhyolite suggest that the Runcing Rhyolite formed after the main stage of hydrothermal mineralisation and is, therefore, not be directly related to the formation of the Kelian gold deposit. The age of gold mineralisation must be younger than 19.7 Ma, the age of the Central Andesite, but older than 19.3 Ma, the age of the Runcing Rhyolite. Thus, although gold mineralisation took place during the Kelian igneous event, its genetic relationship to the Central Andesite remains uncertain.

The emplacement age of the Magerang-Imang andesite implies that the highsulphidation Cu-Au mineralisation at Magerang is younger than the low-sulphidation Au deposit at Kelian. Andesites at Kelian and Magerang exhibit a relatively short age range suggesting that the duration of magmatism and related epithermal mineralisation in the greater Kelian region was between 0.5 - 1 Ma. During this time interval, one or more magmatic-hydrothermal systems produced 2 distinctive types of epithermal deposits: firstly, low-sulphidation Au mineralisation at Kelian and secondly high-sulphidation Cu-Au mineralisation at Magerang-Imang.

The magma sequence indicated by U-Pb zircon geochronology of the Kelian igneous complex matches with that expected for andesites. The Magerang-Imang hornblende andesite is younger than the Nakan pyroxene andesite, which is consistent with clinopyroxene preceeding hornblende in the normal crystallisation sequence for an andesitic magma. Furthermore, the geochemically most evolved Magerang-Imang andesite is the youngest of the two dated samples. The Kelian andesites also exhibit trace element characteristics of hornblende crystallization and are intermediate in age between the Nakan and Magerang-Imang andesites. If all these units form part of a single fractionating system, then the life span was at least 0.7 m.y.

The study of detrital zircons from the Kelian River shows that the Kelian igneous complex was active for about 3.5 m.y. Gold mineralisation appears to have occurred toward the end of this activity. The Kelian igneous complex is not represented in the Mahakam detrital grains, indicating that it was not geographically widespread on a region scale.

The inheritance pattern in the Kelian andesite and Runcing Rhyolite is unusual. The Kelian andesite stocks and Runcing diatreme, intrude into 70 - 76 Ma pyroclastics and sediments. Unless there is an unrecognised thrust underlying the Kelian region, the crust below the deposit must therefore consist of rocks that are Cretaceous and older. The occurrence of two populations of inherited grains in the Kelian andesite and Runcing Rhyolite, which are sub-equal in size to, and less than 1.6 m.y. older than the zircon population age that defines their emplacement age, is therefore unexpected.

The two large inheritance populations in both the Central Andesite and Runcing Rhyolite lie within the time range of the Kelian igneous complex as defined by the Kelian River detrital zircons. They must be derived from crustal intrusions that formed as part of the Kelian cycle. It is suggested that both the Kelian Andesite and Runcing Rhyolite were fed by 2 magma chambers that formed deep in the crust, each of which were long lived. Magmas rise in the crust until they reach their own density level (the neutral buoyancy level) where they spread out to form a magma chamber.

It is concluded that the magma chambers that fed the Kelian Andesite and Runcing Rhyolite were emplaced into pre-existing intrusions of similar composition that formed as part of the Kelian igneous complex. The abundance of xenocrystic zircons in both units suggests that these earlier intrusions were still hot, or perhaps even partially molten, at the time of magma emplacement. That is the shallow level stocks and diatremes at Kelian were fed by nested, cannibalistic intrusions deep in the crust that melted the walls and roofs of related, but pre-existing intrusions, and inherited abundant xenocrystic zircons in the process. The ages of the inherited zircons are interpreted as the ages of these earlier intrusions. Both the Kelian Andesite and the Runcing Rhyolite have two populations of inherited zircons, which indicate that the pre-existing intrusions formed in two distinct episodes, 0.7 to 0.8 m.y. apart. The difference between the emplacement age and the age of the oldest of the inherited zircon populations shows that this cannibalistic activity took place over 1.5 m.y. The interval of magmatic activity in these chambers corresponds to the period of peak activity in the Kelian igneous complex as defined by the detrital zircons.

The decrease in PGEs with increased fractional crystallisation seen in the Kelian Igneous Complex suggests that the parent magmas of each of these suites became sulphide saturated early in their fractionation history. This appears to be inconsistent with a magmatic-hydrothermal hypothesis for Kelian in which the Au was concentrated in a sulphide undersaturated parent magma chamber. Another puzzling feature of the data is the depletion of Au relative to adjacent elements on the mantle-normalized metal abundance diagram for the unaltered calc-alkaline rocks from the Kelian area. Most metal deposits are found in association with rocks that are already enriched in the metal of interest, e.g. Au in greenstones, Ni in komatiites, Cr in gabbros etc. This is apparently not true for Au deposits in calc-alkaline volcanics.

It is also interesting that the Cu-Au-PGE patterns remain parallel as their concentrations decrease with increasing SiO<sub>2</sub>. The Au and PGE ratios change little during fractionation. This is surprising because it implies either that the partition coefficients for the PGE into the sulfides are similar, which seems unlikely, or that Au and the PGE are not being depleted by simple equilibrium fractional crystallisation of sulfide. This is unlikely to be due to simple equilibrium of fractional crystallisation involving an immiscible sulfide melt. Alternative explanation for the parallel Cu-Au-PGE patterns is that the chalcophile element depletion in the Kelian Igneous Complex is due to a non-

equilibrium process. It is possible that sulfide precipitation occurred rapidly under disequilibrium conditions in a narrow boundary layer of cool magma at the margins of the intrusion. However, the most plausible process for the gradual depletion of Au and all of the PGE at Kelian is crustal assimilation. Simple dilution with crustal material that contains no Au or PGE is the only process that will decrease the abundance of all of the PGE equally.

The major conclusions of this study, which link the igneous suite with the economic mineralisation spatially and temporally, but not chemically, strongly suggest that there was no direct magmatic input of gold. Thus the intrusives acted as a *heat engine*, triggering convection of meteoric fluids which leached Au from a large volume of rock and, upon cooling, precipitated gold in a favourable structural setting. Therefore, it is inappropriate to target specific igneous rock-types (such as rhyolite or andesite) as there is no direct link between igneous intrusion and gold deposition.

As this is the first analytical study of the behaviour of Au and PGE in a fractionating felsic system, the implications are unclear and need to be confirmed by future studies.
References

# REFERENCES

- Abidin, H.Z., 1996. The tectonic history and mineral deposits of the East-Central Kalimantan Volcanic Belt, Indonesia : A comparative study of the Kelian, Muyup and Masupa Ria Gold Deposits. PhD Thesis. University of Adelaide, 286pp.
- Allen, J.M., 1988. Evaluation of mineral exploration in the Muyup COW area, East Kalimantan, Indonesia, P.T. Muyup Mas Murni, Unpublished report, 21pp.
- Arculus, R.J. and Powell, R., 1986. Source component mixing in the regions of arc magma generation. Journal of Geophysical Research 91, pp. 5913-5926.
- Ballard, J.R., Palin, J.M., Williams, I.A., Campbell, I.H. and Faunes, A., 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICPMS and SHRIMP. Geology 29, pp. 383-386.
- Barnes, S.J., Naldrett, A.J. and Gorton, M.P., 1985. The origin of the fractionation of platinum group elements in terrestrial magmas. Chemical Geology 53, pp. 303-323.
- Barnes, S.J., Boyd, R., Korneliussen, A., Nilson, L.P., Often, M., Pedersen, R.B. and Robins, B., 1988. The use of mantle normalization and metal ratios in discriminating between the effect of partial melting, crystal fractination and sulfide segregation on platinum group elements, gold, nickel and copper : Example from Norway. In H.M. Prichards, P.J. Potts, J.F.W. Bowles and S.J. Cribb (Editors), Geo-Platinum '87. Elsevier, London, pp. 113-143.
- Barnes, S.J. and Picard, C.P., 1993. The behaviour of platinum group elements during partial melting, crystal fractionation and sulfide segregation : An example from the Cape Smith Fold Belt, northern Quebec. Geochimica et Cosmochimica Acta 57, pp. 79-87.
- Berger, B.R. and Eimon, P.I., 1983. Conceptual models of epithermal precious metal deposits. In: W.C. Shanks (Editor), Cameron Volume on Unconventional Mineral Deposits. Society of Mining Engineers of AIME, pp. 191-205.
- Berger, B.R. and Henley, R.W., 1989. Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States. In: R.R. Keays, W.R.H. Ramsay and D.I. Groves (Editors), The Geology of Gold Deposits: The Perspective in 1988. Economic Geology Monograph 6, pp405-423.
- Best, M.G., 1969. Differentiation of calc-alkaline magmas. In: A.R. McBirney (Editor), Proceedings of the andesite conference. Department of Geology and Mineral Industries Oregon, Bulletin 65, pp. 65-75.
- Bezmen, N.I., Asif, M., Brugmann, G.E., Romanenko, I.M. and Naldrett, A.J., 1994. Distribution of Pd, Rh, Ru, Ir, Os and Au between sulfide and silicate metals. Geochimica et Cosmochimica Acta 58, pp. 1251-1260.
- Boettcher, A. L., 1973. Volcanism and orogenic belts The origin of andesites. Tectonophysics 17, pp.223-240.

- Buchanan, L.J., 1981. Precious metal deposits associated with volcanic environments in the southwest. In: W.R. Dickinson and W.D. Payne (Editors), Relations of Tectonics to Ore Deposits in the Southern Cordillera. Arizona Geological Society Digest 14, pp. 237-262.
- Black, L.P., Kamo, S.L., Williams, I.S., Foudoulis, C., Claoue-Long, J.C., Korsch, R.J. and Davis, D.W., 2000. The quest for a high-quality zircon standard for microbeam Pb-U-Th Geochronology. Geological Society of Australia, Abstracts No. 59, pp. 43.
- Cameron, G.H., Wall, V.J., Walshe, J.L. and Heinrich, C.A., 1995. Gold mineralisation at the Porgera gold mine, Papua New Guinea, in response to fluid mixing. In: J.L. Mauk and J.D. St. George (Editors), Pacrim Congress 1995: Exploring the Rim. Proceedings, Australasian Institute of Mining and Metallurgy, pp. 99-100.
- Campbell, I.H. and Barnes, S.J., 1984. A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. Canadian Mineralogist 22, pp. 151-160.
- Campbell, I.H., Naldrett, A.J. and Barnes, S-J., 1983. A model for the origin of platinum-rich horizons in the Bushveld and Stillwater complexes. Journal of Petrology 24, pp. 133-165.
- Capobianco, C.J. and Drake, M.J., 1990. Partitioning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum group elements fractionation trends. Geochimica et Cosmochimica Acta 54, pp. 869-874.
- Capobianco, C.J. and Drake, M.J., 1994. Partitioning and solubility of PGEs in oxides and silicates. Mineralogical Magazine 58A, pp. 144-145.
- Carlile, J.C. and Mitchell, A.H.G., 1994. Magmatic Arcs and associated gold and copper mineralisation in Indonesia. In: T.M. van Leeuwen, J.W. Hedenquist, L.P. James and J.A.S. Dow (Editors), Indonesian Mineral Deposits - Discoveries of the Past 25 Years. Journal of Geochemical Exploration 50, pp. 91-142.
- Cathles, L.M., Erendi, A.H.J. and Barrie, T., 1997. How long can a hydrothermal system be sustained by a single intrusive event ? Economic Geology 92, pp. 766-771.
- Chappell, B.W., 1996. Magma mixing and the production of compositional variation within granite suites: Evidence from the granites of Southeastern Australia. Journal of Petrology 37, pp. 449-470.
- Chappell, B. W., 1997. Compositional variation within granite suites of the Lachlan Fold Belt : its causes and implications for the physical state of granite magma. Transactions of the Royal Society of Edinburgh : Earth Sciences 88, pp. 159-170.

Cherniak, D.J. and Watson, E.B., 2000. Pb diffusion in zircon. Chemical Geology 172, pp. 5-24.

- Compston, W., Williams, I.S. and Meyer, C., 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research 89 Supplement, pp. B525-B542.
- Corbett, G.J., 1993. A Review of the structural controls to gold mineralisation at the Kelian mine and environs, Indonesia. P.T. Kelian Equatorial Mining, Unpublished report, 23 pp.

- Corbett, G.J. and Leach, T.M., 1995. SW Pacific Rim Au/Cu System : Structure, Alteration and Mineralisation. Workshop presented at University of British Columbia, 141pp.
- Corbett, G.J., Leach, T.M., Stewart, R. and Fulton, B., 1995. The Porgera Gold Deposit : Structure, Alteration and Mineralisation. In: J.L. Mauk and J.D. St. George (Editors), Pacrim Congress 1995: Exploring the Rim. Proceedings, Australasian Institute of Mining and Metallurgy, pp. 151-156.
- Corlett, G., 1999. The petrology of ten core samples from drillholes DD99HN01, DD99HN02 and DD99HN03, Sg. Han prospect, Kalimantan. PT. Rio Tinto Indonesia, Unpublished Report, 15pp.
- Crawford, A.J., Falloon, T.J. and Green, D.H., 1989. Classification, petrogenesis and tectonic setting of boninites. In: A.J. Crawford (Editor), Boninites. Unwin Hyman, London, 465pp.
- DePaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth and Planetary Science Letters 53, pp. 189-202.
- Eggins, S.M., Rudnick, R.L. and W.F. McDonough, 1998. The Composition of peridotites and their minerals : a laser-ablation ICP-MS study. Earth and Planetary Science Letters 154, pp. 53-71.
- Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M. and Handler, M.R., 1997. A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation. Chemical Geology 134, 311-326.
- Dunn, T. and Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study. Geochimica et Cosmochimica Acta 58, pp. 717-733.
- Faure, G., 1977. Principles of isotope geology. New York, John Wiley and Sons, 464pp.
- Foden, J.D., 1983. The petrology of the calc-alkaline lavas of Rinjani Volcano, East Sunda Arc: A model for island arc petrogenesis. Journal of Petrology 24, pp.98-130.
- Fujimaki, H, Tatsumoto, M. and Aoki, K., 1984. Partition coefficients of Hf, Zr and REE between phenocrysts and groundmasses. Journal of Geophysical Research 89, pp. B662-B672.
- Gallagher, K. and Sambridge, M., 1992. The resolution of past heat flow in sedimentary basins from non-linear inversion of geochemical data: the smoothest model approach with synthetic examples. Geophysical Journal International 109, pp. 78-95.
- Gill, J.B., 1978. Role of trace element partition coefficients in models of andesite genesis. Geochimica et Cosmochimica Acta 42, pp. 709-724.
- Gill, J.B., 1981. Orogenic andesites and plate tectonics. Springer-Verlag, Berlin, 390pp.
- Green, T.H., 1972. Crystallisation of calc-alkaline andesite under controlled high-pressure hydrous conditions. Contributions to Mineralogy and Petrology 34, pp. 150-166.
- Green, T.H., 1994. Experimental studies of trace element partitioning applicable to igneous petrogenesis Sedona 16 years later. Chemical Geology 117, pp.1-36.

- Green, T.H. and Pearson, N.J., 1985. Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochimica et Cosmochimica Acta 49, pp. 1465-1468.
- Gregoire, D.C., 1988. Determination of platinum, palladium, ruthenium and iridium in geological materials by inductively coupled plasma mass spectrometry with sample introduction by electrothermal vaporisation. Journal of Analytical Atomic Spectrometry 3, pp. 309-314.
- Hanson, G.N. and Langmuir, C.H., 1978. Modelling of major and trace elements in mantle-melt systems using trace element approaches. Geochimica et Cosmochimica Acta 42, pp.725-741.
- Harahap, B.H., 1993. Geochemical investigation of Tertiary magmatic rocks from Central West Kalimantan, Indonesia. Proceedings of the 22<sup>nd</sup> Annual Convention of the Indonesian Association of Geologists, pp. 304-326.
- Hartshorn, G., 1995. Kelian Brownfield Exploration. Half Yearly Report January-July 1995. Rio Tinto Indonesia, Unpublished report, 29pp.
- Hayba, D.O., Bethke, P.M., Heald, P. And Foley, N.K., 1985. Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits. In: B.R. Berger and P.M. Bethke (Editors), Geology and Geochemistry of Epithermal Systems. Society of Economic Geologists, Reviews in Economic Geology 2, pp129-167.
- Hawkesworth, C.J., Gallagher, K., Hergt, J.M. and McDermott, F., 1994. Destructive plate margin magmatism: Geochemistry and melt generation. Lithos 33, pp. 169-188.
- Heald, P., Foley, N.K. and Hayba, D.O., 1987. Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Economic Geology 82, pp. 1-26.
- Hedenquist, J.W., 1987. Mineralization associated with volcanic-related hydrothermal systems in the Circum Pacific Basin. In : M.K. Horn (Editor), Transactions of the Fourth Circum-Pacific Energy and Mineral Resources Conference, Singapure. American Association of Petroleum Geologists, pp. 513-524.
- Hedenquist, J.W. and Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, pp. 519-527.
- Henley. R.W., 1991. Epithermal gold deposits in volcanic terranes. In: R.P. Foster (Editor), Gold Metallogeny and Exploration. Blackie, Glasgow, pp. 133-164.
- Hirata, T. and Nesbitt, R.W., 1995. U-Pb isotope geochronology of zircon: Evaluation of the laser probe inductively coupled plasma mass spectrometry technique. Geochimica et Cosmochimica Acta 59, pp. 2491-2500.
- Hoatson, D.M. and Keays, R.R., 1989. Formation of platiniferous sulfide horizons by crystal fractionation and magma mixing in the Munni Munni Layered Intrusion, West Pilbara Block, Western Australia.
- Hoffman, E.L., Naldrett, A.J., Van Loon, J.C., Hancock, R.G.V. and Mason, A., 1978. The determination of all the platinum group elements and gold in rocks and ore by neutron activation analysis after preconcentration by a nickel sulfide fire-assay technique of large samples. Analytica Chimica Acta 102, pp. 157-166.

- Horn, I., Rudnick, R.L. and McDonough, W.F., 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation ICPMS: Application to U-Pb geochronology. Chemical Geology 164, pp. 281-301.
- Huppert, H.E and Sparks, R.S.J., 1980. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma. Contributions to Mineralogy and Petrology 75, pp. 279-289.
- Irving, A.J., 1978. A review of experimental studies of crystal/liquid trace element partitioning. Geochimica et Cosmochimica Acta 42, pp. 743-770.
- Irving, A.J. and Frey, F.A., 1984. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacrysts genesis. Geochimica et Cosmochimica Acta 48, pp. 1201-1221.
- Jackson, S.E., Fryer, B.J., Gosse, W., Healey, D.C., Longerich, H.P. and Strong, D.F., 1990. Determination of the precious metals in geological materials by inductively coupled plasma mass spectrometry (ICP-MS) with nickel sulfide collection and tellurium coprecipitation. Chemical Geology 83, pp. 119-132.
- Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C. and Essling, A.M., 1971. Precision measurement of the half lives and specific activities of <sup>235</sup>U and <sup>238</sup>U. Physics Reviews C4, pp. 1889-1907
- Keays, R.R., 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34, pp. 1-18.
- Keays, R.R. and Campbell, I.H., 1981. Precious metals in the Jimberlana Intrusion, Western Australia: Implications for the genesis of platiniferous ores in layered intrusions. Economic Geology 76, pp. 1118-1141.
- Koyaguchi, T., 1986. Textural and compositional evidence for magma mixing and its mechanism, Abu volcano group, Southwestern Japan. Contributions to Mineralogy and Petrology 93, pp. 33-45.
- Leach, T.M., 1991. Distribution of Hydrothermal Alteration at S. Magerang and Kelian Cahai, P.T. Kelian Equatorial Mining, Unpublished report, 13pp.
- Leach, T.M and Corlett, G., 1999. Petrological evaluation of core samples from the Plata prospect, East Kalimantan. PT. Danum Bukit Minerals, Unpublished report, 38pp.
- Le Maitre, R.W., et al., (Editors), 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell Scientific Publications, Oxford, 193 pp.
- Lee, J.K.W., Williams, I.S. and Ellis, D.J., 1997. Pb, U and Th diffusion in natural zircon. Nature 390, pp. 159-161.
- Lindgren, W., 1922. A suggestion for the terminology of certain mineral deposits. Economic Geology 17, pp.202-204.

Lindgren, W., 1933. Mineral Deposits. Mc.Graw Hill, New York, 930pp.

- Loucks, R.R., Eggins, S.M., Shelley, L.M.G., Kinsley, L.P.J. and Ware, N.G., 1995. Development of the inductively-coupled-plasma mass-spectrometry ultraviolet laser trace-element microanalizer (ICPMS-ULTEMA). Research School of Earth Sciences, Annual Report 1995, pp.138-140.
- Loucks, R.R., Eggins, S.M., Shelley, L.M.G., Kinsley, L.P.J., Ware, N.G., 1995. Development of the inductively-coupled-plasma mass-spectrometry ultraviolet laser trace-element micro-analizer (ICPMS-ULTEMA). Research School of Earth Sciences, Annual Report 1995, pp.138-140.
- Loucks, R.R. and Mavrogenes, J.A., 1999. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science 284, pp. 2159-2163.
- Martin, C. E., 1990. Rhenium-osmium isotope geochemistry of the mantle. PhD. thesis, Yale University.
- McCulloch, M.T and Gamble, J.A., 1991. Geochemical and geodynamical constrains on subduction zone magmatism. Earth and Planetary Science Letters 102, pp. 358-374.
- McDonough, W.F and Sun, S.-s., 1995. The composition of the earth. Chemical Geology 120, pp. 223-253.
- Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 56, pp. 207-218.
- Mitchell, R.H. and Keays, R.R., 1981. Abundance and distributions of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metalrich intergranular components in the upper mantle. Geochimica et Cosmochimica Acta 45, pp. 2425-2442.
- Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science 274, pp. 321-355.
- Naldrett, A.J., Hoffman, E.L., Green, A.H., Chou, C.L. and Naldrett, S.L., 1979. The composition of Ni-sulfide ores with particular reference to their content of PGE and Au. Canadian Mineralogist 17, pp. 403-415.
- Nell, J and O'Neill, H.St.C., 1997. The Gibbs free energy of formation and heat capacity of Rh<sub>2</sub>O<sub>3</sub> and MgRh<sub>2</sub>O<sub>4</sub>, the MgO-Rh-O phase diagram, and constraints on the stability of Mg<sub>2</sub>Rh<sup>4+</sup>O<sub>4</sub>. Geochimica et Cosmochimica Acta 61, pp. 4159-4171.
- Nicholls, I.A and Harris, K.L., 1980. Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochimica et Cosmochimica Acta 44, pp. 287-308.
- Nielsen, R.L., Gallahan, W.E. and Newberger, F., 1992. Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contributions to Mineralogy and Petrology 110, pp. 488-499.
- Norrish, K. and Hutton, J.T., 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta 33, pp. 431-453.
- Palin, J.M., Campbell, I.H. and Smith, K., 1998. Pb-U dating of zircon by Excimer Laser Ablation ICP-MS. Research School of Earth Sciences, Annual Report 1998, pp. 10.

- Panteleyev, A., 1986. A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits, Geoscience Canada 13, pp. 101-111.
- Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials, Geostandards Newsletter 21, pp. 115-144.
- Perfit, M.R., Gust, D.A., Beace, A.E., Arculus, R.J. and Taylor, S.R., 1980. Chemical characteristics of island-arc basalts: implications for mantle sources. Chemical geology 30, pp. 227-256.
- Perkins, W.T and Pearce, N.J.G., 1995. Mineral microanalysis by laser probe inductively coupled plasma mass spectrometry. In P.J. Pott, J.F.W. Bowles, S.J.B. Reed and M.R. Cave (Eds), Microprobe Techniques in the Earth Sciences. Chapman and Hall, London, pp. 291-325.
- Pieters, P.E., 1999, Notes on regional geology of the tenement areas held by PT. Riotinto exploration in Central Kalimantan. PT. Rekasindo Guriang Tandang, Unpublished report, 10 pp.
- Ravizza, G. and Pyle, D., 1997. PGE and Os isotopic analyses of single sample aliquots with NiS fire assay preconcentration. Chemical Geology 141, pp.251-268.
- Richards, J.P., 1992. Magmatic-epithermal transitions in alkalic systems: Porgera gold deposit, Papua New Guinea. Geology 20, pp. 547-550.
- Richards, J.P. and McDougall, I., 1990. Geochronology of the Porgera gold deposit, Papua New Guinea : Resolving the effects of excess argon on K-Ar and 40Ar/39Ar age estimates for magmatism and mineralization. Geochimica et Cosmochimica Acta 54, pp. 1397-1415.
- Ryan, M., 1987. Neutral buoyancy and the mechanical evolution of magmatic systems. In: B.O. Mysen (Ed), Magmatic Processes: Physicochemical Principles. Geochemical Society Special Publication 1, pp. 259-287.

Schmith, H., 1950. Origin of the "epithermal" mineral deposits. Economic Geology 45, pp. 191-200.

- Setiabudi, B.T., 1994. Regional Exploration of The Sopandua Kelian Cahai Magerang areas, P.T. Kelian Equatorial Mining, Unpublished report, 27pp.
- Seward, T.M., 1991. The hydrothermal geochemistry of gold. In : R.P. Foster (Ed), Gold Metallogeny and Exploration. Blackie and Sons Ltd., pp. 37-62.
- Sinclair, D.J., Kinsley, L.P.J. and McCulloch, M.T., 1998. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochimica et Cosmochimica Acta 62, pp. 1889-1901.
- Shinjo, R., 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system. Chemical Geology 157, pp. 69-88.
- Sillitoe, R.H., 1993a. Comments on geological models and exploration at Magerang and Kelian, East Kalimantan, Indonesia. Unpublished report, 7 pp.
- Sillitoe, R.H., 1993b. Epithermal Models: Genetic Types, Geometrical Controls and Shallow Features. In: R.V. Kirkham, W.D. Sinclair, R.I. Thorpe and J.M. Duke (Editors), Mineral Deposit Modelling. Geological Association of Canada Special Paper 40, pp. 403-417.

- Silvester, P.J., and Ghaderi, M., 1997. Trace element analysis of scheelite by excimer laser ablation—inductively coupled plasma—mass spectometry (ELA—ICP—MS) using a synthetic silicate glass standard. Chemical Geology 141, pp. 49-65
- Simmons, S.F. and Browne, P.R.L., 1990. Minearlogic, alteration and fluid inclusion studies of epithermal gold-bearing veins at Mt. Muro prospect, Central Kalimantan (Borneo), Indonesia. In: J.W. Hedenquist, N.C. White and G. Siddeley (Editors), Epithermal Gold Mineralisation of the Circum-Pacific: Geology, Geochemistry, Origin and Exploration, I. Journal of Geochemical Exploration 35, pp. 63-103.
- Simon, G., Kesler, S.E., Russell, N., Hall, C.M., Bell, D. and Pinero, E., 1999. Epithermal Gold Mineralisation in an Old Volcanic Arc: The Jacinto Deposit, Camaguey District, Cuba. Economic Geology 94, pp. 487-506.Seward, T.M., 1991. The hydrothermal geochemistry of gold. In : R.P. Foster (Ed), Gold Metallogeny and Exploration. Blackie and Sons Ltd., pp. 37-62.
- Sun, S.-s. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts : implication for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins, Geological Society Special Publication 42, pp. 313-345.
- Tatsumi, Y., Hamilton, D.L. and Nesbitt, R.W., 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research 29, pp. 293-309.
- Thompson, J.F.H., Abidin, H.Z, Both, R.A., Martosuroyo, S., Rafferty, W.J. and Thompson, A.J.B., 1994. Alteration and epithermal mineralisation in the Masupa Ria volcanic center, Central Kalimantan, Indonesia. In: T.M. van Leeuwen, J.W. Hedenquist, L.P. James and J.A.S. Dow (Editors), Indonesian Mineral Deposits - Discoveries of the Past 25 Years. Journal of Geochemical Exploration 50, pp. 429-456.
- Togashi, S. and Terashima, S., 1997. The behaviour of gold in unaltered island arc tholeiitic rocks from Izu-Oshima, Fuji, and Osoreyama volcanic areas, Japan. Geochimica et Cosmochimica Acta 61, pp. 543-554.
- Van Leeuwen, T.M., 1994. 25 Years of mineral exploration and discovery in Indonesia. In: T.M. van Leeuwen, J.W. Hedenquist, L.P. James and J.A.S. Dow (Editors), Indonesian Mineral Deposits Discoveries of the Past 25 Years. Journal of Geochemical Exploration 50, pp.13-90.
- Van Leeuwen, T.M., Leach, T., Hawke, A.A. and Hawke, M.M., 1990. The Kelian disseminated gold deposit, East Kalimantan, Indonesia. In: J.W. Hedenquist, N.C. White and G. Siddeley (Editors), Epithermal Gold Mineralisation of the Circum-Pacific: Geology, Geochemistry, Origin and Exploration, I. Journal of Geochemical Exploration 35, pp. 1-61.
- Wake, A.W., 1991. Gold mineralization at the Muyup Prospect, East Kalimantan, Indonesia. In : Proceedings of World Gold 91, pp.271-278.
- Ware, N.G., 1991. Combined energy-dispersive-wavelength-dispersive quantitative electron microprobe analysis. X-Ray Spectrometry 20, pp. 73-79.

- Wendt, I. And Carl C., 1991, The statistical distribution of the mean squared weighted deviation: Chemical Geology (Isotope Geoscience Section), v. 86, p. 275-285.
- Wendlandt, R.F., 1982. Sulfide saturation of basalt and andesite melts at high pressures and temperatures. American Mineralogist 67, pp. 877-885.
- Wilson, M., 1989. Igneous Petrogenesis. A global tectonic approach. Chapman and Hall, London UK, 466pp.
- Wilson, M., 1995. Magmatic differentiation. In: M.J. Le Bas (Ed), Milestones in Geology, Geological Survey, London, Memoir No. 16, pp. 205-218.
- Wood, D.A., Joron, J.L. and Treuil, M., 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters 45, pp. 326-336
- White, D.H., Muffler, L.J.P. and Truesdell, A.H., 1971. Vapour-dominated hydrothermal systems compared with hot-water systems. Economic Geology 66, pp. 75-97.
- White, N.C. and Hedenquist, J.W., 1990. Epithermal environments and styles of mineralisation: variations and their causes, and guidelines for exploration. In: J.W. Hedenquist, N.C. White and G. Siddeley (Editors), Epithermal Gold Mineralisation of the Circum-Pacific: Geology, Geochemistry, Origin and Exploration, I. Journal of Geochemical Exploration 35, pp 445-474.
- White, N.C., Leake, M.J., McCaughey, S.N. and Parris, B.W., 1995. Epithermal gold deposits of the southwest Pacific. Journal of Geochemical Exploration 54, pp. 87-136.
- White, N.C. and Poizat, V., 1995. Epithermal Deposits : diverse styles, diverse origin ? In: J.L. Mauk and J.D. St. George (Editors), Pacrim Congress 1995: Exploring the Rim. Proceedings, Australasian Institute of Mining and Metallurgy, pp. 623-628.

| APPE      | NDIX 1     | -1            |               |                |          |           |          |                      |               |
|-----------|------------|---------------|---------------|----------------|----------|-----------|----------|----------------------|---------------|
| List of s | amples fo  | r whole-re    | ock geochen   | nistry         |          |           |          |                      |               |
| ANU No.   | Sample No. | Kelian        | Drillhole No. | Location       | Kelian M | line Grid | R.L. (m) | Rock Type            | Alteration    |
|           |            | Drill Section |               |                | Northing | Easting   |          |                      |               |
| 99069     | 1132       | 50N           | KFD1-415m     | Tepu           | 9540     | 10149     | 1171     | andesite porphyry    | least altered |
| 99070     | 1134       | 50N           | KFD1-452m     | Тери           | 9540     | 10149     | 1171     | andesite porphyry    | least altered |
| 98020     | 123188     | 250N          | K782-48m      | East Pramp Pit | 9951     | 9990      | 1060     | andesite porphyry    | phyllic S2    |
| 98022     | 123191     | 250N          | K782-153m     | East Pramp Pit | 9951     | 9990      | 1060     | andesite porphyry    | phyllic S2    |
| 99034     | 123193     | 250N          | K782-182m     | East Pramp Pit | 9951     | 9990      | 1060     | hydrothermal breccia | phyllic S3    |
| 99024     | 123197     | 250N          | K782-357m     | East Pramp Pit | 9951     | 9990      | 1060     | andesite porphyry    | propylitic S1 |
| 98026     | 123362     | 250N          | K782-434m     | East Pramp Pit | 9951     | 9990      | 1060     | andesite porphyry    | propylitic S1 |
| 98027     | 123365     | 250N          | K782-527m     | East Pramp Pit | 9951     | 9990      | 1060     | andesite porphyry    | propylitic S1 |
| 99035     | 123367     | 250N          | K782-610m     | East Pramp Pit | 9951     | 9990      | 1060     | lithic tuff          | phyllic-S2    |
| 99071     | 1143       | 390N          | K418-27.5m    | Tepu           | 9624     | 10527     | 1124     | andesite porphyry    | least altered |
| 99047     | 123524     | 390N          | K622-174m     | East Pramp Pit | 9790     | 10361     | 1136     | andesite porphyry    | phyllic S2    |
| 98075     | 123532     | 390N          | K625-240m     | East Pramp Pit | 9883     | 10262     | 1119     | andesite porphyry    | propylitic S1 |
| 98039     | 123418     | 590N          | K621-155m     | East Pramp Pit | 10121    | 10313     | 1119     | andesite porphyry    | phyllic S2    |
| 98038     | 123419     | 590N          | K621-178m     | East Pramp Pit | 10121    | 10313     | 1119     | andesite porphyry    | phyllic S2    |
| 98041     | 123427     | 590N          | K626-302m     | East Pramp Pit | 10078    | 10357     | 1120     | andesite porphyry    | propylitic S1 |
| 98042     | 123432     | 590N          | K629-199m     | East Pramp Pit | 10078    | 10357     | 1120     | andesite porphyry    | phyllic S3    |
| 99036     | 123433     | 590N          | K629-319m     | East Pramp Pit | 10078    | 10357     | 1120     | hydrothermal breccia | phyllic S3    |
| 99037     | 123434     | 590N          | K629-337m     | East Pramp Pit | 10078    | 10357     | 1120     | hydrothermal breccia | phyllic S3    |
| 98043     | 123436     | 590N          | K629-397m     | East Pramp Pit | 10078    | 10357     | 1120     | andesite porphyry    | phyllic S3    |
| 99038     | 123437     | 590N          | K708-360m     | East Pramp Pit | 10111    | 10318     | 1100     | andesite porphyry    | phyllic S3    |
| 98048     | 123473     | 710N          | K609-228m     | And 393 Zone   | 10333    | 10275     | 1129     | andesite porphyry    | phyllic S3    |
| 98050     | 123476     | 710N          | K610-155m     | East Pramp Pit | 10160    | 10446     | 1129     | andesite porphyry    | propylitic S1 |
| 98049     | 123475     | 710N          | K610-329m     | East Pramp Pit | 10160    | 10446     | 1129     | hydroth. bx tuff     | phyllic-S2    |
| 99040     | 123479     | 710N          | K610-352m     | East Pramp Pit | 10160    | 10446     | 1129     | hydroth. bx tuff     | argillic-S4   |
| 99041     | 123480     | 710N          | K610-373m     | East Pramp Pit | 10160    | 10446     | 1129     | hydroth. bx tuff     | phyllic-S3    |
| 98051     | 123485     | 710N          | K637-148m     | East Pramp Pit | 10116    | 10487     | 1120     | andesite porphyry    | phyllic S2    |
| 98052     | 123486     | 710N          | K637-275m     | East Pramp Pit | 10116    | 10487     | 1120     | andesite porphyry    | phyllic S3    |
| 99048     | 123578     | 710N          | K681-15m      | East Pramp Pit | 10122    | 10483     | 1120     | hydrothermal breccia | phyllic S3    |
| 99042     | 123487     | 710N          | K681-239m     | East Pramp Pit | 10122    | 10483     | 1120     | andesite porphyry    | phyllic S3    |
| 99043     | 123489     | 710N          | K681-308m     | East Pramp Pit | 10122    | 10483     | 1120     | vitric tuff          | phyllic S3    |
| 99044     | 123490     | 710N          | K681-365m     | East Pramp Pit | 10122    | 10483     | 1120     | vitric tuff          | phyllic-S2    |
| 99045     | 123492     | 710N          | K686-74m      | East Pramp Pit | 10081    | 10523     | 1120     | andesite porphyry    | phyllic S2    |
| 99049     | 123583     | 710N          | K686-151m     | G. Runcing     | 10081    | 10523     | 1120     | muddy breccia        | phyllic S2    |
| 98053     | 123493     | 710N          | K691-134m     | S. Jiu         | 10576    | 10046     | 1120     | rhvolite porphyry    | phyllic-S2    |
| 98054     | 123501     | 750N          | K633-277m     | East Pramp Pit | 10289    | 10372     | 1119     | andesite porphyry    | phyllic S2    |
| 99046     | 123502     | 750N          | K634-80m      | East Pramp Pit | 10327    | 10334     | 1118     | lithic tuff          | phyllic-S2    |
| 98056     | 123505     | 750N          | K634-181m     | East Pramp Pit | 10327    | 10334     | 1118     | lithic tuff          | phyllic-S3    |
| 98058     | 123509     | 750N          | K636-131m     | East Pramp Pit | 10216    | 10443     | 1119     | andesite porphyry    | propylitic S1 |
| 98059     | 123511     | 750N          | K643-211m     | East Pramp Pit | 10177    | 10477     | 1120     | andesite porphyry    | argillic S4   |
| 98011     | 123218     | 950N          | pit exposure  | G. Runcing     | 10600    | 10380     | 1110     | rhvolite porphyry    | phyllic-S2    |
| 98072     | 123219     | 1030N         | pit exposure  | G. Runcing     | 10640    | 10425     | 1110     | rhvolite porphyry    | phyllic-S2    |
| 98012     | 123220     | 1110N         | pit exposure  | G. Runcing     | 10650    | 10510     | 1120     | rhvolite porphyry    | phyllic-S2    |
| 99030     | 123203     | 870N          | pit exposure  | East Pramp Pit | 10475    | 10355     | 1090     | tuff lapilli         | argillic-S4   |
| 99031     | 123204     | 870N          | pit exposure  | East Pramp Pit | 10465    | 10370     | 1090     | hydroth, bx tuff     | argillic-S4   |
| 99032     | 123215     | 360N          | pit exposure  | East Pramp Pit | 10000    | 10105     | 1110     | lithic tuff          | argillic-S4   |
| 99033     | 123236     | 950N          | pit exposure  | G. Runcing     | 10460    | 10485     | 1090     | mudstone/diatreme bx | phyllic S2    |
| 98001     | 123200     | 250N          | pit exposure  | West Pramp Pit | 10130    | 9825      | 1170     | andesite porphyry    | propylitic S1 |
| 98002     | 123201     | 610N          | pit exposure  | East Pramp Pit | 10260    | 10200     | 1020     | andesite porphyry    | propylitic S1 |
| 98007     | 123209     | 210N          | pit exposure  | West Pramp Pit | 10100    | 9800      | 1170     | andesite porphyry    | propylitic S1 |
| 98073     | 123210     | 40N           | pit exposure  | West Pramp Pit | 9960     | 9695      | 1170     | andesite porphyry    | propylitic SI |
| 98008     | 123212     | 90N           | pit exposure  | West Pramp Pit | 10070    | 9655      | 1170     | andesite porphyry    | propylitic S1 |
| 98014     | 123228     | 660N          | pit exposure  | East Pramp Pit | 9980     | 10575     | 1090     | andesite porphyry    | propylitic S1 |
| 98004     | 123206     | 50N           | pit exposure  | West Pramp Pit | 9975     | 9695      | 1170     | andesite porphyry    | phyllic S2    |
| 98005     | 123207     | 50N           | pit exposure  | West Pramp Pit | 9985     | 9685      | 1170     | andesite porphyry    | phyllic S2    |
| 98003     | 123205     | 580N          | pit exposure  | East Pramp Pit | 10055    | 10360     | 1020     | andesite porphyry    | argillic S4   |
| 98009     | 123213     | 140N          | pit exposure  | West Pramp Pit | 10130    | 9675      | 1170     | andesite porphyry    | argillic S4   |
| 00074     | 122214     | 120N          | nit exposure  | West Pramp Pit | 10100    | 9665      | 1170     | andesite porphyry    | argillic S4   |

| APPEN     | NDIX 1-   | -2               |            |          |           |         |           |               |
|-----------|-----------|------------------|------------|----------|-----------|---------|-----------|---------------|
| List of s | amples fo | r whole-rock     | geochemist | ry       |           |         |           |               |
| ANU No.   | Sample No | Reg. Exploration | Prospect   | Kelian N | Aine Grid |         |           |               |
|           |           | Drillhole No.    |            | Northing | Easting   | R.L.(m) | Rock Type | Alteration    |
| 99054     | 123122    | DDM1-28m         | Magerang   | 12300    | 6420      | 1249    | andesite  | phyllic       |
| 98080     | 123124    | DDM1-75m         | Magerang   | 12300    | 6420      | 1249    | andesite  | propylitic    |
| 99050     | 123131    | DDM2-33m         | Magerang   | 13040    | 6620      | 1249    | andesite  | adv.argillic  |
| 99051     | 123132    | DDM2-49m         | Magerang   | 13040    | 6620      | 1249    | andesite  | phyllic       |
| 99052     | 123137    | DDM3-86m         | Magerang   | 12300    | 6420      | 1249    | andesite  | phyllic       |
| 99053     | 123138    | DDM3-117m        | Magerang   | 12300    | 6420      | 1249    | andesite  | phyllic       |
| 98062     | 123140    | DDM3-172m        | Magerang   | 12300    | 6420      | 1249    | andesite  | phyllic       |
| 99055     | 123164    | DDM3-236m        | Magerang   | 12300    | 6420      | 1249    | andesite  | phyllic       |
| 98088     | 123167    | DDM3-300m        | Magerang   | 12300    | 6420      | 1249    | andesite  | phyllic       |
| 99056     | 123170    | DDM3-389m        | Magerang   | 12300    | 6420      | 1249    | andesite  | phyllic       |
| 98063     | 123147    | DDM5-312m        | Magerang   | 13000    | 6020      |         | andesite  | propylitic    |
| 98082     | 123148    | DDM5-339m        | Magerang   | 13000    | 6020      |         | andesite  | phyllic       |
| 99078     | 1158      | DDM6-129m        | Magerang   | 12094    | 6516      | 1270    | andesite  | least altered |
| 98081     | 123144    | DDM6-140m        | Magerang   | 12094    | 6516      | 1270    | andesite  | least altered |
| 99079     | 1159      | DDM6-151m        | Magerang   | 12094    | 6516      | 1270    | andesite  | least altered |
| 98064     | 123158    | DDM6-177m        | Magerang   | 12094    | 6516      | 1270    | andesite  | least altered |
| 98086     | 123159    | DDM6-192m        | Magerang   | 12094    | 6516      | 1270    | andesite  | least altered |
| 99080     | 1160      | DDM6-206m        | Magerang   | 12094    | 6516      | 1270    | andesite  | least altered |
| 98087     | 123160    | DDM6-221m        | Magerang   | 12094    | 6516      | 1270    | andesite  | least altered |
| 99081     | 1161      | DDM6-233m        | Magerang   | 12094    | 6516      | 1270    | andesite  | least altered |
| 98083     | 123151    | DDM7-67m         | Magerang   | 12631    | 5692      | 1282    | andesite  | propylitic    |
| 98084     | 123152    | DDM7-82m         | Magerang   | 12631    | 5692      | 1282    | andesite  | propylitic    |
| 98065     | 123153    | DDM7-115m        | Magerang   | 12631    | 5692      | 1282    | andesite  | propylitic    |
| 98085     | 123154    | DDM7-138m        | Magerang   | 12631    | 5692      | 1282    | andesite  | propylitic    |
| 98076     | 123101    | EdI2-36m         | Imang      | 12400    | 7850      | 1185    | andesite  | propylitic    |
| 99076     | 1130      | EdI2-41m         | Imang      | 12400    | 7850      | 1185    | andesite  | least altered |
| 99072     | 1126      | EdI2-46m         | Imang      | 12400    | 7850      | 1185    | andesite  | propylitic    |
| 98077     | 123102    | EdI2-56m         | Imang      | 12400    | 7850      | 1185    | andesite  | least altered |
| 99073     | 1127      | EdI2-66.5m       | Imang      | 12400    | 7850      | 1185    | andesite  | least altered |
| 99074     | 1128      | EdI2-92.5m       | Imang      | 12400    | 7850      | 1185    | andesite  | least altered |
| 98060     | 123104    | EdI2-96m         | Imang      | 12400    | 7850      | 1185    | andesite  | least altered |
| 98078     | 123107    | EdI3-65m         | Imang      | 12600    | 7850      |         | andesite  | least altered |
| 98079     | 123108    | EdI4-15m         | Imang      | 13000    | 7900      |         | andesite  | least altered |
| 99075     | 1129      | EdI4-26m         | Imang      | 13000    | 7900      |         | andesite  | propylitic    |
| 98061     | 123109    | EdI4-36m         | Imang      | 13000    | 7900      |         | andesite  | least altered |
| 99077     | 1155      | EdI4-47m         | Imang      | 13000    | 7900      |         | andesite  | least altered |
| 98066     | 123171    | DSD1-51m         | Magerang   | 11038    | 6705      | 1177    | andesite  | phyllic       |
| 98089     | 123172    | DSD1-78m         | Magerang   | 11038    | 6705      | 1177    | andesite  | propylitic    |
| 98067     | 123176    | DSD1-206m        | Magerang   | 11038    | 6705      | 1177    | andesite  | propylitic    |
| 98090     | 123178    | DSD1-245m        | Magerang   | 11038    | 6705      | 1177    | andesite  | propylitic    |
| 98070     | 123226    | S. Magerang      | Magerang   | 12240    | 7560      |         | andesite  | least altered |
| 98071     | 123227    | S. Taliyuda      | Magerang   | 12520    | 7380      |         | andesite  | least altered |

| List of samples for whole-rock geochemistry     Image of the set of the se | APPE      | NDIX 1-    | -3                   |           |              |                |           |                 |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------------------|-----------|--------------|----------------|-----------|-----------------|---------------|
| ANU No.     Sample No.     Drillhole No.     Prospect     Kelian Mine     Grid     R.L.(m)     Rock Type     Alteration       90068     123183     EdN5-63m     Nakan     7777     7277     1211     andesite     least altered       90057     1016     NWD4-5.5m     Nakan     9405     \$750     1170     andesite     least altered       90084     1108     NWD4-22m     Nakan     9405     \$8790     1170     andesite     least altered       90085     110     NWD4-22m     Nakan     9405     \$8790     1170     andesite     least altered       90085     1109     NWD5-45.m     Nakan     950     825     1210     andesite     least altered       90088     1174     NWD6-24m     Nakan     9286     8840     1225     andesite     least altered       90089     1175     NWD1-23.5m     Nakan     8784     8633     1216     andesite     least altered       90090     1177     NWD13.29m     Nakan     8784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | List of s | amples fo  | r whole-rock geod    | hemistry  |              |                |           |                 |               |
| 98068     123183     EdN5-63m     Norhing     Easting     9277     1211     andesite     least altered       99057     123184     EdN6-27m     Nakan     7797     9277     1211     andesite     least altered       99057     12110     NWD4-5.5m     Nakan     9405     8790     1170     andesite     least altered       99084     1106     NWD4-22m     Nakan     9405     8790     1170     andesite     least altered       99084     1108     NWD4-22m     Nakan     9405     8790     1170     andesite     least altered       99085     1174     NWD5-42m     Nakan     9350     8825     1210     andesite     least altered       99089     1177     NWD1-24m     Nakan     926     8840     1225     andesite     least altered       990901     1177     NWD1-25m     Nakan     8784     8633     1216     andesite     least altered       98060     123187-1     NWD1-32m     Nakan     8784     8633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANU No.   | Sample No. | Drillhole No.        | Prospect  | Kelian Mi    | ne Grid        | R.L.(m)   | Rock Type       | Alteration    |
| 98068     123183     EdNS-63m     Nakan     7797     9277     1211     andesite     least altered       99057     123184     EdNS-65m     Nakan     7784     9619     1118     Volc.Sandsome     least altered       99082     1106     NWD4-12.5m     Nakan     9405     8790     1170     andesite     least altered       99084     1108     NWD4-22m     Nakan     9405     8790     1170     andesite     least altered       99085     1109     NWD5-30m     Nakan     9405     8790     1170     andesite     least altered       99085     1174     NWD5-30m     Nakan     9350     8825     1210     andesite     least altered       99089     1176     NWD1-23m     Nakan     9744     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784 <t< td=""><td></td><td></td><td></td><td></td><td>Northing</td><td>Easting</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |            |                      |           | Northing     | Easting        |           |                 |               |
| 99057     123184     EdNo.29m     Nakan     9784     9619     1118     Voic. Sandsome     least altered       99083     1107     NWD4-6.5m     Nakan     9405     8790     1170     andesite     least altered       99086     1110     NWD4-12m     Nakan     9405     8790     1170     andesite     least altered       99084     1108     NWD4-22m     Nakan     9405     8790     1170     andesite     least altered       99085     1109     NWD5-8.5m     Nakan     9350     8825     1210     andesite     least altered       99088     1174     NWD6-24m     Nakan     9286     8840     1225     andesite     least altered       99090     1176     NWD1-25.5m     Nakan     8784     8633     1216     andesite     least altered       98061     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-3     NWD13-29m     Nakan     8784     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98068     | 123183     | EdN5-63m             | Nakan     | 7797         | 9277           | 1211      | andesite        | least altered |
| 99082     1106     NWD4-6.5m     Nakan     9405     8790     1170     andesite     least altered       99084     1100     NWD4-22m     Nakan     9405     8790     1170     andesite     least altered       99084     1108     NWD4-22m     Nakan     9405     8790     1170     andesite     least altered       99085     1109     NWD5-8.5m     Nakan     9350     8825     1210     andesite     least altered       99088     1174     NWD6-24m     Nakan     9286     8840     1225     andesite     least altered       99089     1176     NWD1-23.5m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-23m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-3     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-3     NWD13-29m     Nakan     8784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99057     | 123184     | EdN6-29m             | Nakan     | 7784         | 9619           | 1118      | Volc. Sandstone | least altered |
| 99083     1107     NWD4-12.5m     Nakan     9405     8790     1170     andesite     least altered       99084     1110     NWD4-22m     Nakan     9405     8790     1170     andesite     least altered       99085     1109     NWD5-8.5m     Nakan     9500     8825     1210     andesite     least altered       99087     1117     NWD6-24m     Nakan     9286     8840     1225     andesite     least altered       99089     1176     NWD0-12m     Nakan     9286     8840     1225     andesite     least altered       99090     1176     NWD0-12.5m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-3     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784 <td< td=""><td>99082</td><td>1106</td><td>NWD4-6.5m</td><td>Nakan</td><td>9405</td><td>8790</td><td>1170</td><td>andesite</td><td>least altered</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99082     | 1106       | NWD4-6.5m            | Nakan     | 9405         | 8790           | 1170      | andesite        | least altered |
| 99086     1110     NWD4-20m     Nakan     9405     8790     1170     andesite     least altered       99084     1109     NWD5-3.5m     Nakan     9500     8825     1210     andesite     least altered       99085     1109     NWD5-3.5m     Nakan     9500     8825     1210     andesite     least altered       99087     1111     NWD6-24m     Nakan     9286     8825     1210     andesite     least altered       99089     1175     NWD9-12m     Nakan     286     8840     1225     andesite     least altered       99091     1176     NWD13-25m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99083     | 1107       | NWD4-12.5m           | Nakan     | 9405         | 8790           | 1170      | andesite        | least altered |
| 99084     1108     NWD4-22m     Nakan     9405     8790     1170     andesite     least altered       99085     1109     NWD5-30m     Nakan     9350     8825     1210     andesite     least altered       99088     1174     NWD5-30m     Nakan     9286     8840     1225     andesite     least altered       99089     1176     NWD0-12m     Nakan     9286     8840     1225     andesite     least altered       99090     1176     NWD10-24.5m     Nakan     9784     8633     1216     andesite     least altered       98001     123186     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784 <t< td=""><td>99086</td><td>1110</td><td>NWD4-20m</td><td>Nakan</td><td>9405</td><td>8790</td><td>1170</td><td>andesite</td><td>least altered</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99086     | 1110       | NWD4-20m             | Nakan     | 9405         | 8790           | 1170      | andesite        | least altered |
| 99085     1109     NWD5+8.5m     Nakan     9350     8825     1210     andesite     least altered       99087     1111     NWD5-30m     Nakan     9350     8825     1210     andesite     least altered       99088     1174     NWD6-24m     Nakan     225     andesite     least altered       99090     1176     NWD0-24.5m     Nakan     225     andesite     least altered       99090     1176     NWD10-24.5m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99084     | 1108       | NWD4-22m             | Nakan     | 9405         | 8790           | 1170      | andesite        | least altered |
| 99087     1111     NWD5-30m     Nakan     9350     8825     1210     andesite     least altered       99088     1174     NWD6-24m     Nakan     9286     8840     1225     andesite     least altered       99089     1175     NWD1-22m     Nakan     226     andesite     least altered       99091     1176     NWD10-24.5m     Nakan     8784     8633     1216     andesite     least altered       98091     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-2     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       ANU No. Sample No.     Location     Prospect     RTI Reg. Exploratiordirid     R.L.(m)     R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99085     | 1109       | NWD5-8.5m            | Nakan     | 9350         | 8825           | 1210      | andesite        | least altered |
| 99088     1174     NWD6-24m     Nakan     9286     8840     1225     andesite     least altered       99090     1175     NWD9-12m     Nakan     andesite     least altered       99090     1176     NWD10-24.5m     Nakan     andesite     least altered       98091     123186     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered     propylitit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99087     | 1111       | NWD5-30m             | Nakan     | 9350         | 8825           | 1210      | andesite        | least altered |
| 99089     1175     NWD9-12m     Nakan     andesite     least altered       99090     1177     NWD10-2.5m     Nakan     andesite     least altered       98091     123186     NWD13-23m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-2     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-2     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       99051     123301     G. Tinggi, Tabang     Ritan     67750 mN     398500 mE     rhyolite     least altered       990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99088     | 1174       | NWD6-24m             | Nakan     | 9286         | 8840           | 1225      | andesite        | least altered |
| 99090     1176     NWD10-24.5m     Nakan     andesite     least altered       99091     1177     NWD1-25.5m     Nakan     andesite     least altered       98001     123186     NWD13-23m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-3     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-3     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123305     G. Eotain     Prospect     RTI Reg. Exploration Grid     R.L.(m)     Rock Type     Alteration       98093     123307     S. Batuliten     Ritan     63775 mN     398500 mE     andesite     arguilitic       99061 </td <td>99089</td> <td>1175</td> <td>NWD9-12m</td> <td>Nakan</td> <td></td> <td></td> <td>121101.60</td> <td>andesite</td> <td>least altered</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99089     | 1175       | NWD9-12m             | Nakan     |              |                | 121101.60 | andesite        | least altered |
| 99091     1177     NWD11-29.5m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       9809     123307     G. Tinggi, Tabang     Ritan     6750 mN     398500 mE     andesite     least altered       99059     123305     G. Botak     Ritan     63757 mN     400075 mE     andesite     adv. argillic       99061     123317     vei zone, Mejuk     Ritan     63350 mN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99090     | 1176       | NWD10-24.5m          | Nakan     |              |                |           | andesite        | least altered |
| 98091     123186     NWD13-23m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-3     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98059     123305     G. Tinggi, Tabang     Ritan     50750 mN     398500 mE     andesite     andesite     least altered       99059     123307     S. Batuliten     Ritan     42850 mN     39250 mE     rhyolite     least altered       99061     123317     teinzone, Mejuk     Ritan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99091     | 1177       | NWD11-29.5m          | Nakan     |              |                |           | andesite        | least altered |
| 98069     123187-1     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-2     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       ANU No. Sample No.     Location     Prospect     RTI Reg. Exploration Grid     R.L.(m)     Rock Type     Alteration       98092     123307     G. Tinggi, Tabang     Ritan     50750 mN     398500 mE     andesite     least altered       99058     123307     S. Batuliten     Ritan     63775 mN     40000 TS mE     andesite     argillic       99050     12330     Koevery oc, Mejuk     Ritan     63850 mN     40105 mE     andesite     argillic       99061     123320     discovery oc, Mejuk     Ritan     63505 mN     398750 mE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98091     | 123186     | NWD13-23m            | Nakan     | 8784         | 8633           | 1216      | andesite        | least altered |
| Dotsol     Dataset     Dotsol     Dataset     Dotsol     Dataset     Dotsol       98069     123187-2     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-3     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       98069     123187-4     NWD13-29m     Nakan     8784     8633     1216     andesite     least altered       ANU No.     Sample No.     Location     Prospect     RTI Reg. Exploration Grid     R.L.(m)     Rock Type     Alteration       98092     123307     G. Tinggi, Tabang     Ritan     60750 mN     398500 mE     andesite     propylitic       99058     123307     S. Batuliten     Ritan     63750 mN     390500 mE     andesite     andesite     andesite     andesite     argilitic       99060     123313     timber road, Mejuk     Ritan     63870 mN     401050 mE     andesite     argillitic       99061     123320     discovery olc, Mejuk     Ritan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98069     | 123187-1   | NWD13-29m            | Nakan     | 8784         | 8633           | 1216      | andesite        | least altered |
| Discrete   NWD13-29m   Nakan   8784   8633   1216   andesite   least altered     98069   123187-3   NWD13-29m   Nakan   8784   8633   1216   andesite   least altered     98069   123187-4   NWD13-29m   Nakan   8784   8633   1216   andesite   least altered     ANU No.   Sample No.   Location   Prospect   RTI Reg. Exploration Grid   R.L.(m)   Rock Type   Alteration     98092   123307   G. Tinggi, Tabang   Ritan   50750 mN   410500 mE   andesite   least altered     99058   123307   S. Batuliten   Ritan   62750 mN   394250 mE   rhyolite   least altered     99050   123310   timber road, Mejuk   Ritan   63870 mN   400075 mE   andesite   argillic     99061   123317   tein zone, Mejuk   Ritan   63275 mN   398750 mE   andesite   argillic     99064   123337   Bengeh   Muyup   uff   phyllic   popyllitic     99064   123342   S. Tresia   Muyup   dacite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98069     | 123187-2   | NWD13-29m            | Nakan     | 8784         | 8633           | 1216      | andesite        | least altered |
| Disol   NWD13-29m   Natam   O'R   Disol   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98069     | 123187-3   | NWD13-29m            | Nakan     | 8784         | 8633           | 1216      | andesite        | least altered |
| Joboly   Link and the location   Prospect   RTI Reg. Exploration Grid   R.L.(m)   Rock Type   Alteration     98092   123301   G. Tinggi, Tabang   Ritan   50750 mN   398500 mE   andesite   least altered     98092   123305   G. Botak   Ritan   50750 mN   398500 mE   andesite   least altered     99058   123307   S. Batuliten   Ritan   67750 mN   410500 mE   andesite   least altered     99059   123307   S. Batuliten   Ritan   42850 mN   394250 mE   rhyolite   least altered     99050   123317   vein zone, Mejuk   Ritan   63775 mN   400075 mE   andesite   adv.grillic     99061   123317   vein zone, Mejuk   Ritan   63350 mN   401050 mE   andesite   argillic     99063   123320   discovery o/c, Mejuk   Ritan   63275 mN   398750 mE   andesite   argillic     99064   123337   Bengeh   Muyup   utff   phyllic   phyllic     99064   123343   S. Tresia   Muyup   utff   phyllic <td< td=""><td>08060</td><td>123187-4</td><td>NWD13-20m</td><td>Nakan</td><td>8784</td><td>8633</td><td>1216</td><td>andesite</td><td>least altered</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 08060     | 123187-4   | NWD13-20m            | Nakan     | 8784         | 8633           | 1216      | andesite        | least altered |
| ANU No.   Sample No.   Location   Prospect   RTI Reg. Exploration Grid   R.L.(m)   Rock Type   Alteration     98092   123301   G. Tinggi, Tabang   Ritan   50750 mN   398500 mE   andesite   least altered     98093   123305   G. Botak   Ritan   67750 mN   410500 mE   andesite   propylitic     98093   123307   S. Batuliten   Ritan   42850 mN   394250 mE   rhyolite   least altered     99059   123308   S. Belayan   Ritan   43800 mN   393500 mE   rhyolite   least altered     99060   123317   vein zone, Mejuk   Ritan   63850 mN   400125 mE   andesite   argillic     99061   123320   discovery o/c, Mejuk   Ritan   63275 mN   398750 mE   andesite   propylitic     99064   123342   S. Tresia   Muyup   uff   phylic   phylic     99064   123343   S. Tresia   Muyup   uff   phylic   gate altered     99066   123343   S. Tresia   Muyup   uff   phylic   gate altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70007     | AMULUT     | A W D 15-27III       | Indikali  | 0704         | 0000           | 1210      | unconc          | icust artered |
| NorthingEastingConstruction98092123301G. Tinggi, TabangRitan50750 mN398500 mEandesiteleast altered99058123305G. BotakRitan67750 mN410500 mEandesitepropylitic98093123307S. BatulitenRitan42850 mN394250 mErhyoliteleast altered99059123308S. BelayanRitan44800 mN393500 mErhyoliteleast altered99060123313timber road, MejukRitan63775 mN400075 mEandesiteadv. argillic99061123317vein zone, MejukRitan63350 mN400125 mEandesiteargillic99063123320discovery o/c, MejukRitan63275 mN398750 mEandesitepropylitic99064123337BengehMuyuptuffphyllicphyllic99065123342S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyupdaciteleast altered98096123343S. RelayMuyupdaciteleast altered98096123343S. RTMMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98096123354S. RTMMuyupdaciteleast altered990921101B.Utul-1Batu Utulmodesiteandesite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANU No.   | Sample No. | Location             | Prospect  | RTI Reg. Exp | oloration Grid | R.L.(m)   | Rock Type       | Alteration    |
| 98092123301G. Tinggi, TabangRitan50750 mN398500 mEandesiteleast altered99058123305G. BotakRitan67750 mN410500 mEandesitepropylitic98093123307S. BatulitenRitan42850 mN394250 mErhyoliteleast altered99059123308S. BelayanRitan44800 mN393500 mErhyoliteleast altered99060123313timber road, MejukRitan63775 mN400075 mEandesiteadv. argillic99061123320discovery o/c, MejukRitan63850 mN401050 mEandesiteargillic99063123320discovery o/c, MejukRitan63275 mN398750 mEandesiteargillic99064123337BengehMuyupandesiteargillicpropylitic99065123342S. TresiaMuyuptuffphyllic99064123333S. TresiaMuyupdaciteleast altered98094123348S. Buluh HuluMuyupdaciteleast altered98096123343S. TresiaMuyupdaciteleast altered98097123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered990921101B.Utul-1Batu Utulmodesiteandesite990931102 <t< td=""><td></td><td></td><td></td><td></td><td>Northing</td><td>Easting</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |            |                      |           | Northing     | Easting        |           |                 |               |
| 99058123301O. Inggi, iabangNtan50/30 mk39/300 mEandesiteleast altered99058123307S. BatulitenRitan67750 mN410500 mEandesiteproylitic99059123308S. BelayanRitan42850 mN394250 mErhyoliteleast altered99060123313timber road, MejukRitan63775 mN400075 mEandesiteadv. argillic99061123317vein zone, MejukRitan63850 mN400125 mEandesiteargillic99062123320discovery o/c, MejukRitan64350 mN401050 mEandesiteargillic99063123325timber road, MejukRitan63275 mN398750 mEandesiteargillic99064123373BengehMuyuptuffphyllicphyllic99065123342S. TresiaMuyuptuffphyllic99064123343S. TresiaMuyupdaciteleast altered99067123343S. Buluh HuluMuyupdaciteleast altered99068123353S. RTMMuyupdaciteleast altered99068123357G. ManukMuyupdaciteleast altered99064123357G. ManukMuyupdaciteleast altered99064123353S. RTMMuyupdaciteleast altered990631103B.Utul-1Batu Utulrhyoliterhyolite990961123354S. RTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 09002     | 122201     | G Tinggi Takana      | Ditan     | 50750 mN     | 208500 mE      |           | andasita        | loost altarad |
| 9903123303C. BotakRitan67/50 mk41050 mk41050 mkandesitepropylitic98093123307S. BatulitenRitan42850 mN394250 mErhyoliteleast altered99059123313timber road, MejukRitan63375 mN400075 mEandesiteadv. argillic99061123317vein zone, MejukRitan63375 mN400125 mEandesiteargillic99062123320discovery o/c, MejukRitan64350 mN401050 mEandesiteargillic99063123325timber road, MejukRitan63275 mN398750 mEandesiteargillic99064123337BengehMuyupuffpropylitic99065123342S. TresiaMuyupuffphyllic99066123343S. TresiaMuyupuffphyllic99064123343S. TresiaMuyupdaciteleast altered99067123342S. TresiaMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered98096123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupandesiteadv. argillic98096123357G. ManukMuyupandesiteleast altered99061123357G. ManukMuyupandes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96092     | 123301     | G. Betek             | Ritan     | 67750 mN     | 410500 mE      |           | andesite        | reast aftered |
| 90050123307S. BaluintenRitan44800 mN393500 mEInfyoliteleast altered99059123308S. BelayanRitan44800 mN393500 mErhyoliteleast altered99061123313timber road, MejukRitan63775 mN400075 mEandesiteadv. argillic99062123320discovery o/c, MejukRitan64350 mN401050 mEandesiteargillic99063123325timber road, MejukRitan64350 mN401050 mEandesiteargillic99064123377BengehMuyupgastingR.L.(m)Rock TypeAlteration99065123342S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyuptuffphyllic99066123348S. Buluh HuluMuyupdaciteleast altered99066123348S. Buluh HuluMuyupdaciteleast altered99066123349S. Buluh HuluMuyupdaciteleast altered99067123353S. RTMMuyupdaciteleast altered99068123357G. ManukMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillic990931102B.Utul-1Batu Utulmodesiteleast altered990941103S. Han-1Han16210342990andesite990951105SYKBHan-3Han16720342400 <td>99038</td> <td>123303</td> <td>C. Dotak</td> <td>Ritan</td> <td>42850 mN</td> <td>410300 mE</td> <td></td> <td>andesite</td> <td>propyrite</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99038     | 123303     | C. Dotak             | Ritan     | 42850 mN     | 410300 mE      |           | andesite        | propyrite     |
| 99050123305S. BelayanRuan44400 min93500 minInfoiteTradities99060123313timber road, MejukRitan63757 mN400075 mEandesiteargillic99061123312vein zone, MejukRitan63850 mN400125 mEandesiteargillic99062123320discovery o/c, MejukRitan64350 mN401050 mEandesiteargillic99063123325timber road, MejukRitan63275 mN398750 mEandesiteargillic99064123337BengehMuyuptuffphyllic99065123342S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered98096123349S. Buluh HuluMuyupdaciteleast altered98097123351S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillic990931101B.Utul-1Batu Utulrhyolitephyllic990941103S. Han-1Han16720342900andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99097<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96093     | 123307     | S. Dalumen           | Ritan     | 42850 min    | 394230 IIIE    |           | rhyolite        | least altered |
| 99060123313Uniber road, MejukRitan63775 mN400075 mEandesiteadv, argine99061123317vein zone, MejukRitan63850 mN400125 mEandesiteargillic99063123325discovery o/c, MejukRitan64350 mN401050 mEandesiteargillic99064123337BengehMuyupSastingR.L.(m)Rock TypeAlteration99064123337BengehMuyuptuffphyllic99064123342S. TresiaMuyuptuffphyllic99064123343S. TresiaMuyuptuffphyllic99064123343S. TresiaMuyupdaciteleast altered98094123343S. TresiaMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered98096123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98096123354S. RTMMuyupdaciteleast altered990921101B.Utul-1Batu Utulmeandesiteadv. argillic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342900andesiteleast altered990951105SYKBHan-3Han16455342250andesiteleast altered99096<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99039     | 123300     | 5. Delayali          | Ritan     | 44000 mil    | 400075 mE      |           | myonie          | idast antered |
| 99061123317Vent zone, MejukRitan63530 mN400125 mEandesiteanglitic99062123320discovery o/c, MejukRitan64350 mN401050 mEandesitearglitic99063123325timber road, MejukRitan63275 mN398750 mEandesitearglitic99064123337BengehMuyupEastingR.L.(m)Rock TypeAlteration99065123342S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyupdaciteleast altered98094123348S. Buluh HuluMuyupdaciteleast altered98096123351S. Buluh HuluMuyupdaciteleast altered99068123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered990921101B.Utul-1Batu Utulmodesiteandesiteadv. arglitic990931102B.Utul-2Batu Utulmodesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99096111599HN1-59mHan16455342250andesiteleast altered99098112198PT5-97mPlataindesite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99000     | 123313     | umber road, Mejuk    | Ritan     | 637/5 min    | 400075 mE      |           | andesite        | adv. arginic  |
| 99062123320discovery o/c, MejukRitan64300 mix401030 mix401030 mixandesitearginic99063123325timber road, MejukRitan63275 mN398750 mEandesitepropyliticANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock TypeAlteration99064123337BengehMuyuptuffphyllic99065123342S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyupdaciteleast altered98094123348S. Buluh HuluMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered98096123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupandesiteadv. argillic99098123357G. ManukMuyupandesiteadv. argillic990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99096 <td< td=""><td>99001</td><td>123317</td><td>diagona a Mainh</td><td>Ritan</td><td>63850 min</td><td>400125 mE</td><td></td><td>andesite</td><td>arginic</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99001     | 123317     | diagona a Mainh      | Ritan     | 63850 min    | 400125 mE      |           | andesite        | arginic       |
| 99083123323Innoer road, MejukKitan632/3 milk398/30 milkandesitepropyliticANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock TypeAlteration99064123337BengehMuyuptuffphyllic99065123342S. TresiaMuyuptuffphyllic98094123343S. TresiaMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered98096123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered99088123357G. ManukMuyupandesiteadv. argillicANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock Type990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-16pmPlataandesiteleast altered99098112198PT5-16pmPlata<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99002     | 123320     | discovery o/c, Mejuk | Ritan     | 62275 mN     | 401050 mE      |           | andesite        | arginic       |
| ANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock TypeAlteration99064123337BengehMuyuptuffphyllic99065123342S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyupdaciteleast altered98094123348S. Buluh HuluMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered98096123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered98098123357G. ManukMuyupandesiteadv. argillic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99003     | 123323     | umber road, Mejuk    | Kitan     | 032/3 min    | 398730 mE      |           | andesite        | propynitic    |
| 99064123337BengehMuyuptuffphyllic99065123342S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyuptuffphyllic98094123348S. Buluh HuluMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered98096123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered98097123357G. ManukMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillicANU No. Sample No.LocationProspectNorthingEastingR.L.(m)Rock Type990921101B.Utul-1Batu Utulrhyolitephyllic990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-97mPlatadaciteleast alteredleast altered99098112198PT5-97mPlatadaciteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANU No.   | Sample No. | Location             | Prospect  | Northing     | Easting        | R.L.(m)   | Rock Type       | Alteration    |
| 99065123342S. TresiaMuyuptuffphyllic99066123343S. TresiaMuyuptuffphyllic98094123348S. Buluh HuluMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered99067123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered98097123357G. ManukMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillic990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesite990951105SYKBHan-3Han16455342250andesite99097111999HN1-59mHan16455342250andesite99098112198PT5-169mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99064     | 123337     | Bengeh               | Muyup     |              |                |           | tuff            | phyllic       |
| 99066123343S. TresiaMuyuptuffphyllic98094123348S. Buluh HuluMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered99067123351S. Buluh HuluMuyuptuffphyllic98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered98097123357G. ManukMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillic99068123357G. ManukMuyupandesiteleast altered990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342900andesite990951105SYKBHan-3Han16455342250andesite99097111998PT5-97mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99065     | 123342     | S. Tresia            | Muyup     |              |                |           | tuff            | phyllic       |
| 98094123348S. Buluh HuluMuyupdaciteleast altered98095123349S. Buluh HuluMuyupdaciteleast altered99067123351S. Buluh HuluMuyupdaciteleast altered98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered98098123357G. ManukMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillicANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock Type990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990951103S. Han-1Han16210342990andesiteleast altered99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-97mPlataandesiteleast alteredandesiteleast altered99098112198PT5-169mPlataandesiteleast alteredandesiteleast altered99098112198PT5-169mPlataandesiteleast alteredandesiteleast altered99098112198PT5-169mPlataandesiteleast alteredandesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99066     | 123343     | S. Tresia            | Muyup     |              |                |           | tuff            | phyllic       |
| 98095123349S. Buluh HuluMuyupdaciteleast altered99067123351S. Buluh HuluMuyuputffphyllic98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillic99068123357G. ManukMuyupandesiteleast altered99092101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99097111998PT5-97mPlataandesiteleast alteredandesiteleast altered99098112198PT5-169mPlataandesiteleast alteredandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98094     | 123348     | S. Buluh Hulu        | Muyup     |              |                |           | dacite          | least altered |
| 99067123351S. Buluh HuluMuyuptuffphyllic98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillic99068123357G. ManukMuyupandesiteadv. argillicANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock TypeAlteration990921101B.Utul-1Batu Utulrhyolitephyllicphyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99097111998PT5-97mPlataandesiteleast alteredandesiteleast altered99098112198PT5-169mPlataandesiteleast alteredandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98095     | 123349     | S. Buluh Hulu        | Muyup     |              |                |           | dacite          | least altered |
| 98096123353S. RTMMuyupdaciteleast altered98097123354S. RTMMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillicANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock TypeAlteration990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99097111998PT5-97mPlataandesiteleast alteredleast altered99098112198PT5-169mPlataandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99067     | 123351     | S. Buluh Hulu        | Muyup     |              |                |           | tuff            | phyllic       |
| 98097123354S. RTMMuyupdaciteleast altered99068123357G. ManukMuyupandesiteadv. argillicANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock TypeAlteration990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99097111599HN1-59mHan16455342250andesiteleast altered99098112198PT5-97mPlataandesiteleast alteredandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98096     | 123353     | S. RTM               | Muyup     |              |                |           | dacite          | least altered |
| 99068123357G. ManukMuyupandesiteadv. argillicANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock TypeAlteration990921101B.Utul-1Batu Utulrhyolitephyllicphyllicphyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-97mPlataandesiteleast alteredandesiteleast altered99098112198PT5-169mPlataandesiteleast alteredandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98097     | 123354     | S. RTM               | Muyup     |              |                |           | dacite          | least altered |
| ANU No.Sample No.LocationProspectNorthingEastingR.L.(m)Rock TypeAlteration990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-97mPlataandesiteleast alteredandesiteleast altered99098112198PT5-169mPlataandesiteleast alteredandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99068     | 123357     | G. Manuk             | Muyup     |              |                |           | andesite        | adv. argillic |
| 990921101B.Utul-1Batu Utulrhyolitephyllic990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-97mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANU No.   | Sample No. | Location             | Prospect  | Northing     | Easting        | R.L.(m)   | Rock Type       | Alteration    |
| 990931102B.Utul-2Batu Utulandesiteleast altered990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesiteleast altered99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-97mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99092     | 1101       | B.Utul-1             | Batu Utul |              | C C            |           | rhyolite        | phyllic       |
| 990941103S. Han-1Han16210342990andesiteleast altered990951105SYKBHan-3Han16720342400andesitepropylitic99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-97mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99093     | 1102       | B.Utul-2             | Batu Utul |              |                |           | andesite        | least altered |
| 990951105SYKBHan-3Han16720342400andesitepropylitic99096111599HN1-59mHan16455342250andesiteleast altered99097111998PT5-97mPlataandesiteleast altered99098112198PT5-169mPlataandesiteleast altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99094     | 1103       | S. Han-1             | Han       | 16210        | 342990         |           | andesite        | least altered |
| 99096 1115 99HN1-59m Han 16455 342250 andesite least altered   99097 1119 98PT5-97m Plata andesite least altered   99098 1121 98PT5-169m Plata andesite least altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99095     | 1105       | SYKBHan-3            | Han       | 16720        | 342400         |           | andesite        | propylitic    |
| 99097 1119 98PT5-97m Plata andesite least altered   99098 1121 98PT5-169m Plata andesite least altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99096     | 1115       | 99HN1-59m            | Han       | 16455        | 342250         |           | andesite        | least altered |
| 99098 1121 98PT5-169m Plata andesite least altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99097     | 1119       | 98PT5-97m            | Plata     |              |                |           | andesite        | least altered |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99098     | 1121       | 98PT5-169m           | Plata     |              |                |           | andesite        | least altered |

## **APPENDIX 2**

## Sample Preparation Techniques

## 1. Whole-rock sample preparation

Selected samples from outcrops and drillcores, weighing about 200 grams are crushed using a hydraulic plate crusher and a manually operated splitter. Chips of an approximately 0.25 inch are then collected and split into 2 portions. One hundred grams of the sample is stored and the other 100 grams are split. Thirty grams of samples are first pulverised for 5 minutes to decontaminate the agate mill, then 50 grams of samples are pulverised for 10 minutes. The sample powders are put into a sterilised plastic container. The mill bowl is then cleaned with alcohol and the agate puck is cleaned with Milli-Q water in an ultrasonic bath.

### 2. Spiked flux preparation

The Lithium Metaborate (LiBO<sub>2</sub>) flux is dried at 500°C for 5 hours, then after cooling is stored in a dessicator prior to mixing with the spike solution. The Pt crucible is cleaned and decontaminated using LiBO<sub>2</sub> flux. The Pt crucible filled with flux is heated at 500°C for 15 minutes and then at 1000°C for 15 minutes to melt the flux. The molten flux is poured into the water in a glass beaker; the remaining flux is scraped off and the Pt crucible is washed with warm Milli-Q water using a sterilised spatula. The spike solution, 109.7 ppm <sup>169</sup>Tm and 3.28 ppm <sup>235</sup>U, is poured into a 15ml teflon vial and is accurately measured. In a clean Pt crucible, the LiBO<sub>2</sub> flux is weighed out to make a flux to spike ratio of 2:1. The spike solution is poured into the Pt crucible and the total weight of the spiked flux and Pt crucible is recorded. The mixed spike solution and flux is then dried in the oven over a 4 day period with the following sequence. The spiked flux is dried at 90°C in the oven overnight (approx. 18 hours), cooled down. The weight of flux and the loss of water are measured. The temperature is raised to 140°C and dried overnight. After cooling down the weight of flux is noted. Using the same procedure, the flux is dried at 160°C overnight, then at 200°C nextnight. Subsequently, the Pt crucible is placed in a high temperature furnace to heat at 250°C (60 minutes) and afterwards raised to 300°C (60 minutes), cooled down and the weight of flux is monitored. When the spiked flux is completely dried out, the flux is heated at 500°C for 15 minutes, then the temperature is raised to 1000°C to allow melting for 30 minutes. Once complete, the Pt crucible is quenched in the 3 litre glass beaker. The extracted glass is pulverised using an agate mill for 2 minutes. In order to produce homogenous flux powder, the glass powder was remelted in the furnace at 1000°C for 1 hour, following preheating at 500°C for 15 minutes. After being quenching, the flux glass is remilled and stored in a sterilised container.

### 3. Glass Sample Fusion

To make the sample/flux ratio of 2:1, 0.6666 grams of whole-rock powder is mixed with 0.3333 grams of spike flux on a piece of weighing paper by folding the paper by thumb and forefinger, rolling the sample and flux powder over each other until a homogenous mixture is made. Then the sample powder is poured into a clean, 3 cm-wide carbon crucible, and pre-heated in the Kanthal Super Rapid Furnace at 600°C for 30 minutes. The carbon crucible is transfered into the Kanthal EPD High Temperature Melting Furnace for pre-heating the sample at 800°C for 5 minutes prior to fusing. After 5 minutes, the temperature is raised to 1200°C and the sample is melted for 20 minutes. Argon gas flow of 2.5 litre/minute is used during the preheating (800°C) and melting (1200°C). At the end of sequence, the carbon crucible is taken out and quickly dropped into cold water in a 3 litre beaker to allow quenching. The temperature is then lowered to 800°C, to allow the sample stage cool down for a few minutes before putting the next sample on the stage. Finally, the glass is washed, placed in a vial with a label on it, and dried overnight at 60°C in the oven.

### 4. Glass mount and polish

The dry glass in the vial is shaken to break up, then a selected 2-3 mm-wide glass shard is placed on double-sticky tape on a glass plate. Note that the selected glass should be dry, shiny, vitreous, and having least concavo-convex surface. The glass should be mounted with the internal face down in contact with the tape, representing those parts for laser ablation. The samples are arranged within a diameter of mounting disc in a unique configuration and the sample position is mapped for identification. It is useful to select 2 pieces of glass shards from each sample and position them in three rows on a disc so that a disc can accommodate 10 different samples. Several pieces of glass shards of the rock standard (Kilauea Basalt - ANU No.93-1489) are mounted on a separate disc. The sample is mounted in a mixture of epoxy (5g compound and 0.7 g hardener) using a plastic cylinder tube and left to dry overnight. The mount disc should be cut to 5 mm in thickness and polished for 30 minutes using 3mm polishing chemicals. Prior to analysing the samples, it is useful to take photographs or to scan the glass disc, to enable positioning the glass during laser ablation ICP-MS analysis.

|                   | APPEN         | DIX 3-1        |               |               |               |               |               |               |               |
|-------------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                   | Major and     | trace elem     | ent compo     | sitions of w  | hole-rock     | samples       |               |               |               |
|                   | Nakan Pr      | ospect         |               |               |               |               |               |               |               |
|                   | 1             | 2              | 3             | 4             | 5             | 6             | 7             | 8             | 9             |
| Location          | Nakan         | Nakan          | Nakan         | Nakan         | Nakan         | Nakan         | Nakan         | Nakan         | Nakan         |
| Location          | EdNIS 62m     | NW/D12 22m     | NWD12 20m     | NWD12 20m     | NWD12 20m     | NWD12 20m     | NWD4.6.5m     | NIWDA 12 Sm   | NWD4 22m      |
| Deals Trees       | Edivo-osin    | NWD15-25III    | NWD15-29II    | IN WD15-29II  | NWD15-29III   | NWD15-29III   | NWD4-0.5III   | N W D4-12.50  | NWD4-22m      |
| Коск Туре         | andesite      | andesite       | andesite      | andesite      | andesite      | andesite      | andesite      | andesite      | andesite      |
| Alteration        | least altered | least altered  | least altered | least altered | least altered | least altered | least altered | least altered | least altered |
| Sample No.        | 123183        | 123186         | 123187-1      | 123187-2      | 123187-3      | 123187-4      | 1106          | 1107          | 1108          |
| Major elements    | (normalised 1 | 00 wt%) analy: | sed by XRF    |               |               |               |               |               |               |
| SiO2              | 57.92         | 60.21          | 57.71         | 57.66         | 57.68         | 57.65         | 62.67         | 62.10         | 62.79         |
| TiO2              | 0.47          | 0.44           | 0.49          | 0.49          | 0.49          | 0.49          | 0.43          | 0.41          | 0.46          |
| A12O3             | 14.79         | 14.48          | 14.76         | 14.74         | 14.75         | 14.77         | 16.12         | 16.24         | 16.47         |
| Fe2O3             | 7.92          | 7.06           | 7.12          | 7.08          | 7.07          | 7.12          | 5.42          | 5.41          | 5.47          |
| MnO               | 0.19          | 0.16           | 0.11          | 0.11          | 0.11          | 0.11          | 0.09          | 0.10          | 0.09          |
| MgO               | 7.06          | 8.00           | 7.75          | 7.78          | 7,77          | 7.75          | 4.84          | 4.53          | 4.38          |
| CaO               | 7.96          | 5.67           | 8.65          | 8.69          | 8.63          | 8.68          | 6.25          | 6.98          | 5.83          |
| Na2O              | 2.77          | 2.61           | 2.60          | 2.65          | 2.60          | 2.65          | 3.11          | 3.12          | 3 31          |
| Kaco              | 2.11          | 2.01           | 2.00          | 2.03          | 2.09          | 2.03          | 3.11          | 3.12          | 3.51          |
| R20               | 0.83          | 1.28           | 0.72          | 0.72          | 0.72          | 0.71          | 1.00          | 1.03          | 0.10          |
| $N_{2}O + K_{2}O$ | 3.60          | 3.90           | 3.32          | 3.37          | 3.40          | 3.37          | 11.08         | 11.51         | 10.22         |
| 1420 1 120        | 5.00          | 5.90           | 5.54          | 5.57          | 5.40          | 5.51          | 11.00         | 11.01         | 10.44         |
| Trace elements    | (in ppm) anal | ysed by Laser  | Ablation ICPM | 1S            |               |               |               |               |               |
| Cs                | 0.54          | 2.85           | 2.12          | 5.02          | 4.44          | 5.16          | 2.06          | 2.00          | 1.95          |
| Rb                | 11.14         | 26.32          | 9.47          | 13.75         | 13.06         | 11.70         | 25.72         | 25.05         | 29.16         |
| Ba                | 204.01        | 216.68         | 185.48        | 190.43        | 184.78        | 190.45        | 216.79        | 224.81        | 246.14        |
| Th                | 1.85          | 1.82           | 1.88          | 1.96          | 1.98          | 1.95          | 2.03          | 1.92          | 2.09          |
| U                 | 0.69          | 0.65           | 0.72          | 0.76          | 0.74          | 0.74          | 0.71          | 0.65          | 0.67          |
| Nb                | 0.66          | 1.04           | 0.74          | 0.98          | 1.07          | 0.65          | 1.16          | 1.14          | 1.23          |
| Та                | 0.06          | 0.08           | 0.06          | 0.08          | 0.07          | 0.07          | 0.09          | 0.08          | 0.10          |
| La                | 6.76          | 6.24           | 6.86          | 6.90          | 6.80          | 6.90          | 7.02          | 7.08          | 7.27          |
| Ce                | 14.17         | 13.00          | 14.49         | 14.66         | 14.33         | 14.61         | 14.41         | 14.51         | 14.64         |
| Pr                | 1.70          | 1.54           | 1.74          | 1.76          | 1.76          | 1.77          | 1.66          | 1.70          | 1.72          |
| Sr                | 363.66        | 221.67         | 361.78        | 369.54        | 371.10        | 265.34        | 372.99        | 375.09        | 347.91        |
| Nd                | 7.16          | 6.70           | 7.46          | 7.64          | 7.45          | 7.52          | 6.91          | 6.84          | 6.89          |
| Sm                | 1.74          | 1.46           | 1.75          | 1.78          | 1.74          | 1.74          | 1.46          | 1.54          | 1.59          |
| Zr                | 50.84         | 46.97          | 46.80         | 47.10         | 47.65         | 29.07         | 56.15         | 52.29         | 55.84         |
| Hf                | 1.41          | 1.33           | 1.30          | 1.36          | 1.45          | 1.35          | 1.50          | 1.50          | 1.56          |
| Eu                | 0.55          | 0.50           | 0.57          | 0.58          | 0.59          | 0.56          | 0.49          | 0.54          | 0.51          |
| Gd                | 1.73          | 1.56           | 1.73          | 1.76          | 1.76          | 1.77          | 1.52          | 1.66          | 1.54          |
| Tb                | 0.27          | 0.25           | 0.27          | 0.27          | 0.27          | 0.27          | 0.25          | 0.24          | 0.24          |
| Dy                | 1.85          | 1.68           | 1.81          | 1.85          | 1.87          | 1.84          | 1.62          | 1.67          | 1.65          |
| Y                 | 10.76         | 9.74           | 10.19         | 10.42         | 10.65         | 6.71          | 9.17          | 9.93          | 9.63          |
| Ho                | 0.38          | 0.36           | 0.38          | 0.39          | 0.39          | 0.39          | 0.34          | 0.36          | 0.34          |
| Er                | 1.14          | 1.01           | 1.11          | 1.15          | 1.18          | 1.16          | 1.03          | 1.06          | 1.01          |
| Yb                | 1.24          | 1.14           | 1.20          | 1.21          | 1.18          | 1.20          | 1.17          | 1.18          | 1.12          |
| Lu                | 0.19          | 0.18           | 0.17          | 0.19          | 0.18          | 0.18          | 0.17          | 0.19          | 0.18          |
| Sc                | 25.36         | 21.73          | 28.06         | 27.38         | 27.48         | 27.77         | 19.29         | 19.83         | 20.00         |
| Cr                | 263.04        | 249.25         | 317.59        | 359.72        | 317.42        | 311.10        | 148.93        | 175.55        | 176.72        |
| TI                | 0.00          | 0.03           | 0.00          | 0.01          | 0.01          | 0.01          | 0.09          | 0.07          | 0.09          |
| Pb                | 0.25          | 11.21          | 1.82          | 18.34         | 19.18         | 8.58          | 9.73          | 9.93          | 9.35          |
| Bi                | 0.00          | 0.10           | 0.00          | 0.06          | 0.07          | 0.03          | 0.17          | 0.26          | 0.09          |
| v                 | 101.62        | 138.54         | 128.23        | 166.72        | 170.27        | 141.15        | 133.28        | 132.83        | 142.98        |
| Cu                | 7.58          | 41.87          | 13.08         | 40.14         | 43.21         | 32.09         | 29.34         | 29.42         | 27.57         |
| Zn                | 2.18          | 40.69          | 11.25         | 49.11         | 47.48         | 44.59         | 51.27         | 46.62         | 41.80         |
| Ga                | 9.81          | 12.94          | 11.66         | 13.69         | 12.73         | 9.71          | 22.02         | 21.88         | 23.17         |
| As                | 0.21          | 3.61           | 0.94          | 12.58         | 19.14         | 11.88         | 0.74          | 0.91          | 0.44          |
| Mo                | 1.51          | 1.08           | 1.39          | 1.08          | 1.46          | 0.47          | 0.71          | 0.64          | 0.61          |
| W                 | 0.26          | 0.50           | 0.35          | 0.70          | 0.87          | 0.26          | 0.37          | 0.39          | 0.58          |

|                | APPENI        | DIX 3-1       |               |               |               |               |               |                |
|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|
|                | Major and     | trace elem    | ent compos    | sitions of w  | hole-rock     | samples       |               |                |
|                | Nakan Pr      | ospect        |               |               |               |               |               |                |
|                | 10            | 11            | 12            | 13            | 14            | 15            | 16            | 17             |
| Location       | Nakan          |
| Lotunon        | NWD5-8.5m     | NWD4-20m      | NWD5-30m      | NWD6-24m      | NWD9-12m      | NWD10-24.5    | NWD11-29.5m   | EdN6-29m       |
| Rock Type      | andesite      | Volcaniclastic |
| Alteration     | laget altered | lanct altarad | loast altarad | loast altarad | lanct altared | loast altored | loast altarad | laast altored  |
| Alteration     | least affered | least altered | least altered | least anered  | ieast altered | least altered | least affered | 122104         |
| Sample No.     | 1109          | 1110          | 1111          | 11/4          | 1175          | 11/0          | 1177          | 123184         |
| Major elements |               |               |               | 10.00         | c1 10         | (1.00         |               |                |
| SiO2           | 62.65         | 63.00         | 63.16         | 62.99         | 61.40         | 61.33         | 61.20         | 72.90          |
| TiO2           | 0.42          | 0.41          | 0.41          | 0.40          | 0.44          | 0.45          | 0.44          | 0.35           |
| Al2O3          | 15.75         | 15.84         | 15.84         | 16.06         | 15.83         | 15.72         | 15.51         | 14.41          |
| Fe2O3          | 5.59          | 5.43          | 5.35          | 5.22          | 6.18          | 6.35          | 6.04          | 3.35           |
| MnO            | 0.11          | 0.10          | 0.10          | 0.11          | 0.13          | 0.17          | 0.14          | 0.09           |
| MgO            | 4.52          | 4.30          | 4.16          | 4.12          | 5.33          | 5.00          | 5.39          | 0.41           |
| CaO            | 6.78          | 6.53          | 6.55          | 6.56          | 6.69          | 6.86          | 6.08          | 4.11           |
| Na2O           | 3.11          | 3.27          | 3.33          | 3.48          | 3.07          | 3.17          | 3.91          | 3.54           |
| K20            | 0.98          | 1.04          | 1.02          | 0.99          | 0.84          | 0.86          | 1.19          | 0.82           |
| P2O5           | 0.09          | 0.09          | 0.09          | 0.08          | 0.09          | 0.09          | 0.09          | 0.03           |
| Na2O + K2O     | 11.30         | 10.83         | 10.70         | 10.68         | 12.02         | 11.86         | 11.47         | 4.35           |
|                |               |               |               |               |               |               |               |                |
| Trace elements |               | 1.40          |               |               |               |               |               |                |
| Cs             | 1.31          | 1.50          | 1.64          | 1.14          | 1.31          | 1.65          | 9.23          | 1.35           |
| Rb             | 25.95         | 26.88         | 24.95         | 23.58         | 21.16         | 21.63         | 26.76         | 23.52          |
| Ba             | 220.57        | 248.76        | 254.17        | 244.23        | 196.79        | 208.60        | 246.26        | 374.12         |
| In             | 1.94          | 1.90          | 1.92          | 1.86          | 1.81          | 1.83          | 1.73          | 6.69           |
| 0              | 0.63          | 0.65          | 0.63          | 0.63          | 0.60          | 0.62          | 0.59          | 1.12           |
| ND             | 1.10          | 1.13          | 1.13          | 1.12          | 1.14          | 1.16          | 1.08          | 4.27           |
| 13             | 0.08          | 0.09          | 0.09          | 0.09          | 0.09          | 0.09          | 0.08          | 0.33           |
| La             | 0.95          | 0.95          | 0.74          | 6.70          | 0.48          | 0.30          | 0.20          | 29.38          |
| De             | 14.13         | 14.51         | 14.10         | 15.72         | 15.04         | 15.60         | 15.41         | 50.05          |
| PT<br>C-       | 226.47        | 242.72        | 1.00          | 241.19        | 200.75        | 200.24        | 284.42        | 3.20           |
| Nd             | 530.47        | 545.72        | 6.59          | 541.18        | 6 79          | 6 90          | 6 76          | 17.05          |
| Sm             | 1.54          | 1.52          | 0.56          | 1.41          | 1.57          | 1.69          | 1.63          | 2.90           |
| 7.             | 47.06         | 40.22         | 51.27         | 54.69         | 1.57          | 66.57         | 57.60         | 64.30          |
| LIF            | 47.90         | 49.55         | 1.57          | 1.51          | 1 20          | 1.77          | 1.63          | 1.02           |
| En             | 0.50          | 0.51          | 0.40          | 0.53          | 0.54          | 0.54          | 0.54          | 1.92           |
| Gd             | 1.63          | 1.57          | 1.54          | 1.51          | 1.64          | 1.77          | 1.58          | 2.21           |
| Th             | 0.23          | 0.23          | 0.24          | 0.24          | 0.27          | 0.28          | 0.27          | 0.30           |
| Dv             | 1.76          | 1.70          | 1.63          | 1.67          | 1.81          | 1.03          | 1.74          | 1.85           |
| v              | 0.50          | 9.80          | 9.43          | 0.53          | 10.94         | 11.76         | 10.20         | 8.82           |
| Ho             | 0.34          | 0.36          | 0.34          | 0.35          | 0.39          | 0.38          | 0.39          | 0.36           |
| Er             | 1.03          | 0.99          | 1.04          | 1.01          | 1.15          | 1.19          | 1.10          | 1.05           |
| Yh             | 1.17          | 1.13          | 1.15          | 1.16          | 1,23          | 1.30          | 1,18          | 1.18           |
| Lu             | 0,17          | 0.18          | 0.17          | 0.17          | 0,19          | 0.20          | 0.18          | 0.16           |
| Sc             | 18.76         | 18.10         | 17.87         | 18.04         | 21.62         | 21.92         | 22.12         | 6.40           |
| Cr             | 147.37        | 127.67        | 132.17        | 131.34        | 201.36        | 199.89        | 197,97        | 28.62          |
| TI             | 0.10          | 0.06          | 0.05          | 0.06          | 0.02          | 0.05          | 0.02          | 0.05           |
| Pb             | 9,58          | 9,13          | 9,62          | 9.06          | 7,46          | 6.74          | 8,79          | 55.74          |
| Bi             | 0.10          | 0.08          | 0.04          | 0.01          | 0.02          | 0.02          | 0.02          | 0.08           |
| v              | 131.13        | 122.72        | 121.63        | 122.91        | 147.12        | 146.73        | 143.48        | 90.28          |
| Cu             | 28.77         | 24.95         | 30.06         | 26.45         | 36.64         | 32.52         | 40.68         | 5.07           |
| Zn             | 46.86         | 47.32         | 45.61         | 45.07         | 48.64         | 47.22         | 48.71         | 34.58          |
| Ga             | 21.30         | 21.41         | 21.77         | 21.18         | 20.32         | 20.84         | 20.37         | 13.24          |
| As             | 0.75          | 1.58          | 0.43          | 0.85          | 1.40          | 0.91          | 1.62          | 0.00           |
| Mo             | 0.52          | 0.59          | 0.67          | 0.72          | 0.79          | 0.62          | 0.63          | 0.93           |
| W              | 0.38          | 0.42          | 0.37          | 0.25          | 0.33          | 0.36          | 0.28          | 0.69           |

|                | APPEN         | DIX 3-2       |                  |                 |                 |               |               |                |               |
|----------------|---------------|---------------|------------------|-----------------|-----------------|---------------|---------------|----------------|---------------|
|                | Major and     | trace elem    | ent compo        | sitions of w    | hole-rock       | samples       |               |                |               |
|                | Mageran       | -Imang P      | rospect          |                 |                 |               |               |                |               |
|                | 1             | 2             | 3                | 4               | 5               | 6             | 7             | 8              | 9             |
| Location       | Magerang      | Magerang      | Magerang         | Magerang        | Magerang        | Magerang      | Magerang      | Magerang       | Magerang      |
| Location       | DDM6-129m     | DDM6-151m     | DDM6-206m        | DDM6-233m       | DDM6-140m       | DDM6-177m     | DDM6-192m     | DDM6-221m      | S Magerang    |
| Book Tumo      | andosito      | andosita      | mdasita          | andacita        | andacita        | andesite      | andesite      | andocita       | andacita      |
| ROCK Type      | andesite      | andesite      | andesne          | andesite        | lagatelaged     | landesite     | landeshe      | laget alternad | least altered |
| Alteration     | least altered | least altered | least altered    | least altered   | least altered   | least altered | least altered | least altered  | least altered |
| Sample No.     | 1158          | 1159          | 1160             | 1101            | 123144          | 123158        | 123159        | 123160         | 123220        |
| Major elements | (normalised I | 00 wt%) analy | sed by XRF, es   | ccept (*) analy | sed by Electron | Microprobe (  | EDS)          | (2.50          |               |
| SiO2           | 63.75         | 64.05         | 63.50            | 63.96           | 63.59           | 63.22         | 62.59         | 63.79          | 62.52         |
| TiO2           | 0.43          | 0.42          | 0.44             | 0.42            | 0.43            | 0.44          | 0.47          | 0.43           | 0,48          |
| A12O3          | 17.19         | 17.46         | 17.13            | 17.07           | 17.11           | 16.95         | 16.77         | 17.00          | 16.98         |
| Fe2O3          | 5.08          | 4.51          | 5.11             | 4.72            | 5.07            | 5.08          | 5.38          | 4.93           | 5.34          |
| MnO            | 0.13          | 0.14          | 0.12             | 0.14            | 0.12            | 0.12          | 0.12          | 0.12           | 0.10          |
| MgO            | 2.78          | 2.46          | 3.01             | 2.67            | 2.78            | 3.07          | 3.50          | 2.84           | 4.21          |
| CaO            | 5.52          | 5.97          | 5.66             | 6.07            | 5.81            | 6.05          | 6.20          | 5.94           | 6.34          |
| Na2O           | 3.95          | 3.81          | 3.87             | 3.68            | 3.89            | 3.95          | 3.83          | 3.78           | 3.21          |
| K20            | 1.06          | 1.07          | 1.05             | 1.15            | 1.07            | 1.00          | 1.02          | 1.06           | 0.72          |
| P2O5           | 0.12          | 0.11          | 0.12             | 0.11            | 0.12            | 0.11          | 0.12          | 0.11           | 0.11          |
| Na2O + K2O     | 5.01          | 4.88          | 4.92             | 4.83            | 4.96            | 4.95          | 4.85          | 4.83           | 3.93          |
| m              | 1             |               | All Indian ICIDE | 10              |                 |               |               |                |               |
| Trace elements | (in ppm) anal | ysed by Laser | Ablation ICPN    | 15              | 1.02            | 0.49          | 1.10          | 1.27           | 0.42          |
| Cs             | 2.18          | 1.95          | 2.22             | 1.36            | 1.82            | 0.48          | 1.19          | 1.37           | 0.43          |
| RD             | 23.79         | 20.58         | 33.14            | 27.90           | 29.00           | 217.54        | 22.20         | 31.00          | 201 27        |
| Ba             | 315.23        | 2/4.08        | 203.03           | 264.04          | 247.32          | 217.54        | 205.52        | 245.45         | 201.57        |
| In             | 2.09          | 2.18          | 2.18             | 2.12            | 2.22            | 2.22          | 2.04          | 2.21           | 0.41          |
| NIL            | 0.08          | 0.03          | 0.70             | 1.20            | 0.67            | 1.17          | 1.14          | 0.08           | 1.05          |
| To             | 0.11          | 0.11          | 0.10             | 0.11            | 0.11            | 0.10          | 0.10          | 0.11           | 0.08          |
| Ia             | 7.41          | 7.28          | 7.58             | 7.51            | 7.36            | 7.44          | 6.83          | 7.34           | 6.02          |
| Ce             | 15.36         | 15.18         | 15.60            | 15.43           | 15 20           | 15.43         | 14.22         | 15 31          | 12.97         |
| Pr             | 1 78          | 1 77          | 1.85             | 1.82            | 1.83            | 1.81          | 1.75          | 1.76           | 1.54          |
| Sr             | 372.26        | 364.05        | 363.59           | 366.82          | 355.94          | 338.83        | 305.20        | 357 57         | 320.23        |
| Nd             | 7.35          | 7.33          | 7.59             | 7.45            | 7.53            | 7.40          | 7.09          | 7.18           | 6.48          |
| Sm             | 1.73          | 1.55          | 1.60             | 1.73            | 1.80            | 1.67          | 1.63          | 1.70           | 1.48          |
| Zr             | 85.03         | 87.86         | 68.75            | 77.57           | 85.33           | 85.02         | 78.82         | 100.17         | 74.59         |
| Hf             | 2.05          | 2.25          | 1.76             | 1.98            | 2.20            | 2.16          | 2.06          | 2.18           | 1.89          |
| Eu             | 0.55          | 0.52          | 0.57             | 0.56            | 0.57            | 0.53          | 0.53          | 0.56           | 0.54          |
| Gd             | 1.75          | 1.60          | 1.76             | 1.78            | 1.78            | 1.77          | 1.78          | 1.83           | 1.53          |
| Tb             | 0.27          | 0.27          | 0.27             | 0.28            | 0.29            | 0.28          | 0.28          | 0.28           | 0.24          |
| Dy             | 1.82          | 1.84          | 1.89             | 1.90            | 2.01            | 1.99          | 1.85          | 1.91           | 1.62          |
| Ŷ              | 10.93         | 10.87         | 11.43            | 11.54           | 11.84           | 11.34         | 11.12         | 11.92          | 8.69          |
| Ho             | 0.39          | 0.38          | 0.40             | 0.40            | 0.42            | 0.41          | 0.42          | 0.40           | 0.32          |
| Er             | 1,16          | 1.14          | 1.22             | 1.23            | 1.20            | 1.24          | 1.24          | 1.18           | 0.95          |
| Yb             | 1.29          | 1.34          | 1.36             | 1.35            | 1.42            | 1.42          | 1.35          | 1.36           | 1.07          |
| Lu             | 0.19          | 0.20          | 0.21             | 0.21            | 0.23            | 0.22          | 0.22          | 0.22           | 0.17          |
| Sc             | 11.23         | 10.93         | 12.19            | 11.55           | 12.93           | 13.07         | 12.74         | 12.20          | 16.31         |
| Cr             | 49.29         | 40.95         | 74.43            | 49.15           | 65.53           | 89.90         | 108.14        | 129.99         | 200.72        |
| T1             | 0.03          | 0.05          | 0.10             | 0.02            | 0.12            | 0.00          | 0.02          | 0.06           | 0.00          |
| Pb             | 6.10          | 6.36          | 6.08             | 7.14            | 4.28            | 0.99          | 3.57          | 53.67          | 1.37          |
| Bi             | 0.01          | 0.03          | 0.04             | -0.01           | 0.03            | 0.19          | 0.01          | 0.03           | 0.00          |
| V              | 101.44        | 94.06         | 110.19           | 94.47           | 111.92          | 92.63         | 100.16        | 110.37         | 107.85        |
| Cu             | 20.14         | 16.86         | 17.69            | 15.89           | 21.54           | 8.53          | 15.85         | 13.27          | 12.99         |
| Zn             | 61.30         | 60.00         | 57.86            | 65.84           | 53.96           | 16.14         | 35.08         | 48.92          | 15.17         |
| Ga             | 22.81         | 22.22         | 22.98            | 21.25           | 16.08           | 15.88         | 14.03         | 17.09          | 14.17         |
| As             | 3.02          | 2.94          | 2.84             | 3.85            | 5.02            | 0.46          | 3.99          | 0.00           | 1.10          |
| Mo             | 1.58          | 1.56          | 1.25             | 1.05            | 1.46            | 2.23          | 2.17          | 2.40           | 2.27          |
| W              | 0.37          | 0.39          | 0.40             | 0.41            | 0.43            | 0.40          | 0.75          | 0.77           | 0.37          |

|                | APPEN         | DIX 3-2       |               |               |               |               |               |               |               |
|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                | Major and     | trace elem    | ent compos    | sitions of w  | hole-rock     | samples       |               |               |               |
|                | Mageran       | z-Imang P     | rospect       |               | [             |               |               |               |               |
|                | 10            | 11            | 12            | 13            | 14            | 15            | 16            | 17            | 18            |
| Location       | Magerang      | Imang         |
| Docution       | S Taliyuda    | Ed12-66.5m    | Ed12-92 5m    | Edl2-41m      | EdI4-47m      | Ed12-56m      | Ed12-96m      | Edl3-65m      | EdI4-15m      |
| Peak Tune      | ondesite      | andosita      | andasita      | andacita      | andosita      | andacita      | andacita      | andocito      | andacita      |
| ROCK Type      | andesite      | andesite      | andesite      | andesite      | andesne       | landesite     | least altered | landeshe      | landesite     |
| Alteration     | least altered |
| Sample No.     | 123227        | 1127          | 1128          | 1130          | 1155          | 123102        | 123104        | 123107        | 123108        |
| Major elements |               |               |               |               |               |               |               |               | 12.212.2      |
| SiO2           | 59.76         | 57.55         | 56.80         | 56.83         | 58.13         | 60.55         | 57.15         | 58.20         | 56.07         |
| TiO2           | 0.49          | 0.50          | 0.54          | 0.52          | 0.53          | 0.46          | 0.53          | 0.53          | 0.56          |
| A12O3          | 16.03         | 15.79         | 15.76         | 15.54         | 16.28         | 16.28         | 15.83         | 15.96         | 15.46         |
| Fe2O3          | 6.37          | 7.07          | 7.22          | 7.29          | 7.46          | 6.12          | 7.16          | 6.73          | 7.75          |
| MnO            | 0.11          | 0.12          | 0.12          | 0.16          | 0.19          | 0.13          | 0.11          | 0.14          | 0.23          |
| MgO            | 5.88          | 7.59          | 8.07          | 6.75          | 6.28          | 5.68          | 7.71          | 6.28          | 7.07          |
| CaO            | 7.49          | 7.81          | 8.14          | 9.62          | 8.40          | 5.09          | 8.08          | 9.08          | 10.33         |
| Na2O           | 2.98          | 2.82          | 2.70          | 2.36          | 2.06          | 4.36          | 2.73          | 2.42          | 1.79          |
| K20            | 0.79          | 0.66          | 0.56          | 0.84          | 0.58          | 1.23          | 0.61          | 0.58          | 0.66          |
| P205           | 0.10          | 0.09          | 0.09          | 0.09          | 0.09          | 0.10          | 0.08          | 0.09          | 0.08          |
| Na2O + K2O     | 3.77          | 15.40         | 16.21         | 16.36         | 14.68         | 5.59          | 3.34          | 2.99          | 2.45          |
|                |               | and and       |               |               |               |               |               |               |               |
| Trace elements |               |               |               |               |               |               |               |               |               |
| Cs             | 0.42          | 0.56          | 1,14          | 2.26          | 2.05          | 1.44          | 0.62          | 1.61          | 3.65          |
| Rb             | 12.37         | 16.16         | 13.70         | 20.04         | 14.77         | 30.34         | 10.68         | 14.50         | 19.12         |
| Ba             | 171.45        | 151.99        | 138.42        | 192.68        | 174.90        | 243.71        | 147.36        | 146.14        | 139.54        |
| Th             | 1.78          | 1.51          | 1.43          | 1.37          | 1.51          | 1.81          | 1.50          | 1.53          | 1.42          |
| U              | 0.55          | 0.48          | 0.42          | 0.42          | 0.44          | 0.54          | 0.45          | 0.47          | 0.45          |
| Nb             | 0.87          | 1.07          | 0.99          | 0.92          | 0.98          | 1.05          | 0.69          | 1.09          | 0.89          |
| Ta             | 0.08          | 0.09          | 0.08          | 0.07          | 0.07          | 0.10          | 0.06          | 0.07          | 0.09          |
| La             | 6.12          | 5.41          | 5.06          | 4.96          | 5.33          | 6.07          | 5.31          | 5.33          | 5.19          |
| Ce             | 12.93         | 11.88         | 11.26         | 10.81         | 11.75         | 12.94         | 11.61         | 12.01         | 11.32         |
| Pr             | 1.58          | 1.46          | 1.42          | 1.33          | 1.41          | 1.59          | 1.44          | 1.44          | 1.37          |
| Sr             | 282.68        | 304.83        | 306.32        | 241.22        | 267.25        | 329.20        | 308.84        | 259.44        | 196.52        |
| Nd             | 6.69          | 6.42          | 6.31          | 6.23          | 6.27          | 6.77          | 6.41          | 6.32          | 6.19          |
| Sm             | 1.65          | 1.63          | 1.65          | 1.48          | 1.58          | 1.69          | 1.78          | 1.45          | 1.69          |
| Zr             | 71.28         | 63.12         | 58.18         | 67.82         | 59.35         | 68.29         | 61.01         | 65.43         | 57.89         |
| Hf             | 1.82          | 1.69          | 1.61          | 1.80          | 1.56          | 1.91          | 1.62          | 1.60          | 1.70          |
| Eu             | 0.57          | 0.56          | 0.58          | 0.54          | 0.56          | 0.60          | 0.54          | 0.56          | 0.54          |
| Gd             | 1.74          | 1.86          | 1.90          | 1.76          | 1.67          | 1.81          | 1.84          | 1.79          | 1.88          |
| ТЪ             | 0.28          | 0.29          | 0.30          | 0.29          | 0.28          | 0.29          | 0.31          | 0.29          | 0.30          |
| Dy             | 1.97          | 2.02          | 2.05          | 1.97          | 1.97          | 2.02          | 2.18          | 2.09          | 2.20          |
| Y              | 11.40         | 11.49         | 11.75         | 11.24         | 11.82         | 11.11         | 11,75         | 11.60         | 12.07         |
| Ho             | 0.41          | 0.43          | 0.43          | 0.41          | 0.43          | 0.43          | 0.46          | 0.41          | 0.44          |
| Er             | 1.25          | 1.27          | 1.33          | 1.21          | 1.29          | 1.27          | 1.36          | 1.34          | 1.34          |
| Yb             | 1.37          | 1.43          | 1.40          | 1.31          | 1.35          | 1.41          | 1.44          | 1.41          | 1.45          |
| Lu             | 0.21          | 0.20          | 0.21          | 0.21          | 0.21          | 0.21          | 0.22          | 0.20          | 0.20          |
| Sc             | 19.19         | 22.38         | 24.00         | 22.84         | 22.48         | 19.00         | 24.02         | 422.20        | 23.29         |
| Cr             | 259.94        | 441.21        | 493.39        | 476.78        | 438.74        | 207.74        | 309.45        | 432.38        | 526.63        |
| 11             | 0.00          | 0.04          | 0.03          | 0.05          | 0.03          | 0.08          | 0.00          | 0.02          | 0.03          |
| PD             | 0.30          | 4.55          | 5./3          | 0.01          | 4.50          | 5.50          | 0.23          | 207.78        | 0.02          |
| Bi             | 0.31          | -0.01         | -0.01         | 0.04          | 0.01          | 0.03          | 0.00          | 0.05          | 0.02          |
| V              | 108.28        | 160.55        | 166.33        | 155.92        | 160.56        | 133.06        | 114.59        | 155.07        | 161.70        |
| Cu             | 10.50         | 29.42         | 33.10         | 41.25         | 44.26         | 13.47         | 12.21         | 34.56         | 20.76         |
| Zn             | 5.15          | 53.91         | 57.33         | 56.71         | 51.18         | 54.20         | 4.89          | 55.94         | 51.93         |
| Ga             | 12.69         | 18,77         | 17.50         | 18.31         | 18.66         | 14.67         | 9.47          | 12.72         | 13.63         |
| As             | 0.26          | 0.83          | 1.64          | 1.06          | 0.84          | 8.50          | 0.14          | 9.39          | 0.00          |
| Mo             | 1.90          | 1.16          | 1.00          | 1.02          | 1.18          | 1.40          | 2.03          | 2.66          | 2.14          |
| W              | 0.35          | 0.37          | 0.28          | 0.35          | 0.34          | 0.55          | 0.27          | 0.70          | 0.52          |

|                | APPEN         | DIX 3-2    |            |              |            |            |           |            |           |
|----------------|---------------|------------|------------|--------------|------------|------------|-----------|------------|-----------|
|                | Major and     | trace elem | ent compos | sitions of w | hole-rock  | samples    |           |            |           |
|                | Mageran       | -Imang P   | rospect    | [            | 1          |            |           |            |           |
|                | 19            | 20         | 21         | 22           | 23         | 24         | 25        | 26         | 27        |
| Location       | Imang         | Magerang   | Magerang   | Magerang     | Magerang   | Magerang   | Magerang  | Magerang   | Magerang  |
| Location       | Edl4-36m      | DDM1-75m   | DDM5-312m  | DDM7-67m     | DDM7-82m   | DDM7-138m  | DDM7-138m | DSD1-78m   | DSD1-206m |
| Pook Tuma      | andacita      | andasita   | andacita   | andasita     | andesite   | andasita   | andecita  | andesite   | andosite  |
| Kock Type      | landesite     | andesne    | andesne    | andesite     | andestie   | andesne    | andesne   | andesne    | andesne   |
| Alteration     | least altered | propylitic | propyntic  | propylitic   | propylitic | propylitic | propyinte | propyritie | propynic  |
| Sample No.     | 123109        | 123124     | 12314/     | 123151       | 123152     | 123153     | 123154    | 1231/2     | 123170    |
| Major elements |               | 22.23      |            | 22-22        |            | 100 Ma     |           | 22.64      | 100-100   |
| SiO2           | 56.78         | 75.38      | 63.08      | 58.89        | 57.60      | 64.19      | 59.43     | 66.09      | 59.63     |
| TiO2           | 0.55          | 0.67       | 0.49       | 0.78         | 0.80       | 0.53       | 0.80      | 0.47       | 0.63      |
| A12O3          | 15.94         | 19.73      | 17.23      | 18.40        | 18.39      | 17.73      | 18.71     | 17.61      | 17.01     |
| Fe2O3          | 7.77          | 3.86       | 5.99       | 7.35         | 8.18       | 5.26       | 7.24      | 5.11       | 6.84      |
| MnO            | 0.16          | 0.00       | 0.18       | 0.17         | 0.20       | 0.13       | 0.21      | 0.12       | 0.09      |
| MgO            | 6.55          | 0.03       | 3.51       | 5.51         | 5.67       | 3.06       | 5.84      | 3.11       | 4.77      |
| CaO            | 9.20          | 0.07       | 6.31       | 6.13         | 6.65       | 5.32       | 5.34      | 4.32       | 7.71      |
| Na2O           | 2.31          | 0.14       | 2.96       | 2.55         | 2.29       | 3.37       | 1.71      | 2.63       | 3.08      |
| K20            | 0.64          | 0.08       | 0.14       | 0.10         | 0.09       | 0.28       | 0.58      | 0.46       | 0.12      |
| P2O5           | 0.09          | 0.04       | 0.12       | 0.12         | 0.12       | 0.13       | 0.13      | 0.10       | 0.12      |
| Na2O + K2O     | 2.96          | 0.22       | 3.10       | 2.65         | 2.39       | 3.65       | 2.29      | 3.09       | 3.20      |
|                |               |            |            |              |            |            |           |            |           |
| Trace elements | 2010          |            |            |              | 10000      |            |           |            | 25.552    |
| Cs             | 0.86          | 1.20       | 5.54       | 15.65        | 15.40      | 4.82       | 15.80     | 2.04       | 0.62      |
| Rb             | 10.26         | 2.34       | 4.87       | 5.82         | 5.39       | 6.59       | 23.21     | 12.48      | 0.99      |
| Ba             | 151.36        | 8.23       | 65.64      | 49.94        | 38.71      | 75.29      | 47.94     | 88.20      | 106.02    |
| Th             | 1.49          | 3.30       | 2.13       | 2.55         | 2.57       | 2.83       | 2.60      | 2.02       | 2.24      |
| U              | 0.45          | 0.77       | 0.64       | 0.62         | 0.64       | 0.70       | 0.63      | 0.62       | 0.64      |
| Nb             | 0.59          | 2.19       | 1.06       | 2.20         | 2.30       | 2.39       | 2.10      | 1.09       | 1.43      |
| Та             | 0.06          | 0.18       | 0.09       | 0.18         | 0.19       | 0.19       | 0.19      | 0.08       | 0.11      |
| La             | 5.10          | 9.99       | 6.82       | 7.61         | 8.35       | 9.65       | 7.95      | 6.08       | 7.58      |
| Ce             | 11.25         | 20.63      | 14.29      | 18.39        | 19.31      | 20.93      | 18.79     | 12.44      | 16.69     |
| Pr             | 1.39          | 2.34       | 1.72       | 2.45         | 2.62       | 2.50       | 2.45      | 1.38       | 2.07      |
| Sr             | 242.86        | 139.90     | 362.50     | 300.03       | 274.43     | 294.14     | 196.31    | 247.84     | 345.81    |
| Nd             | 6.16          | 9.54       | 7.21       | 10.96        | 12.09      | 10.49      | 11.33     | 5.75       | 9.06      |
| Sm             | 1.56          | 2.24       | 1.71       | 2.91         | 3.07       | 2.34       | 3.04      | 1.42       | 2.12      |
| Zr             | 58.50         | 107.44     | 84.08      | 83.08        | 84.73      | 107.57     | 82.43     | 70.06      | 76.95     |
| Hf             | 1.56          | 2.84       | 2.13       | 2.77         | 2.83       | 2.71       | 2.95      | 1.71       | 2.01      |
| Eu             | 0.55          | 0.74       | 0.64       | 0.88         | 1.01       | 0.78       | 1.10      | 0.46       | 0.70      |
| Gd             | 1.78          | 2.54       | 1.80       | 2.95         | 3.27       | 2.49       | 3.38      | 1.33       | 2.29      |
| Tb             | 0.29          | 0.40       | 0.28       | 0.48         | 0.51       | 0.39       | 0.52      | 0.20       | 0.37      |
| Dy             | 1.99          | 2.87       | 1.98       | 3.43         | 3.78       | 2.67       | 3.61      | 1.32       | 2.57      |
| Y              | 11.25         | 15.44      | 11.19      | 16.13        | 17.53      | 15.82      | 15.85     | 8.32       | 14.24     |
| Но             | 0.42          | 0.54       | 0.40       | 0.72         | 0.77       | 0.56       | 0.81      | 0.30       | 0.53      |
| Er             | 1.24          | 1.67       | 1.22       | 2.14         | 2.31       | 1.63       | 2.28      | 0.83       | 1.50      |
| Yb             | 1.35          | 1.71       | 1.36       | 2.39         | 2.57       | 1.87       | 2.51      | 1.00       | 1.68      |
| Lu             | 0.20          | 0.26       | 0.21       | 0.36         | 0.41       | 0.29       | 0.37      | 0.15       | 0.25      |
| Sc             | 23.09         | 10.12      | 15.38      | 27.34        | 31.32      | 10.98      | 26.03     | 12.92      | 120.32    |
| T              | 294.40        | 54.40      | 02.99      | 101.10       | 109.03     | 40.71      | 0.04      | 0.07       | 0.00      |
| 11<br>Dh       | 0.00          | 150.01     | 0.00       | 0.00         | 0.00       | 0.00       | 0.04      | 0.07       | 0.00      |
| PD<br>D:       | 0.11          | 0.44       | 0.30       | 80.30        | 228.75     | 0.16       | 98.19     | 0.05       | 4.00      |
| BI             | 0.00          | 0.44       | 0.01       | 0.12         | 0.05       | 0.15       | 0.00      | 0.05       | 154.25    |
| V Cu           | 97.31         | 120.88     | 101.25     | 1/8.24       | 1/9.23     | 0.74       | 7.04      | 6 79       | 154.25    |
| 7-             | 0.42          | 0.20       | 20.11      | 75 70        | 107.71     | 51.55      | 122.20    | 0.78       | 20.45     |
| Zn             | 2.87          | 9.39       | 30.11      | 15.79        | 198.0/     | 34.33      | 155.58    | 49.30      | 30.45     |
| Ga             | 9.00          | 14.38      | 12.93      | 18.48        | 17.76      | 10.55      | 17.80     | 15.10      | 10.03     |
| As             | 0.22          | 14.71      | 0.39       | 5.83         | 18.85      | 1.84       | 14.81     | 2.07       | 0.47      |
| Mo             | 1.63          | 43.90      | 2.20       | 0.72         | 1.49       | 2.31       | 2.02      | 1.24       | 2.55      |
| W              | 0.24          | 3.23       | 0.27       | 0.58         | 0.80       | 0.50       | 0.42      | 0.81       | 0.40      |

|                | APPENI     | DIX 3-2    |            |              |            |           |            |           |            |
|----------------|------------|------------|------------|--------------|------------|-----------|------------|-----------|------------|
|                | Major and  | trace elem | ent compo  | sitions of w | vhole-rock | samples   |            |           |            |
| -              | Magerang   | -Imang P   | rospect    | 1            |            | 1.000     |            |           |            |
|                | 28         | 29         | 30         | 31           | 32         | 33        | 34         | 35        | 36         |
| Location       | Magerang   | Imang      | Imang      | Imang        | Magerang   | Magerang  | Magerang   | Magerang  | Magerang   |
| Location       | DSD1-245m  | EdI2-46m   | EdI4-26m   | Edl2-36m     | DDM1-28m   | DDM2-49m  | DDM3-86m   | DDM3-117m | DDM3-172m  |
| Rock Type      | andesite   | andesite   | andesite   | andesite     | andesite   | andesite  | andesite   | andesite  | andesite   |
| Alteration     | nronulitic | propulitic | propulitic | nconvlitio   | nhullic S2 | andesite  | phullic S2 | andesite  | phullic S2 |
| Sample Ma      | 122179     | 1126       | 1120       | 122101       | 122122     | 122122(*) | 122127     | 122129(#) | 122140     |
| Sample No.     | 123178     | 1120       | 1129       | 123101       | 123122     | 123132(*) | 123137     | 123138(*) | 125140     |
| Major elements | (110       | 17.11      | 56.76      | (2.44        | 72.41      | 60.40     | 10 70      | 22.24     | (2.2)      |
| 5102           | 04.10      | 57.55      | 55.70      | 03.44        | /3.41      | 09.49     | 08.79      | /2./0     | 07.70      |
| 1102           | 0.47       | 0.58       | 0.59       | 0.56         | 0.65       | 0.54      | 0.76       | 0.73      | 0.90       |
| A12O3          | 16.90      | 16.04      | 15.50      | 16.83        | 17.26      | 19.89     | 19.55      | 20.01     | 21.19      |
| Fe2O3          | 5.92       | 7.23       | 8.42       | 5.33         | 3.63       | 5.42      | 5.64       | 2.19      | 5.27       |
| MnO            | 0.11       | 0.16       | 0.20       | 0.13         | 0.07       | -         | 0.10       |           | 0.05       |
| MgO            | 3.18       | 7.37       | 9.98       | 2.78         | 2.06       | 1.07      | 1.51       | 0.99      | 1.20       |
| CaO            | 5.68       | 6.38       | 6.84       | 6.49         | 0.24       | 0.19      | 0.61       | 0.36      | 0.71       |
| Na2O           | 3.39       | 3.98       | 1.69       | 2.54         | 0.90       | 0.20      | 0.94       | 0.75      | 1.28       |
| K2O            | 0.15       | 0.62       | 0.93       | 1.79         | 1.70       | 3.85      | 1.95       | 2.46      | 1.47       |
| P2O5           | 0.10       | 0.10       | 0.09       | 0.11         | 0.07       |           | 0.16       |           | 0.16       |
| Na2O + K2O     | 3.53       | 13.75      | 16.82      | 4.33         | 2.60       | 4.05      | 2.90       | 3.21      | 2.76       |
| Traca alamante |            |            |            |              |            |           |            |           |            |
| Ce             | 1.60       | 0.80       | 4.43       | 6.07         | 8.14       | 4.75      | 10.80      | 12.06     | 10.00      |
| Ph             | 3.56       | 15 22      | 22.20      | 54.40        | 63.02      | 122.19    | 63 73      | 73.97     | 55.69      |
| Ba             | 30 31      | 177.41     | 145 30     | 111 30       | 164.04     | 402 37    | 201.61     | 235 71    | 135.87     |
| Th             | 215        | 1.68       | 143.39     | 3.43         | 3.61       | 2 22      | 201.01     | 233.71    | 2 47       |
| II             | 0.67       | 0.49       | 0.36       | 0.80         | 0.82       | 0.71      | 0.69       | 0.78      | 0.89       |
| Nh             | 146        | 1.13       | 0.88       | 2 44         | 3.21       | 1 29      | 2 42       | 2.64      | 2.18       |
| Ta             | 0.11       | 0.09       | 0.07       | 0.20         | 0.25       | 0.11      | 0.17       | 0.20      | 0.16       |
| La             | 8.10       | 5.83       | 4.54       | 9.53         | 9.68       | 5.36      | 7.71       | 7.86      | 8.56       |
| Ce             | 16.60      | 12.74      | 10.08      | 20.20        | 21.50      | 11.20     | 17.12      | 17.85     | 19.04      |
| Pr             | 1.92       | 1.58       | 1.28       | 2.44         | 2.63       | 1.28      | 2.15       | 2.11      | 2.43       |
| Sr             | 286.10     | 278.88     | 146.73     | 203.89       | 103.65     | 70.41     | 122.61     | 79.99     | 164.33     |
| Nd             | 7.78       | 6.91       | 5.82       | 10.05        | 11.18      | 5.33      | 9.07       | 9.13      | 11.10      |
| Sm             | 1.74       | 1.68       | 1.60       | 2.26         | 2.52       | 1.43      | 2.06       | 2.16      | 2.66       |
| Zr             | 68.60      | 66.92      | 51.78      | 107.77       | 121.50     | 84.52     | 108.37     | 113.89    | 97.22      |
| Hf             | 1.89       | 1.75       | 1.42       | 3.39         | 3.15       | 2.09      | 2.74       | 2.86      | 2.76       |
| Eu             | 0.55       | 0.56       | 0.49       | 0.71         | 0.74       | 0.50      | 0.72       | 0.74      | 0.89       |
| Gd             | 1.81       | 1.83       | 1.81       | 2.55         | 2.48       | 1.60      | 2.32       | 2.61      | 3.22       |
| Tb             | 0.28       | 0.31       | 0.29       | 0.40         | 0.39       | 0.33      | 0.41       | 0.40      | 0.53       |
| Dy             | 1.84       | 2.18       | 2.07       | 2.71         | 2.70       | 2.39      | 2.80       | 2.80      | 3.75       |
| Y              | 11.23      | 12.28      | 11.47      | 15.13        | 15.58      | 17.05     | 16.71      | 16.33     | 19.54      |
| Ho             | 0.39       | 0.44       | 0.41       | 0.56         | 0.59       | 0.58      | 0.58       | 0.57      | 0.80       |
| Er             | 1.22       | 1.22       | 1.22       | 1.73         | 1.74       | 1.69      | 1.77       | 1.60      | 2.29       |
| Yb             | 1.33       | 1.39       | 1.37       | 1.88         | 1.86       | 1.85      | 1.88       | 1.95      | 2.46       |
| Lu             | 0.20       | 0.21       | 0.19       | 0.30         | 0.28       | 0.29      | 0.30       | 0.31      | 0.37       |
| Sc             | 16.27      | 22.50      | 25.26      | 11.80        | 13.57      | 15.43     | 15.52      | 15.66     | 16.83      |
| Cr             | 39.93      | 435.39     | 565.25     | 32.14        | 47.57      | 78.82     | 37.13      | 36.22     | 41.79      |
| TI             | 0.01       | 0.03       | 0.13       | 0.09         | 0.37       | 0.82      | 0.37       | 0.58      | 0.39       |
| Pb             | 7.53       | 6.60       | 5.14       | 7.98         | 61.62      | 65.50     | 33.06      | 17.16     | 10.12      |
| Bi             | 0.08       | 0.08       | 0.02       | 0.01         | 0.15       | 1.86      | 0.05       | 0.09      | 0.65       |
| V              | 137.83     | 160.65     | 172.45     | 96.34        | 97.34      | 145.72    | 124.67     | 120.29    | 137.41     |
| Cu             | 75.06      | 43.30      | 32.86      | 18.16        | 438.94     | 258.45    | 227.27     | 102.98    | 727.14     |
| Zn             | 53.50      | 59.86      | 61.97      | 62.45        | 102.09     | 41.34     | 122.54     | 59.78     | 78.93      |
| Ga             | 14.97      | 19.30      | 16.78      | 14.09        | 15.53      | 19.00     | 19.52      | 10.60     | 20.51      |
| As             | 5.03       | 2.48       | 0.54       | 5.17         | 0.16       | 5.42      | 9.45       | 6.88      | 0.00       |
| Mo             | 1.30       | 1.25       | 0.83       | 0.75         | 56.31      | 1.37      | 39.10      | 6.89      | 9.35       |
| W              | 0.05       | 0.35       | 0.25       | 0.67         | 5.04       | 0.63      | 3.59       | 17.65     | 2.20       |

|                | APPEN      | DIX 3-2    |            |              |             |              |
|----------------|------------|------------|------------|--------------|-------------|--------------|
|                | Major and  | trace elem | ent compos | sitions of w | hole-rock s | amples       |
|                | Mageran    | g-Imang P  | rospect    |              |             |              |
|                | 37         | 38         | 39         | 40           | 41          | 42           |
| Location       | Magerang   | Magerang   | Magerang   | Magerang     | Magerang    | Magerang     |
|                | DDM5-339m  | DDM3-236m  | DDM3-300m  | DSD1-51m     | DDM3-389m   | DDM2-33m     |
| Rock Type      | andesite   | andesite   | andesite   | andesite     | andesite    | andesite     |
| Alteration     | phyllic S2 | phyllic S2 | phyllic S2 | phyllic S2   | phyllic S2  | adv.argillic |
| Sample No      | 123148     | 123164(*)  | 123167     | 123171       | 123170      | 123131       |
| Major elemente | 123140     | 125104()   | 125107     | 163171       | 123110      | 123131       |
| sin2           | 65 50      | 71.76      | \$7.79     | 65 50        | 64.01       | 70.92        |
| 3102           | 0.52       | 0.65       | 37.70      | 03.39        | 04.91       | 0.52         |
| 1102           | 0.52       | 0.05       | 0.94       | 0.40         | 0.56        | 0.52         |
| A1203          | 18.10      | 17.65      | 19.74      | 16.06        | 15.67       | 20.77        |
| Fe2O3          | 5.74       | 6.31       | 10.05      | 4.64         | 7.31        | 4.90         |
| MnO            | 0.19       |            | 0.11       | 0.24         | 0.02        | 0.02         |
| MgO            | 6.11       | 0.86       | 5.34       | 3.72         | 2.08        | 1.10         |
| CaO            | 0.43       | 0.67       | 3.12       | 4.94         | 6.80        | 0.08         |
| Na2O           | 0.26       | 0.45       | 2.32       | 3.40         | 1.14        | 0.10         |
| K2O            | 2.91       | 2.32       | 0.45       | 0.85         | 1.44        | 1.65         |
| P2O5           | 0.14       | 100000     | 0.15       | 0.09         | 0.08        | 0.03         |
| Na2O + K2O     | 3.17       | 2.77       | 2.77       | 4.25         | 2.58        | 1.75         |
| Frace elements |            |            |            |              |             |              |
| Ce             | 6.60       | 10.89      | 8 32       | 1.62         |             | 4.87         |
| Rh             | 80.31      | 88.60      | 17.80      | 23.33        |             | 70.77        |
| Ba             | 594.08     | 172.00     | 2307.83    | 121.05       |             | 166.43       |
| Th             | 217        | 3.08       | 200        | 211          |             | 2.24         |
| II             | 0.69       | 0.84       | 0.48       | 0.63         |             | 0.70         |
| Nh             | 1.47       | 2.99       | 1.96       | 1.35         |             | 1.31         |
| Ta             | 0.10       | 0.18       | 0.14       | 0.11         |             | 0.11         |
| La             | 6.12       | 9.38       | 7.08       | 6.44         |             | 6.24         |
| Ce             | 12.86      | 20.39      | 16.83      | 13.38        |             | 13.65        |
| Pr             | 1.49       | 2.27       | 2.18       | 1.56         |             | 1.63         |
| Sr             | 31.65      | 74.10      | 253.70     | 176.59       |             | 17.81        |
| Nd             | 6.10       | 9.57       | 9.87       | 6.57         |             | 6.95         |
| Sm             | 1.32       | 2.33       | 2.56       | 1.49         |             | 1.77         |
| Zr             | 81.20      | 103.01     | 84.71      | 66.63        |             | 82.09        |
| Hf             | 2.06       | 2.66       | 2.27       | 1.79         |             | 2.12         |
| Eu             | 0.29       | 0.62       | 0.86       | 0.51         |             | 0.63         |
| Gd             | 1.35       | 2.21       | 2.78       | 1.56         |             | 2.04         |
| Tb             | 0.24       | 0.35       | 0.42       | 0.25         |             | 0.35         |
| Dy             | 1.66       | 2.21       | 3.11       | 1.71         |             | 2.49         |
| Y              | 8.75       | 12.87      | 16.76      | 9.94         |             | 14.13        |
| Ho             | 0.34       | 0.50       | 0.63       | 0.37         |             | 0.51         |
| Er             | 1.00       | 1.52       | 1.80       | 1.08         |             | 1.56         |
| Yb             | 1.26       | 1.57       | 1.99       | 1.21         |             | 1.59         |
| Lu             | 0.20       | 0.24       | 0.30       | 0.18         |             | 0.24         |
| Sc             | 15.62      | 17.05      | 20.08      | 14.59        |             | 21.91        |
| Cr             | 78.62      | 122.47     | 41.49      | 67.95        |             | 63.54        |
| TI             | 0.87       | 0.50       | 0.09       | 0.12         |             | 0.82         |
| Pb             | 114.06     | 59.19      | 142.52     | 14.73        |             | 58.74        |
| Bi             | 0.32       | 0.41       | 0.46       | 0.44         |             | 3.93         |
| V              | 126.77     | 118.99     | 155.16     | 116.51       |             | 62.87        |
| Cu             | 6.50       | 1259.58    | 99.21      | 414.43       |             | 642.05       |
| Zn             | 165.60     | 40.79      | 82.13      | 131.45       |             | 31.77        |
| Ga             | 18.06      | 14.93      | 18.35      | 13.17        |             | 16.31        |
| As             | 7.91       | 0.37       | 5.57       | 11.00        |             | 11.28        |
| Mo             | 1.41       | 30.46      | 1.00       | 5.35         |             | 1.02         |
| W              | 1.13       | 2.58       | 0.82       | 0.67         |             | 0.45         |

|                | APPENI          | DIX 3-3          |                |                  |                |                |               |               |               |
|----------------|-----------------|------------------|----------------|------------------|----------------|----------------|---------------|---------------|---------------|
|                | Major and       | trace eleme      | nt composi     | tions of who     | ole-rock san   | nples          |               |               |               |
|                | Kelian mi       | ne               |                | 1                | 1              |                |               |               |               |
| -              | 1               | 2                | 3              | 4                | 5              | 6              | 7             | 8             | 9             |
| Location       | Tenu            | Tepu             | Tenu           | Fast Pramp Pit   | tWest Pramn Pi | East Pramp Pit | West Pramp Pi | West Pramp Pi | West Pramp Pi |
| Location       | KED1-415m       | KED1-452m        | K418-27.5m     | K782-357m        | Central And    | Fast And       | Central And   | Central And   | Central And   |
| Pock Tyme      | andesita        | andoeite         | andasita       | andesite         | andesite       | andecite       | andesite      | andesite      | andesite      |
| Alteration     | laget altered   | logat alternal   | least alternal | andesite         | andesite       | andesite       | andesite      | andestie      | andesite      |
| Anteration     | least aftered   | least altered    | least altered  | propynic         | propyride      | propyride      | propynic      | propylitic    | propyinic     |
| Sample No.     | 1132            | 1134             | 1143           | 123197           | 123200         | 123201         | 123209        | 123210        | 123212        |
| Major elements | (normalised 10  | 0 wt%) analyse   | d by XRF, exc  | ept (=) analysed | by Electron M  | icroprobe (EDS | )             | 50.00         | 40.41         |
| SiO2           | 57.62           | 57.48            | 59.00          | 57.78            | 59.73          | 57.66          | 59.12         | 59.03         | 58.51         |
| TiO2           | 0.59            | 0.59             | 0.57           | 0.54             | 0.52           | 0.60           | 0.53          | 0.54          | 0.56          |
| A12O3          | 18.08           | 18.10            | 18.10          | 18.08            | 17.51          | 18.29          | 17.77         | 17.75         | 18.41         |
| Fe2O3          | 7.56            | 7.50             | 7.34           | 7.01             | 6.92           | 7.87           | 7.01          | 7.07          | 7.50          |
| MnO            | 0.17            | 0.18             | 0.16           | 0.62             | 0.25           | 0.18           | 0.23          | 0.21          | 0.45          |
| MgO            | 3.41            | 3.47             | 3.08           | 2.80             | 3.57           | 3.49           | 3.78          | 3.19          | 3.78          |
| CaO            | 7.75            | 7.48             | 7.66           | 9.46             | 7.19           | 7.82           | 7.75          | 8.01          | 7.10          |
| Na2O           | 3.94            | 4.23             | 3.39           | 2.62             | 2.09           | 3.25           | 2.08          | 3.03          | 1.92          |
| K2O            | 0.80            | 0.87             | 0.60           | 1.00             | 2.10           | 0.73           | 1.63          | 1.06          | 1.66          |
| P2O5           | 0.09            | 0.10             | 0.10           | 0.10             | 0.12           | 0.11           | 0.11          | 0.11          | 0.11          |
| Na2O + K2O     | 4.74            | 5.10             | 3.99           | 3.62             | 4.20           | 3.98           | 3.71          | 4.09          | 3.58          |
| Tenes alements | (in name) and   | and has I show A | Lating ICDMC   | c                |                |                |               |               |               |
| Trace elements | (in ppin) analy | a Al             | 1 52           | 4.70             | 2.80           | 1.71           | 4.27          | 1.19          | 196           |
| Dh             | 2.89            | 3.41             | 1.52           | 4.79             | 2.89           | 1./1           | 4.27          | 4.40          | 4.60          |
| Ro             | 20.78           | 250 72           | 204 02         | 132.27           | 236.30         | 208 50         | 152 44        | 164.10        | 177.28        |
| Th             | 1.49            | 1.54             | 1.62           | 1.65             | 1.37           | 1.61           | 1 34          | 1.40          | 1 36          |
| II             | 0.41            | 0.41             | 0.51           | 0.49             | 0.41           | 0.52           | 0.41          | 0.43          | 0.42          |
| Nh             | 1.12            | 1.11             | 1.26           | 1.10             | 0.85           | 0.52           | 0.88          | 1.10          | 1.00          |
| Ta             | 0.06            | 0.07             | 0.09           | 0.08             | 0.06           | 0.06           | 0.06          | 0.08          | 0.07          |
| Ia             | 6.75            | 6.29             | 6.75           | 6.77             | 5.90           | 6.31           | 5.48          | 6.13          | 5.72          |
| Ce             | 13.99           | 13.55            | 14.38          | 14.55            | 13.05          | 13.63          | 12.21         | 13.22         | 12.82         |
| Pr             | 1.75            | 1.73             | 1.79           | 1.79             | 1.62           | 1.71           | 1.52          | 1.69          | 1.62          |
| Sr             | 331.85          | 309.64           | 348.43         | 325.05           | 259.96         | 318.64         | 256.72        | 411.60        | 200.16        |
| Nd             | 7.89            | 7.72             | 7.84           | 7.84             | 7.26           | 7.59           | 6.62          | 7.57          | 7.30          |
| Sm             | 2.03            | 1.91             | 1.94           | 1.90             | 1.82           | 1.90           | 1.57          | 1.96          | 1.89          |
| Zr             | 54.45           | 53.88            | 63.73          | 59.19            | 49.43          | 55.33          | 58.81         | 66.65         | 51.67         |
| Hf             | 1.55            | 1.48             | 1.78           | 1.70             | 1.44           | 1.58           | 1.60          | 1.60          | 1.50          |
| Eu             | 0.70            | 0.64             | 0.63           | 0.67             | 0.62           | 0.71           | 0.56          | 0.67          | 0.62          |
| Gd             | 2.26            | 2.05             | 1.92           | 2.11             | 2.00           | 2.20           | 1.67          | 2.12          | 2.02          |
| Tb             | 0.36            | 0.33             | 0.33           | 0.34             | 0.33           | 0.36           | 0.26          | 0.35          | 0.32          |
| Dy             | 2.63            | 2.45             | 2.35           | 2.43             | 2.33           | 2.54           | 1.82          | 2.42          | 2.40          |
| Y              | 15.30           | 14.07            | 13.54          | 13.70            | 13.37          | 14.56          | 10.03         | 13.63         | 13.84         |
| Ho             | 0.53            | 0.50             | 0.51           | 0.51             | 0.49           | 0.55           | 0.38          | 0.50          | 0.50          |
| Er             | 1.60            | 1.50             | 1.49           | 1.55             | 1.51           | 1.62           | 1.16          | 1.53          | 1.54          |
| Yb             | 1.73            | 1.69             | 1.67           | 1.70             | 1.70           | 1.77           | 1.34          | 1.71          | 1.71          |
| Lu             | 0.30            | 0.26             | 0.26           | 0.26             | 0.26           | 0.27           | 0.22          | 0.28          | 0.26          |
| Sc             | 19.26           | 19.61            | 17.09          | 16.17            | 20.58          | 20.29          | 21.54         | 21.83         | 23.68         |
| Cr             | 16.81           | 15.92            | 17.23          | 19.92            | 54.89          | 20.93          | 67.98         | 54.88         | 51.49         |
| TI             | 0.05            | 0.02             | 0.02           | 0.03             | 0.01           | 0.00           | 0.01          | 0.07          | 0.08          |
| Pb             | 5.65            | 6.40             | 5.80           | 21.55            | 0.24           | 0.33           | 1.11          | 12.57         | 6.62          |
| BI             | 0.01            | 0.00             | -0.02          | 0.08             | 0.00           | 0.00           | 0.00          | 0.02          | 0.09          |
| V              | 183.23          | 188.22           | 170.82         | 150.77           | 128.60         | 144.05         | 138.60        | 1/8.64        | 186.23        |
| 7.             | 4.05            | 4.20             | 19.22          | 6.96             | 8.77           | 1.40           | 14.05         | 51.00         | 00.72         |
| Zn             | 20.52           | 79.02            | 05.24          | 50.40            | 1.01           | 8.00           | 20.13         | 51.09         | 80.55         |
| Ga             | 20.03           | 21.79            | 20.85          | 14.89            | 0.12           | 0.12           | 0.69          | 1.87          | 15.62         |
| Ma             | 0.71            | 0.28             | 0.75           | 0.79             | 1.19           | 1.59           | 2.14          | 0.67          | 0.00          |
| IV10           | 0.00            | 0.02             | 0.59           | 0.78             | 1.18           | 1.38           | 2.14          | 0.07          | 0.90          |

|                | APPEND         | IX 3-3         |                |                |                |                |                |               |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|
|                | Major and t    | race element   | composition    | ns of whole-   | rock samples   | S              |                |               |
|                | Kelian min     | e              |                |                |                |                |                |               |
|                | 10             | 11             | 12             | 13             | 14             | 15             | 16             | 17            |
| Location       | East Pramp Pit | East Pramp Pi |
|                | Tepu And.      | K782-434m      | K782-527m      | K626-302m      | K610-155m      | K636-131m      | K625-240m      | K782-48m      |
| Rock Type      | andesite       | andesite      |
| Alteration     | nronvlitic     | propylitic     | propylitic     | nronylitic     | propylitic     | propylitic     | propylitic     | nhvllic S2    |
| Sample No.     | 123228         | 123362         | 123365         | 123427         | 123476         | 123500         | 123532         | 123188        |
| Major alamanta | 123220         | 123302         | 125305         | 123421         | 125470         | 123509         | 143334         | 123100        |
| sio2           | 60.26          | 60.56          | 59.64          | 50.49          | 59.36          | 50.06          | 50 42          | 50 51         |
| 5102           | 00.30          | 0.50           | 38.04          | 39.40          | 38.30          | 38.60          | 36.43          | 0.55          |
| 1102           | 0.55           | 0.51           | 0.56           | 0.30           | 18.44          | 0.01           | 0.57           | 0.55          |
| AI203          | 18.05          | 17.66          | 18.34          | 17.83          | 18.44          | 17.80          | 18.38          | 17.49         |
| Fe2O3          | 6.41           | 7.55           | 7.60           | 7.43           | 7.79           | 8.69           | 7.08           | 7.00          |
| MnO            | 0.14           | 0.36           | 0.25           | 0.58           | 0.53           | 0.18           | 0.31           | 0.74          |
| MgO            | 2.15           | 3.43           | 3.22           | 3.36           | 3.35           | 3.08           | 2.38           | 2.87          |
| CaO            | 7.37           | 6.32           | 7.68           | 6.14           | 7.53           | 5.54           | 8.26           | 7.42          |
| Na2O           | 3.64           | 2.33           | 3.34           | 0.53           | 2.85           | 2.51           | 1.76           | 0.09          |
| K2O            | 0.60           | 1.18           | 0.28           | 3.98           | 0.42           | 2.56           | 2.72           | 4.23          |
| P2O5           | 0.12           | 0.11           | 0.10           | 0.10           | 0.11           | 0.10           | 0.10           | 0.09          |
| Na2O + K2O     | 4.24           | 3.51           | 3.62           | 4.51           | 3.27           | 5.07           | 4.48           | 4.32          |
| Trace elements |                |                |                |                |                |                |                |               |
| Cs             | 4.22           | 1.98           | 1.27           | 3.58           | 2.07           | 2.85           | 3.43           | 2.72          |
| Rb             | 9.93           | 17.66          | 3.83           | 25.80          | 6.32           | 29.06          | 52.75          | 72.07         |
| Ba             | 240.79         | 218.56         | 124.17         | 356.76         | 108.97         | 282.34         | 198.19         | 289.13        |
| Th             | 1.84           | 1.41           | 1.78           | 1.54           | 1.68           | 1.78           | 1.48           | 1.87          |
| U              | 0.54           | 0.43           | 0.57           | 0.46           | 0.51           | 0.46           | 0.43           | 0.50          |
| Nb             | 1.12           | 1.10           | 1.12           | 1.30           | 1.12           | 1.47           | 0.96           | 1.57          |
| Та             | 0.08           | 0.07           | 0.08           | 0.08           | 0.08           | 0.10           | 0.08           | 0.10          |
| La             | 7.29           | 5.91           | 6.91           | 8.83           | 6.49           | 7.30           | 6.00           | 6.87          |
| Ce             | 15.74          | 13.04          | 14.89          | 17.54          | 14.18          | 15.65          | 12.92          | 14.75         |
| Pr             | 1.93           | 1.62           | 1.83           | 2.13           | 1.77           | 1.93           | 1.63           | 1.80          |
| Sr             | 384.53         | 290.67         | 316.46         | 332.70         | 326.60         | 355.94         | 205.34         | 107.87        |
| Nd             | 8.21           | 7.21           | 8.08           | 9.32           | 7.80           | 8.73           | 7.45           | 7.81          |
| Sm             | 2.01           | 1.73           | 1.97           | 2.11           | 1.99           | 1.99           | 1.86           | 1.90          |
| Zr             | 67.25          | 55.43          | 58.53          | 82.75          | 58.17          | 85.33          | 53.15          | 59.70         |
| Hf             | 1.84           | 1.54           | 1.67           | 1.56           | 1.66           | 1.63           | 1.49           | 1.63          |
| Eu             | 0.72           | 0.62           | 0.67           | 0.79           | 0.68           | 0.66           | 0.59           | 0,63          |
| Gd             | 2.15           | 1.90           | 2.18           | 2.54           | 2.22           | 2.27           | 2.01           | 2.02          |
| 10             | 0.34           | 0.31           | 0.36           | 0.41           | 0.36           | 0.37           | 0.33           | 0.32          |
| Dy             | 12.39          | 4.15           | 2.54           | 2.80           | 2.01           | 2.40           | 2.51           | 12.29         |
| Ha             | 0.51           | 0.46           | 0.54           | 0.50           | 0.55           | 0.52           | 0.51           | 0.40          |
| Fr             | 1.51           | 1.41           | 1.61           | 1.79           | 1.69           | 1.51           | 1.54           | 1.49          |
| Yh             | 1.51           | 1.41           | 1.01           | 1.70           | 1.00           | 1.51           | 1.54           | 1.40          |
| Lu             | 0.27           | 0.25           | 0.27           | 0.28           | 0.28           | 0.26           | 0.25           | 0.25          |
| Sc             | 16.05          | 19.74          | 18.48          | 14.20          | 20.52          | 12.93          | 17.94          | 15.82         |
| Cr             | 19.73          | 53,40          | 24.48          | 91,71          | 25.28          | 65.53          | 32.07          | 20.45         |
| TI             | 0.00           | 0.05           | 0.00           | 0.06           | 0.00           | 0.12           | 0.05           | 0.09          |
| Pb             | 0.32           | 180.37         | 3.83           | 3.73           | 5.04           | 4.28           | 72.62          | 27.07         |
| Bi             | 0.00           | 0.37           | 0.00           | 0.02           | 0.00           | 0.03           | 0.01           | 0.01          |
| v              | 122.69         | 156.08         | 157.55         | 108.30         | 174.75         | 111.92         | 167.29         | 148.32        |
| Cu             | 7.89           | 68.83          | 13.85          | 16.15          | 13.63          | 21.54          | 8.10           | 10.12         |
| Zn             | 8.95           | 1619.70        | 29.56          | 42.15          | 56.42          | 53.96          | 47.80          | 126.34        |
| Ga             | 15.25          | 15.55          | 16.91          | 14.91          | 16.46          | 16.08          | 15.11          | 14.27         |
| As             | 0.15           | 9.84           | 0.57           | 3.88           | 1.73           | 5.02           | 1.57           | 16.68         |
| Mo             | 1.58           | 1.09           | 2.27           | 2.04           | 1.74           | 1.46           | 2.16           | 0.82          |
| W              | 0.25           | 0.67           | 0.52           | 0.58           | 0.97           | 0.43           | 0.43           | 1.02          |

|                | APPEND         | DIX 3-3        |                |                |                |                |                |               |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|
|                | Major and t    | trace elemen   | t compositio   | ons of whole   | -rock sample   | es             |                |               |
|                | Kelian min     | ie             |                |                |                |                |                |               |
|                | 18             | 19             | 20             | 21             | 22             | 23             | 24             | 25            |
| Location       | East Pramp Pit | West Pramp Pit | West Pramp Pit | East Pramp Pi |
|                | K782-153m      | Central And    | Central And    | K621-155m      | K621-178m      | K637-148m      | K686-74m       | K633-277m     |
| Rock Type      | andesite       | andesite      |
| Alteration     | andesne        | andesite       | andesne        | andesite       | andesne        | andesite       | andesite       | andesite      |
| Alteration     | 122101         | phyme 52       | phyme 32       | phyme 52       | phytuc 32      | phyme S2       | phyme S2       | phyme 32      |
| Sample No.     | 125191         | 123200         | 123207         | 123418(*)      | 123419         | 123485         | 123492(-)      | 123501        |
| Major elements |                |                |                |                |                |                |                |               |
| SiO2           | 58.19          | 71.84          | 60.90          | 56.93          | 54.80          | 65.20          | 69.17          | 48.21         |
| TiO2           | 0.58           | 0.63           | 0.51           | 0.60           | 0.48           | 0.53           | 0.49           | 0.34          |
| A12O3          | 18.02          | 21.96          | 18.18          | 18.34          | 17.21          | 17.12          | 17.03          | 10.40         |
| Fe2O3          | 7.68           | 2.52           | 6.62           | 10.53          | 16.34          | 8.47           | 6.87           | 24.56         |
| MnO            | 0.67           | 0.18           | 0.82           | 0.96           | 1.01           | 0.40           |                | 0.18          |
| MgO            | 3.00           | 0.24           | 2.96           | 1.74           | 2.35           | 1.46           | 0.88           | 0.63          |
| CaO            | 6.84           | 0.38           | 5.43           | 6.10           | 3.00           | 1.70           | 0.50           | 12.38         |
| Na2O           | 0.09           | 0.11           | 0.09           | 1.29           | 0.06           | 0.06           | 0.53           | 0,12          |
| K20            | 4.80           | 1.97           | 4.39           | 4.58           | 4.65           | 4.96           | 5,24           | 3.12          |
| P2O5           | 0.11           | 0.17           | 0.10           | 1.00           | 0.09           | 0.09           |                | 0.05          |
| Na2O + K2O     | 4.90           | 2.08           | 4.47           | 5.87           | 4.71           | 5.02           | 5.77           | 3.24          |
|                |                |                |                |                |                |                |                | - 10 PC 0101  |
| Trace elements | 10.00          |                | 17.42          |                |                |                | 12/22          |               |
| Cs             | 3.27           | 3.65           | 1.75           | 3.05           | 2.92           | 6.26           | 2.81           | 0.57          |
| Rb             | 84.53          | 41.14          | 60.20          | 66.94          | 72.92          | 91.25          | 93.67          | 42.29         |
| Ba             | 202.07         | 188.82         | 238.12         | 420.98         | 227.57         | 317.15         | 207.55         | 256.94        |
| Th             | 1.51           | 1.70           | 1.30           | 1.58           | 1.49           | 1.44           | 2.71           | 0.82          |
| U              | 0.45           | 0.52           | 0.41           | 0.48           | 0.46           | 0.44           | 0.77           | 0.27          |
| Nb             | 1.15           | 1.34           | 0.90           | 1.24           | 1.14           | 0.94           | 2.76           | 0.58          |
| Ta             | 0.08           | 0.09           | 0.06           | 0.08           | 0.07           | 0.07           | 0.18           | 0.04          |
| La             | 6.17           | 6.07           | 5.27           | 7.34           | 7.46           | 4.62           | 4.20           | 3.99          |
| Ce             | 13.39          | 13.69          | 11.63          | 15.36          | 15.02          | 10.55          | 9.59           | 8.68          |
| Pr             | 1.66           | 1.71           | 1.44           | 1.87           | 1.77           | 1.33           | 1.12           | 1.15          |
| Sr             | 84.62          | 18.80          | 60.66          | 70.23          | 54.62          | 27.82          | 15.83          | 59.79         |
| Nd             | 7.32           | 7.56           | 6.40           | 8.05           | 7.30           | 5.86           | 4.58           | 4.81          |
| Sm             | 1.84           | 1.85           | 1.56           | 1.93           | 1.72           | 1.45           | 1.03           | 1.27          |
| Zr             | 52.79          | 64.06          | 47.29          | 55.48          | 48.54          | 49.92          | 70.70          | 29.38         |
| HI             | 1.50           | 1.81           | 1.37           | 1.59           | 1.38           | 1.47           | 1.92           | 0.79          |
| Eu             | 0.61           | 0.63           | 0.46           | 0.63           | 0.64           | 0.36           | 0.24           | 0.48          |
| Gd             | 2.06           | 2.15           | 1.78           | 2.00           | 1.81           | 1.69           | 1.22           | 1.51          |
| 10             | 0.32           | 0.36           | 0.29           | 0.34           | 0.26           | 0.28           | 0.20           | 0.23          |
| Dy             | 2.32           | 2.62           | 2.04           | 2.34           | 1.97           | 2.12           | 1.55           | 1.57          |
| I He           | 0.50           | 15.84          | 0.44           | 13.78          | 0.40           | 0.44           | 9.95           | 0.24          |
| Fo             | 0.50           | 0.55           | 0.44           | 0.50           | 0.40           | 0.44           | 0.36           | 0.34          |
| EI<br>Vh       | 1.44           | 1.08           | 1.52           | 1.52           | 1.23           | 1.50           | 1.09           | 1.00          |
| 10             | 0.26           | 1.8/           | 0.24           | 1.08           | 0.21           | 0.00           | 0.21           | 0.16          |
| Eu<br>Se       | 16.51          | 10.28          | 21.06          | 15.26          | 12.76          | 19 55          | 17.04          | 11.77         |
| Cr             | 22.00          | 66.05          | 56.66          | 25.62          | 22.09          | 16.03          | 26.27          | 45.69         |
| TI             | 0.10           | 0.95           | 0.01           | 0.15           | 0.00           | 0.92           | 0.12           | 45.08         |
| Ph             | 12.40          | 4 74           | 2 31           | 1350.20        | 3603.24        | 4767.63        | 12001 27       | 18 10         |
| Bi             | 0.01           | 0.02           | 0.00           | 3 39           | 0.22           | 0.38           | 2 01           | 0.20          |
| V              | 164.04         | 210.23         | 151.35         | 150.40         | 117 53         | 162.05         | 136.24         | 110.22        |
| Cu             | 1.66           | 210.23         | 151.55         | 44.07          | 178.82         | 18.70          | 05 00          | 37.31         |
| Zn             | 32 34          | 20.02          | 25.07          | 10667.24       | 3011 22        | 2678 72        | 7210.00        | 70.52         |
| Ga             | 14 50          | 21.60          | 16 20          | 17.60          | 14.14          | 15.02          | 16.93          | 0.52          |
| Ae             | 34.07          | 3.67           | 3.16           | 62.63          | 112.08         | 32.12          | 24.45          | 435.24        |
| Mo             | 0.78           | 1.64           | 1.01           | 1 35           | 1 54           | 1 47           | 1 21           | 3.07          |
| w              | 1.26           | 2.73           | 1.10           | 1.30           | 1.50           | 2.25           | 3.33           | 1.56          |
|                | 1.000          | Bert Fail      | 1,11           | 1.140          | 1100           | 40.000         | 2100           | 1.00          |

|                | APPEND         | IX 3-3            |                |                  |                 |                |                |              |
|----------------|----------------|-------------------|----------------|------------------|-----------------|----------------|----------------|--------------|
|                | Major and t    | race elemen       | t compositio   | ons of whole     | -rock sample    | es             |                |              |
|                | Kelian min     | e                 |                |                  |                 |                |                |              |
|                | 26             | 27                | 28             | 29               | 30              | 31             | 32             | 33           |
| Location       | Fast Pramn Pit | Fast Pramp Pit    | Fast Pramp Pit | East Pramn Pit   | Fast Pramp Pit  | East Pramp Pit | East Pramn Pit | And 393 Zone |
| Locution       | K622-174m      | K782-182m         | K629-199m      | K629-319m        | K629-337m       | K629-397m      | K708-360m      | K609-228m    |
| Pock Tune      | andesite       | Hudroth Brassia   | andesite       | Hudroth Braceia  | Hudnyth Braccia | andesite       | andesite       | andesite     |
| Alteration     | andesite       | riyuroth. Breccia | andesite       | nyuroth. Breccia | nyurou, Breccia | andesne        | andesne        | nhullio S2   |
| Aneration      | phyme 32       | phyme 35          | 122422         | 122422           | 102424(#)       | 102426         | 122427(8)      | 122472       |
| Sample No.     | 123524(*)      | 123193(-)         | 123432         | 123433           | 123434(-)       | 123430         | 123437(*)      | 1234/3       |
| Major elements |                |                   |                |                  | 10.00           | <b>CR R1</b>   | 10.25          | 27.62        |
| SiO2           | 59.69          | 76.98             | 59.45          | 71.09            | 67.79           | 57,71          | 40.35          | 27.68        |
| TiO2           | 0.62           | 0.47              | 0.56           | 0.50             | 0.53            | 0.53           | 0.87           | 0.52         |
| AI2O3          | 19.55          | 13.10             | 17.39          | 16.38            | 17.45           | 16.78          | 24.35          | 17.79        |
| Fe2O3          | 6.76           | 4.76              | 9.30           | 5.34             | 5.99            | 11.30          | 11.66          | 39.90        |
| MnO            | 0.25           |                   | 0.55           | 0.13             | 0.12            | 0.78           | 1.50           | 1.34         |
| MgO            | 2.95           | 0.58              | 3.14           | 0.94             | 1.36            | 3.06           | 5.66           | 3.99         |
| CaO            | 6.19           | 0.22              | 2.91           | 0.27             | 1.17            | 5.11           | 10.26          | 3.87         |
| Na2O           | 0.19           | 0.20              | 0.15           | 0.07             | 0.58            | 0.11           | 1.06           | 0.07         |
| K20            | 4,58           | 4.27              | 6,45           | 5.26             | 5.66            | 4.51           | 5.48           | 4.73         |
| P2O5           |                |                   | 0.10           | 0.02             |                 | 0.10           |                | 0.11         |
| Na2O + K2O     | 4.77           | 4.47              | 6.61           | 5.33             | 6.24            | 4.62           | 6.53           | 4.80         |
|                |                |                   |                |                  |                 |                |                |              |
| Trace elements |                |                   |                |                  |                 |                |                |              |
| Cs             | 4.63           | 3.25              | 4.34           | 7.53             | 4.49            | 1.42           | 2.60           |              |
| Rb             | 92.27          | 101.38            | 93.05          | 146.05           | 129.62          | 75.95          | 101.25         |              |
| Ba             | 284.69         | 312.77            | 773.93         | 422.41           | 385.25          | 240.79         | 362.83         |              |
| Th             | 1.55           | 7.43              | 1.40           | 12.68            | 10.17           | 1.21           | 2.45           |              |
| U              | 0.47           | 1.40              | 0.43           | 1.94             | 2.07            | 0.36           | 0.80           |              |
| Nb             | 1.18           | 6.95              | 1.01           | 10.64            | 9.64            | 0.98           | 1.79           |              |
| la             | 0.10           | 0.50              | 0.07           | 0.82             | 0.74            | 0.06           | 0.12           |              |
| La             | 5.81           | 26.92             | 5.28           | 51.04            | 21.99           | 3.89           | /.11           |              |
| Ce             | 12.70          | 53.45             | 11.07          | 61.50            | 55.50           | 9.18           | 10.81          |              |
| PT<br>C-       | 05.09          | 5.09              | 1.40           | 0.39             | 24.02           | 60.64          | 112.47         |              |
| NI             | 73.98          | 14.80             | 6 49           | 17.90            | 34.05           | 5.00           | 10.02          |              |
| Sm             | 1.20           | 4.40              | 1.56           | 1.59             | 4.01            | 1.44           | 3.03           |              |
| 7.             | 56.87          | 123.66            | 47.05          | 165.15           | 211.80          | 47.83          | 85 71          |              |
| LI             | 1.62           | 3 32              | 1.42           | 4 32             | 5 43            | 1 24           | 2 36           |              |
| En             | 0.42           | 1.06              | 0.46           | 0.00             | 1.02            | 0.80           | 0.87           |              |
| Gd             | 2.04           | 3.84              | 1.75           | 4 10             | 4 30            | 1.76           | 3.43           |              |
| Th             | 0.36           | 0.50              | 0.28           | 0.61             | 0.67            | 0.29           | 0.57           |              |
| Dv             | 2.49           | 3,72              | 1.99           | 3.94             | 4.60            | 1.98           | 4.00           |              |
| Y              | 14.76          | 22.44             | 11.13          | 23.61            | 26.79           | 13.25          | 23.55          |              |
| Ho             | 0.51           | 0,80              | 0.43           | 0.81             | 0.94            | 0.43           | 0.87           |              |
| Er             | 1.56           | 2.35              | 1,29           | 2.39             | 2.74            | 1.29           | 2.44           |              |
| Yb             | 1.70           | 2.48              | 1.46           | 2.63             | 3.00            | 1.41           | 2.83           |              |
| Lu             | 0.26           | 0.38              | 0.23           | 0.41             | 0.47            | 0.23           | 0.43           |              |
| Sc             | 22.44          | 12.87             | 18.66          | 12.27            | 14.31           | 14.02          | 23.47          |              |
| Cr             | 27.65          | 58.38             | 12.21          | 39.21            | 54.98           | 11.35          | 29.81          |              |
| TI             | 0.20           | 0.24              | 0.15           | 0.22             | 0.15            | 0.08           | 0.05           |              |
| Pb             | 20.10          | 102.48            | 498.45         | 136.35           | 656.44          | 8299.58        | 9357.26        |              |
| Bi             | 0.05           | 0.18              | 0.20           | 1.23             | 1.18            | 0.11           | 0.09           |              |
| V              | 195.64         | 58.44             | 151.00         | 74.41            | 72.50           | 149.32         | 217.19         |              |
| Cu             | 51.45          | 2.08              | 58.73          | 22.45            | 73.46           | 136.08         | 116.64         |              |
| Zn             | 82.58          | 16.43             | 3525.02        | 6059.70          | 4507.41         | 14459.25       | 11447.38       |              |
| Ga             | 15.99          | 12.78             | 15.76          | 24.39            | 22.36           | 16.19          | 26.38          |              |
| As             | 22.77          | 435.50            | 32.65          | 0.00             | 49.45           | 166.34         | 43.33          |              |
| Mo             | 1.08           | 1.18              | 3.41           | 1.40             | 1.16            | 5.25           | 1.79           |              |
| W              | 1.46           | 3.43              | 5.97           | 2.93             | 2.53            | 1.76           | 2.84           |              |

|                         | APPEND         | IX 3-3         |                |                 |                |                |                |               |
|-------------------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|---------------|
|                         | Major and t    | trace elemen   | t compositio   | ons of whole    | -rock sample   | es             |                |               |
|                         | Kelian min     | ie             |                |                 |                |                |                |               |
|                         | 34             | 35             | 36             | 37              | 38             | 39             | 40             | 41            |
| Location                | East Pramp Pit | East Pramp Pit | East Pramp Pit | East Pramp Pit  | East Pramp Pit | West Pramp Pit | West Pramp Pit | East Pramp Pi |
|                         | K637-275m      | K681-239m      | K681-308m      | K681-15m        | 255 Zone       | Central And    | Central And    | K643-211m     |
| Rock Type               | andesite       | andesite       | tuff           | Hudroth Braceia | andesite       | andesite       | andesite       | andesite      |
| Alteration              | andesite       | andesite       | nhullia S2     | nbullia S2      | andesite       | andesite       | andesne        | andesne       |
| Aneration<br>Cample No. | 122486         | 122487(8)      | 122480         | 102579(#)       | 122205         | 102212         | 102214         | 122611        |
| Sample No.              | 123480         | 123487(*)      | 123489         | 123578(*)       | 123205         | 123213         | 125214         | 123511        |
| Major elements          |                |                | 70.04          | (2.07           | 10.12          | 64.00          | (0.(7          | 55.0 <i>C</i> |
| SiO2                    | 56.36          | 66.56          | 70.06          | 63.96           | 60.47          | 64.80          | 69.67          | 55.96         |
| TiO2                    | 0.53           | 0.48           | 0.47           | 0.48            | 0.61           | 0.51           | 0.47           | 0.58          |
| A12O3                   | 16.61          | 16.66          | 14.32          | 16.29           | 19.07          | 16.68          | 15.69          | 18.02         |
| Fe2O3                   | 7.53           | 6.05           | 9.13           | 5.24            | 6.96           | 6.07           | 6.88           | 12.65         |
| MnO                     | 0.73           | 1.53           | 0.25           | 1.53            | 1.02           | 1.03           | 0.84           | 0.45          |
| MgO                     | 4.64           | 1.74           | 1.00           | 2.61            | 2.31           | 2.01           | 0.94           | 2.50          |
| CaO                     | 9.65           | 2.87           | 0.13           | 5.24            | 3.72           | 4.62           | 1.17           | 4.34          |
| Na2O                    | 0.39           | 0.35           | 0.07           | 0.17            | 0.10           | 0.31           | 0.25           | 0.18          |
| K20                     | 3.47           | 5.17           | 4,55           | 5.11            | 5.63           | 3.87           | 3.99           | 5.22          |
| P2O5                    | 0.10           |                | 0.03           |                 | 0.10           | 0.10           | 0.10           | 0.10          |
| Na2O + K2O              | 3.85           |                | 4.62           | 5.28            | 5.73           | 4.18           | 4.24           | 5.39          |
|                         |                |                |                |                 |                |                |                |               |
| Trace elements          | 2.00           | 2.00           |                |                 |                |                |                |               |
| Cs                      | 3.60           | 2.00           | 4.49           | 3.16            | 5.90           | 5.17           | 5.80           | 3.79          |
| Rb                      | 54.30          | 89.03          | 102.88         | 88.99           | 113.73         | 69.84          | 74.37          | 101.80        |
| Ba                      | 167.03         | 430.77         | 412.14         | 300.26          | 273.47         | 255.36         | 251.76         | 287.01        |
| In                      | 1.38           | 1.61           | 9.49           | 5.44            | 1.60           | 1.26           | 1.14           | 2.25          |
| 0                       | 0.40           | 0.50           | 1.67           | 1.07            | 0.47           | 0.39           | 0.36           | 0.64          |
| Nb                      | 1.02           | 1.43           | 8.99           | 4.18            | 1.09           | 1.01           | 0.93           | 1.97          |
| 18                      | 0.07           | 0.08           | 0.65           | 0.32            | 0.08           | 0.07           | 0.07           | 0.13          |
| La                      | 2.34           | 5,59           | 29.30          | 10.33           | 5.47           | 4.90           | 4.94           | 7.10          |
| Ce<br>D-                | 11.75          | 12.81          | 59.50          | 33.81           | 12.21          | 11.12          | 11.01          | 15.01         |
| PI<br>C-                | 129.02         | 111.00         | 42.45          | 3.00            | 1.55           | 71.15          | 1.40           | 60.10         |
| Nd                      | 138.05         | 7.69           | 44.40          | 15.29           | 7.09           | 6 20           | 6.25           | 7.61          |
| Sm                      | 1.74           | 1.08           | 5.06           | 3.15            | 1.00           | 1.57           | 1.52           | 1.06          |
| Zr                      | 47.82          | 63.43          | 178 74         | 00.43           | 55.82          | 51.41          | 42.33          | 68.82         |
| Hf                      | 1 38           | 1.70           | 178.74         | 2.54            | 1.62           | 1 44           | 1.22           | 1.60          |
| Fu                      | 0.53           | 0.60           | 0.71           | 0.74            | 0.48           | 0.46           | 0.41           | 0.64          |
| Gd                      | 1.96           | 2.43           | 4 37           | 2.86            | 1.98           | 1.78           | 1.50           | 2 33          |
| Th                      | 0.32           | 0.37           | 0.65           | 0.44            | 0.32           | 0.29           | 0.27           | 0.38          |
| Dv                      | 2.22           | 2.64           | 4.37           | 2.83            | 2.14           | 2.12           | 1.86           | 2.79          |
| Y                       | 12.82          | 16.02          | 25.15          | 15.99           | 12.31          | 12.31          | 11.37          | 16.57         |
| Но                      | 0.46           | 0,59           | 0.89           | 0.59            | 0.45           | 0.45           | 0.40           | 0.56          |
| Er                      | 1.43           | 1.71           | 2.63           | 1.71            | 1.35           | 1.37           | 1.17           | 1.61          |
| Yb                      | 1.53           | 1.92           | 2.86           | 1.88            | 1.59           | 1.54           | 1.36           | 1.75          |
| Lu                      | 0.24           | 0.28           | 0.42           | 0.29            | 0.24           | 0.24           | 0.22           | 0.25          |
| Sc                      | 16.19          | 22.98          | 11.42          | 12.19           | 19.56          | 19.52          | 18.04          | 16.54         |
| Cr                      | 29.32          | 18.45          | 42.60          | 36.37           | 13.39          | 42.64          | 49.28          | 22.68         |
| TI                      | 0.04           | 0.10           | 0.16           | 0.14            | 0.23           | 0.12           | 0.19           | 0.14          |
| Pb                      | 17.23          | 104.92         | 145.70         | 76.78           | 11.51          | 207.37         | 94.01          | 178.37        |
| Bi                      | 0.09           | 0.30           | 3.65           | 0.09            | 0.10           | 0.01           | 0.03           | 0.83          |
| V                       | 141.50         | 228.19         | 48.27          | 97.84           | 174.90         | 149.76         | 142.10         | 178.27        |
| Cu                      | 1.91           | 68.86          | 179.36         | 2.99            | 5.73           | 4.75           | 0.63           | 4.29          |
| Zn                      | 69.80          | 6478.93        | 7861.10        | 26.79           | 53.46          | 136.17         | 27.34          | 2079.66       |
| Ga                      | 11.95          | 23.01          | 20.47          | 12.84           | 15.58          | 13.90          | 14.16          | 19.02         |
| As                      | 7.22           | 78.20          | 6.91           | 15.51           | 26.72          | 21.65          | 108.92         | 14.77         |
| Mo                      | 1.35           | 3.44           | 1.26           | 0.75            | 0.51           | 0.91           | 1.49           | 3.01          |
| W                       | 0.94           | 1.33           | 2.74           | 1.52            | 2.25           | 1.60           | 2.99           | 1.52          |

|                         | APPEND         | IX 3-3         |                |                |             |            |                        |             |
|-------------------------|----------------|----------------|----------------|----------------|-------------|------------|------------------------|-------------|
|                         | Major and t    | race elemen    | t compositio   | ons of whole   | -rock samp  | les        |                        |             |
|                         | Kelian min     | le             |                |                |             |            |                        |             |
|                         | 42             | 43             | 44             | 45             | 46          | 47         | 48                     | 49          |
| Location                | East Pramn Pit | East Pramn Pit | Fast Pramn Pit | East Pramp Pit | G. Runcing  | G. Runcing | G. Runcing             | S. Jiu      |
| Location                | K782-610m      | K610-329m      | K681-365mm     | K634-80m       | 1110RL      | 1110RL     | 1120RL                 | K691-134m   |
| Poole Tumo              | tuff           | horo-527m      | tuff           | tuff           | rhyalite    | rhyolite   | rhyalita               | rhyolite    |
| Alteration              | abullia S2     | nhullin S2     | nhullia S2     | nhullia S2     | phyllic \$2 | nhullio S2 | nhyonic<br>phyllic \$2 | nhullio \$2 |
| Anteration<br>Samula Ma | 122267(8)      | 122475(8)      | 122400(#)      | 122502(8)      | 122218      | 122210(8)  | 122220                 | 122403      |
| Sample No.              | 123307(-)      | 123473(*)      | 123490(-)      | 123502(*)      | 125218      | 125219(-)  | 123220                 | 123495      |
| Major elements          | 70.40          |                |                | 21.00          | 26.11       | 75.01      | 70.07                  | 00.26       |
| 5102                    | 72.62          | /1.61          | /1.88          | /4.88          | /6.41       | /5.01      | /8.80                  | 80.30       |
| 1102                    | 0.31           | 0.45           | 0.38           | 0.53           | 0.20        | 0.20       | 0.20                   | 0.09        |
| A12O3                   | 12.75          | 16.60          | 13.05          | 15.48          | 13.49       | 13.00      | 13.22                  | 13.92       |
| Fe2O3                   | 3.79           | 5.38           | 6.12           | 2.52           | 1.72        | 2.17       | 2.26                   | 0.72        |
| MnO                     | 0.16           |                |                |                | 0.26        | 0.62       | 0.41                   | 0.10        |
| MgO                     | 1.71           | 0.66           | 0.19           | 0.54           | 0.53        | 0.82       | 0.55                   | 0.35        |
| CaO                     | 5.33           | 0.12           | 0.22           | 0.12           | 2.01        | 4.13       | 0.18                   | 0.08        |
| Na2O                    | 0.29           | 0.37           | 0.63           | 0.25           | 3.33        | 0.19       | 0.06                   | 0.12        |
| K2O                     | 3.43           | 5.36           | 8.17           | 5.96           | 1.96        | 4.18       | 4.16                   | 4.20        |
| P2O5                    |                |                |                |                | 0.09        |            | 0.09                   | 0.06        |
| Na2O + K2O              | 3.72           | 5.73           | 8.80           | 6.20           | 5.29        | 4.37       | 4.23                   | 4.32        |
| Trace elements          |                |                |                |                |             |            |                        |             |
| Ce                      | 1.64           | 4.61           | 1.10           | 2 32           | 0.82        | 2 53       | 3 59                   | 0.69        |
| Rh                      | 56.28          | 126.53         | 99.94          | 118.32         | 34.16       | 86.10      | 83.56                  | 66.41       |
| Ba                      | 217.72         | 409.22         | 1361.56        | 530.21         | 215.30      | 177.33     | 283.48                 | 364.19      |
| Th                      | 7.18           | 10.05          | 4.92           | 8.96           | 3.44        | 3.28       | 3.61                   | 4.15        |
| U                       | 1.59           | 2.05           | 1.26           | 1.43           | 1.36        | 1.28       | 1.43                   | 1.45        |
| Nb                      | 6.70           | 8.64           | 4.60           | 5.38           | 3.94        | 4.03       | 3.92                   | 3.99        |
| Ta                      | 0.49           | 0.63           | 0.33           | 0.37           | 0.30        | 0.30       | 0.31                   | 0.33        |
| La                      | 21.72          | 26.32          | 18.21          | 37.19          | 11.76       | 11.08      | 11.94                  | 13.53       |
| Ce                      | 42.47          | 54.21          | 34.88          | 65.74          | 25.76       | 24.01      | 25.98                  | 29.18       |
| Pr                      | 4.92           | 6.04           | 3.95           | 6.48           | 3.03        | 2.79       | 3.02                   | 3.39        |
| Sr                      | 129.62         | 55.53          | 119.96         | 41.47          | 123.85      | 53.35      | 3.81                   | 6.76        |
| Nd                      | 18.69          | 23.15          | 14.94          | 21.19          | 11.94       | 11.06      | 11.82                  | 13.05       |
| Sm                      | 3.83           | 4.64           | 3.04           | 3.03           | 2.63        | 2.51       | 2.74                   | 2.71        |
| Zr                      | 121.51         | 169.31         | 100.88         | 90.68          | 67.90       | 65.25      | 64.98                  | 54.15       |
| Hf                      | 3.31           | 4.62           | 2.67           | 2.51           | 2.15        | 2.09       | 2.26                   | 1.96        |
| Eu                      | 0.92           | 0.94           | 0.89           | 0.81           | 0.42        | 0.40       | 0.37                   | 0.41        |
| Gd                      | 3.01           | 4.22           | 2.66           | 2.29           | 2.70        | 2.46       | 2.74                   | 2.60        |
| Tb                      | 0.47           | 0.67           | 0.37           | 0.32           | 0.45        | 0.42       | 0.47                   | 0.43        |
| Dy                      | 2.93           | 4.49           | 2.40           | 2.13           | 3.21        | 2.90       | 3.09                   | 3.03        |
| Y                       | 17.20          | 25.49          | 14.01          | 11.75          | 21.13       | 19.51      | 20.37                  | 20.95       |
| Ho                      | 0.64           | 0.87           | 0.48           | 0.42           | 0.67        | 0.61       | 0.70                   | 0.65        |
| Er                      | 1.81           | 2.65           | 1.30           | 1.25           | 2.13        | 1.91       | 2.10                   | 2.04        |
| TO<br>L.                | 2.01           | 2.90           | 1.44           | 0.21           | 2.60        | 2.40       | 2.72                   | 2.53        |
| Lu                      | 5.00           | 0.41           | 6.22           | 0.21           | 0.41        | 5.93       | 2.66                   | 2.10        |
| Cr                      | 3755           | 42.50          | 29.56          | 45.24          | 22.40       | 26.71      | 23.67                  | 21.19       |
| TI                      | 0.12           | 43.30          | 0.10           | 0.23           | 0.01        | 0.17       | 0.10                   | 0.08        |
| Ph                      | 188.04         | 470 47         | 120.06         | 153 57         | 3.00        | 22.25      | 63.60                  | 158.03      |
| Bi                      | 1.13           | 2.04           | 0.77           | 0.41           | 0.00        | 0.02       | 0.02                   | 0.00        |
| V                       | 43.24          | 40.66          | 25.02          | 98.25          | 24.32       | 23.93      | 25.67                  | 4.37        |
| Cu                      | 45.64          | 105.30         | 210.82         | 21.48          | 5.12        | 3.09       | 7.26                   | 3.69        |
| Zn                      | 10.41          | 3590.61        | 5279.34        | 1833.49        | 27.38       | 50.91      | 105.08                 | 180.09      |
| Ga                      | 14.49          | 19.23          | 11.17          | 15.29          | 15.39       | 12.23      | 13.00                  | 17.65       |
| As                      | 59.59          | 38.54          | 0.00           | 0.00           | 4.42        | 136.56     | 723.55                 | 5.53        |
| Mo                      | 1.61           | 0.54           | 0.86           | 1.32           | 1.40        | 0.23       | 2.57                   | 1.53        |
| W                       | 1.63           | 2.69           | 1.50           | 4.84           | 0.41        | 0.62       | 0.80                   | 0.74        |

|                | APPENI         | DIX 3-3        |               |               |               |               |             |              |
|----------------|----------------|----------------|---------------|---------------|---------------|---------------|-------------|--------------|
|                | Major and      | trace eleme    | ent compos    | sitions of w  | hole-rock s   | amples        |             |              |
|                | Kelian mi      | ne             |               |               |               |               |             |              |
|                | 50             | 51             | 52            | 53            | 54            | 55            | 56          | 57           |
| Location       | East Pramp Pit | East Pramp Pit | East Pramp Pi | East Pramp Pi | East Pramp Pi | East Pramp Pi | G. Runcing  | G. Runcing   |
|                | K610-373m      | K634-181m      | EP1090 RL     | EP1090 RL     | 255 Zone      | K610-352m     | 1090RL      | K686-151m    |
| Rock Type      | tuff           | tuff           | tuff lapilli  | tuff/ HB      | tuff          | tuff          | mudstone/MB | muddy brecci |
| Alteration     | phyllic-S3     | nhvllic-S3     | argillic-S4   | argillic-S4   | argillic-S4   | argillic-S4   | phyllic-S2  | nhyllic-S2   |
| Sampla No.     | 122480(*)      | 122505         | 122202        | 122204(#)     | 122215(#)     | 122470        | 122226(#)   | 122592       |
| Maior elemente | 123400(*)      | 123303         | 123203        | 123204()      | 123213()      | 1254/9        | 123230(-)   | 123363       |
| sion           | 60.70          | 76.20          | 90.10         | 77.60         | 64.77         | 71.00         | 70.50       | (( ))        |
| 5102           | 69.70          | 75.20          | 80.19         | //.60         | 04.//         | /1.90         | 70.59       | 66.05        |
| 1102           | 0.49           | 0.28           | 0.30          | 0.59          | 0.64          | 0.25          | 0.80        | 0.60         |
| A12O3          | 17.02          | 12.15          | 12.30         | 14.25         | 18.94         | 16.64         | 16.42       | 15.23        |
| Fe2O3          | 5.69           | 6.20           | 2.69          | 2.39          | 4.61          | 3.22          | 4.78        | 5.45         |
| MnO            |                | 0.05           | 0.04          | 0.38          | 0.59          | 0.08          |             | 0.47         |
| MgO            | 1.01           | 0.31           | 0.50          | 0.42          | 1.01          | 0.52          | 1.96        | 2.43         |
| CaO            | 0.64           | 0.06           | 0.05          | 0.10          | 0.42          | 0.06          | 1.32        | 5.48         |
| Na2O           | 0.48           | 0.13           | 0.05          | 0.22          |               | 0.15          | 0.83        | 0.08         |
| K20            | 5.51           | 5.61           | 3.86          | 4.31          | 9.50          | 7.17          | 3.79        | 4.12         |
| P2O5           |                | 0.01           | 0.02          |               |               | 0.01          |             | 0.09         |
| Na2O + K2O     | 5.99           | 5.74           |               | 4.53          | 9.50          | 7.32          | 4.62        | 4.20         |
| Transformet    |                |                |               |               |               |               |             |              |
| Trace elements | 2.40           | 0.40           | 2.00          | ( )(          | 1.07          | 2.10          | 7.00        | 4.07         |
| CS             | 2.48           | 2.42           | 3.80          | 6.25          | 1.85          | 2.18          | 1.39        | 4.57         |
| RD             | 82.11          | 89.89          | 93.01         | 109.56        | 121.31        | 123.84        | 132.87      | 87.62        |
| Da             | 303.03         | 125.90         | 299.29        | 406.04        | 1630.60       | 103.41        | 200.51      | 234.03       |
| II             | 1.25           | 4.55           | 0.07          | 0.02          | 1.01          | 2.40          | 12.51       | 3.80         |
| NIh            | 5.75           | 1.15           | 5.10          | 7.50          | 1.27          | 2.49          | 12.08       | 1.55         |
| To             | 0.42           | 4.40           | 5.10          | 7.50          | 0.00          | 0.57          | 12.08       | 5.22         |
| Ia             | 25.56          | 14.50          | 0.57          | 21.30         | 5.09          | 24.20         | 20.02       | 16.02        |
| Ce             | 50.79          | 28.83          | 00.21         | 27.59         | 12 30         | 47.35         | 55.68       | 22.94        |
| Dr             | 5 56           | 20.05          | 6.86          | A 48          | 163           | 47.55         | 7.07        | 3 72         |
| Sr             | 9.62           | 50.68          | 16 76         | 15.28         | 168 70        | 99.06         | 61.01       | 101 50       |
| Nd             | 19.86          | 12.14          | 25.86         | 15.20         | 7.05          | 17.75         | 26.38       | 14 64        |
| Sm             | 3 57           | 2.40           | 5.24          | 265           | 1.87          | 3.05          | 5 20        | 3.07         |
| Zr             | 9717           | 84.78          | 103.86        | 176.23        | 62.03         | 180.78        | 101.74      | 104 50       |
| Hf             | 2.88           | 2.16           | 2.97          | 4 33          | 1.70          | 4 59          | 517         | 2.96         |
| En             | 0.56           | 0.63           | 1.25          | 0.48          | 0.20          | 0.53          | 0.96        | 0.84         |
| Gd             | 2.93           | 2.03           | 4.06          | 1.86          | 2.06          | 2.76          | 4.26        | 2.81         |
| Tb             | 0.44           | 0.30           | 0.58          | 0.28          | 0.34          | 0.39          | 0.65        | 0.43         |
| Dy             | 2.94           | 1.94           | 3.52          | 1.75          | 2.45          | 2.72          | 4.17        | 2.87         |
| Y              | 16.31          | 10.77          | 16.63         | 9.29          | 14.64         | 17.93         | 23.05       | 16.38        |
| Ho             | 0.60           | 0.40           | 0.65          | 0.37          | 0.53          | 0.57          | 0.86        | 0.62         |
| Er             | 1.78           | 1.16           | 1.87          | 1.11          | 1.59          | 1.80          | 2.53        | 1.79         |
| Yb             | 1.97           | 1.33           | 2.09          | 1.51          | 1.69          | 1.97          | 2.74        | 1.96         |
| Lu             | 0.33           | 0.20           | 0.31          | 0.24          | 0.26          | 0.31          | 0.39        | 0.29         |
| Sc             | 7.69           | 4.64           | 5.81          | 5.93          | 17.72         | 4.68          | 17.60       | 12.43        |
| Cr             | 31.29          | 23.05          | 27.67         | 29.86         | 26.76         | 21.11         | 95.82       | 47.64        |
| TI             | 0.16           | 0.16           | 0.23          | 0.24          | 0.28          | 0.26          | 0.31        | 0.13         |
| Pb             | 404.98         | 1668.19        | 451.64        | 571.30        | 72.02         | 45.33         | 22.71       | 103.81       |
| Bi             | 0.61           | 0.32           | 0.09          | 0.07          | 0.13          | 0.26          | 0.23        | 0.16         |
| v              | 13.18          | 23.43          | 43.23         | 50.94         | 150.33        | 15.33         | 118.98      | 111.96       |
| Cu             | 97.61          | 89.41          | 9.96          | 56.06         | 4.48          | 172.81        | 20.98       | 6.46         |
| Zn             | 941.49         | 2087.24        | 77.26         | 1156.23       | 70.11         | 153.00        | 45.16       | 135.00       |
| Ga             | 13.49          | 12.64          | 12.57         | 13.45         | 16.83         | 16.07         | 18.19       | 13.86        |
| As             | 90.80          | 0.00           | 109.78        | 0.00          | 28.36         | 0.00          | 10.67       | 25.67        |
| Mo             | 1.70           | 1.23           | 0.99          | 0.83          | 1.06          | 0.74          | 2.86        | 1.16         |
| W              | 1.85           | 3.15           | 4.48          | 8.89          | 4.46          | 1.40          | 2.90        | 1.46         |

|                | APPENDI           | X 3-4             |                 |               |            |               |               |
|----------------|-------------------|-------------------|-----------------|---------------|------------|---------------|---------------|
|                | Major and tra     | ce element o      | compositions of | of whole-rock | samples    |               |               |
|                | Ratu Utul H       | an and Plat       | a prospects     |               |            |               |               |
|                | Data Otal, I      | 2                 | a prospecto     | A             | 5          | 6             | 7             |
| Location       | Batu Utul         | Batu Litul        | Han             | Han           | Han        | Plata         | Plata         |
| Location       | Bliml-2           | BUtul-1           | SHan-1          | 99HN1-59m     | SVKBHan-3  | 98PT5-97m     | 98PT5-169m    |
| Rock Type      | andesite          | rhyolite          | andesite        | andesite      | andesite   | dacite        | dacite        |
| Alteration     | least altered     | phyllic           | least altered   | least altered | propylitic | least altered | least altered |
| Sample No.     | 1102              | 1101              | 1103            | 1115          | 1105       | 1119          | 1121          |
| Major elements | (normalised 100 y | (t%) analysed by  | XRF             | 1110          | 1100       | 1112          |               |
| SiO2           | 64.33             | 74.74             | 61.79           | 63.77         | 64.59      | 65.31         | 65.22         |
| TiO2           | 0.49              | 0.15              | 0.58            | 0.53          | 0.58       | 0.40          | 0.38          |
| A12O3          | 17.21             | 14.73             | 16.98           | 16.70         | 15.65      | 17.91         | 17.26         |
| Fe2O3          | 5.04              | 1.52              | 6.01            | 5.14          | 7.36       | 3.88          | 4.10          |
| MnO            | 0.13              | 0.11              | 0.26            | 0.12          | 0.10       | 0.09          | 0.11          |
| MgO            | 2.36              | 0.36              | 2.67            | 2.56          | 2.23       | 2.59          | 1.72          |
| CaO            | 5.69              | 2.79              | 6.92            | 5.67          | 4.05       | 4.97          | 5.90          |
| Na2O           | 3.67              | 3.42              | 3.33            | 4.31          | 4.07       | 3.25          | 3.46          |
| K20            | 0.95              | 2.09              | 1.33            | 1.08          | 1.22       | 1.43          | 1.71          |
| P2O5           | 0.12              | 0.09              | 0.13            | 0.12          | 0.16       | 0.17          | 0.13          |
| Na2O + K2O     | 4.63              | 5.51              | 4.66            | 5.39          | 5.29       | 4.68          | 5.16          |
| Frace elements | (in ppm) analysed | l by Laser Ablati | on ICPMS        |               |            |               |               |
| Cs             | 6.50              | 1.54              | 2.43            | 1.72          | 6.62       | 4.15          | 11.89         |
| Rb             | 56.07             | 27.84             | 33.08           | 27.17         | 29.40      | 33.83         | 34.39         |
| Ba             | 168.58            | 255.29            | 209.76          | 213.16        | 168.61     | 851.09        | 645.44        |
| Th             | 3.82              | 3.20              | 1.87            | 2.76          | 1.84       | 7.67          | 9.05          |
| U              | 1.08              | 0.84              | 0.59            | 0.82          | 0.61       | 1.64          | 1.85          |
| Nb             | 3.40              | 2.71              | 1.94            | 2.07          | 1.84       | 7.82          | 7.22          |
| Ta             | 0.26              | 0.20              | 0.15            | 0.17          | 0.12       | 0.59          | 0.55          |
| La             | 12.48             | 10.60             | 9.88            | 9.94          | 9.08       | 17.71         | 18.95         |
| Ce             | 26.10             | 21.69             | 21.49           | 20.29         | 20.80      | 31.70         | 32.74         |
| Pr             | 2.87              | 2.49              | 2.59            | 2.35          | 2.75       | 3.26          | 3.23          |
| Sr             | 204.08            | 297.89            | 206.88          | 268.97        | 207.33     | 870.22        | 417.51        |
| Nd             | 10.58             | 10.03             | 11.37           | 9.54          | 12.63      | 11.88         | 11.69         |
| Sm             | 1.91              | 2.12              | 2.62            | 2.14          | 3.04       | 1.99          | 2.01          |
| Zr             | 72.83             | 85.68             | 94.98           | 99.61         | 106.96     | 87.96         | 73.50         |
| Hf             | 2.09              | 2.28              | 2.49            | 2.65          | 2.78       | 2.24          | 1.92          |
| Eu             | 0.51              | 0.68              | 0.90            | 0.69          | 0.97       | 0.67          | 0.63          |
| Gd             | 1.57              | 1.99              | 2.79            | 2.21          | 3.37       | 1.78          | 1.65          |
| Tb             | 0.24              | 0.31              | 0.43            | 0.34          | 0.55       | 0.24          | 0.27          |
| Dy             | 1.50              | 1.95              | 3.02            | 2.26          | 3.84       | 1.51          | 1.64          |
| Y              | 9.63              | 11.39             | 18.23           | 13.64         | 23.50      | 7.85          | 9.11          |
| Ho             | 0.31              | 0.41              | 0.63            | 0.49          | 0.83       | 0.27          | 0.32          |
| Er             | 0.90              | 1.12              | 1.84            | 1.45          | 2.30       | 0.82          | 0.97          |
| Yb             | 1.12              | 1.35              | 2.01            | 1.54          | 2.56       | 0.89          | 1.04          |
| Lu             | 0.18              | 0.18              | 0.31            | 0.23          | 0.40       | 0.13          | 0.17          |
| Sc             | 2.75              | 10.59             | 12.42           | 12.80         | 11.39      | 7.96          | 9.15          |
| Cr             | 10.60             | 30.04             | 24.35           | 46.57         | 23.69      | 20.20         | 21.59         |
| TI             | 0.16              | 0.03              | 0.07            | 0.06          | 0.01       | 0.17          | 0.14          |
| Pb             | 22.27             | 11.14             | 7.84            | 6.71          | 9.51       | 23.70         | 9.04          |
| Bi             | 0.08              | 0.06              | 0.01            | 0.03          | 0.12       | 0.02          | 0.06          |
| V              | 11.29             | 87.23             | 112.67          | 104.94        | 108.23     | 69.57         | 72.61         |
| Cu             | 8.86              | 11.30             | 29.80           | 109.83        | 955.41     | 11.78         | 19.09         |
| Zn             | 37.36             | 64.96             | 124.62          | 73.62         | 81.12      | 141.64        | 42.07         |
| Ga             | 16.82             | 22.10             | 20.45           | 21.18         | 20.37      | 35.82         | 29.99         |
| As             | 22.28             | 0.96              | 2.21            | 0.59          | 1.14       | 14.06         | 7.27          |
| Mo             | 0.61              | 0.69              | 1.13            | 11.58         | 14.24      | 1.41          | 1.64          |
| W              | 1.60              | 0.48              | 0.38            | 0.46          | 0.71       | 0.75          | 1.03          |

|                       | APPENI         | JIX 3-5         |                |                   |               |                 |           | -             |              |
|-----------------------|----------------|-----------------|----------------|-------------------|---------------|-----------------|-----------|---------------|--------------|
|                       | Major and      | trace eleme     | nt composit    | ions of who       | le-rock sar   | nples           |           |               |              |
|                       | Muyup Pr       | ospect          |                |                   |               |                 |           |               |              |
|                       | 1              | 2               | 3              | 4                 | 5             | 6               | 7         | 8             | 9            |
| Location              | S. Buluh Hulu  | S. Buluh Hulu   | S. RTM         | S. RTM            | Bengeh        | S. Tresia       | S. Tresia | S. Buluh Hulu | G. Manuk     |
| 100 TO 10 Table (100) |                |                 |                |                   |               | . 60            |           |               |              |
| Rock Type             | dacite         | dacite          | dacite         | dacite            | tuff          | tuff            | tuff      | tuff          | andesite     |
| Alteration            | least altered  | least altered   | least altered  | least altered     | phyllic       | phyllic         | phyllic   | phyllic       | adv. argilli |
| Sample No.            | 123348         | 123349          | 123353         | 123354            | 123337        | 123342(*)       | 123343    | 123351(*)     | 123357       |
| Major Elements        | (normalised 10 | 00 wt%) analyse | d by XRF, exce | pt (*) analysed b | by Electron M | icroprobe (EDS) |           |               |              |
| SiO2                  | 69.57          | 69.55           | 69.29          | 71.16             | 71.00         | 83.71           | 75.57     | 74.54         | 97.84        |
| TiO2                  | 0.38           | 0.39            | 0.37           | 0.36              | 0.71          | 0.27            | 0.27      | 0.56          | 0.45         |
| A12O3                 | 15.13          | 14.94           | 15.87          | 16.10             | 15.60         | 12.06           | 13.07     | 21.07         | 0.36         |
| Fe2O3                 | 3.32           | 3.84            | 3.47           | 2.48              | 3.82          | 0.96            | 1.57      | 2.03          | 1.34         |
| MnO                   | 0.11           | 0.12            | 0.10           | 0.04              | 0.15          |                 | 0.06      |               | 0.00         |
| MgO                   | 1.79           | 2.29            | 1.12           | 0.97              | 1.03          | 0.16            | 0.84      | 0.64          | 0.00         |
| CaO                   | 3.25           | 2.64            | 3.41           | 2.50              | 0.65          | 0.14            | 0.07      | 0.21          | 0.00         |
| Na2O                  | 3.28           | 2.92            | 3 70           | 3 70              | 2 71          |                 | 0.18      | 0.22          | 3100         |
| K20                   | 3.07           | 3.10            | 2.52           | 2.55              | 417           | 2.84            | 8 24      | 0.05          | 0.01         |
| P205                  | 0.11           | 0.12            | 0.14           | 0.14              | 0.17          | 2.04            | 0.03      | 0.73          | 0.01         |
| Na2O + K2O            | 6.34           | 6.11            | 6.22           | 6.25              | 6.88          | 2.84            | 8.52      | 1.16          | 0.01         |
|                       |                |                 |                |                   |               |                 |           |               |              |
| Trace elements        | (in ppm) analy | sed by Laser Ab | olation ICPMS  |                   |               |                 |           |               |              |
| Cs                    | 5.12           | 5.82            | 3.51           | 2.77              | 8.42          | 8.83            | 4.01      | 4.27          |              |
| Rb                    | 71.39          | 81.86           | 62.47          | 58.38             | 216.07        | 97.54           | 197.31    | 46,54         |              |
| Ba                    | 472.28         | 452.34          | 786.61         | 452.38            | 607.55        | 84.05           | 1127.94   | 131.16        |              |
| Th                    | 18.02          | 19.30           | 8.90           | 9.38              | 12.72         | 15.15           | 17.29     | 23.97         |              |
| U                     | 3.81           | 4.15            | 2.50           | 2.46              | 2.99          | 3.24            | 3.88      | 6.23          |              |
| Nb                    | 6.85           | 7.55            | 5.80           | 5.70              | 9.44          | 10.35           | 11.09     | 9.80          | _            |
| Та                    | 0.72           | 0.77            | 0.53           | 0.58              | 0.66          | 0.77            | 0.81      | 0.99          |              |
| La                    | 20.48          | 22.94           | 20.55          | 36.15             | 36.24         | 26.47           | 33.33     | 43.80         |              |
| Dr                    | 33.03          | 38,88           | 34.04          | 51.57             | 14.13         | 51.07           | 607       | 93,44         |              |
| Pr                    | 3.33           | 3.76            | 3.33           | 5.05              | 8.15          | 3.48            | 0.97      | 8.22          |              |
| Nd                    | 11.21          | 12.29           | 12.01          | 19 56             | 23.01         | 20.30           | 26.39     | 15.00         |              |
| iva<br>Sm             | 2.04           | 2.25            | 2.20           | 2.42              | 6.02          | 20.50           | 5.40      | 4 70          |              |
| 7.                    | 03.22          | 103 77          | 00.02          | 05 31             | 217.15        | 211.47          | 226.43    | 131.43        |              |
| Hf                    | 3 33           | 3.47            | 2 37           | 2.52              | 5 27          | 5.61            | 6.22      | 3.08          |              |
| En                    | 0.59           | 0.61            | 0.71           | 1.13              | 1.59          | 0.48            | 0.87      | 1 20          |              |
| Gd                    | 1.69           | 2.05            | 2 35           | 3.88              | 6.76          | 2.32            | 5.22      | 413           |              |
| Th                    | 0.25           | 0.30            | 0.33           | 0.55              | 1.01          | 0.30            | 0.84      | 0.61          |              |
| Dy                    | 1.68           | 2.03            | 2.46           | 3.91              | 6.86          | 2.21            | 5.83      | 3.76          |              |
| Y                     | 9.84           | 11.69           | 17.10          | 27.00             | 44.45         | 13.09           | 35.87     | 18.58         |              |
| Но                    | 0.34           | 0.44            | 0.51           | 0.81              | 1.44          | 0.45            | 1.27      | 0.68          |              |
| Er                    | 1.02           | 1.36            | 1.62           | 2.50              | 4.19          | 1.67            | 3.87      | 1.89          |              |
| Yb                    | 1.27           | 1.64            | 1.70           | 2.79              | 4.14          | 2.25            | 4.31      | 1.87          |              |
| Lu                    | 0.21           | 0.28            | 0.30           | 0.44              | 0.66          | 0.38            | 0.66      | 0.27          |              |
| Sc                    | 5.85           | 6.90            | 7.09           | 3.91              | 13.81         | 9.02            | 7.56      | 8.84          |              |
| Cr                    | 33.43          | 26.44           | 11.47          | 18.78             | 18.38         | 29.79           | 20.95     | 41.82         |              |
| TI                    | 0.10           | 0.15            | 0.16           | 0.13              | 0.97          | 0.56            | 0.58      | 0.15          |              |
| Pb                    | 10.63          | 10.95           | 10.53          | 13.67             | 33.85         | 44.46           | 163.53    | 69.00         |              |
| Bi                    | 0.01           | 0.01            | 0.03           | 0.04              | 0.15          | 2.07            | 0.05      | 0.04          |              |
| v                     | 53.57          | 52.57           | 52.20          | 41.35             | 37.27         | 23.87           | 5.84      | 87.30         |              |
| Cu                    | 7.31           | 6.35            | 10.32          | 14.78             | 0.71          | 3.29            | 2.46      | 13.80         |              |
| Zn                    | 46.80          | 68.80           | 55.09          | 45.83             | 74.74         | 5.09            | 53.15     | 23.02         |              |
| Ga                    | 11.84          | 12.05           | 13.81          | 13.93             | 17.45         | 13.47           | 10.82     | 16.85         |              |
| As                    | 2.29           | 0.00            | 0.00           | 4.30              | 16.51         | 8.21            | 0.00      | 0.00          |              |
| Mo                    | 1.40           | 1.70            | 0.37           | 1.26              | 2.39          | 1.18            | 1.23      | 1.09          |              |
| W                     | 0.65           | 0.78            | 0.87           | 0.63              | 1.68          | 2.84            | 1.20      | 0.76          |              |

|                | APPEND           | IX 3-6           |                |                 |                 |            |               |             |
|----------------|------------------|------------------|----------------|-----------------|-----------------|------------|---------------|-------------|
|                | Major and t      | race elemen      | t compositio   | ns of whole-    | rock sample     | es         |               |             |
|                | Ritan Pros       | pect             |                |                 |                 | 1          |               |             |
|                | 1                | 2                | 3              | 4               | 5               | 6          | 7             | 8           |
| Location       | Tabang Ridge     | S. Batuliten     | S. Belavan     | Mejuk           | G. Botak        | Mejuk      | Mejuk         | Mejuk       |
|                | G. Tinggi        |                  |                | timber road     |                 | vein zone  | discovery o/c | timber road |
| Rock Type      | andesite         | rhvolite         | rhvolite       | andesite        | andesite        | andesite   | andesite      | andesite    |
| Alteration     | laget altared    | laget altared    | laget altarad  | nronulitic      | nropulitic      | andesite   | anacillic     | adv are     |
| Anciation      | lazzoi           | 102207           | 122209(#)      | propyritic      | 122205(0)       | 102217     | 122220        | 102212      |
| Sample No.     | 123301           | 125507           | 123308(-)      | 123325(*)       | 125505(*)       | 125517     | 125520        | 125515      |
| Major elements | (normalised 100  | wt%) analysed    | by XRF, except | (*) analysed by | Electron Microp | robe (EDS) |               | 00.50       |
| S1O2           | 58.80            | 76.51            | 77.04          | 55.69           | 64.24           | 69.19      | 56.74         | 98.58       |
| TiO2           | 0.74             | 0.24             | 0.34           | 0.91            | 0.70            | 1.16       | 1.30          | 0.78        |
| A12O3          | 18.11            | 13.88            | 15.01          | 21.01           | 19.91           | 13.20      | 31.03         | 0.45        |
| Fe2O3          | 9.03             | 1.92             | 1.61           | 8.28            | 4.87            | 16.11      | 9.41          | 0.15        |
| MnO            | 0.13             | 0.03             |                |                 |                 | 0.01       | 0.02          |             |
| MgO            | 2.68             | 1.49             | 1.34           | 3.79            | 0.07            | 0.02       | 1.43          | 0.01        |
| CaO            | 6.62             | 2.06             | 2.12           | 7.90            | 5.84            | 0.05       | 0.02          | 0.01        |
| Na2O           | 2.83             | 2.22             | 1.40           | 3.00            | 3.63            | 0.03       | 0.00          | 0.01        |
| K20            | 0.92             | 1,62             | 1.32           | 0.27            | 1.32            | 0.04       | 0.01          | 0.02        |
| P2O5           | 0.15             | 0.03             |                |                 |                 | 0.18       | 0.02          | 0.01        |
| Na2O + K2O     | 3.75             | 3.84             | 2.72           | 3.27            | 4.94            | 0.07       | 0.02          | 0.03        |
|                |                  | 10.12 0.14       | 1              |                 |                 |            |               |             |
| Trace elements | (in ppm) analyse | ed by Laser Abla | ation ICPMS    | 0.22            |                 |            | 2.22          | 12.12.2     |
| Cs             | 4.53             | 5.27             | 1.40           | 3.20            | 0.40            | 1.92       | 0.31          | 0.28        |
| Rb             | 37.23            | 55.25            | 30.59          | 8.60            | 21.88           | 2.03       | 1.24          | 0.62        |
| Ba             | 190.92           | 522.88           | 1214.89        | 130.97          | 250.69          | 213.67     | 5.53          | 22.62       |
| Th             | 3.35             | 17.03            | 16.86          | 2.45            | 3.09            | 5.17       | 1.86          | 3.71        |
| U              | 0.82             | 4.05             | 4.04           | 0.64            | 0.57            | 2.43       | 0.39          | 1.40        |
| Nb             | 2.87             | 5.45             | 5.45           | 2.95            | 3.40            | 3.62       | 2.87          | 4.81        |
| Ta             | 0.24             | 0.55             | 0.54           | 0.19            | 0.25            | 0.28       | 0.19          | 0.37        |
| La             | 11.25            | 21.55            | 24.72          | 18.57           | 10.87           | 12.30      | 3.99          | 1.08        |
| Ce             | 23.29            | 35.06            | 38.25          | 29.45           | 21.44           | 27.67      | 9.13          | 2.56        |
| Pr             | 3.14             | 3.31             | 3.74           | 5.58            | 3.08            | 3.61       | 1.25          | 0.31        |
| Sr             | 235.00           | 195.98           | 463.55         | 241.04          | 296.30          | 1042.79    | 0.94          | 6.10        |
| Nd             | 14.//            | 10.57            | 12.27          | 27.00           | 13.20           | 10.54      | 0.04          | 1.32        |
| Sm             | 3.79             | 1.84             | 2.27           | 8.41            | 3.19            | 3.90       | 1.34          | 0.33        |
| Zr             | 100.54           | 97.71            | 100.87         | 99.20           | 102.41          | 143.86     | /1.80         | 281.31      |
| HI             | 3.04             | 2.47             | 2.47           | 2.45            | 2.53            | 3.60       | 2.04          | 3.33        |
| Eu             | 1.18             | 1.49             | 0.50           | 2.97            | 0.99            | 2.02       | 0.42          | 0.09        |
| Ga             | 4.07             | 0.22             | 0.20           | 2.00            | 0.47            | 0.28       | 0.24          | 0.57        |
| 10<br>Du       | 0.64             | 0.25             | 2.07           | 2.00            | 0.47            | 1.21       | 0.24          | 1.70        |
| Dy<br>V        | 22.40            | 12.02            | 14.40          | 70.05           | 19 20           | 4.80       | 11.10         | 12.81       |
| 1              | 0.00             | 0.22             | 0.47           | 2.24            | 0.50            | 9.09       | 0.41          | 0.49        |
| Fr             | 2.66             | 1.02             | 1.56           | 0.07            | 1.66            | 0.57       | 1.25          | 1.81        |
| Vb             | 3.11             | 1.02             | 2.02           | 12.99           | 1.69            | 0.87       | 1.50          | 2.53        |
| In             | 0.49             | 0.22             | 0.34           | 2 24            | 0.24            | 0.13       | 0.26          | 0.40        |
| Sa             | 14.73            | 4.51             | 5.67           | 10.74           | 13.56           | 15 23      | 26.01         | 13.00       |
| Cr             | 19.76            | 14.77            | 18 12          | 28.84           | 22.77           | 27.00      | 27.64         | 27.11       |
| TI             | 0.20             | 0.09             | 0.23           | 0.11            | 0.01            | 7.89       | 0.03          | 0.01        |
| Ph             | 8.52             | 9.07             | 32.83          | 13.70           | 45.06           | 9107 70    | 87.08         | 74.01       |
| Bi             | 0.02             | 0.05             | 0.20           | 0.05            | 0.06            | 0.55       | 0.31          | 111.11      |
| V              | 127.39           | 20.63            | 25.41          | 166.14          | 102.65          | 269.70     | 257.64        | 33.20       |
| Cu             | 7.11             | 8.89             | 5.14           | 33.11           | 14 72           | 42.66      | 56.05         | 7 78        |
| Zn             | 119.96           | 38.26            | 60.91          | 92.05           | 32.69           | 1140.88    | 154 43        | 2.25        |
| Ga             | 17.51            | 10.68            | 12.48          | 17.57           | 19.94           | 125.85     | 21 74         | 0.78        |
| Ae             | 5 31             | 8.45             | 0.84           | 11.08           | 0.36            | 364.42     | 0.00          | 9.27        |
| Mo             | 1.56             | 4.08             | 1.00           | 0.00            | 1.22            | 14 37      | 1.08          | 1 33        |
|                | 0.00             | 1.00             | 1.07           | 0.00            | 0.42            | 5 72       | 0.46          | 2.00        |

| Appe    | ndix 4-  | 1         |           |          |          |           |          |         |         |         |         |        |
|---------|----------|-----------|-----------|----------|----------|-----------|----------|---------|---------|---------|---------|--------|
| Major   | and trad | ce eleme  | nt comp   | ositions | of selec | ted min   | erals    |         |         |         |         |        |
| Rock S  | Sample N | No 12314  | 4         |          |          |           |          |         |         |         |         |        |
| Hornh   | ende nhe | nocrysts  |           |          |          |           |          |         |         |         |         |        |
| Maior   | alamanta | (in ut0/  | analua    | d by El  | otrop M  | lionoprol | EDS)     |         |         |         |         |        |
| Major   | elements | (III W170 | ) analyse | ed by En | ection M | licroprot | De (EDS) |         |         |         |         |        |
|         | 144h1-1  | 144h1-2   | 144h1-3   | 144h2-1  | 144h2-2  | 144h3-1   | 144h3-2  | 144h3-3 | 144h4-1 | 144h4-2 | 144h5-1 | 144h5- |
| SiO2    | 46.95    | 48.54     | 48.31     | 48.24    | 45.80    | 48.13     | 47.90    | 48.09   | 48.72   | 47.87   | 48.76   | 48.83  |
| TiO2    | 1.53     | 1.27      | 1.27      | 1.53     | 2.03     | 1.53      | 1.45     | 1.47    | 1.13    | 1.51    | 1.38    | 1.43   |
| Al2O3   | 7.71     | 6.48      | 7.08      | 6.72     | 8.49     | 6.86      | 6.97     | 6.95    | 6,41    | 6.95    | 6.58    | 6.09   |
| Cr2O3   | < 0.08   | < 0.08    | < 0.08    | < 0.08   | < 0.08   | < 0.08    | < 0.08   | < 0.08  | < 0.08  | < 0.08  | < 0.08  | < 0.08 |
| FeO     | 12.57    | 12.31     | 12.64     | 12.46    | 13.42    | 12.69     | 12.96    | 12.68   | 12.20   | 12.72   | 12.38   | 12.28  |
| MnO     | 0.27     | 0.21      | 0.28      | 0.22     | 0.13     | 0.25      | 0.28     | 0.29    | 0.20    | 0.33    | 0.34    | 0.28   |
| MgO     | 15.05    | 15.85     | 15.68     | 15.68    | 14.43    | 15.50     | 15.47    | 15.62   | 15.75   | 15.45   | 15.82   | 16.04  |
| CaO     | 11.09    | 11.01     | 11.22     | 11.21    | 11.33    | 11.58     | 11.22    | 11.23   | 11.17   | 11.45   | 11.31   | 11.41  |
| Na2O    | 1.75     | 1.22      | 1.16      | 1.19     | 1.65     | 1.35      | 1.30     | 1.32    | 1.20    | 1.48    | 1.15    | 1.20   |
| K20     | 0.22     | 0.14      | 0.19      | 0.19     | 0.26     | 0.23      | 0.20     | 0.16    | 0.09    | 0.20    | 0.20    | 0.15   |
| Total   | 97.14    | 97.04     | 97.83     | 97.45    | 97.54    | 98.12     | 97.75    | 97.80   | 96.87   | 97.97   | 97.92   | 97.71  |
| Trace e | elements | (in ppm)  | analyse   | d by Exc | cimer La | ser Abla  | tion ICP | -MS     |         |         |         |        |
| Ba      | 19.84    | 21.58     | 19.90     | 23.86    | 23,18    | 24.56     | 22.64    | 25.68   | 24.73   | 23.67   | 20,76   | 31.40  |
| Th      | 0.08     | 0.07      | 0.15      | 0.09     | 0.06     | 0.06      | 0.08     | 0.05    | 0.05    | 0.05    | 0.08    | 0.14   |
| U       | 0.02     | 0.02      | 0.05      | 0.02     | 0.02     | 0.01      | 0.02     | 0.02    | 0.01    | 0.01    | 0.02    | 0.06   |
| La      | 5.57     | 5.30      | 7.81      | 7.48     | 6.41     | 6.11      | 6.24     | 5.88    | 6.04    | 5.78    | 6.41    | 5,79   |
| Ce      | 26.19    | 23.75     | 28.39     | 30.31    | 27.90    | 26.88     | 27.70    | 26.87   | 27.74   | 26.09   | 29.10   | 26.91  |
| Pr      | 5.03     | 4.47      | 4.84      | 5.56     | 5.25     | 5.00      | 5.38     | 5.45    | 5.33    | 4.97    | 5.45    | 4.99   |
| Sr      | 29.70    | 36.39     | 38 30     | 33.05    | 30.98    | 31.61     | 32.59    | 34.11   | 32.69   | 31.06   | 29.27   | 32.44  |
| Nd      | 28 30    | 24.91     | 25.74     | 30.68    | 28.96    | 28.90     | 31.14    | 33.05   | 31.32   | 29.52   | 29.89   | 28 69  |
| Sm      | 9.58     | 8 27      | 7 44      | 9.79     | 9.59     | 8.92      | 10.88    | 12.52   | 10.54   | 10.43   | 9.46    | 8 87   |
| Zr      | 47.10    | 52.16     | 49.57     | 56.94    | 52.08    | 55.81     | 52.28    | 52 35   | 51.05   | 53.00   | 52.12   | 51.18  |
| Hf      | 2.22     | 2.14      | 2.18      | 2 59     | 2.00     | 2.66      | 2 37     | 2 30    | 2 44    | 2 33    | 2 45    | 2 38   |
| En      | 2.06     | 1.80      | 1.01      | 2.09     | 2.45     | 1.07      | 2.37     | 2.56    | 2.44    | 2.09    | 1 08    | 2.00   |
| Gd      | 11.02    | 0.20      | 9.46      | 12.05    | 11.20    | 10.75     | 14.13    | 16.15   | 13.65   | 12.00   | 11.27   | 10.63  |
| Th      | 1.92     | 1.56      | 1.41      | 1 06     | 1.94     | 1 78      | 2 30     | 2 70    | 2 34    | 2.22    | 1 93    | 1 79   |
| Du      | 12.07    | 10.66     | 10.11     | 12.44    | 12.04    | 12.46     | 16.30    | 10.40   | 16 47   | 15.60   | 12.06   | 12.54  |
| Dy<br>V | 15.07    | 10.00     | 10.11     | 13.44    | 12.89    | 12.40     | 10.52    | 19.40   | 10.47   | 13.09   | 71.01   | 12.34  |
| 1       | 2.49     | 01.07     | 20.30     | 2.02     | 74.30    | 09.05     | 88.44    | 100.15  | 2 21    | 83.08   | 71.21   | 09.92  |
| 10      | 2.07     | 2.30      | 2.05      | 2.83     | 2.72     | 2.60      | 3.30     | 4.01    | 3.31    | 3.29    | 2.03    | 2.33   |
| Er      | 8.06     | 6.54      | 6.21      | 8.16     | 7.82     | 7.58      | 9.61     | 10.96   | 9.34    | 9.14    | 7.65    | 7.57   |
| Im      | 1.19     | 0.95      | 0.87      | 1.22     | 1.15     | 1.16      | 1.42     | 1.55    | 1.41    | 1.27    | 1.16    | 1.14   |
| Yb      | 8.34     | 6.60      | 6.34      | 8.16     | 7.95     | 7.63      | 9.65     | 9.94    | 8.80    | 8.70    | 8.16    | 8.09   |
| Lu      | 1.21     | 0.94      | 0.94      | 1.21     | 1.16     | 1.12      | 1.34     | 1.37    | 1.29    | 1.28    | 1.24    | 1.19   |
| Sc      | 94.07    | 98.09     | 85.96     | 105.41   | 102.68   | 90.93     | 139.47   | 143.50  | 126.61  | 132.97  | 92.76   | 89.44  |

-

| Appen        | dix 4-2      |             |            |             |            |          |          |          |          |
|--------------|--------------|-------------|------------|-------------|------------|----------|----------|----------|----------|
| Major a      | nd trace el  | ement com   | positions  | of selected | l minerals |          |          |          |          |
| Rock Sa      | mple No 12   | 23144       | 1          |             |            |          |          |          |          |
| Plagioch     | ase nhenocr  | vete        |            |             |            |          |          |          |          |
| Major al     | amonte (in 1 | vt0/) analy | and by Ela | otron Mior  | oproba (ET | (20      |          |          |          |
| Wajor er     | ements (m)   | wi76) analy | sed by Ele |             | oprobe (EL | 144 12 2 | 144 13 1 | 144.12.0 | 144 12 2 |
| Wt%          | 144p11-1     | 144p11-2    | 144p11-3   | 144pi2-1    | 144p12-2   | 144p12-3 | 144p13-1 | 144p13-2 | 144p13-3 |
| SiO2         | 56.16        | 55.73       | 55.57      | 55.16       | 56.18      | 55.97    | 54.00    | 56.51    | 56.56    |
| TiO2         | <0.07        | <0.07       | <0.07      | <0.07       | <0.07      | <0.07    | <0.07    | <0.07    | <0.07    |
| A12O3        | 28.38        | 28.37       | 28.28      | 28.61       | 27.90      | 28.02    | 29.38    | 27.29    | 28.04    |
| Cr2O3        | < 0.08       | < 0.08      | < 0.08     | < 0.08      | <0.08      | < 0.08   | <0.08    | < 0.08   | <0.08    |
| FeO          | 0.27         | 0.32        | 0.41       | 0.24        | 0.36       | 0.39     | 0.45     | 0.35     | 0.34     |
| MnO          | < 0.08       | < 0.08      | <0.08      | <0.08       | <0.08      | <0.08    | <0.08    | <0.08    | <0.08    |
| MgO          | < 0.08       | < 0.08      | <0.08      | < 0.08      | <0.08      | < 0.08   | < 0.08   | < 0.08   | <0.08    |
| CaO          | 10.39        | 10.37       | 10.64      | 10.87       | 9.98       | 10.43    | 12.04    | 9.90     | 9.91     |
| Na2O         | 5.99         | 5.74        | 5.68       | 5.60        | 6.09       | 5.94     | 4.83     | 6.01     | 6.00     |
| K2O          | 0.18         | 0.10        | 0.13       | 0.16        | 0.18       | 0.14     | 0.05     | 0.11     | 0.14     |
| Total        | 101.37       | 100.63      | 100.70     | 100.64      | 100.71     | 100.90   | 100.77   | 100.17   | 100.98   |
|              |              |             |            |             |            |          |          |          |          |
| Trace ele    | ements (in p | pm) analys  | sed by Exc | imer Laser  | Ablation I | CP-MS    |          |          |          |
| Ba           | 111.10       | 321.58      | 319.27     | 84.75       | 110.22     | 315.83   | 93.65    | 98.59    | 92.55    |
| Th           | 0.00         | 0.73        | 0.69       | 0.00        | 0.00       | 0.69     | n.a.     | 0.00     | n.a.     |
| U            | 0.00         | 0.45        | 0.43       | 0.00        | 0.00       | 0.41     | n.a.     | n.a,     | n.a.     |
| La           | 3.53         | 2.68        | 2.67       | 2.61        | 3.21       | 2.58     | 2.96     | 2.97     | 2.95     |
| Ce           | 5.25         | 4.53        | 4.66       | 3.75        | 4.79       | 4.49     | 4.50     | 4.28     | 4.42     |
| Pr           | 0.41         | 0.51        | 0.52       | 0.32        | 0.40       | 0.50     | 0.35     | 0.37     | 0.37     |
| Sr           | 755.28       | 50.94       | 49.04      | 618.78      | 702.76     | 48.97    | 649.63   | 674.41   | 627.99   |
| Nd           | 1.36         | 1.89        | 2.05       | 1.17        | 1.15       | 2.13     | 1.04     | 0.87     | 1.27     |
| Sm           | 0.12         | 0.32        | 0.35       | 0.18        | 0.16       | 0.35     | 0.03     | 0.07     | 0.20     |
| Zr           | 0.19         | 128.17      | 127.16     | n.a.        | n.a.       | 129.30   | n.a.     | 0.01     | 0.05     |
| Hf           | n.a.         | 3.15        | 3.21       | n.a.        | 0.00       | 3.10     | 0.01     | n.a.     | 0.01     |
| Eu           | 0.60         | 0.22        | 0.22       | 0.54        | 0.62       | 0.22     | 0.53     | 0.50     | 0.49     |
| Gd           | 0.04         | 0.28        | 0.30       | 0.05        | 0.06       | 0.27     | 0.03     | 0.08     | 0.07     |
| Tb           | n.a.         | 0.06        | 0.05       | 0.00        | 0.00       | 0.04     | 0.00     | 0.01     | 0.01     |
| Dy           | 0.02         | 0.33        | 0.30       | 0.04        | 0.06       | 0.35     | 0.04     | 0.02     | 0.09     |
| Y            | 0.12         | 2.43        | 2.18       | 0.16        | 0.22       | 2.10     | 0.09     | 0.16     | 0.12     |
| Но           | 0.02         | 0.09        | 0.08       | 0.01        | 0.00       | 0.07     | 0.00     | 0.01     | 0.01     |
| Er           | n.a.         | 0.27        | 0.26       | 0.01        | 0.00       | 0.23     | 0.02     | 0.04     | 0.02     |
| Tm           | 0.00         | 0.04        | 0.05       | n.a.        | 0.00       | 0.03     | n.a.     | n.a.     | n.a.     |
| Yb           | 0.01         | 0.33        | 0.30       | 0.02        | 0.00       | 0.28     | 0.00     | 0.00     | 0.03     |
| Lu           | 0.00         | 0.06        | 0.05       | 0.00        | n.a.       | 0.05     | n.a.     | 0.00     | 0.00     |
| Sc           | 2.17         | 3.04        | 3,21       | 2.29        | 1.31       | 2.45     | 1.30     | 1.39     | 3.71     |
| n a ' not av | ailable      |             |            |             |            |          |          |          |          |

| Append    | lix 4-3       |             |             |             |              |         |
|-----------|---------------|-------------|-------------|-------------|--------------|---------|
| Major ai  | nd trace eler | nent comp   | ositions of | selected mi | nerals       |         |
| Rock Sa   | mple No 123   | 144         |             |             |              |         |
| Groundm   | ass           |             |             |             |              |         |
| Major ele | ements (in wt | %) analyse  | d by Electr | on Micropre | obe (EDS)    |         |
| Wt%       | 144m1-1       | 144m1-2     | 144m2-1     | 144m2-2     | 144m3-1      | 144m3-2 |
| SiO2      | 78.97         |             | 74.22       |             | 78.11        |         |
| TiO2      | 0.09          |             | 0.36        |             | 0.10         |         |
| A12O3     | 10.45         |             | 12.14       |             | 10.52        |         |
| Cr2O3     | < 0.08        |             | < 0.08      |             | <0.08        |         |
| FeO       | 0.80          |             | 1.88        |             | 1.74         |         |
| MnO       | < 0.08        |             | <0.08       |             | <0.08        |         |
| MgO       | 0.53          |             | 1.59        |             | 1.71         |         |
| CaO       | 1.11          |             | 1.35        |             | 1.28         |         |
| Na2O      | 3.10          |             | 3.88        |             | 3.49         |         |
| K2O       | 2.80          | _           | 2.53        |             | 1.41         |         |
| Total     | 97.85         |             | 97.95       |             | 98.36        |         |
| Trace ele | ments (in pp  | m) analysed | 1 by Excim  | er Laser Ab | lation ICP-1 | MS      |
| Ba        | 516.33        | 578.70      | 396.96      | 407.91      | 40.00        | 37.55   |
| Th        | 0.72          | 5.71        | 6.77        | 5.28        | 0.09         | 0.08    |
| U         | 0.23          | 1.03        | 2.74        | 1.08        | 0.06         | 0.05    |
| La        | 4.17          | 3.50        | 4.91        | 4.01        | 0.35         | 0.31    |
| Ce        | 7.48          | 6.10        | 13.44       | 7.85        | 0.59         | 0.56    |
| Pr        | 0.66          | 0.54        | 1.73        | 0.74        | 0.06         | 0.06    |
| Sr        | 175.02        | 162.05      | 139.17      | 167.44      | 6.64         | 5.87    |
| Nd        | 2.53          | 1.63        | 7.75        | 2.80        | 0.22         | 0.25    |
| Sm        | 0.42          | 0.25        | 2.11        | 0.60        | 0.03         | 0.03    |
| Zr        | 15.37         | 74.87       | 96.22       | 73.64       | 14.99        | 15.10   |
| Hf        | 0.75          | 1.91        | 2.68        | 2.00        | 0.39         | 0.38    |
| Eu        | 0.22          | 0.22        | 0.28        | 0.23        | 0.03         | 0.03    |
| Gd        | 0.34          | 0.43        | 1.71        | 0.52        | 0.04         | 0.04    |
| ТЪ        | 0.05          | 0.08        | 0.29        | 0.10        | 0.01         | 0.01    |
| Dy        | 0.24          | 0.64        | 2.09        | 0.93        | 0.04         | 0.04    |
| Y         | 1.38          | 6.02        | 11.21       | 5.26        | 0.26         | 0.25    |
| Но        | 0.05          | 0.22        | 0.46        | 0.21        | 0.01         | 0.01    |
| Er        | 0.11          | 0.68        | 1.11        | 0.59        | 0.03         | 0.03    |
| Tm        | 0.02          | 0.12        | 0.18        | 0.09        | 0.00         | 0.00    |
| Yb        | 0.14          | 0.93        | 1.35        | 0.68        | 0.04         | 0.04    |
| Lu        | 0.02          | 0.16        | 0.20        | 0.10        | 0.01         | 0.01    |
| Sc        | 3.00          | 3.09        | 2.68        | 2.89        | 0.30         | 0.40    |

| Appen     | dix 4-4      |            |            |             |            |           |          |          |
|-----------|--------------|------------|------------|-------------|------------|-----------|----------|----------|
| Major a   | nd trace ele | ement com  | positions  | of selected | minerals   |           |          |          |
| Rock Sa   | mple No 12   | 3187       |            |             |            |           |          |          |
| Clinopy   | oxene phen   | ocrysts    |            |             |            |           |          |          |
| Major el  | ements (in y | vt%) analy | sed by Ele | ctron Micr  | oprobe (EI | OS)       |          |          |
| indjoi oi | 1870x1-1     | 187nx 1-2  | 187nx2-1   | 187nx2-2    | 187nx3-1   | 187nx 3-2 | 187nx4-1 | 187px4-2 |
| 8:02      | 52.67        | 52.00      | 50.65      | 51.11       | 51.07      | 51.71     | 52.76    | 52.61    |
| T:02      | 0.17         | 0.19       | 0.20       | 0.25        | 0.14       | 0.21      | 0.16     | 0.16     |
| 1102      | 0.17         | 0.16       | 0.50       | 0.25        | 0.14       | 0.51      | 0.10     | 1.46     |
| A1203     | 1.23         | 2.14       | 3.44       | 2.78        | 2.20       | 2.40      | 1.51     | 1.40     |
| Cr2O3     | 0.32         | 0.66       | 0.13       | 0.20        | 0.72       | 0.62      | 0.22     | 0.61     |
| FeO       | 4.37         | 4.74       | 6.80       | 6.46        | 4.64       | 5.26      | 4.28     | 4.32     |
| MnO       | < 0.08       | < 0.08     | <0.08      | < 0.08      | < 0.08     | <0.08     | < 0.08   | < 0.08   |
| MgO       | 17.30        | 16.82      | 15.40      | 16.14       | 16.52      | 16.48     | 16.92    | 17.38    |
| CaO       | 22.11        | 22.43      | 21.93      | 21.84       | 22.54      | 22.66     | 23.18    | 22.42    |
| Na2O      | <0.12        | 0.12       | < 0.12     | < 0.12      | < 0.12     | 0.13      | < 0.12   | < 0.12   |
| K20       | <0.04        | <0.04      | <0.04      | <0.04       | <0.04      | 0.05      | <0.04    | < 0.04   |
| Total     | 98.17        | 00.10      | 98.66      | 98 79       | 98 74      | 99.67     | 98.83    | 98.96    |
| Total     | 76.17        | 77.17      | 70.00      | 70.17       | 70.14      | 22.01     | 70.05    | 70.70    |
| Trace el  | ements (in p | pm) analys | ed by Exc  | imer Laser  | Ablation I | CP-MS     |          |          |
| Ba        | 0.02         | 0.03       | 0.02       | 0.42        | 0.03       | 0.03      | 0.24     | 0.71     |
| Th        | 0.01         | 0.00       | 0.01       | 0.01        | 0.01       | 0.01      | 0.02     | 0.02     |
| U         | 0.00         | 0.00       | 0.00       | 0.01        | 0.00       | 0.00      | 0.00     | 0.00     |
| La        | 0.39         | 0.29       | 0.55       | 0.62        | 0.30       | 0.29      | 0.49     | 0.47     |
| Ce        | 1.59         | 1.27       | 1.99       | 2.64        | 1.09       | 1.24      | 2.14     | 1.64     |
| Pr        | 0.33         | 0.27       | 0.45       | 0.53        | 0.19       | 0.26      | 0.44     | 0.28     |
| Sr        | 39.77        | 36.33      | 34.28      | 33.11       | 39.60      | 40.50     | 32.18    | 40.26    |
| Nd        | 2.01         | 1.60       | 2.91       | 3.38        | 1.35       | 1.64      | 2.96     | 2.09     |
| Sm        | 0.82         | 0.60       | 0.99       | 1.31        | 0.46       | 0.59      | 1.03     | 0.69     |
| Zr        | 2.95         | 1.85       | 5.64       | 7.97        | 1.43       | 1.82      | 5.54     | 2.26     |
| Hf        | 0.17         | 0.05       | 0.34       | 0.44        | 0.10       | 0.10      | 0.27     | 0.10     |
| Eu        | 0.26         | 0.21       | 0.36       | 0.45        | 0.19       | 0.20      | 0.39     | 0.24     |
| Gd        | 1.02         | 0.91       | 1.42       | 1.75        | 0.64       | 0.68      | 1.42     | 0.97     |
| ТЪ        | 0.16         | 0.12       | 0.22       | 0.27        | 0.10       | 0.10      | 0.26     | 0.13     |
| Dy        | 1.04         | 0.87       | 1.60       | 1.95        | 0.60       | 0.77      | 1.82     | 0.91     |
| Y         | 5.17         | 4.11       | 7.10       | 8.98        | 3.13       | 3.39      | 8.13     | 4.51     |
| Ho        | 0.21         | 0.17       | 0.30       | 0.41        | 0.14       | 0.15      | 0.33     | 0.18     |
| Er        | 0.58         | 0.47       | 0.79       | 1.01        | 0.30       | 0.38      | 0.91     | 0.48     |
| Γm        | 0.08         | 0.06       | 0.10       | 0.16        | 0.04       | 0.04      | 0.13     | 0.07     |
| Yb        | 0.48         | 0.41       | 0.77       | 0.90        | 0.32       | 0.31      | 0.80     | 0.43     |
| Lu        | 0.06         | 0.06       | 0.09       | 0.12        | 0.04       | 0.05      | 0.10     | 0.06     |
| Sc        | 95.27        | 81.43      | 106.72     | 118.84      | 81.26      | 82.24     | 117.92   | 88.25    |

| Major                                                                                                              | and trace e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lement con                                                                                                                                                     | mpositions                                                                                                                                                                  | of selecte                                                                                                                                                                                        | d mineral                                                                                                                                                                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rock S                                                                                                             | ample No 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23187                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Plagioc                                                                                                            | lase phenoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rvsts                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Majore                                                                                                             | lements (in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wt%) anal                                                                                                                                                      | vsed by Fl                                                                                                                                                                  | ectron Mic                                                                                                                                                                                        | roprobe (F                                                                                                                                                                                        | (SQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Wagor C                                                                                                            | 107-1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107-1 2                                                                                                                                                        | 107-1 2                                                                                                                                                                     | 107-12 1                                                                                                                                                                                          | 107-12 2                                                                                                                                                                                          | 107-12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W1%                                                                                                                | 18/pi-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18/pl-2                                                                                                                                                        | 18/pi-3                                                                                                                                                                     | 18/pl2-1                                                                                                                                                                                          | 18/p12-2                                                                                                                                                                                          | 18/pl2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| \$102                                                                                                              | 53.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.38                                                                                                                                                          | 54.30                                                                                                                                                                       | 55.91                                                                                                                                                                                             | 55.27                                                                                                                                                                                             | 54.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TiO2                                                                                                               | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.07                                                                                                                                                         | < 0.07                                                                                                                                                                      | <0.07                                                                                                                                                                                             | < 0.07                                                                                                                                                                                            | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A12O3                                                                                                              | 29.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.11                                                                                                                                                          | 29.19                                                                                                                                                                       | 27.53                                                                                                                                                                                             | 28.21                                                                                                                                                                                             | 28.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cr2O3                                                                                                              | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.07                                                                                                                                                         | < 0.07                                                                                                                                                                      | < 0.07                                                                                                                                                                                            | < 0.07                                                                                                                                                                                            | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FeO                                                                                                                | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.24                                                                                                                                                           | 0.31                                                                                                                                                                        | 0.27                                                                                                                                                                                              | 0.22                                                                                                                                                                                              | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MnO                                                                                                                | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.07                                                                                                                                                         | < 0.07                                                                                                                                                                      | < 0.07                                                                                                                                                                                            | < 0.07                                                                                                                                                                                            | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MgO                                                                                                                | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.07                                                                                                                                                         | < 0.07                                                                                                                                                                      | <0.07                                                                                                                                                                                             | < 0.07                                                                                                                                                                                            | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CaO                                                                                                                | 11.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.34                                                                                                                                                          | 11.36                                                                                                                                                                       | 10.04                                                                                                                                                                                             | 10.57                                                                                                                                                                                             | 10.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Na2O                                                                                                               | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.80                                                                                                                                                           | 5 33                                                                                                                                                                        | 6.12                                                                                                                                                                                              | 5.71                                                                                                                                                                                              | 5 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| K20                                                                                                                | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12                                                                                                                                                           | 0.00                                                                                                                                                                        | 0.16                                                                                                                                                                                              | 0.14                                                                                                                                                                                              | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R20                                                                                                                | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12                                                                                                                                                           | 0.09                                                                                                                                                                        | 0.10                                                                                                                                                                                              | 0.14                                                                                                                                                                                              | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total                                                                                                              | 99.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.98                                                                                                                                                          | 100.58                                                                                                                                                                      | 100.03                                                                                                                                                                                            | 100.13                                                                                                                                                                                            | 100.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I race el<br>Ba                                                                                                    | 87.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72.75                                                                                                                                                          | 71.78                                                                                                                                                                       | 78.00                                                                                                                                                                                             | 80.93                                                                                                                                                                                             | 1CP-MS<br>82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Th                                                                                                                 | n.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                           | 0.00                                                                                                                                                                        | 0.00                                                                                                                                                                                              | 00.75                                                                                                                                                                                             | 02.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                | U.UU                                                                                                                                                                        | 0.00                                                                                                                                                                                              | 11.4.                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| U                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                           | n.a.                                                                                                                                                                        | n.a.                                                                                                                                                                                              | n.a.                                                                                                                                                                                              | 0.00<br>n.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| U<br>La                                                                                                            | 0.00 3.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                           | n.a.<br>3.07                                                                                                                                                                | n.a.<br>3.18                                                                                                                                                                                      | n.a.<br>3.19                                                                                                                                                                                      | 0.00<br>n.a.<br>3.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| U<br>La<br>Ce                                                                                                      | 0.00<br>3.48<br>5.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00<br>2.83<br>4.16                                                                                                                                           | n.a.<br>3.07<br>4.51                                                                                                                                                        | n.a.<br>3.18<br>4.57                                                                                                                                                                              | n.a.<br>3.19<br>4.78                                                                                                                                                                              | 0.00<br>n.a.<br>3.29<br>4.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| U<br>La<br>Ce<br>Pr                                                                                                | 0.00<br>3.48<br>5.09<br>0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00<br>2.83<br>4.16<br>0.34                                                                                                                                   | n.a.<br>3.07<br>4.51<br>0.36                                                                                                                                                | n.a.<br>3.18<br>4.57<br>0.41                                                                                                                                                                      | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35                                                                                                                                                              | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| U<br>La<br>Ce<br>Pr<br>Sr                                                                                          | 0.00<br>3.48<br>5.09<br>0.44<br>723.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>2.83<br>4.16<br>0.34<br>687.03                                                                                                                         | n.a.<br>3.07<br>4.51<br>0.36<br>645.32                                                                                                                                      | n.a.<br>3.18<br>4.57<br>0.41<br>659.09                                                                                                                                                            | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54                                                                                                                                                    | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Nd                                                                                    | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10                                                                                                                 | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03                                                                                                                              | n.a.<br>3.18<br>4.57<br>0.41<br>659.09<br>0.84                                                                                                                                                    | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10                                                                                                                                            | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sr<br>Nd<br>Sm                                                                        | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11                                                                                                         | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03<br>0.16                                                                                                                      | n.a.<br>3.18<br>4.57<br>0.41<br>659.09<br>0.84<br>0.12                                                                                                                                            | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07                                                                                                                                    | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Nd<br>Sm<br>Zr                                                                        | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.                                                                                                 | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03<br>0.16<br>0.03                                                                                                              | n.a.<br>3.18<br>4.57<br>0.41<br>659.09<br>0.84<br>0.12<br>n.a.                                                                                                                                    | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.                                                                                                                            | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Nd<br>Sm<br>Zr<br>Hf                                                                  | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00                                                                                         | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03<br>0.16<br>0.03<br>n.a.                                                                                                      | n.a.<br>3.18<br>4.57<br>0.41<br>659.09<br>0.84<br>0.12<br>n.a.<br>0.02                                                                                                                            | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02                                                                                                                    | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sr<br>Nd<br>Sm<br>Zr<br>Hf<br>Eu<br>Cd                                                | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50                                                                                 | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03<br>0.16<br>0.03<br>n.a.<br>0.49                                                                                              | n.a.<br>3.18<br>4.57<br>0.41<br>659.09<br>0.84<br>0.12<br>n.a.<br>0.02<br>0.45                                                                                                                    | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02<br>0.46                                                                                                            | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sr<br>Nd<br>Sm<br>Zr<br>Hf<br>Eu<br>Gd<br>Cb                                          | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50<br>0.05                                                                         | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03<br>0.16<br>0.03<br>n.a.<br>0.49<br>0.03                                                                                      | n.a.<br>3.18<br>4.57<br>0.41<br>659.09<br>0.84<br>0.12<br>n.a.<br>0.02<br>0.45<br>0.04                                                                                                            | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02<br>0.46<br>0.05                                                                                                    | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sr<br>Sm<br>Zr<br>Hf<br>Eu<br>Gd<br>Tb                                                | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50<br>0.03<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50<br>0.05<br>0.01<br>0.04                                                         | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03<br>0.16<br>0.03<br>n.a.<br>0.49<br>0.03<br>0.01                                                                              | n.a.<br>3.18<br>4.57<br>0.41<br>659.09<br>0.84<br>0.12<br>n.a.<br>0.02<br>0.45<br>0.04<br>0.00                                                                                                    | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02<br>0.46<br>0.05<br>0.00                                                                                            | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51<br>0.04<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sm<br>Zr<br>Hf<br>Eu<br>Gd<br>Tb<br>Dy<br>Y                                           | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50<br>0.03<br>0.00<br>n.a.<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50<br>0.05<br>0.01<br>0.04                                                         | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03<br>0.16<br>0.03<br>n.a.<br>0.49<br>0.03<br>0.01<br>0.01<br>0.13                                                              | 0.00       n.a.       3.18       4.57       0.41       659.09       0.84       0.12       n.a.       0.02       0.45       0.04       0.00       0.01                                             | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02<br>0.46<br>0.05<br>0.00<br>0.02<br>0.11                                                                            | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51<br>0.04<br>0.01<br>0.03<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sm<br>Zr<br>Hf<br>Eu<br>Gd<br>Tb<br>Dy<br>Y<br>Ho                                     | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50<br>0.03<br>0.00<br>n.a.<br>0.07<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50<br>0.05<br>0.01<br>0.04<br>0.09<br>0.01                                         | n.a.<br>3.07<br>4.51<br>0.36<br>645.32<br>1.03<br>0.16<br>0.03<br>n.a.<br>0.49<br>0.03<br>0.01<br>0.01<br>0.01<br>0.13<br>0.00                                              | 0.00       n.a.       3.18       4.57       0.41       659.09       0.84       0.12       n.a.       0.02       0.45       0.04       0.00       0.03       0.11                                  | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02<br>0.46<br>0.05<br>0.00<br>0.02<br>0.11<br>0.00                                                                    | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51<br>0.04<br>0.01<br>0.03<br>0.11<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sr<br>Md<br>Sm<br>Zr<br>Hf<br>Eu<br>Gd<br>Tb<br>Dy<br>Y<br>Ho<br>Er                   | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50<br>0.03<br>0.00<br>n.a.<br>0.07<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50<br>0.05<br>0.01<br>0.04<br>0.09<br>0.01<br>n.a.                                 | n.a.       3.07       4.51       0.36       645.32       1.03       0.16       0.03       n.a.       0.49       0.03       0.01       0.01                                  | 0.00       n.a.       3.18       4.57       0.41       659.09       0.84       0.12       n.a.       0.02       0.45       0.04       0.00       0.03       0.11       0.01                       | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02<br>0.46<br>0.05<br>0.00<br>0.02<br>0.11<br>0.00<br>0.02                                                            | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51<br>0.04<br>0.01<br>0.03<br>0.11<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sr<br>Sm<br>Zr<br>Eu<br>Gd<br>Tb<br>Dy<br>Y<br>Ho<br>Er<br>Tm                         | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50<br>0.03<br>0.00<br>n.a.<br>0.07<br>0.00<br>0.01<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50<br>0.05<br>0.05<br>0.01<br>0.04<br>0.09<br>0.01<br>n.a.<br>0.01                 | n.a.       3.07       4.51       0.36       645.32       1.03       0.16       0.03       n.a.       0.49       0.03       0.01       0.13       0.00       0.01            | 0.00       n.a.       3.18       4.57       0.41       659.09       0.84       0.12       n.a.       0.02       0.45       0.04       0.00       0.03       0.11       0.01       0.01            | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02<br>0.46<br>0.05<br>0.00<br>0.02<br>0.11<br>0.00<br>0.02<br>n.a.                                                    | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51<br>0.04<br>0.01<br>0.03<br>0.11<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Nd<br>Sm<br>Zr<br>Hf<br>Eu<br>Gd<br>Tb<br>Dy<br>Y<br>Ho<br>Er<br>Tm<br>Yb             | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50<br>0.03<br>0.00<br>n.a.<br>0.07<br>0.00<br>0.01<br>0.00<br>n.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50<br>0.05<br>0.01<br>0.04<br>0.09<br>0.01<br>n.a.<br>0.01<br>0.00                 | n.a.       3.07       4.51       0.36       645.32       1.03       0.16       0.03       n.a.       0.49       0.03       0.01       0.01       0.13       0.00       0.01 | 0.00       n.a.       3.18       4.57       0.41       659.09       0.84       0.12       n.a.       0.02       0.45       0.04       0.00       0.03       0.11       0.01       0.01            | n.a.<br>n.a.<br>3.19<br>4.78<br>0.35<br>672.54<br>1.10<br>0.07<br>n.a.<br>0.02<br>0.46<br>0.05<br>0.00<br>0.02<br>0.11<br>0.00<br>0.02<br>n.a.<br>0.00<br>0.02<br>0.11<br>0.00                    | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51<br>0.04<br>0.01<br>0.03<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U<br>La<br>Ce<br>Pr<br>Sr<br>Sr<br>Nd<br>Sm<br>Zr<br>Hf<br>Eu<br>Gd<br>Tb<br>Dy<br>Y<br>Ho<br>Er<br>Tm<br>Yb<br>Lu | 0.00<br>3.48<br>5.09<br>0.44<br>723.43<br>1.15<br>0.13<br>n.a.<br>0.01<br>0.50<br>0.03<br>0.00<br>n.a.<br>0.07<br>0.00<br>0.00<br>n.a.<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>2.83<br>4.16<br>0.34<br>687.03<br>1.10<br>0.11<br>n.a.<br>0.00<br>0.50<br>0.05<br>0.05<br>0.01<br>0.04<br>0.09<br>0.01<br>n.a.<br>0.01<br>0.00<br>0.00 | n.a.       3.07       4.51       0.36       645.32       1.03       0.16       0.03       n.a.       0.49       0.03       0.01       0.13       0.00       0.01       0.03 | 0.00       n.a.       3.18       4.57       0.41       659.09       0.84       0.12       n.a.       0.02       0.45       0.04       0.00       0.03       0.11       0.01       0.01       0.01 | n.a.       n.a.       3.19       4.78       0.35       672.54       1.10       0.07       n.a.       0.02       0.46       0.05       0.00       0.02       0.11       0.00       0.02       n.a. | 0.00<br>n.a.<br>3.29<br>4.65<br>0.43<br>712.00<br>1.04<br>0.08<br>0.17<br>0.01<br>0.51<br>0.04<br>0.01<br>0.03<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
| ndix 4-6    |                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and trace   | element o                                                                                                                                                             | ompositi                                                                                                                                                                                                                                      | ons of sel                                                                                                                                                                                                                                                                                                                                                                                                              | ected mir                                                                                                                                                                                                                                                                                                                                                                                                           | nerals                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ample No    | 123187                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mass        |                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| lamanta (i  | n 11/1) nm                                                                                                                                                            | alwood hu                                                                                                                                                                                                                                     | Flootron                                                                                                                                                                                                                                                                                                                                                                                                                | Minnonno                                                                                                                                                                                                                                                                                                                                                                                                            | ha (EDS)                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| iements (ii | n w(%) an                                                                                                                                                             | alysed by                                                                                                                                                                                                                                     | Electron                                                                                                                                                                                                                                                                                                                                                                                                                | Micropro                                                                                                                                                                                                                                                                                                                                                                                                            | De (EDS)                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 100000 101100                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 187m1-1     | 187m1-2                                                                                                                                                               | 187m1-3                                                                                                                                                                                                                                       | 187m2-1                                                                                                                                                                                                                                                                                                                                                                                                                 | 187m2-2                                                                                                                                                                                                                                                                                                                                                                                                             | 187m2-3                                                                                                                                                                                                                                                                                                         | 187m3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 187m3-2                                                                                                                                                                                                                                                                                                                                                                                                                                     | 187m3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 74.96       | 49.83                                                                                                                                                                 | 55.60                                                                                                                                                                                                                                         | 53.79                                                                                                                                                                                                                                                                                                                                                                                                                   | 70.92                                                                                                                                                                                                                                                                                                                                                                                                               | 62.57                                                                                                                                                                                                                                                                                                           | 73.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.10                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.15        | 0.54                                                                                                                                                                  | 0.21                                                                                                                                                                                                                                          | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20                                                                                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12.46       | 4.34                                                                                                                                                                  | 22.00                                                                                                                                                                                                                                         | 24.63                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.07                                                                                                                                                                                                                                                                                                                                                                                                               | 21.60                                                                                                                                                                                                                                                                                                           | 15.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.91                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| < 0.07      | 0.12                                                                                                                                                                  | < 0.07                                                                                                                                                                                                                                        | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.08                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.07                                                                                                                                                                                                                                                                                                          | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.06        | 8.59                                                                                                                                                                  | 3.04                                                                                                                                                                                                                                          | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.64                                                                                                                                                                                                                                                                                                                                                                                                                | 2.23                                                                                                                                                                                                                                                                                                            | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <0.07       | 0.12                                                                                                                                                                  | <0.07                                                                                                                                                                                                                                         | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.08                                                                                                                                                                                                                                                                                                                                                                                                               | <0.07                                                                                                                                                                                                                                                                                                           | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.95        | 14 64                                                                                                                                                                 | 3 30                                                                                                                                                                                                                                          | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.45                                                                                                                                                                                                                                                                                                                                                                                                                | 2.49                                                                                                                                                                                                                                                                                                            | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.26        | 10.00                                                                                                                                                                 | 7.41                                                                                                                                                                                                                                          | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.70                                                                                                                                                                                                                                                                                                                                                                                                                | 7.06                                                                                                                                                                                                                                                                                                            | 5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.72                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.30        | 19.00                                                                                                                                                                 | 7.41                                                                                                                                                                                                                                          | 9.12                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.70                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                            | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.72                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.70        | 0.26                                                                                                                                                                  | 3.84                                                                                                                                                                                                                                          | 4.56                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.83                                                                                                                                                                                                                                                                                                                                                                                                                | 4.43                                                                                                                                                                                                                                                                                                            | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.93        | < 0.04                                                                                                                                                                | 2.17                                                                                                                                                                                                                                          | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                | 0.64                                                                                                                                                                                                                                                                                                            | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 98.59       | 98.24                                                                                                                                                                 | 97.66                                                                                                                                                                                                                                         | 97.75                                                                                                                                                                                                                                                                                                                                                                                                                   | 107.19                                                                                                                                                                                                                                                                                                                                                                                                              | 102.02                                                                                                                                                                                                                                                                                                          | 100.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99.93                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| lements (in | ppm) ana                                                                                                                                                              | alvsed by                                                                                                                                                                                                                                     | Excimer I                                                                                                                                                                                                                                                                                                                                                                                                               | Laser Abla                                                                                                                                                                                                                                                                                                                                                                                                          | ation ICP-                                                                                                                                                                                                                                                                                                      | MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 403.44      | 1139.36                                                                                                                                                               |                                                                                                                                                                                                                                               | 299.20                                                                                                                                                                                                                                                                                                                                                                                                                  | 209.97                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                 | 314.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 205.25                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.73        | 6.41                                                                                                                                                                  |                                                                                                                                                                                                                                               | 4.81                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.33                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.13                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.70        | 2.17                                                                                                                                                                  |                                                                                                                                                                                                                                               | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8.70        | 25.14                                                                                                                                                                 |                                                                                                                                                                                                                                               | 23.21                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.07                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 | 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.32                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20.90       | 49.06                                                                                                                                                                 |                                                                                                                                                                                                                                               | 44.26                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.90                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 | 8.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.35                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.72        | 5.41                                                                                                                                                                  |                                                                                                                                                                                                                                               | 3.73                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.69                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 555.25      | 667.14                                                                                                                                                                |                                                                                                                                                                                                                                               | 547.23                                                                                                                                                                                                                                                                                                                                                                                                                  | 554.80                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                 | 551.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 458.23                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11.21       | 22.81                                                                                                                                                                 |                                                                                                                                                                                                                                               | 9.34                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.55                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 | 3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.33                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.65        | 5.07                                                                                                                                                                  |                                                                                                                                                                                                                                               | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 100.85      | 110.26                                                                                                                                                                |                                                                                                                                                                                                                                               | 87.86                                                                                                                                                                                                                                                                                                                                                                                                                   | 65.24                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                               | 25.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.42                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.09        | 3.14                                                                                                                                                                  |                                                                                                                                                                                                                                               | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.73        | 1.43                                                                                                                                                                  |                                                                                                                                                                                                                                               | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.82        | 4.50                                                                                                                                                                  | -                                                                                                                                                                                                                                             | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.41        | 0.71                                                                                                                                                                  |                                                                                                                                                                                                                                               | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.09        | 4.00                                                                                                                                                                  |                                                                                                                                                                                                                                               | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.91                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17.00       | 23.08                                                                                                                                                                 |                                                                                                                                                                                                                                               | 10.09                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.35                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.59        | 0.85                                                                                                                                                                  |                                                                                                                                                                                                                                               | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.99        | 2.48                                                                                                                                                                  | -                                                                                                                                                                                                                                             | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.26        | 0.30                                                                                                                                                                  |                                                                                                                                                                                                                                               | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                               | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.31        | 2.40                                                                                                                                                                  |                                                                                                                                                                                                                                               | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.31        | 0.39                                                                                                                                                                  |                                                                                                                                                                                                                                               | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Idix 4-6           and trace           ample No           mass           lements (in           187m1-1           74.96           0.15           12.46           <0.07 | Idix 4-6           and trace element of ample No 123187           mass           lements (in wt%) an           187m1-1         187m1-2           74.96         49.83           0.15         0.54           12.46         4.34           <0.07 | Idix 4-6         Idix 4-6           and trace element compositi           ample No 123187           mass         Imass           Iements (in wt%) analysed by           187m1-1         187m1-2           187m1-1         187m1-2           12.46         4.9.83            55.60           0.15         0.54           0.15         0.54            0.07           1.2.46         4.34            2.00           <0.07 | Idix 4-6         Image           and trace element compositions of sel<br>ample No 123187           mass           lements (in wt%) analysed by Electron           187m1-1         187m1-2         187m1-3         187m2-1           74.96         49.83         55.60         53.79           0.15         0.54         0.21         0.07           12.46         4.34         22.00         24.63           <0.07 | ndix 4-6Image: and trace element compositions of selected minample No 123187massImage: analysed by Electron Micropro187m1-1187m1-2187m1-1187m1-2187m1-1187m1-2187m1-1187m1-2187m1-1187m1-2187m1-1187m1-2187m2-1187m2-274.9649.8355.6053.7970.920.150.540.210.070.6612.464.3422.0024.631.068.593.042.315.64<0.07 | Indix 4-6         Image: compositions of selected minerals           and trace element compositions of selected minerals           ample No 123187           mass           elements (in wt%) analysed by Electron Microprobe (EDS)           187m1-1         187m1-2           187m1-3         187m2-1           187m2-1         187m2-2           74.96         49.83           55.60         53.79           0.15         0.54           0.21         0.07           0.66         0.20           12.46         4.34           22.00         24.63           60.07         0.12           <0.07 | Idix 4-6         Image: compositions of selected minerals           and trace element compositions of selected minerals         mample No 123187           ample No 123187         Imass           lements (in wt%) analysed by Electron Microprobe (EDS)           187m1-1         187m1-2           74.96         49.83           0.15         0.54           0.15         0.54           0.115         0.54           0.12         <0.07 | Idix 4-6Idix 4-6and trace element compositions of selected mineralsample No 123187masslements (in wt%) analysed by Electron Microprobe (EDS) $187m1-1$ $187m1-2$ $187m2-1$ $187m2-2$ $187m2-3$ $187m3-1$ $187m1-1$ $187m1-3$ $187m2-1$ $187m2-2$ $187m2-3$ $187m3-1$ $187m3-2$ $74.96$ $49.83$ $55.60$ $53.79$ $70.92$ $62.57$ $73.74$ $54.10$ $0.15$ $0.54$ $0.21$ $0.07$ $0.66$ $0.20$ $0.12$ $<7.91$ $<0.07$ $0.12$ $<0.07$ $<0.07$ $<0.08$ $<0.07$ $<0.07$ $<0.07$ $1.06$ $8.59$ $3.04$ $2.31$ $5.64$ $2.23$ $0.88$ $1.25$ $<0.07$ $0.12$ $<0.07$ $<0.07$ $<0.08$ $<0.07$ $<0.07$ $<0.07$ $0.95$ $14.64$ $3.39$ $2.42$ $4.45$ $2.49$ $0.55$ $0.55$ $5.36$ $19.80$ $7.41$ $9.12$ $5.70$ $7.86$ $5.26$ $1.172$ $2.70$ $0.26$ $3.84$ $4.56$ $2.83$ $4.43$ $3.52$ $4.14$ $0.93$ $<0.04$ $2.17$ $0.84$ $0.92$ $0.64$ $0.64$ $0.26$ $98.59$ $98.24$ $97.66$ $97.75$ $107.19$ $102.02$ $100.17$ $99.93$ lements (in ppm) analysed by Excimer Laser Ablation ICP-MS $403.44$ $1139.36$ $299.20$ $209.97$ $3$ |

| ALLEN      |                      |                     |                          |                         |
|------------|----------------------|---------------------|--------------------------|-------------------------|
| The prefer | rred set of values ( | ppm) for the stand  | lards used in this study |                         |
|            | Standard Glass       | Kilauea Basalt      |                          |                         |
|            | NIST 612             | ANU 93-1489         | C1 Chondrite             | <b>Primitive Mantle</b> |
| Reference  | Pearce et al., 1997  | Eggins et al., 1997 | McDonough and Sun, 1995  | Sun and McDonough, 1989 |
| Ca43       | 115.10               | 104.885             |                          |                         |
| Ti         | 48.11                | 14362               | 440                      | 1300                    |
| Cs         | 41.64                | 0.074               | 0.19                     | 0.0079                  |
| Rb         | 31.63                | 7.15                | 2.3                      | 0.635                   |
| Ba         | 37.74                | 99.9                | 2.41                     | 6.989                   |
| Th         | 37.23                | 0.853               | 0.029                    | 0.085                   |
| U          | 37.15                | 0.274               | 0.0074                   | 0.021                   |
| Nb         | 38.06                | 13.24               | 0.24                     | 0.713                   |
| Ta         | 39.77                | 0.82                | 0.0136                   | 0.041                   |
| La         | 35.77                | 11.2                | 0.237                    | 0.687                   |
| Ce         | 38.35                | 27.9                | 0.613                    | 1.775                   |
| Pr         | 37.16                | 4.11                | 0.0928                   | 0.276                   |
| Sr         | 76.15                | 317                 | 7.25                     | 21.1                    |
| Nd         | 35.24                | 19.21               | 0.457                    | 1.354                   |
| Sm         | 36.72                | 5.21                | 0.148                    | 0.444                   |
| Zr         | 35,99                | 147.2               | 3.82                     | 11.2                    |
| Hf         | 34.77                | 3.58                | 0.103                    | 0.309                   |
| Eu         | 34.44                | 1.783               | 0.0563                   | 0.168                   |
| Gd         | 36.95                | 5.59                | 0.199                    | 0.596                   |
| Tb         | 35.92                | 0.878               | 0.0361                   | 0.108                   |
| Dy         | 35.97                | 4.96                | 0.246                    | 0.737                   |
| Ŷ          | 38.25                | 27                  | 1.57                     | 4.55                    |
| Но         | 37.87                | 0.966               | 0.0546                   | 0.164                   |
| Er         | 37.43                | 2.51                | 0.16                     | 0.48                    |
| Tm         | 37.55                |                     | 0.0247                   | 0.074                   |
| Yb         | 39.95                | 1.974               | 0.161                    | 0.493                   |
| Lu         | 37.71                | 0.279               | 0.0246                   | 0.074                   |
| Sc         | 41.05                | 31.6                | 5.92                     |                         |
| Cr         | 39.88                | 471                 | 2,650                    |                         |
| TI         | 15.07                | 0.022               | 0.14                     | 0.005                   |
| Pb         | 38,96                | 0.95                | 2.47                     | 0.071                   |
| Bi         | 29.84                | ALC TO              | 0.11                     | NENCT. CO.T.            |
| V          | 39.22                | 301                 | 56                       |                         |
| Cu         | 36.71                | 123                 | 120                      |                         |
| Zn         | 37.92                | 104                 | 310                      |                         |
| Ga         | 36.24                | 19.2                | 9.2                      |                         |
| As         | 37.33                |                     | 1.85                     |                         |
| Mo         | 38.3                 | 0.74                | 0.9                      | 0.063                   |
| W          | 30.55                | 211.1               | 0.093                    | 0.02                    |

| APPEND          | IX 6             |                |               |                  |                   |             |               |                |           |
|-----------------|------------------|----------------|---------------|------------------|-------------------|-------------|---------------|----------------|-----------|
| Partition co    | efficients o     | f trace eler   | ments bet     | ween miner       | al and liqui      | d in and    | lesite        |                |           |
|                 | Plagioclase      | Plagioclase    | Amphibole     | Clinopyroxene    | Orthopyroxene     | Garnet      | Apatite       | Zircon         | Allanite  |
|                 | (58% SiO2)       | (64% SiO2)     |               |                  |                   |             |               |                |           |
| La              | 0.247            | 0.687          | 1.507         | 0.033            | 0.26              | 0.076       | 14.5          | 5.25           | 2827      |
| Ce              | 0.176            | 0.507          | 3.149         | 0.065            | 0.31              | 0.144       | 21.1          | 5.14           | 2494      |
| Pr              | 0.143            | 0.450          | 5.637         | 0.127            | 0.39              | 0.188       | 26.95         | 5              | 2167      |
| Nd              | 0.099            | 0.380          | 7.984         | 0.212            | 0.47              | 0.232       | 32.8          | 4.77           | 1840      |
| Sm              | 0.052            | 0.240          | 11.523        | 0.380            | 0.46              | 1.25        | 46            | 5.16           | 977       |
| Eu              | 0.644            | 1.834          | 8.830         | 0.382            | 0.34              | 1.52        | 25.5          | 4.23           | 122       |
| Gd              | 0.030            | 0.181          | 15.906        | 0.557            | 0.58              | 5.2         | 43.9          | 6.41           | 404       |
| Tb              | 0.020            | 0.148          | 14.987        | 0.535            | 0.69              | 7.1         | 40            | 18.9           | 235       |
| Dy              | 0.015            | 0.143          | 14.240        | 0.378            | 0.40              | 15.45       | 34.8          | 31.4           | 150       |
| Но              | 0.012            | 0.131          | 12,131        | 0.473            | 0.52              | 23.8        | 30            | 48             | 125       |
| Er              | 0.009            | 0.131          | 13.217        | 0.458            | 0.65              | 26.3        | 22.7          | 64.6           | 100       |
| Tm              | 0.007            | 0.131          | 11.867        | 0.338            |                   |             |               |                |           |
| Yb              | 0.006            | 0.144          | 10.615        | 0.368            | 0.77              | 53          | 15.4          | 128            | 37        |
| Lu              | 0.005            | 0.167          | 9.962         | 0.307            | 0.71              | 57          | 13.8          | 196            | 44        |
| Ba              | 0.184            | 0.360          | 0.050         | 0.0004           | 0.1               | 0.109       |               |                |           |
| Th              | 0.0004           | 0.052          | 0.017         | 0.002            | 0.14              |             |               |                | 420       |
| U               | 0.002            | 0.173          | 0.017         | 0.001            | 0.023             |             |               |                | 14        |
| Sr              | 1.230            | 2.820          | 0.202         | 0.067            | 0.01              | 0.04        | 1.3           |                | 1.8       |
| Zr              | 0.001            | 0.982          | 0.806         | 0.053            | 0.11              | 0.4         | 0.636         |                | 0.29      |
| Hf              | 0.005            | 0.578          | 1.301         | 0.090            | 0.11              | 0.570       | 0.730         | 997            | 9.8       |
| Y               | 0.009            | 0.146          | 12.750        | 0.474            | 0.19              | 2.5         |               |                | 95.5      |
| Sc              | 0.068            | 0.808          | 37.219        | 4.438            | 4.3               | 3.9         |               |                | 49.4      |
| Reference:      |                  |                |               |                  |                   |             |               |                |           |
| Plagioclase, Am | phibole, Clinopy | yroxene : this | study; smooth | ned values for D | y, Ho, Er, Yb and | d Lu for Ca | alcic Plagioo | clase          |           |
| Orthopyroxene : | Bacon and Dr     | uitt, 1988; Du | nn and Sen, 1 | 994 (Dy, Ho, E   | r, Y, U); smoothe | d values f  | or Pr         |                |           |
| Garnet :        | Garnet : Irvin   | g and Frey, 19 | 78; Shimizu,  | 1974 (Ce, Nd, E  | Ba); Nicholls and | Harris (D   | y), 1980; Ba  | orth et al., 1 | 997 (Er); |
|                 | Green et al., 1  | 989 (Sr, Y, Zr | ); smoothed   | values for Pr    |                   |             |               |                |           |
| Apatite :       | Fujimaki, 198    | 6; Watson and  | i Green, 1981 | (Sr); smoothed   | values for Pr, Th | and Ho      |               |                |           |
| Zircon :        | Fujimaki, 198    | 6; smoothed v  | alues for Pr  |                  |                   |             |               |                |           |
| Allanite :      | Mahood and I     | Hildreth, 1983 | (rhvolite): E | wart and Griffin | 1994 (Sr. Y. Zr)  | : smoothe   | d values for  | Pr. Gd. Ho     | and Er    |

|        | INDIA     | /-1       |            |                    |               |                    |              |                    |          |       |                 |            |       |                             |           |               |      |          |
|--------|-----------|-----------|------------|--------------------|---------------|--------------------|--------------|--------------------|----------|-------|-----------------|------------|-------|-----------------------------|-----------|---------------|------|----------|
| Summa  | ary of th | ne U-Th-  | Pb zirco   | n dates anal       | ysed by E     | LA-ICP-MS          |              |                    |          |       |                 |            |       |                             |           |               |      |          |
| Magera | ang-Im    | ang ande  | site Sam   | ple No. 1231       | 58            |                    |              |                    |          |       |                 |            |       |                             |           |               |      |          |
| Sample | P(ppm)    | U(ppm)    | 232Th/238U | Uncorrected        | <u>+</u>      | Uncorrected        | ±            | Uncorrected        | ±        | f208  | 208Pb corrected | d Observed | f207  | <sup>207</sup> Pb corrected | Observed  | Obs/Exp       | Spot | Exclude? |
| No.    |           |           |            | 206Pb/238U ratio   |               | 207Pb/235U ratio   |              | 208Pb/232Th ratio  |          |       | 206Pb/238U Dat  | e Error    |       | 206Pb/238U Date             | Error     | Error         | MSWD |          |
|        |           |           |            |                    |               |                    |              |                    |          |       | (Ma)            | (+ 1s.e.)  |       | (Ma)                        | (+ 1s.e.) | (1990) (1990) |      |          |
| 158-01 | 137       | 37        | 0.472      | 0.003181           | 0.000034      | 0.032952           | 0.001465     | 0.001683           | 0.000061 | 0.047 | 19.41           | 0.22       | 0.031 | 19.83                       | 0.22      | 12            | 1 38 |          |
| 158-02 | 122       | 29        | 0.472      | 0.003267           | 0.000034      | 0.032732           | 0.001866     | 0.001758           | 0.000056 | 0.052 | 19.82           | 0.25       | 0.048 | 20.02                       | 0.25      | 1.2           | 1.55 |          |
| 158-03 | 144       | 49        | 0.496      | 0.003182           | 0.000031      | 0.028417           | 0.001259     | 0.001305           | 0.000040 | 0.023 | 19.95           | 0.20       | 0.020 | 20.02                       | 0.20      | 1.2           | 1.28 |          |
| 158-04 | 158       | 47        | 0.507      | 0.003030           | 0.000026      | 0.031850           | 0.001278     | 0.001337           | 0.000039 | 0.030 | 18.87           | 0.17       | 0.033 | 18.87                       | 0.17      | 1.0           | 0.98 |          |
| 158-05 | 146       | 59        | 0.762      | 0.003383           | 0.000055      | 0.067720           | 0.005523     | 0.001872           | 0.000106 | 0.091 | 19.71           | 0.40       | 0.108 | 19.43                       | 0.42      | 2.2           | 2.63 | ves: a   |
| 158-06 | 157       | 66        | 0.649      | 0.003100           | 0.000028      | 0.024964           | 0.001145     | 0.001154           | 0.000026 | 0.017 | 19.54           | 0.19       | 0.013 | 19.69                       | 0.19      | 1.1           | 1.19 | 1        |
| 158-07 | 93        | 27        | 0.494      | 0.003177           | 0.000055      | 0.041815           | 0.003320     | 0.001459           | 0.000070 | 0.035 | 19.69           | 0.36       | 0.054 | 19.36                       | 0.37      | 1.2           | 1.36 |          |
| 158-08 | 166       | 75        | 0.654      | 0.003119           | 0.000027      | 0.025952           | 0.001069     | 0.001119           | 0.000027 | 0.014 | 19.75           | 0.18       | 0.015 | 19,77                       | 0.18      | 1.2           | 1.47 |          |
| 158-09 | 192       | 80        | 0.617      | 0.003178           | 0.000030      | 0.025359           | 0.001369     | 0.001073           | 0.000036 | 0.006 | 20.28           | 0.20       | 0.012 | 20.20                       | 0.20      | 1.4           | 1.43 |          |
| 158-10 | 185       | 81        | 0.699      | 0.003157           | 0.000024      | 0.023397           | 0.000971     | 0.001085           | 0.000023 | 0.009 | 20.10           | 0.16       | 0.008 | 20.16                       | 0.16      | 1.1           | 1.09 |          |
| 158-11 | 190       | 112       | 0.725      | 0.003051           | 0.000022      | 0.023194           | 0.000825     | 0.001021           | 0.000021 | 0.007 | 19.47           | 0.16       | 0.010 | 19.45                       | 0.15      | 1.2           | 1.38 |          |
| 158-12 | 212       | 80        | 0.599      | 0.003122           | 0.000021      | 0.024532           | 0.000867     | 0.001080           | 0.000025 | 0.008 | 19.91           | 0.14       | 0.012 | 19.86                       | 0.14      | 1.0           | 0.90 |          |
| 158-13 | 314       | 60        | 0.603      | 0.003216           | 0.000030      | 0.028495           | 0.001430     | 0.001210           | 0.000037 | 0.018 | 20.30           | 0.20       | 0.019 | 20.30                       | 0.20      | 1.1           | 1.18 |          |
| 158-14 | 695       | 76        | 0.792      | 0.003159           | 0.000030      | 0.033932           | 0.001295     | 0.001342           | 0.000028 | 0.043 | 19.41           | 0.21       | 0.034 | 19.64                       | 0.20      | 1.3           | 1.30 |          |
| 158-15 | 118       | 55        | 0.643      | 0.003068           | 0.000031      | 0.028646           | 0.001418     | 0.001133           | 0.000031 | 0.017 | 19.41           | 0.21       | 0.023 | 19.29                       | 0.21      | 1.1           | 1.18 |          |
| 158-16 | 155       | 77        | 0.682      | 0.002986           | 0.000031      | 0.027150           | 0.001593     | 0.001135           | 0.000036 | 0.022 | 18.78           | 0.22       | 0.021 | 18.81                       | 0.21      | 1.3           | 1.63 |          |
| 158-17 | 125       | 47        | 0.572      | 0.003184           | 0.000031      | 0.025861           | 0.001612     | 0.001115           | 0.000037 | 0.011 | 20.26           | 0.22       | 0.014 | 20.22                       | 0.21      | 1.0           | 0.93 |          |
| 158-18 | 151       | 61        | 0.566      | 0.003234           | 0.000039      | 0.052899           | 0.003482     | 0.002083           | 0.000129 | 0.084 | 19.06           | 0.29       | 0.079 | 19.18                       | 0.29      | 1.5           | 1.64 |          |
| 158-19 | 162       | 65        | 0.657      | 0.003245           | 0.000033      | 0.026200           | 0.001245     | 0.001105           | 0.000037 | 0.008 | 20.72           | 0.23       | 0.013 | 20.61                       | 0.22      | 1.2           | 1.25 |          |
| 158-20 | 158       | 101       | 0.650      | 0.003110           | 0.000034      | 0.036315           | 0.002017     | 0.001379           | 0.000066 | 0.039 | 19.23           | 0.25       | 0.042 | 19.18                       | 0.23      | 1.5           | 2.04 | ves; a   |
| 158-21 | 158       | 75        | 0.562      | 0.003313           | 0.000050      | 0.056365           | 0.004352     | 0.002242           | 0.000166 | 0.089 | 19.42           | 0.36       | 0.084 | 19.53                       | 0.37      | 2.1           | 3.08 | ves; a   |
| 158-22 | 151       | 60        | 0.624      | 0.002995           | 0.000035      | 0.036514           | 0.002091     | 0.001323           | 0.000054 | 0.037 | 18.59           | 0.23       | 0.046 | 18.40                       | 0.24      | 1.2           | 1.29 |          |
| 158-23 | 260       | 91        | 0.684      | 0.003070           | 0.000027      | 0.023655           | 0.001025     | 0.001039           | 0.000027 | 0.007 | 19.63           | 0.18       | 0.010 | 19.56                       | 0.18      | 1.0           | 0.97 |          |
| 158-24 | 155       | 91        | 0.637      | 0.003991           | 0.000057      | 0.149993           | 0.004826     | 0.004514           | 0.000142 | 0.254 | 19.22           | 0.36       | 0.247 | 19.35                       | 0.35      | 1.5           | 2.36 | yes; a   |
| 158-25 | 132       | 76        | 0.571      | 0.003223           | 0.000040      | 0.043055           | 0.002096     | 0.001822           | 0.000069 | 0.067 | 19.37           | 0.26       | 0.055 | 19.60                       | 0.26      | 1.3           | 1.64 |          |
| 158-26 | 162       | 96        | 0.587      | 0.003067           | 0.000030      | 0.024714           | 0.000892     | 0.001083           | 0.000025 | 0.010 | 19.55           | 0.20       | 0.013 | 19.48                       | 0.20      | 1.3           | 1.63 |          |
| 158-27 | 123       | 64        | 0.670      | 0.003212           | 0.000038      | 0.039969           | 0.002437     | 0.001431           | 0.000066 | 0.041 | 19.84           | 0.27       | 0.048 | 19.69                       | 0.26      | 1.1           | 1.09 |          |
| 158-28 | 160       | 97        | 0.684      | 0.002943           | 0.000032      | 0.025816           | 0.001313     | 0.001015           | 0.000029 | 0.009 | 18.79           | 0.22       | 0.019 | 18.59                       | 0.21      | 1.3           | 1.58 |          |
| 158-29 | 132       | 59        | 0.667      | 0.003128           | 0.000047      | 0.025031           | 0.002245     | 0.001234           | 0.000062 | 0.025 | 19.65           | 0.33       | 0.013 | 19.88                       | 0.32      | 1.2           | 1.35 |          |
| 158-30 | 138       | 85        | 0.776      | 0.003122           | 0.000037      | 0.047000           | 0.001711     | 0.001582           | 0.000033 | 0.075 | 18.62           | 0.24       | 0.069 | 18.72                       | 0.24      | 1.3           | 1.65 |          |
| 158-31 | 129       | 65        | 0.589      | 0.003116           | 0.000043      | 0.028936           | 0.001889     | 0.001168           | 0.000070 | 0.015 | 19.78           | 0.29       | 0.023 | 19.60                       | 0.28      | 1.4           | 1.74 |          |
| 158-32 | 198       | 123       | 0.703      | 0.003104           | 0.000033      | 0.026703           | 0.001114     | 0.001051           | 0.000025 | 0.007 | 19.86           | 0.22       | 0.017 | 19.63                       | 0.21      | 1.3           | 1.73 |          |
| Notes: | a :       | Date excl | uded based | on the spot MS     | WD being l    | arger than 2       |              |                    |          |       |                 |            |       |                             |           |               |      |          |
|        | h .       | Date excl | nded based | on the ratio bet   | ween the ob   | served error to e  | xnected erro | r being larger tha | n 3      |       |                 |            |       |                             |           |               |      |          |
|        | ¢:        | Date excl | uded based | I on the plot of r | probability d | istribution: inher | ited grain   | i being larger tha |          |       |                 |            |       |                             |           |               |      |          |
| -      |           | D         | 1.11       |                    | 1.1.1.        |                    | 11. 1        | 1                  |          |       |                 | -          |       |                             |           |               |      |          |

| APPE     | NDIX     | 7-2       |              |                    |               |                    |               |                     |          |        |                             |           |       |                 |           |         |      |          |
|----------|----------|-----------|--------------|--------------------|---------------|--------------------|---------------|---------------------|----------|--------|-----------------------------|-----------|-------|-----------------|-----------|---------|------|----------|
| Summa    | ry of th | e U-Th-F  | b zirco      | n dates analy      | sed by EI     | A-ICP-MS           |               |                     |          |        |                             |           |       |                 |           |         |      |          |
| Magera   | ng-Ima   | ng Ande   | site Sam     | ple No. 1232       | 26-session    | 1                  |               |                     |          |        |                             |           |       |                 |           |         |      |          |
| Sample   | P(ppm)   | U(ppm)    | 232 Th/238 U | Uncorrected        | ±             | Uncorrected        | <u>+</u>      | Uncorrected         | ±        | f208   | <sup>208</sup> Pb corrected | Observed  | f207  | 207Pb corrected | Observed  | Obs/Exp | Spot | Exclude? |
| No.      |          |           |              | 206Pb/238U ratio   |               | 207Pb/235U ratio   |               | 208Pb/232Th ratio   |          |        | 206Pb/238U Date             | Error     |       | 206Pb/238U Date | Error     | Error   | MSWD |          |
|          |          |           |              |                    |               |                    |               |                     |          |        | (Ma)                        | (± 1s.e.) |       | (Ma)            | (± 1s.e.) |         |      |          |
| 226-1-01 | 160      | 55        | 0.643        | 0.003021           | 0.000038      | 0.021803           | 0.001402      | 0.000996            | 0.000033 | 0.004  | 19.42                       | 0.25      | 0.006 | 19.32           | 0.25      | 1.2     | 1.42 |          |
| 226-1-02 | 370      | 52        | 0.663        | 0.003147           | 0.000041      | 0.042784           | 0.003310      | 0.001455            | 0.000072 | 0.049  | 19.36                       | 0.30      | 0.057 | 19.10           | 0.30      | 1.2     | 1.14 |          |
| 226-1-03 | 183      | 83        | 0.766        | 0.002962           | 0.000033      | 0.019743           | 0.001174      | 0.000946            | 0.000028 | 0.001  | 19.04                       | 0.23      | 0.002 | 19.03           | 0.22      | 1.2     | 1.32 |          |
| 226-1-04 | 116      | 40        | 0.573        | 0.003071           | 0.000041      | 0.030992           | 0.002144      | 0.001102            | 0.000058 | 0.012  | 19.54                       | 0.28      | 0.029 | 19.19           | 0.27      | 1.1     | 1.21 |          |
| 226-1-05 | 130      | 50        | 0.532        | 0.002884           | 0.000040      | 0.021824           | 0.001739      | 0.000994            | 0.000044 | 0.008  | 18.40                       | 0.27      | 0.009 | 18.40           | 0.27      | 1.1     | 1.16 |          |
| 226-1-06 | 120      | 54        | 0.599        | 0.003106           | 0.000036      | 0.025324           | 0.001473      | 0.001114            | 0.000039 | 0.011  | 19.75                       | 0.24      | 0.014 | 19.71           | 0.24      | 1.1     | 1.05 |          |
| 226-1-07 | 118      | 44        | 0.614        | 0.003003           | 0.000041      | 0.025505           | 0.001873      | 0.000981            | 0.000039 | 0.002  | 19.27                       | 0.27      | 0.017 | 19.01           | 0.28      | 1.1     | 1.11 |          |
| 226-1-08 | 154      | 59        | 0.530        | 0.002980           | 0.000034      | 0.021644           | 0.001278      | 0.000922            | 0.000036 | -0.002 | 19.20                       | 0.23      | 0.007 | 19.05           | 0.23      | 1.1     | 1.16 |          |
| 226-1-09 | 545      | 63        | 0.623        | 0.002992           | 0.000044      | 0.027746           | 0.002103      | 0.001160            | 0.000059 | 0.022  | 18.76                       | 0.30      | 0.023 | 18.82           | 0.30      | 1.2     | 1.26 |          |
| 226-1-10 | 192      | 126       | 0.970        | 0.002983           | 0.000037      | 0.020326           | 0.001225      | 0.000933            | 0.000026 | -0.001 | 19.12                       | 0.27      | 0.003 | 19.14           | 0.25      | 1.2     | 1.43 |          |
| 226-1-11 | 322      | 74        | 0.707        | 0.002965           | 0.000039      | 0.029008           | 0.002292      | 0.001103            | 0.000043 | 0.018  | 18.66                       | 0.26      | 0.027 | 18.57           | 0.27      | 1.3     | 1.20 |          |
| 226-1-12 | 151      | 53        | 0.615        | 0.003097           | 0.000039      | 0.030249           | 0.001989      | 0.001158            | 0.000048 | 0.019  | 19.51                       | 0.27      | 0.027 | 19.40           | 0.26      | 1.1     | 1.11 |          |
| 226-1-13 | 193      | 127       | 0.664        | 0.003039           | 0.000044      | 0.020599           | 0.001228      | 0.000978            | 0.000036 | 0.000  | 19.45                       | 0.29      | 0.003 | 19.50           | 0.29      | 1.3     | 1.61 |          |
| 226-1-14 | 160      | 74        | 0.648        | 0.003434           | 0.000059      | 0.051430           | 0.005267      | 0.001826            | 0.000157 | 0.055  | 20.76                       | 0.42      | 0.068 | 20.60           | 0.44      | 1.9     | 2.30 | yes; a   |
| 226-1-15 | 193      | 48        | 0.698        | 0.003100           | 0.000056      | 0.034179           | 0.002817      | 0.001209            | 0.000050 | 0.027  | 19.32                       | 0.37      | 0.037 | 19.22           | 0.37      | 1.2     | 1.43 |          |
| 226-1-16 | 157      | 83        | 0.587        | 0.003048           | 0.000038      | 0.023679           | 0.001749      | 0.001122            | 0.000041 | 0.015  | 19.24                       | 0.26      | 0.011 | 19.40           | 0.26      | 1.2     | 1.21 | 121      |
| 226-1-17 | 136      | 74        | 0.690        | 0.003053           | 0.000038      | 0.020783           | 0.001425      | 0.000865            | 0.000035 | -0.011 | 19.78                       | 0.26      | 0.003 | 19.59           | 0.26      | 1.1     | 1.21 |          |
| 226-1-18 | 141      | 82        | 0.656        | 0.002939           | 0.000079      | 0.022112           | 0.001940      | 0.000971            | 0.000049 | 0.003  | 18.79                       | 0.52      | 0.009 | 18.75           | 0.51      | 1.9     | 2.44 | yes; a   |
| 226-1-19 | 105      | 44        | 0.444        | 0.003092           | 0.000053      | 0.029593           | 0.002612      | 0.001098            | 0.000066 | 0.009  | 19.64                       | 0.35      | 0.025 | 19.40           | 0.36      | 1.2     | 1.29 |          |
| 226-1-20 | 146      | 87        | 0.701        | 0.003009           | 0.000055      | 0.032648           | 0.003357      | 0.001160            | 0.000079 | 0.022  | 18.77                       | 0.38      | 0.035 | 18.69           | 0.38      | 1.6     | 1.70 |          |
| 226-1-21 | 147      | 101       | 0.664        | 0.002967           | 0.000042      | 0.023554           | 0.001789      | 0.001039            | 0.000042 | 0.012  | 18.70                       | 0.29      | 0.012 | 18.87           | 0.28      | 1.2     | 1.38 |          |
| 226-1-22 | 307      | 108       | 0.662        | 0.003084           | 0.000035      | 0.024454           | 0.001552      | 0.000943            | 0.000032 | -0.004 | 19.76                       | 0.24      | 0.012 | 19.61           | 0.23      | 1.2     | 1.28 |          |
| 226-1-23 | 166      | 72        | 0.573        | 0.003053           | 0.000038      | 0.023081           | 0.001639      | 0.000935            | 0.000038 | -0.003 | 19.58                       | 0.25      | 0.009 | 19.47           | 0.25      | 1.1     | 1.01 |          |
| 226-1-24 | 201      | 108       | 0.561        | 0.003055           | 0.000038      | 0.020086           | 0.001356      | 0.000894            | 0.000040 | -0.007 | 19.67                       | 0.26      | 0.001 | 19.64           | 0.25      | 1.1     | 1.13 |          |
| 226-1-25 | 173      | 109       | 0.545        | 0.002937           | 0.000035      | 0.018980           | 0.001570      | 0.000963            | 0.000029 | 0.003  | 18.70                       | 0.23      | 0.001 | 18.89           | 0.24      | 1.1     | 1.03 |          |
| 226-1-26 | 147      | 79        | 0.561        | 0.003102           | 0.000039      | 0.024431           | 0.001523      | 0.000892            | 0.000035 | -0.008 | 20.00                       | 0.27      | 0.012 | 19.73           | 0.26      | 1.2     | 1.31 |          |
| 226-1-27 | 213      | 76        | 0.647        | 0.003011           | 0.000044      | 0.027442           | 0.002147      | 0.001127            | 0.000050 | 0.019  | 18.83                       | 0.30      | 0.022 | 18.97           | 0.30      | 1.0     | 0.92 |          |
| 226-1-28 | 182      | 124       | 0.730        | 0.003004           | 0.000032      | 0.021537           | 0.001169      | 0.000911            | 0.000027 | -0.004 | 19.22                       | 0.22      | 0.006 | 19.22           | 0.21      | 1.1     | 1.18 |          |
| 226-1-29 | 197      | 110       | 0.557        | 0.003032           | 0.000041      | 0.024439           | 0.001801      | 0.001001            | 0.000042 | 0.004  | 19.29                       | 0.27      | 0.013 | 19.26           | 0.28      | 1.2     | 1.27 |          |
| 226-1-30 | 135      | 52        | 0.483        | 0.003175           | 0.000054      | 0.033448           | 0.003144      | 0.001083            | 0.000076 | 0.004  | 20.20                       | 0.36      | 0.033 | 19.76           | 0.37      | 1.1     | 1.01 |          |
| 226-1-31 | 203      | 119       | 0.603        | 0.003216           | 0.000037      | 0.021703           | 0.001216      | 0.001090            | 0.000033 | 0.008  | 20.37                       | 0.25      | 0.003 | 20.64           | 0.24      | 1.2     | 1.41 |          |
| 226-1-32 | 228      | 70        | 0.644        | 0.003100           | 0.000040      | 0.025770           | 0.002314      | 0.001186            | 0.000053 | 0.020  | 19.35                       | 0.27      | 0.015 | 19.65           | 0.28      | 1.2     | 1.12 |          |
| Notes:   | a:       | Date excl | uded base    | d on the spot MS   | WD being l    | arger than 2       |               |                     |          |        |                             |           |       |                 |           |         |      |          |
|          | b:       | Date excl | uded base    | d on the ratio bet | tween the ob  | served error to e  | xpected error | r being larger that | n 3      |        |                             |           |       |                 |           |         |      |          |
|          | c:       | Date excl | uded base    | d on the plot of p | probability d | istribution; inher | ited grain    |                     |          |        |                             |           |       |                 |           |         |      |          |
|          | d :      | Date excl | uded base    | d on the plot of p | probability d | istribution; possi | bly due to Pl | loss                |          |        |                             |           |       |                 |           |         |      |          |

| APPE     | NDIX      | 7-3       |            |                    |               |                    |               |                   |          |        |                 |           |        |                             |           |         |      |          |
|----------|-----------|-----------|------------|--------------------|---------------|--------------------|---------------|-------------------|----------|--------|-----------------|-----------|--------|-----------------------------|-----------|---------|------|----------|
| Summa    | ry of the | U-Th-H    | b zircor   | dates analy        | sed by EI     | A-ICP-MS           |               |                   |          |        |                 |           |        |                             |           |         |      |          |
| Magera   | ng-Imai   | ng Ande   | site Sam   | ple No. 1232       | 26-session    | 2                  |               |                   |          |        |                 |           |        |                             |           |         |      |          |
| Sample   | P(ppm)    | U(ppm)    | 232Th/238U | Uncorrected        | ±             | Uncorrected        | ±             | Uncorrected       | ±        | f208   | 208Pb corrected | Observed  | f207   | <sup>207</sup> Pb corrected | Observed  | Obs/Exp | Spot | Exclude? |
| No.      |           |           |            | 206Pb/238U ratio   |               | 207Pb/235U ratio   |               | 208Pb/232Th ratio |          |        | 206Pb/238U Date | Error     |        | 206Pb/238U Date             | Error     | Error   | MSWD |          |
|          | _         |           |            |                    |               |                    |               |                   |          |        | (Ma)            | (± 1s.e.) |        | (Ma)                        | (± 1s.e.) |         |      |          |
| 226-2-01 | 209.211   | 51.368    | 0.54       | 0.002991           | 0.000058      | 0.020653           | 0.002828      | 0.001024          | 0.000048 | 0.007  | 18.93           | 0.38      | 0.005  | 19.16                       | 0.41      | 1.4     | 1.58 |          |
| 226-2-02 | 239.636   | 72.471    | 0.58       | 0.003014           | 0.000028      | 0.021328           | 0.001260      | 0.000993          | 0.000027 | 0.002  | 19.16           | 0.19      | 0.006  | 19.28                       | 0.19      | 1.3     | 1.42 |          |
| 226-2-03 | 213.199   | 53.754    | 0.62       | 0.003283           | 0.000044      | 0.043050           | 0.003312      | 0.001717          | 0.000098 | 0.060  | 19.61           | 0.31      | 0.060  | 19.86                       | 0.32      | 1.6     | 1.64 |          |
| 226-2-04 | 195.817   | 51.254    | 0.67       | 0.003208           | 0.000036      | 0.034104           | 0.002281      | 0.001217          | 0.000053 | 0.021  | 19.95           | 0.26      | 0.038  | 19.87                       | 0.26      | 1.4     | 1.60 |          |
| 226-2-05 | 206.493   | 39.718    | 0.73       | 0.003691           | 0.000088      | 0.120417           | 0.017107      | 0.002331          | 0.000177 | 0.124  | 20.06           | 0.69      | 0.234  | 18.20                       | 1.06      | 2.0     | 1.11 |          |
| 226-2-06 | 215.562   | 61.672    | 0.56       | 0.002970           | 0.000049      | 0.023403           | 0.001733      | 0.001035          | 0.000058 | 0.010  | 18.73           | 0.34      | 0.013  | 18.87                       | 0.33      | 1.4     | 1.60 |          |
| 226-2-07 | 218.571   | 51.966    | 0.54       | 0.003098           | 0.000042      | 0.031963           | 0.002024      | 0.001193          | 0.000051 | 0.020  | 19.34           | 0.28      | 0.035  | 19.24                       | 0.28      | 1.5     | 1.84 |          |
| 226-2-08 | 299.614   | 114.520   | 0.80       | 0.003022           | 0.000029      | 0.027116           | 0.001806      | 0.001118          | 0.000030 | 0.023  | 18.78           | 0.23      | 0.023  | 19.01                       | 0.21      | 1.1     | 1.03 |          |
| 226-2-09 | 198.425   | 48.882    | 0.58       | 0.003069           | 0.000032      | 0.024206           | 0.001747      | 0.000929          | 0.000036 | -0.006 | 19.73           | 0.22      | 0.013  | 19.49                       | 0.23      | 1.2     | 1.14 |          |
| 226-2-10 | 271.399   | 81.263    | 0.63       | 0.003154           | 0.000044      | 0.027903           | 0.002033      | 0.001064          | 0.000041 | 0.007  | 19.95           | 0.30      | 0.022  | 19.86                       | 0.30      | 1.3     | 1.49 |          |
| 226-2-11 | 236.964   | 64.602    | 0.51       | 0.003025           | 0.000034      | 0.021703           | 0.001585      | 0.001040          | 0.000034 | 0.007  | 19.18           | 0.23      | 0.007  | 19.34                       | 0.23      | 1.3     | 1.48 |          |
| 226-2-12 | 154.413   | 35.811    | 0.43       | 0.003300           | 0.000049      | 0.044033           | 0.003378      | 0.001628          | 0.000099 | 0.036  | 20.30           | 0.33      | 0.062  | 19.92                       | 0.35      | 1.4     | 1.66 |          |
| 226-2-13 | 259.455   | 101.095   | 0.46       | 0.003009           | 0.000022      | 0.024754           | 0.000950      | 0.001129          | 0.000027 | 0.015  | 18.97           | 0.15      | 0.016  | 19.05                       | 0.15      | 1.2     | 1.27 |          |
| 226-2-14 | 287.595   | 79.264    | 0.64       | 0.003092           | 0.000024      | 0.021297           | 0.001202      | 0.000991          | 0.000024 | 0.002  | 19.71           | 0.16      | 0.004  | 19.82                       | 0.17      | 1.1     | 1.05 |          |
| 226-2-15 | 341.507   | 324.334   | 0.54       | 0.009300           | 0.000037      | 0.065618           | 0.001232      | 0.003062          | 0.000041 | 0.003  | 59.00           | 0.25      | 0.005  | 59.38                       | 0.25      | 1.0     | 0.97 | yes; c   |
| 226-2-16 | 221.393   | 49.929    | 0.70       | 0.003028           | 0.000081      | 0.019742           | 0.002567      | 0.000993          | 0.000067 | 0.007  | 19.22           | 0.56      | 0.001  | 19.47                       | 0.54      | 1.5     | 1.95 |          |
| 226-2-17 | 267.526   | 68.467    | 0.62       | 0.003142           | 0.000049      | 0.034268           | 0.003562      | 0.001234          | 0.000074 | 0.025  | 19.51           | 0.36      | 0.040  | 19.41                       | 0.37      | 1.2     | 1.07 |          |
| 226-2-18 | 389.509   | 137.603   | 0.85       | 0.002963           | 0.000024      | 0.020830           | 0.000751      | 0.000982          | 0.000013 | 0.006  | 18.73           | 0.16      | 0.006  | 18.96                       | 0.16      | 1.4     | 1.83 |          |
| 226-2-19 | 132.252   | 783.882   | 0.13       | 0.016192           | 0.000080      | 0.107142           | 0.000873      | 0.005585          | 0.000068 | 0.002  | 103.10          | 0.51      | 0.000  | 103.56                      | 0.51      | 1.1     | 1.16 | yes; c   |
| 226-2-20 | 600.149   | 278.312   | 0.52       | 0.003033           | 0.000024      | 0.023394           | 0.001151      | 0.001055          | 0.000055 | 0.007  | 19.27           | 0.18      | 0.012  | - 19.30                     | 0.17      | 1.1     | 1.01 |          |
| 226-2-21 | 238.559   | 60.708    | 0.50       | 0.003126           | 0.000035      | 0.019723           | 0.001083      | 0.000952          | 0.000032 | -0.003 | 20.09           | 0.23      | -0.001 | 20.14                       | 0.23      | 1.3     | 1.79 |          |
| 226-2-22 | 656.544   | 251.609   | 0.64       | 0.010541           | 0.000044      | 0.072819           | 0.001855      | 0.003413          | 0.000059 | 0.004  | 66.98           | 0.43      | 0.003  | 67.37                       | 0.30      | 1.9     | 3.22 | yes; c   |
| 226-2-23 | 306.198   | 115.871   | 0.83       | 0.003056           | 0.000026      | 0.018625           | 0.001251      | 0.000911          | 0.000023 | -0.009 | 19.64           | 0.18      | -0.003 | 19.72                       | 0.18      | 1.2     | 1.13 |          |
| 226-2-24 | 429.231   | 124.782   | 0.79       | 0.003138           | 0.000031      | 0.019823           | 0.000827      | 0.000976          | 0.000025 | -0.003 | 20.06           | 0.22      | -0.001 | 20.21                       | 0.21      | 1.3     | 1.60 |          |
| 226-2-25 | 253.035   | 71.544    | 0.60       | 0.003074           | 0.000033      | 0.021937           | 0.001101      | 0.000984          | 0.000026 | 0.001  | 19.66           | 0.22      | 0.007  | 19.66                       | 0.22      | 1.4     | 1.79 |          |
| 226-2-26 | 245.011   | 93.716    | 0.94       | 0.003043           | 0.000026      | 0.023824           | 0.001210      | 0.000942          | 0.000023 | -0.005 | 19.52           | 0.22      | 0.013  | 19.34                       | 0.18      | 1.3     | 1.48 |          |
| Notes:   | a:        | Date excl | uded based | i on the spot MS   | SWD being l   | arger than 2       |               |                   |          |        |                 |           |        |                             |           |         |      |          |
|          | b :       | Date excl | uded based | d on the ratio be  | tween the ob  | served error to e  | xpected error | being larger that | n 3      |        |                 |           |        |                             |           |         |      |          |
|          | c :       | Date excl | uded based | d on the plot of p | probability d | istribution; inher | ited grain    |                   |          |        |                 |           |        |                             | _         |         |      |          |
|          | d :       | Date excl | uded based | d on the plot of p | probability d | istribution; possi | bly due to Pl | loss              |          | _      |                 |           |        |                             |           |         |      |          |

| APPE   | NDIX     | 7-4       |            |                    |               |                    |               |                   |          |        |                 |           |        |                                          |           |         |      |          |
|--------|----------|-----------|------------|--------------------|---------------|--------------------|---------------|-------------------|----------|--------|-----------------|-----------|--------|------------------------------------------|-----------|---------|------|----------|
| Summa  | ry of th | e U-Th-F  | b zirco    | n dates analy      | sed by EI     | A-ICP-MS           |               |                   |          |        |                 |           |        |                                          |           |         |      |          |
| Nakan  | Andesit  | e Sample  | No. 123    | 3187               |               |                    |               |                   |          |        |                 |           |        |                                          |           |         |      |          |
| Sample | P(ppm)   | U(ppm)    | 232Th/238U | Uncorrected        | ±             | Uncorrected        | <u>+</u>      | Uncorrected       | ±        | f208   | 208Pb corrected | Observed  | f207   | <sup>207</sup> Pb corrected              | Observed  | Obs/Exp | Spot | Exclude' |
| No.    |          |           |            | 206Pb/238U ratio   |               | 207Pb/235U ratio   |               | 208Pb/232Th ratio |          |        | 206Pb/238U Date | Error     |        | <sup>206</sup> Pb/ <sup>238</sup> U Date | Error     | Error   | MSWD |          |
|        |          |           |            |                    |               |                    |               |                   |          |        | (Ma)            | (± 1s.e.) |        | (Ma)                                     | (± 1s.e.) |         |      |          |
| 187-01 | 237      | 114       | 0.669      | 0.003213           | 0.000024      | 0.025917           | 0.000580      | 0.001158          | 0.000017 | 0.014  | 20.29           | 0.15      | 0.013  | 20.41                                    | 0.15      | 1.5     | 2.14 | yes; a   |
| 187-02 | 225      | 108       | 0.616      | 0.003111           | 0.000022      | 0.026458           | 0.000697      | 0.001138          | 0.000022 | 0.014  | 19.67           | 0.15      | 0.017  | 19.69                                    | 0.14      | 1.3     | 1.55 |          |
| 187-03 | 178      | 76        | 0.520      | 0.003203           | 0.000033      | 0.026433           | 0.001133      | 0.001224          | 0.000037 | 0.015  | 20.24           | 0.22      | 0.015  | 20.32                                    | 0.22      | 1.5     | 1.73 |          |
| 187-04 | 192      | 71        | 0.489      | 0.003240           | 0.000030      | 0.030234           | 0.001170      | 0.001277          | 0.000038 | 0.018  | 20.42           | 0.20      | 0.023  | 20.37                                    | 0.20      | 1.3     | 1.66 |          |
| 187-05 | 178      | 122       | 0.741      | 0.003157           | 0.000021      | 0.027273           | 0.001017      | 0.001114          | 0.000030 | 0.012  | 19.99           | 0.15      | 0.018  | 19.96                                    | 0.14      | 1.2     | 1.43 |          |
| 187-06 | 192      | 148       | 0.744      | 0.003035           | 0.000019      | 0.021411           | 0.000665      | 0.000942          | 0.000012 | -0.003 | 19.54           | 0.13      | 0.005  | 19.44                                    | 0.13      | 1.2     | 1.39 |          |
| 187-07 | 184      | 139       | 0.710      | 0.003067           | 0.000020      | 0.022630           | 0.000726      | 0.000972          | 0.000015 | -0.001 | 19.71           | 0.14      | 0.008  | 19.59                                    | 0.13      | 1.3     | 1.48 |          |
| 187-08 | 183      | 56        | 0.385      | 0.003192           | 0.000027      | 0.024956           | 0.001161      | 0.001158          | 0.000044 | 0.008  | 20.36           | 0.18      | 0.011  | 20.32                                    | 0.18      | 1.1     | 1.05 |          |
| 187-09 | 167      | 52        | 0.362      | 0.003169           | 0.000033      | 0.025406           | 0.001397      | 0.001236          | 0.000053 | 0.012  | 20.13           | 0.22      | 0.013  | 20.14                                    | 0.22      | 1.2     | 1.37 |          |
| 187-10 | 169      | 82        | 0.529      | 0.003117           | 0.000024      | 0.025132           | 0.001221      | 0.001041          | 0.000031 | 0.004  | 19.95           | 0.16      | 0.013  | 19.80                                    | 0.16      | 1.2     | 1.20 |          |
| 187-11 | 187      | 84        | 0.566      | 0.003234           | 0.000029      | 0.024416           | 0.000985      | 0.001091          | 0.000027 | 0.005  | 20.68           | 0.19      | 0.009  | 20.62                                    | 0.19      | 1.3     | 1.61 |          |
| 187-12 | 187      | 76        | 0.447      | 0.003151           | 0.000024      | 0.023210           | 0.001000      | 0.001113          | 0.000032 | 0.008  | 20.11           | 0.16      | 0.008  | 20.13                                    | 0.16      | 1.0     | 0.98 |          |
| 187-13 | 174      | 60        | 0.424      | 0.003223           | 0.000032      | 0.023238           | 0.001212      | 0.001113          | 0.000046 | 0.005  | 20.62           | 0.21      | 0.006  | 20.61                                    | 0.21      | 1.2     | 1.25 |          |
| 187-14 | 149      | 115       | 0.739      | 0.003127           | 0.000030      | 0.021842           | 0.000852      | 0.000996          | 0.000032 | -0.002 | 20.13           | 0.25      | 0.005  | 20.03                                    | 0.20      | 1.6     | 2.45 | yes; a   |
| 187-15 | 171      | 75        | 0.421      | 0.003110           | 0.000024      | 0.023607           | 0.001238      | 0.001070          | 0.000030 | 0.005  | 19.90           | 0.16      | 0.009  | 19.83                                    | 0.16      | 1.0     | 0.95 |          |
| 187-16 | 171      | 90        | 0.525      | 0.003149           | 0.000035      | 0.023192           | 0.001303      | 0.001112          | 0.000040 | 0.009  | 20.08           | 0.24      | 0.008  | 20.12                                    | 0.23      | 1.3     | 1.49 | 4        |
| 187-17 | 150      | 79        | 0.440      | 0.003249           | 0.000035      | 0.020923           | 0.001299      | 0.001167          | 0.000042 | 0.009  | 20.72           | 0.23      | 0.000  | 20.90                                    | 0.23      | 1.1     | 1.17 |          |
| 187-18 | 212      | 81        | 0.401      | 0.003134           | 0.000031      | 0.022713           | 0.001022      | 0.001069          | 0.000037 | 0.004  | 20.08           | 0.20      | 0.007  | 20.04                                    | 0.20      | 1.2     | 1.30 |          |
| 187-19 | 163      | 126       | 0.684      | 0.003108           | 0.000023      | 0.020681           | 0.000850      | 0.001013          | 0.000020 | 0.002  | 19.97           | 0.17      | 0.002  | 19.96                                    | 0.15      | 1.2     | 1.24 |          |
| 187-20 | 276      | 200       | 0.771      | 0.003168           | 0.000024      | 0.021292           | 0.000759      | 0.001040          | 0.000016 | 0.004  | 20.32           | 0.16      | 0.003  | 20.34                                    | 0.16      | 1.4     | 1.78 |          |
| 187-21 | 250      | 108       | 0.477      | 0.003126           | 0.000028      | 0.019114           | 0.000874      | 0.001068          | 0.000030 | 0.005  | 19.93           | 0.19      | -0.002 | 20.16                                    | 0.19      | 1.3     | 1.47 |          |
| 187-22 | 219      | 126       | 0.552      | 0.003132           | 0.000024      | 0.021746           | 0.000835      | 0.000953          | 0.000024 | -0.003 | 20.24           | 0.16      | 0.004  | 20.07                                    | 0.16      | 1.1     | 1.20 |          |
| 187-23 | 141      | 52        | 0.381      | 0.003131           | 0.000039      | 0.026802           | 0.001581      | 0.001081          | 0.000060 | 0.005  | 20.05           | 0.26      | 0.017  | 19.81                                    | 0.26      | 1.2     | 1.25 |          |
| 187-24 | 150      | 64        | 0.414      | 0.003168           | 0.000029      | 0.025606           | 0.001573      | 0.001110          | 0.000050 | 0.006  | 20.27           | 0.20      | 0.013  | 20.12                                    | 0.20      | 1.0     | 0.91 |          |
| 187-25 | 211      | 187       | 0.651      | 0.003032           | 0.000018      | 0.020439           | 0.000698      | 0.000960          | 0.000016 | -0.001 | 19.55           | 0.12      | 0.003  | 19.46                                    | 0.12      | 1.1     | 1.05 |          |
| 187-26 | 190      | 111       | 0.553      | 0.003128           | 0.000038      | 0.023503           | 0.001078      | 0.001052          | 0.000028 | 0.005  | 20.04           | 0.26      | 0.009  | 19.96                                    | 0.25      | 1.4     | 1.85 |          |
| 187-27 | 205      | 182       | 0.627      | 0.003173           | 0.000022      | 0.021437           | 0.000657      | 0.001077          | 0.000018 | 0.007  | 20.30           | 0.15      | 0.003  | 20.37                                    | 0.14      | 1.2     | 1.21 |          |
| 187-28 | 161      | 82        | 0.473      | 0.003256           | 0.000033      | 0.023452           | 0.001126      | 0.001108          | 0.000041 | 0.005  | 20.86           | 0.22      | 0.006  | 20.82                                    | 0.22      | 1.2     | 1.26 |          |
| 187-29 | 157      | 146       | 0.558      | 0.003102           | 0.000022      | 0.022267           | 0.000769      | 0.001103          | 0.000028 | 0.010  | 19.78           | 0.15      | 0.006  | 19.84                                    | 0.14      | 1.1     | 1.22 |          |
| 187-30 | 169      | 122       | 0.573      | 0.003141           | 0.000024      | 0.020842           | 0.000978      | 0.000993          | 0.000024 | 0.000  | 20.25           | 0.16      | 0.002  | 20.18                                    | 0.16      | 1.1     | 1.08 |          |
| 187-31 | 227      | 175       | 0.787      | 0.003069           | 0.000023      | 0.023478           | 0.000964      | 0.000969          | 0.000026 | -0.003 | 19.83           | 0.16      | 0.010  | 19.56                                    | 0.15      | 1.1     | 1.06 |          |
| 187-32 | 166      | 80        | 0.476      | 0.003335           | 0.000038      | 0.026468           | 0.001353      | 0.001165          | 0.000056 | 0.007  | 21.33           | 0.26      | 0.012  | 21.20                                    | 0.25      | 1.1     | 1.19 |          |
| Notes: | a:       | Date excl | uded base  | d on the spot MS   | WD being l    | arger than 2       |               |                   |          |        |                 |           |        |                                          |           |         |      |          |
|        | b :      | Date excl | uded base  | d on the ratio bet | ween the ob   | served error to e  | xpected erro  | being larger that | n 3      |        |                 |           |        |                                          |           |         |      |          |
|        | c:       | Date excl | uded base  | d on the plot of p | probability d | istribution; inher | ited grain    |                   |          |        |                 |           |        |                                          |           |         |      |          |
|        | d:       | Date excl | uded base  | d on the plot of r | probability d | istribution; possi | bly due to Pl | loss              |          |        |                 |           |        |                                          |           |         |      |          |
|        |          |           |            | breet or b         |               |                    |               | 1-2-2-1-C         |          |        |                 |           |        |                                          |           |         | -    |          |

| APPE     | NDIX     | 7-5        |            |                    |               |                   |                |                   |          |        |                 |           |        |                             |           |         |      |            |          |
|----------|----------|------------|------------|--------------------|---------------|-------------------|----------------|-------------------|----------|--------|-----------------|-----------|--------|-----------------------------|-----------|---------|------|------------|----------|
| Summa    | ry of th | e U-Th-l   | Pb zirco   | n dates analy      | sed by El     | LA-ICP-MS         |                |                   |          |        |                 |           |        |                             |           |         |      |            |          |
| Kelian   | Central  | Andesit    | e Sampl    | e No. 123200       | -session1     |                   |                |                   |          |        |                 |           |        |                             |           |         |      |            | 1        |
| Sample   | P(ppm)   | U(ppm)     | 232Th/238U | Uncorrected        | ±             | Uncorrected       | ±              | Uncorrected       | ±        | f208   | 208Pb corrected | Observed  | f207   | <sup>207</sup> Pb corrected | Observed  | Obs/Exp | Spot | Population | exclude? |
| No.      |          |            |            | 206Pb/238U ratio   |               | 207Pb/235U ratio  | 1              | 208Pb/232Th ratio |          |        | 206Pb/238U Date | Error     |        | 206Pb/238U Date             | Error     | Error   | MSWD | -          | - £      |
|          |          |            |            |                    |               |                   |                |                   |          |        | (Ma)            | (± 1s.c.) |        | (Ma)                        | (± 1s.e.) |         |      |            | _        |
| 200-1-01 | 154      | 35         | 0.432      | 0.003596           | 0.000063      | 0.057413          | 0.003749       | 0.002428          | 0 000124 | 0.067  | 21.43           | 0.40      | 0.076  | 21 39                       | 0.42      | 22      | 3.27 |            | Ves. a   |
| 200-1-02 | 153      | 43         | 0.383      | 0.003332           | 0.000029      | 0.036575          | 0.001503       | 0.001770          | 0.000051 | 0.039  | 20.50           | 0.19      | 0.036  | 20.67                       | 0.20      | 1.2     | 1.33 | 3          |          |
| 200-1-03 | 168      | 70         | 0.494      | 0.003347           | 0.000025      | 0.027070          | 0.000816       | 0.001294          | 0.000028 | 0.016  | 21.10           | 0.16      | 0.013  | 21.25                       | 0.16      | 12      | 1.33 | 3          |          |
| 200-1-04 | 158      | 92         | 0.621      | 0.003097           | 0.000020      | 0.025136          | 0.000690       | 0.001076          | 0.000019 | 0.009  | 19.68           | 0.13      | 0.014  | 19.66                       | 0.13      | 11      | 1.13 | 1          |          |
| 200-1-05 | 151      | 65         | 0.375      | 0.003344           | 0.000028      | 0.039762          | 0.001390       | 0.001858          | 0.000049 | 0.042  | 20.56           | 0.18      | 0.043  | 20.59                       | 0.19      | 12      | 1 38 | 2          |          |
| 200-1-06 | 135      | 61         | 0.526      | 0.003235           | 0.000028      | 0.025366          | 0.001117       | 0.001153          | 0.000031 | 0.011  | 20.56           | 0.19      | 0.011  | 20.58                       | 0.19      | 1.2     | 1.36 | 2          |          |
| 200-1-07 | 104      | 35         | 0.361      | 0.003317           | 0.000034      | 0.031466          | 0.001831       | 0.001219          | 0.000062 | 0.008  | 21.15           | 0.23      | 0.024  | 20.83                       | 0.23      | 11      | 1.03 | 3          |          |
| 200-1-08 | 171      | 119        | 0.760      | 0.003061           | 0.000022      | 0.024845          | 0.000716       | 0.001070          | 0.000019 | 0.012  | 19.40           | 0.15      | 0.014  | 19.44                       | 0.14      | 1.4     | 1.71 | 1          |          |
| 200-1-09 | 245      | 138        | 0.609      | 0.003201           | 0.000017      | 0.022731          | 0.000651       | 0.001015          | 0.000017 | 0.000  | 20.57           | 0.12      | 0.006  | 20.49                       | 0.12      | 1.1     | 1.06 | 2          |          |
| 200-1-10 | 111      | 41         | 0.395      | 0.003172           | 0.000045      | 0.035547          | 0.002416       | 0.001569          | 0.000097 | 0.033  | 19.72           | 0.30      | 0.038  | 19.64                       | 0.30      | 1.4     | 1.64 | ĩ          |          |
| 200-1-11 | 175      | 87         | 0.370      | 0.003218           | 0.000022      | 0.024414          | 0.000888       | 0.001233          | 0.000032 | 0.012  | 20.44           | 0.15      | 0.009  | 20.52                       | 0.15      | 11      | 1.14 | 2          |          |
| 200-1-12 | 154      | 76         | 0.453      | 0.003236           | 0.000024      | 0.027065          | 0.001055       | 0.001216          | 0.000032 | 0.013  | 20.54           | 0.16      | 0.016  | 20.50                       | 0.16      | 11      | 0.99 | 2          |          |
| 200-1-13 | 188      | 99         | 0.594      | 0.003103           | 0.000023      | 0.023385          | 0.000864       | 0.001017          | 0.000023 | 0.003  | 19.87           | 0.15      | 0.009  | 19.79                       | 0.15      | 1.2     | 1.26 | ĩ          |          |
| 200-1-14 | 173      | 112        | 0.531      | 0.003193           | 0.000025      | 0.022720          | 0.000756       | 0.001102          | 0.000027 | 0.007  | 20.39           | 0.16      | 0.006  | 20.44                       | 0.16      | 13      | 1.58 | 2          |          |
| 200-1-15 | 180      | 52         | 0.470      | 0.003296           | 0.000036      | 0.026547          | 0.001481       | 0.001193          | 0.000048 | 0.010  | 20.98           | 0.24      | 0.013  | 20.94                       | 0.24      | 1.2     | 1.11 | 3          |          |
| 200-1-16 | 175      | 68         | 0.513      | 0.003320           | 0.000036      | 0.040812          | 0.002724       | 0.001733          | 0.000114 | 0.043  | 20.43           | 0.26      | 0.047  | 20.37                       | 0.26      | 1.6     | 1.66 | 2          |          |
| 200-1-17 | 130      | 60         | 0.372      | 0.003206           | 0.000033      | 0.021067          | 0.001334       | 0.001201          | 0.000055 | 0.010  | 20.40           | 0.22      | 0.001  | 20.60                       | 0.22      | 11      | 1.13 | 2          |          |
| 200-1-18 | 138      | 67         | 0.390      | 0.003224           | 0.000034      | 0.024078          | 0.001519       | 0.001176          | 0.000043 | 0.009  | 20.56           | 0.22      | 0.008  | 20.57                       | 0.23      | 11      | 1.12 | 2          |          |
| 200-1-19 | 133      | 51         | 0.522      | 0.003298           | 0.000033      | 0.029179          | 0.001761       | 0.001123          | 0.000045 | 0.006  | 21.09           | 0.22      | 0.019  | 20.81                       | 0.23      | 1.1     | 1.02 | 3          |          |
| 200-1-20 | 134      | 58         | 0.557      | 0.003141           | 0.000033      | 0.024454          | 0.001195       | 0.001028          | 0.000037 | 0.003  | 20.15           | 0.22      | 0.011  | 20.00                       | 0.22      | 1.2     | 1.32 | 1          |          |
| 200-1-21 | 135      | 72         | 0.452      | 0.003208           | 0.000039      | 0.020160          | 0.001133       | 0.001026          | 0.000038 | 0.001  | 20.63           | 0.25      | -0.001 | 20.67                       | 0.26      | 1.4     | 1.68 | 3          |          |
| 200-1-22 | 143      | 61         | 0.504      | 0.003135           | 0.000030      | 0.021390          | 0.001092       | 0.001016          | 0.000036 | 0.002  | 20.14           | 0.20      | 0.003  | 20.11                       | 0.20      | 1.1     | 1.04 | 2          |          |
| 200-1-23 | 157      | 99         | 0.500      | 0.003105           | 0.000027      | 0.021207          | 0.000918       | 0.000978          | 0.000027 | 0.000  | 20.00           | 0.18      | 0.003  | 19.92                       | 0.18      | 1.1     | 1.24 | 1          |          |
| 200-1-24 | 187      | 139        | 0,605      | 0.003193           | 0.000023      | 0.020366          | 0.000819       | 0.001079          | 0.000023 | 0.006  | 20.44           | 0.16      | 0.000  | 20.56                       | 0.16      | 1.2     | 1.40 | 2          |          |
| 200-1-25 | 153      | 70         | 0.540      | 0.003066           | 0.000037      | 0.023548          | 0.001428       | 0.000989          | 0.000039 | 0.002  | 19.70           | 0.25      | 0.010  | 19.53                       | 0.25      | 1.3     | 1.48 | 1          |          |
| 200-1-26 | 151      | 52         | 0.462      | 0.003162           | 0.000039      | 0.024460          | 0.001352       | 0,001308          | 0.000044 | 0.022  | 19.92           | 0.26      | 0.011  | 20,14                       | 0.26      | 1.2     | 1.38 | 2          |          |
| 200-1-27 | 205      | 174        | 0,661      | 0.003095           | 0,000020      | 0.021910          | 0.000633       | 0,000956          | 0.000018 | -0.003 | 20.00           | 0.14      | 0.005  | 19.81                       | 0.13      | 1.1     | 1.24 | 1          |          |
| 200-1-28 | 154      | 100        | 0.515      | 0.003110           | 0.000025      | 0.026270          | 0.001245       | 0.001397          | 0.000052 | 0.030  | 19.45           | 0.17      | 0.016  | 19.70                       | 0.17      | 1.0     | 1.02 | 1          |          |
| 200-1-29 | 187      | 62         | 0.388      | 0.003161           | 0.000041      | 0.027424          | 0.001546       | 0.001147          | 0.000043 | 0.009  | 20.18           | 0.27      | 0.018  | 19,98                       | 0.27      | 1.3     | 1.61 | 1          |          |
| 200-1-30 | 150      | 72         | 0.407      | 0.003244           | 0.000036      | 0.025864          | 0.001435       | 0.001346          | 0.000050 | 0.019  | 20.50           | 0.24      | 0.012  | 20.62                       | 0.24      | 1.2     | 1.42 | 2          |          |
| 200-1-31 | 164      | 112        | 0.627      | 0.003249           | 0.000028      | 0.033203          | 0.001152       | 0.001414          | 0.000028 | 0.037  | 20.18           | 0.18      | 0.030  | 20.28                       | 0.18      | 1.0     | 1.05 | 2          |          |
| 200-1-32 | 125      | 57         | 0.554      | 0.003244           | 0.000041      | 0.025616          | 0.001833       | 0.001224          | 0.000050 | 0.017  | 20.56           | 0.28      | 0.012  | 20.63                       | 0.28      | 1.1     | 1.12 | 2          |          |
| Notes:   | a :      | Date excl  | uded based | i on the spot MS   | WD being la   | arger than 2      |                |                   |          |        |                 |           |        |                             |           |         |      |            |          |
|          | b:       | Date excl  | uded based | d on the ratio bet | ween the ob   | served error to a | expected error | being larger that | in 3     |        |                 |           |        |                             |           |         |      |            |          |
|          | c:       | Date exclu | uded based | l on the plot of p | robability di | stribution; inhe  | rited grain    |                   |          |        |                 |           |        |                             |           |         |      |            |          |
|          | d :      | Date exch  | uded based | l on the plot of p | robability di | istribution; poss | ibly due to Pl | oloss             |          |        |                 |           |        |                             |           |         |      |            |          |

| APPE     | NDIX     | 7-6       |            |                    |               |                    |               |                     |          |        |                 |           |        |                  |           |         |      |            |          |
|----------|----------|-----------|------------|--------------------|---------------|--------------------|---------------|---------------------|----------|--------|-----------------|-----------|--------|------------------|-----------|---------|------|------------|----------|
| Summa    | ry of th | e U-Th-l  | Pb zirco   | n dates analy      | sed by El     | LA-ICP-MS          |               |                     |          |        |                 |           |        |                  |           |         |      |            |          |
| Kelian   | Central  | Andesit   | e Sampl    | e No. 123200       | -session2     | 1                  |               |                     |          |        |                 |           |        |                  |           |         |      |            |          |
| Sample   | P(ppm)   | U(ppm)    | 233Th/238U | Uncorrected        | ±             | Uncorrected        | ±             | Uncorrected         | ±        | f208   | 208Pb corrected | Observed  | f207   | 207 Pb corrected | Observed  | Obs/Exp | Spot | Population | exclude? |
| No       |          | - Strat   |            | 206Pb/238U ratio   |               | 207 Pb/235 U ratio |               | 208 Pb/232 Th ratio |          |        | 206Pb/238U Date | Error     |        | 206Pb/238U Date  | Error     | Error   | MSWD |            |          |
| 110,     |          | -         |            |                    |               |                    |               |                     |          |        | (Ma)            | (+ 1s.c.) |        | (Ma)             | (+ 1s.e.) | Litter  |      |            |          |
| 200.2.01 | 00       | 47        | 0.626      | 0.003193           | 0.000032      | 0.019761           | 0.001211      | 0.001074            | 0.000035 | 0.007  | 20.42           | 0.22      | -0.002 | 20.52            | 0.22      | 11      | 1.11 | 2          |          |
| 200-2-01 | 305      | 241       | 0.020      | 0.003185           | 0.000032      | 0.027633           | 0.002061      | 0.001051            | 0.000035 | 0.007  | 18.95           | 0.22      | 0.073  | 18.75            | 0.20      | 1.5     | 1.86 | -          | ves: d   |
| 200-2-02 | 144      | 241       | 0.575      | 0.002380           | 0.000028      | 0.027033           | 0.001323      | 0.001122            | 0.000048 | 0.010  | 10.99           | 0.27      | 0.023  | 10.75            | 0.20      | 1.7     | 1.00 | 1          | yes, u   |
| 200-2-03 | 135      | 51        | 0.307      | 0.003118           | 0.000041      | 0.021734           | 0.001323      | 0.001103            | 0.000023 | 0.007  | 19.93           | 0.27      | 0.005  | 10.02            | 0.27      | 1.7     | 1.19 | 1          |          |
| 200-2-04 | 133      | 49        | 0.369      | 0.003414           | 0.000034      | 0.021734           | 0.001301      | 0.001757            | 0.000043 | 0.007  | 21.04           | 0.23      | 0.003  | 21.46            | 0.20      | 1.2     | 1.16 | 3          |          |
| 200-2-05 | 155      | 20        | 0.402      | 0.003414           | 0.000044      | 0.031949           | 0.002250      | 0.001035            | 0.000083 | 0.042  | 10.72           | 0.29      | 0.053  | 10.77            | 0.30      | 1.0     | 0.05 | 1          |          |
| 200-2-00 | 146      | 54        | 0.411      | 0.003244           | 0.000043      | 0.025470           | 0.002039      | 0.001104            | 0.000051 | 0.035  | 19.72           | 0.30      | 0.035  | 19.77            | 0.30      | 1.0     | 0.95 | 1          | -        |
| 200-2-07 | 140      | 62        | 0.433      | 0.003093           | 0.000032      | 0.021163           | 0.001090      | 0.001134            | 0.000031 | 0.007  | 20.07           | 0.22      | 0.000  | 21.14            | 0.22      | 1.0     | 1.21 | 3          |          |
| 200-2-08 | 124      | 60        | 0.563      | 0.003285           | 0.000034      | 0.059719           | 0.001189      | 0.002209            | 0.000039 | 0.007  | 20.37           | 0.23      | 0.000  | 20.47            | 0.25      | 1.1     | 1.01 | 2          | -        |
| 200-2-09 | 134      | 47        | 0.302      | 0.003470           | 0.000048      | 0.038718           | 0.004399      | 0.002209            | 0.000137 | 0.009  | 20.50           | 0.37      | 0,003  | 20.47            | 0.30      | 1.0     | 1.91 | 2          |          |
| 200-2-10 | 112      | 24        | 0.374      | 0.003213           | 0.000041      | 0.024003           | 0.001512      | 0.001601            | 0.000034 | 0,003  | 20.01           | 0.27      | 0.009  | 20.30            | 0.27      | 1.2     | 1.30 | 2          |          |
| 200-2-11 | 140      | 71        | 0.379      | 0.003244           | 0.000034      | 0.034394           | 0.002391      | 0.001102            | 0.000109 | 0.032  | 20.17           | 0.50      | 0.033  | 20.19            | 0.30      | 1.2     | 1.52 | 2          |          |
| 200-2-12 | 140      | 60        | 0.415      | 0.003224           | 0.000031      | 0.025775           | 0.001420      | 0.001102            | 0.000044 | 0.000  | 20.01           | 0.21      | 0.015  | 10.49            | 0.21      | 1.1     | 1.10 | 1          | -        |
| 200-2-13 | 141      | 00        | 0.300      | 0.003132           | 0.000048      | 0.029331           | 0.001733      | 0.001147            | 0.000032 | 0.014  | 19.01           | 0.52      | 0.024  | 19.00            | 0.51      | 1.5     | 1.09 | 2          |          |
| 200-2-14 | 119      | 4/        | 0.437      | 0.003417           | 0.000051      | 0.031203           | 0.002402      | 0.001304            | 0.000009 | 0.018  | 21.34           | 0.34      | 0.022  | 21.52            | 0.34      | 1.1     | 1.25 | 2          | -        |
| 200-2-15 | 151      | 91        | 0,520      | 0.003344           | 0.000030      | 0.0254/1           | 0,001042      | 0.001239            | 0.000040 | 0.012  | 21.18           | 0.20      | 0.010  | 21.51            | 0.19      | 1.1     | 1.11 | 3          | 4        |
| 200-2-16 | 151      | 22        | 0,461      | 0.003286           | 0.000034      | 0.023169           | 0.001280      | 0.001110            | 0.000046 | 0.000  | 20.97           | 0.23      | 0.005  | 21.04            | 0.23      | 1.0     | 1.02 | 3          |          |
| 200-2-17 | 100      | 62        | 0.421      | 0.00319/           | 0.000033      | 0.024610           | 0.001808      | 0.001160            | 0.000051 | 0.010  | 20.31           | 0.23      | 0.010  | 20.37            | 0.23      | 1.1     | 1.10 | 2          |          |
| 200-2-18 | 160      | 101       | 0.619      | 0.003031           | 0,000024      | 0.022312           | 0.001231      | 0.000971            | 0.000026 | 0.001  | 19.42           | 0.16      | 0.008  | 19.36            | 0.16      | 1.0     | 0.90 | 1          |          |
| 200-2-19 | 130      | 68        | 0.343      | 0.003093           | 0.000037      | 0.024270           | 0.001421      | 0.001070            | 0.000056 | 0.005  | 19.76           | 0.25      | 0.011  | 19.68            | 0.25      | 1.1     | 1.10 | 1          | 10000000 |
| 200-2-20 | 177      | 108       | 0.584      | 0.003351           | 0.000056      | 0.040272           | 0.003370      | 0.001823            | 0.000151 | 0.052  | 20.40           | 0.38      | 0.044  | 20.61            | 0.38      | 2.1     | 3.20 |            | yes; a   |
| 200-2-21 | 138      | 53        | 0,364      | 0.003157           | 0.000044      | 0.027623           | 0.001930      | 0.000937            | 0.000055 | -0.003 | 20,34           | 0.29      | 0.019  | 19.95            | 0,29      | 1.1     | 1.38 | 1          |          |
| 200-2-22 | 133      | 65        | 0.466      | 0.003068           | 0.000039      | 0.023023           | 0.001416      | 0.001033            | 0,000048 | 0.004  | 19.61           | 0.26      | 0.009  | 19.58            | 0.26      | 1.2     | 1.31 | 1          |          |
| 200-2-23 | 92       | 47        | 0.384      | 0.003095           | 0,000047      | 0.029542           | 0.002309      | 0.001303            | 0.000082 | 0.020  | 19.40           | 0.31      | 0.025  | 19.43            | 0.32      | 1.1     | 1.17 | 1          |          |
| 200-2-24 | 202      | 162       | 0.644      | 0.003179           | 0.000028      | 0.021700           | 0,000830      | 0.001068            | 0,000024 | 0.006  | 20.17           | 0,18      | 0.003  | 20.39            | 0.18      | 1.2     | 1.35 | 2          |          |
| 200-2-25 | 148      | 79        | 0.431      | 0.003224           | 0.000038      | 0.026717           | 0,001860      | 0.001069            | 0.000041 | 0.004  | 20.54           | 0,25      | 0.015  | 20.44            | 0.26      | 1.1     | 1.10 | 2          |          |
| 200-2-26 | 125      | 54        | 0.351      | 0.003417           | 0.000104      | 0.037575           | 0,004060      | 0.001083            | 0.000148 | 0.000  | 21.86           | 0.68      | 0.036  | 21.19            | 0,67      | 1.2     | 1.50 | 3          |          |
| 200-2-27 | 231      | 291       | 0.893      | 0.003304           | 0.000031      | 0.028414           | 0,001209      | 0.001126            | 0,000021 | 0.011  | 20.73           | 0.21      | 0.017  | 20.89            | 0,21      | 1.2     | 1.42 | 3          |          |
| 200-2-28 | 212      | 193       | 0.607      | 0.002934           | 0.000024      | 0.023988           | 0.000990      | 0.000975            | 0.000025 | 0.004  | 18.65           | 0.16      | 0.014  | 18.62            | 0.16      | 1.1     | 1.14 |            | yes; d   |
| 200-2-29 | 141      | 100       | 0.400      | 0.003127           | 0.000039      | 0.023577           | 0.001370      | 0.001140            | 0.000047 | 0.008  | 19.84           | 0.25      | 0.009  | 19.95            | 0,26      | 1.3     | 1.50 | 1          |          |
| 200-2-30 | 144      | 59        | 0.313      | 0.003129           | 0.000043      | 0.030762           | 0.002122      | 0.001215            | 0.000063 | 0.011  | 19.82           | 0.28      | 0.027  | 19.59            | 0.29      | 1.1     | 1.12 | 1          |          |
| 200-2-31 | 184      | 184       | 0.662      | 0.003022           | 0.000035      | 0.021717           | 0.001327      | 0.000974            | 0.000029 | 0.002  | 19.24           | 0.24      | 0.006  | 19.33            | 0.23      | 1.2     | 1.28 | 1          |          |
| 200-2-32 | 151      | 82        | 0.424      | 0.003263           | 0.000032      | 0.025047           | 0.001462      | 0.001085            | 0.000042 | 0.003  | 20.82           | 0.21      | 0.010  | 20.79            | 0.21      | 1.0     | 0.88 | 3          |          |
| Notes:   | a :      | Date excl | uded base  | d on the spot MS   | WD being la   | arger than 2       |               |                     |          |        |                 |           |        |                  |           |         |      |            |          |
|          | b :      | Date excl | uded base  | d on the ratio bet | ween the ob   | served error to e  | expected erro | r being larger tha  | in 3     |        |                 |           |        |                  |           |         |      |            |          |
| -        | c :      | Date excl | uded base  | d on the plot of p | robability di | stribution; inhe   | rited grain   |                     |          |        |                 |           |        |                  |           |         |      |            |          |
|          | d :      | Date excl | uded base  | d on the plot of p | robability di | stribution; poss   | ibly due to P | b loss              |          |        |                 |           |        |                  |           |         |      |            |          |

| APPE     | NDIX     | 7.7       |            |                    |                |                   |                |                    |           |        |                             |           |       |                  |           |         |       |            |                |
|----------|----------|-----------|------------|--------------------|----------------|-------------------|----------------|--------------------|-----------|--------|-----------------------------|-----------|-------|------------------|-----------|---------|-------|------------|----------------|
| Summa    | ry of th | e U-Th-   | Pb zirco   | n dates analy      | sed by El      | LA-ICP-MS         |                |                    |           |        |                             |           |       |                  |           |         |       |            |                |
| Kelian   | Runcing  | g Rhyoli  | e Samp     | le No. 123218      | 8              |                   |                |                    |           |        |                             |           |       |                  |           |         |       |            |                |
| Sample   | P(ppm)   | U(ppm)    | 232Th/238U | Uncorrected        | ±              | Uncorrected       | ±              | Uncorrected        | ±         | f208   | <sup>208</sup> Pb corrected | Observed  | f207  | 207 Pb corrected | Observed  | Obs/Exp | Spot  | Population | exclude?       |
| No.      |          |           |            | 206Pb/238U ratio   |                | 207Pb/235U ratio  | ,              | 208Pb/232Th ratio  |           |        | 206Pb/238U Date             | Error     |       | 206Pb/238U Date  | Error     | Error   | MSWD  |            |                |
|          |          |           |            |                    |                |                   |                |                    |           |        | (Ma)                        | (± 1s.e.) |       | (Ma)             | (± 1s.e.) |         |       |            |                |
| 218-01   | 599      | 188       | 0.787      | 0.003298           | 0.000015       | 0.024695          | 0.000471       | 0.001139           | 0.000016  | 0.010  | 20.88                       | 0.11      | 0.009 | 21.04            | 0.10      | 1.2     | 1.45  | 3          |                |
| 218-02   | 888      | 219       | 0.442      | 0.003266           | 0.000017       | 0.025396          | 0.000536       | 0.001184           | 0.000022  | 0.009  | 20,75                       | 0.11      | 0.011 | 20,79            | 0.11      | 1.1     | 1.31  | 3          |                |
| 218-03   | 858      | 215       | 0.544      | 0.003047           | 0.000017       | 0.023066          | 0.000501       | 0.001025           | 0.000012  | 0.005  | 19.46                       | 0.12      | 0.009 | 19.43            | 0.11      | 1.1     | 1.23  | 1          |                |
| 218-04   | 304      | 69        | 0.680      | 0.003366           | 0.000032       | 0.033321          | 0.001480       | 0.001330           | 0,000036  | 0.026  | 21.01                       | 0.22      | 0.028 | 21.06            | 0.22      | 1.4     | 1.86  | 3          |                |
| 218-05   | 357      | 65        | 0.504      | 0.003862           | 0.000075       | 0.039120          | 0.002406       | 0.001669           | 0.000116  | 0.023  | 24,21                       | 0.48      | 0.029 | 24.12            | 0.48      | 2.1     | 2.89  |            | yes; c         |
| 218-06   | 758      | 146       | 0.551      | 0.003655           | 0.000025       | 0.035798          | 0.001476       | 0.001412           | 0.000039  | 0.019  | 23.01                       | 0.19      | 0.027 | 22.89            | 0.17      | 1.3     | 1.34  |            | yes; c         |
| 218-07   | 1151     | 387       | 0.887      | 0.003017           | 0.000014       | 0,022201          | 0.000456       | 0.000967           | 0.000010  | 0.001  | 19.34                       | 0.15      | 0.008 | 19.27            | 0.09      | 1.4     | 1.89  | 1          |                |
| 218-08   | 1036     | 325       | 0.766      | 0.003003           | 0.000013       | 0.021988          | 0.000383       | 0.000969           | 0.000010  | 0.001  | 19.26                       | 0.11      | 0.007 | 19.19            | 0.08      | 1.2     | 1.43  | 1          |                |
| 218-09   | 1162     | 362       | 0.696      | 0.003109           | 0.000020       | 0.024460          | 0.000580       | 0.001064           | 0.000013  | 0.007  | 19.83                       | 0.14      | 0.012 | 19.78            | 0.13      | 1.5     | 2.37  | 2          |                |
| 218-10   | 1026     | 247       | 0.426      | 0.003196           | 0.000018       | 0.022407          | 0.000504       | 0.001100           | 0.000016  | 0.005  | 20,45                       | 0.13      | 0.005 | 20.47            | 0.12      | 1.5     | 1.90  |            | yes; c         |
| 218-11   | 635      | 271       | 0.829      | 0.003259           | 0.000019       | 0.024121          | 0.000557       | 0.001045           | 0.000025  | 0.001  | 20.93                       | 0.14      | 0.008 | 20.81            | 0.12      | 1.4     | 1.75  | 3          |                |
| 218-12   | 1136     | 414       | 1.364      | 0.003053           | 0.000014       | 0.021787          | 0.000391       | 0.000973           | 0.000007  | 0.000  | 19.59                       | 0.10      | 0.006 | 19.54            | 0.09      | 1.3     | 1.71  | 1          |                |
| 218-13   | 1085     | 396       | 1.362      | 0.003016           | 0.000015       | 0.021605          | 0.000385       | 0.000938           | 0.000008  | -0.005 | 19.48                       | 0.11      | 0.006 | 19.30            | 0.10      | 1.4     | 1.94  | 1          |                |
| 218-14   | 1132     | 406       | 1.373      | 0.003021           | 0.000023       | 0.021694          | 0.000528       | 0.000978           | 0.000008  | 0.004  | 19.32                       | 0.15      | 0.006 | 19.32            | 0.15      | 1.7     | 2.88  | 1          |                |
| 218-15   | 655      | 263       | 0.936      | 0.003283           | 0.000028       | 0.023242          | 0.000577       | 0.001109           | 0.000020  | 0.008  | 20.90                       | 0.20      | 0.005 | 21.01            | 0.18      | 2.1     | 3.79  | 3          |                |
| 218-16   | 792      | 312       | 0.914      | 0.003119           | 0.000014       | 0.021675          | 0.000452       | 0.000984           | 0.000009  | -0.001 | 20.08                       | 0.10      | 0.004 | 19.99            | 0.09      | 1.2     | 1.17  | 2          |                |
| 218-17   | 897      | 204       | 0.297      | 0.003304           | 0.000019       | 0.022016          | 0,000605       | 0.001043           | 0.000023  | 0.000  | 21.26                       | 0.12      | 0.002 | 21.22            | 0.13      | 1.3     | 1.61  | 3          |                |
| 218-18   | 492      | 119       | 0.412      | 0.003664           | 0.000036       | 0.057486          | 0.002779       | 0.002962           | 0.000149  | 0.086  | 21.53                       | 0.25      | 0.074 | 21.84            | 0.25      | 1.7     | 2.42  |            | yes; c         |
| 218-19   | 494      | 114       | 0.804      | 0.003356           | 0.000027       | 0.026838          | 0.001116       | 0.001120           | 0.000022  | 0.006  | 21.46                       | 0.19      | 0.013 | 21.32            | 0,18      | 1.2     | 1.30  | 3          |                |
| 218-20   | 324      | 86        | 0.909      | 0.003492           | 0.000028       | 0.064849          | 0.002279       | 0.001789           | 0.000042  | 0.092  | 20.34                       | 0.22      | 0.096 | 20.31            | 0.20      | 1.2     | 1.26  | 2          |                |
| 218-21   | 155      | 39        | 0,660      | 0.003173           | 0,000049       | 0.025201          | 0.002230       | 0.001170           | 0.000057  | 0.019  | 20.03                       | 0.34      | 0.012 | 20.17            | 0.33      | 1.1     | 1.13  | 2          | - 555125001001 |
| 218-22   | 1392     | 440       | 0.344      | 0.003212           | 0,000015       | 0.022630          | 0.000439       | 0.001076           | 0.000021  | 0.003  | 20.62                       | 0.10      | 0.005 | 20.57            | 0.10      | 1.3     | 1.73  |            | yes; c         |
| 218-23 + | 523      | 207       | 0.655      | 0.003268           | 0.000025       | 0.023701          | 0.000659       | 0.001103           | 0.000019  | 0.006  | 20.90                       | 0.17      | 0.007 | 20.89            | 0,16      | 1.4     | 1.96  | 3          |                |
| 218-24   | 1084     | 493       | 1.008      | 0.003126           | 0.000012       | 0.020793          | 0.000384       | 0.000972           | 0.000005  | -0.007 | 20.27                       | 0.10      | 0.002 | 20.08            | 0.08      | 1.2     | 1.38  | 2          |                |
| 218-25   | 45/38    | 218       | 0,147      | 0.056679           | 0.002518       | 2./1531/          | 0.121482       | 0.350732           | 0.022332  | 0.312  | 30,40                       | 2.51      | 0.325 | 241.89           | 0.17      | 0,4     | 93.08 | 1          | yes; c         |
| 218-20   | 9//      | 289       | 0,803      | 0.003102           | 0.000020       | 0.029738          | 0.000943       | 0.001190           | 0.000030  | 0.020  | 19.39                       | 0.21      | 0.023 | 19.40            | 0.17      | 1,9     | 1.07  | 1          |                |
| 218-27   | 330      | 116       | 0,038      | 0.003032           | 0.000024       | 0.027829          | 0.000760       | 0.001127           | 0.000018  | 0.010  | 19.33                       | 0.10      | 0.022 | 19.22            | 0.15      | 1.5     | 2.52  | 1          | 1001 0         |
| 218-20   | 1242     | 486       | 1 233      | 0.003154           | 0.000043       | 0.033299          | 0.000717       | 0.001015           | 0.000030  | 0.028  | 20.28                       | 0.16      | 0.023 | 10.88            | 0.12      | 1.0     | 1.55  | 2          | yes, c         |
| 218-30   | 1372     | 570       | 1.233      | 0.003035           | 0.000013       | 0.025243          | 0.000594       | 0.000970           | 0.000009  | 0.003  | 10.57                       | 0.16      | 0.021 | 19.00            | 0.12      | 1.5     | 2.21  | 1          |                |
| 218-31   | 037      | 322       | 0.507      | 0.003085           | 0.000021       | 0.027480          | 0.000818       | 0.001175           | 0.0000021 | 0.001  | 19.58                       | 0.14      | 0.020 | 19.24            | 0.14      | 13      | 1.41  | i          |                |
| 218-32   | 1427     | 677       | 0.270      | 0.069414           | 0.002950       | 7 678004          | 0 349709       | 0.533978           | 0.032711  | 0.829  | 40.65                       | 8.04      | 0.825 | 77.71            | 7.16      | 2.0     | 20.50 |            | Ves: c         |
| 218-33   | 856      | 311       | 0.425      | 0.003105           | 0.000023       | 0.021770          | 0.000605       | 0.001044           | 0.000018  | 0,003  | 19.93                       | 0.16      | 0.005 | 19.89            | 0.15      | 1.7     | 2.19  | 2          | jes, e         |
| Notes:   | a :      | Date excl | uded base  | d on the spot MS   | WD being la    | arger than 4      |                |                    |           |        |                             |           |       |                  |           |         |       |            |                |
|          | b:       | Date excl | uded based | d on the ratio bet | ween the ob    | served error to e | expected erro  | r being larger tha | n 3       |        |                             |           |       |                  |           |         |       |            |                |
|          | c:       | Date excl | uded based | d on the plot of p | probability di | stribution; inhe  | rited grain    |                    |           |        |                             |           |       |                  |           |         |       |            |                |
|          | d :      | Date excl | uded based | d on the plot of p | probability di | istribution; poss | ibly due to Pl | b loss             |           |        |                             |           |       |                  |           |         |       |            |                |

.

| APPE     | NDIX     | 7.8      |             |                    |              |                                            |                |                                            |          |        |                             |             |        |                                          |          |         |        |            |            |
|----------|----------|----------|-------------|--------------------|--------------|--------------------------------------------|----------------|--------------------------------------------|----------|--------|-----------------------------|-------------|--------|------------------------------------------|----------|---------|--------|------------|------------|
| Summa    | ry of th | e U-Th-  | Pb zirco    | n dates analy      | sed by E     | LA-ICP-MS                                  |                |                                            |          |        |                             |             |        |                                          |          |         |        |            |            |
| Kelian   | Mine T   | uff Sam  | ple No. 1   | 23366              |              |                                            |                |                                            |          |        |                             |             |        |                                          |          |         |        |            |            |
| Sample   | P(nnm)   | U(nnm)   | 232Th/238U  | Uncorrected        | +            | Uncorrected                                | +              | Uncorrected                                | +        | f208   | <sup>208</sup> Pb corrected | Observed    | f207   | 207Pb corrected                          | Observed | Obs/Exp | Spot   | Population | exclude?   |
| No       | r (ppin) | O(ppiii) |             | 206Pb/238L1 ratio  |              | <sup>207</sup> Pb/ <sup>235</sup> L1 ratio |                | <sup>208</sup> Pb/ <sup>232</sup> Th ratio | -        | 1200   | 206pb/238U Date             | Error       | 10.01  | <sup>206</sup> Pb/ <sup>238</sup> U Date | Error    | Error   | MEWD   | ropulation | enterade : |
| INO.     | _        |          |             | Tor C fuito        | _            | Tor O luito                                |                | i or i ii iuio                             |          |        | (Ma)                        | $(\pm 1se)$ |        | (Ma)                                     | (+ lse)  | Enor    | WIS WD |            |            |
| 266.01   | 1146     | 1110     | 0.512       | 0.011017           | 0.000072     | 0.069902                                   | 0.000724       | 0.002409                                   | 0.000025 | 0.002  | (IVIA)                      | 0.47        | 0.002  | (Ma)                                     | 0.47     | 1.0     | 0.00   | 1          |            |
| 300-01   | 205      | 250      | 0.512       | 0.011017           | 0.000075     | 0.008802                                   | 0.000734       | 0.003408                                   | 0.000055 | -0.002 | 69.41                       | 0.47        | -0.003 | 60.30                                    | 0.47     | 1.0     | 2.07   | 1          |            |
| 300-02   | 295      | 200      | 0,030       | 0.011309           | 0.000055     | 0.150158                                   | 0.002/02       | 0.004922                                   | 0.000034 | 0.040  | 69.72                       | 0.57        | 0.044  | 69.30                                    | 0.38     | 1.5     | 2.07   | 1          |            |
| 300-03   | 250      | 00       | 0.380       | 0.011097           | 0.000055     | 0.100211                                   | 0.002488       | 0.005279                                   | 0.000097 | 0.030  | 76.60                       | 1.40        | 0.027  | 77.52                                    | 1.28     | 2.4     | 3.25   | 2          |            |
| 366.05   | 359      | 212      | 0.001       | 0.013282           | 0.000100     | 0.021144                                   | 0.010121       | 0.000195                                   | 0.000300 | 0.073  | 76.09                       | 0.45        | 0.009  | 76.78                                    | 0.46     | 1.4     | 1.00   | 2          |            |
| 366.06   | 564      | 072      | 0.225       | 0.012003           | 0.000070     | 0.072726                                   | 0.001973       | 0.003508                                   | 0.000073 | 0.002  | 67.10                       | 0.45        | 0.002  | 68 20                                    | 0.40     | 1.4     | 1.16   | 1          |            |
| 366.07   | 365      | 355      | 0.604       | 0.013517           | 0.000039     | 0.375515                                   | 0.017010       | 0.003508                                   | 0.000022 | 0.106  | 68 20                       | 2.00        | 0.005  | 70.26                                    | 1.56     | 2.1     | 2.56   | 1          |            |
| 366-08   | 174      | 218      | 0.034       | 0.069639           | 0.000240     | 0.537074                                   | 0.003730       | 0.021180                                   | 0.000313 | -0.004 | 430.01                      | 1.12        | 0.000  | 433.78                                   | 1.07     | 1.0     | 3.50   |            | Vest c     |
| 366-09   | 232      | 184      | 0.648       | 0.0011857          | 0.000037     | 0.081165                                   | 0.000987       | 0.003729                                   | 0.000032 | -0.001 | 75 34                       | 0.25        | 0.003  | 75 79                                    | 0.24     | 13      | 1.35   | 2          | Jes, e     |
| 366-10   | 284      | 118      | 0.728       | 0.011168           | 0.000046     | 0.069726                                   | 0.001843       | 0.003192                                   | 0.000054 | -0.012 | 71.82                       | 0.41        | -0.003 | 71.78                                    | 0.31     | 0.9     | 0.64   | 1          | -          |
| 366-11   | 329      | 97       | 1 106       | 0.018488           | 0.000169     | 0.702194                                   | 0.022783       | 0.013414                                   | 0.000259 | 0.248  | 86.27                       | 1.11        | 0 279  | 85 31                                    | 1.46     | 19      | 1.60   |            | Ves: c     |
| 366-12   | 144      | 301      | 0 383       | 0 297684           | 0.000643     | 4 235285                                   | 0.011502       | 0.087706                                   | 0.000239 | 0.001  | 1672.32                     | 3 33        | 0.000  | 1679 57                                  | 3.20     | 4.0     | 8.83   |            | Ves: c     |
| 366-13   | 1312     | 780      | 0.649       | 0.011113           | 0.000069     | 0.099943                                   | 0.001515       | 0.004398                                   | 0.000056 | 0.027  | 68.84                       | 0.44        | 0.022  | 69.69                                    | 0.44     | 13      | 1.73   | 1          | Jeage      |
| 366-14   | 301      | 210      | 1 190       | 0.013487           | 0.000061     | 0.092070                                   | 0.001051       | 0.004211                                   | 0.000035 | -0.004 | 84.89                       | 0.44        | 0.002  | 86.17                                    | 0.39     | 1.6     | 2.62   | 100        | ves: c     |
| 366-15   | 702      | 791      | 0.467       | 0.011188           | 0.000071     | 0.095764                                   | 0.001379       | 0.004405                                   | 0.000053 | 0.018  | 69.95                       | 0.45        | 0.018  | 70.44                                    | 0.45     | 1.1     | 1.25   | 1          | 1          |
| 366-16   | 446      | 602      | 0.424       | 0.010924           | 0.000075     | 0.073041                                   | 0.000819       | 0.003530                                   | 0.000027 | 0.001  | 69.57                       | 0.48        | 0.001  | 69.95                                    | 0.48     | 1.2     | 1.38   | 1          |            |
| 366-17   | 698      | 153      | 0.869       | 0.012209           | 0.000072     | 0.093287                                   | 0.002094       | 0.004035                                   | 0,000051 | 0.006  | 76.83                       | 0,47        | 0.010  | 77,48                                    | 0.47     | 2.0     | 3.86   | 2          |            |
| 366-18   | 427      | 304      | 0.599       | 0.011866           | 0.000115     | 0.187640                                   | 0.006415       | 0.006751                                   | 0.000198 | 0.079  | 68.96                       | 0.76        | 0.083  | 69.79                                    | 0.76     | 1.2     | 1.44   | 1          |            |
| 366-19 1 | 1064     | 1107     | 0.770       | 0.011055           | 0.000058     | 0.088717                                   | 0.001401       | 0.004157                                   | 0.000039 | 0.024  | 68.34                       | 0.37        | 0.013  | 69.94                                    | 0.37     | 1.4     | 1.90   | 1          |            |
| 366-20   | 203      | 157      | 0.328       | 0.068708           | 0.000277     | 0.521356                                   | 0.004274       | 0.019810                                   | 0.000184 | -0.004 | 428.23                      | 1.70        | 0.000  | 428.55                                   | 1.68     | 1.8     | 3.19   |            | yes; c     |
| 366-21   | 518      | 334      | 0.523       | 0.017606           | 0.000290     | 0.761654                                   | 0.022624       | 0.027923                                   | 0.000764 | 0.343  | 72.78                       | 1.64        | 0.327  | 75.94                                    | 1.64     | 1.2     | 1.55   | 2          |            |
| 366-22   | 1608     | 246      | 0.556       | 0.013951           | 0.000092     | 0.316231                                   | 0.010086       | 0.011408                                   | 0.000367 | 0.146  | 75.19                       | 0.74        | 0.143  | 76.57                                    | 0.75     | 2.6     | 3.89   | 2          |            |
| 366-23   | 942      | 1074     | 1.523       | 0.010850           | 0.000068     | 0.072113                                   | 0.000875       | 0.003400                                   | 0.000023 | -0.004 | 68,60                       | 0.47        | 0,001  | 69,50                                    | 0.44     | 1.3     | 1.52   | 1          |            |
| 366-24   | 645      | 675      | 0.612       | 0.011437           | 0.000165     | 0.104627                                   | 0.002482       | 0.004343                                   | 0.000075 | 0.020  | 71.92                       | 1.05        | 0.023  | 71.62                                    | 1.03     | 1.4     | 1.89   | 1          |            |
| 366-25   | 227      | 266      | 0.691       | 0.012376           | 0.000082     | 0.099021                                   | 0.002995       | 0.004067                                   | 0.000055 | -0.003 | 79.09                       | 0.60        | 0.013  | 78.28                                    | 0.54     | 1.9     | 3.51   | 2          |            |
| 366-26   | 649      | 315      | 0.784       | 0.012438           | 0.000071     | 0.098758                                   | 0.002427       | 0.003991                                   | 0.000059 | 0.001  | 78.70                       | 0.51        | 0.012  | 78.71                                    | 0.47     | 1.7     | 2.76   | 2          |            |
| Notes:   | a :      | Date exc | luded based | on the spot MS     | WD being l   | arger than 4                               |                |                                            |          |        |                             |             |        |                                          |          |         |        |            |            |
|          | b:       | Date exc | luded based | on the ratio bet   | ween the ob  | served error to e                          | expected erro  | r being larger tha                         | m 3      |        |                             |             |        |                                          |          |         |        |            |            |
|          | c :      | Date exc | luded based | l on the plot of p | robability d | istribution; inher                         | rited grain    |                                            |          |        |                             |             |        |                                          |          |         |        |            |            |
|          | d :      | Date exc | luded based | on the plot of p   | robability d | istribution; poss                          | ibly due to Pl | b loss                                     |          |        |                             |             |        |                                          |          |         |        |            |            |

\*

| APPE    | NDIX      | 7-9       |            |                     |               |                   |              |                                            |          |        |                             |           |       |                             |           |         |      |          |
|---------|-----------|-----------|------------|---------------------|---------------|-------------------|--------------|--------------------------------------------|----------|--------|-----------------------------|-----------|-------|-----------------------------|-----------|---------|------|----------|
| Summ    | ary of th | e U-Th-   | Pb zirco   | n dates analy       | sed by EL     | A-ICP-MS          |              |                                            |          |        |                             |           |       |                             |           |         |      |          |
| Han A   | ndesite S | Sample I  | No. 1103   | 2.                  |               |                   |              |                                            |          |        |                             |           |       |                             |           |         |      |          |
| Sample  | P(ppm)    | U(ppm)    | 232Th/238U | Uncorrected         | ±             | Uncorrected       | ±            | Uncorrected                                | <u>+</u> | f208   | <sup>208</sup> Pb corrected | Observed  | f207  | <sup>207</sup> Pb corrected | Observed  | Obs/Exp | Spot | Exclude? |
| No.     |           |           |            | 206Pb/238U ratio    |               | 207Pb/235U ratio  |              | <sup>208</sup> Pb/ <sup>232</sup> Th ratio |          |        | 206Pb/238U Date             | Error     |       | 206Pb/238U Date             | Error     | Error   | MSWD |          |
|         |           |           |            |                     |               |                   |              |                                            |          |        | (Ma)                        | (± 1s.e.) |       | (Ma)                        | (± 1s.e.) |         |      |          |
| 1103-01 | 557.438   | 142.702   | 0.598      | 0.003003            | 0.000019      | 0.021502          | 0.000804     | 0.000991                                   | 0.000024 | 0.003  | 19.11                       | 0.14      | 0.007 | 19.20                       | 0.13      | 1.2     | 1.12 |          |
| 1103-02 | 477.708   | 89.632    | 0.423      | 0.002957            | 0.000023      | 0.019860          | 0.001179     | 0.001219                                   | 0.000044 | 0.020  | 18.53                       | 0.16      | 0.003 | 18.98                       | 0.16      | 1.1     | 1.00 |          |
| 1103-03 | 390.498   | 65.714    | 0.479      | 0.003071            | 0.000041      | 0.024796          | 0.001854     | 0.001082                                   | 0.000051 | 0.009  | 19.43                       | 0.27      | 0.015 | 19.47                       | 0.28      | 1.3     | 1.49 |          |
| 1103-04 | 390.343   | 100.925   | 0.468      | 0.003087            | 0.000021      | 0.027901          | 0.000725     | 0.001221                                   | 0.000031 | 0.019  | 19.33                       | 0.14      | 0.024 | 19.40                       | 0.14      | 1.1     | 1.15 |          |
| 1103-05 | 360.891   | 70.600    | 0.412      | 0.003239            | 0.000035      | 0.038416          | 0.002669     | 0.001673                                   | 0.000098 | 0.042  | 19.78                       | 0.25      | 0.049 | 19.83                       | 0.26      | 1.4     | 1.39 |          |
| 1103-06 | 457.743   | 130.441   | 0.582      | 0.003284            | 0.000029      | 0.053169          | 0.001880     | 0.002058                                   | 0.000058 | 0.095  | 18.88                       | 0.21      | 0.087 | 19.29                       | 0.20      | 1.3     | 1.47 |          |
| 1103-07 | 456.870   | 94.425    | 0.497      | 0.003505            | 0.000040      | 0.079357          | 0.002249     | 0.002868                                   | 0.000075 | 0.129  | 19.35                       | 0.25      | 0.145 | 19.29                       | 0.25      | 1.3     | 1.99 |          |
| 1103-08 | 391.727   | 112.231   | 0.619      | 0.003264            | 0.000031      | 0.050116          | 0.001845     | 0.001794                                   | 0.000049 | 0.076  | 19.18                       | 0.21      | 0.080 | 19.33                       | 0.21      | 1.3     | 1.57 |          |
| 1103-09 | 452.306   | 87.445    | 0.455      | 0.003156            | 0.000025      | 0.041683          | 0.001578     | 0.001858                                   | 0.000057 | 0.063  | 18.86                       | 0.17      | 0.061 | 19.08                       | 0.17      | 1.2     | 1.22 |          |
| 1103-10 | 454.020   | 85.335    | 0.460      | 0.003143            | 0.000028      | 0.025969          | 0.001283     | 0.001231                                   | 0.000037 | 0.017  | 19.72                       | 0.19      | 0.017 | 19.90                       | 0.19      | 1.3     | 1.49 |          |
| 1103-11 | 410.010   | 122.835   | 0.557      | 0.002958            | 0.000017      | 0.022440          | 0.000892     | 0.000980                                   | 0.000019 | 0.003  | 18.84                       | 0.12      | 0.011 | 18.84                       | 0.12      | 1.0     | 0.91 |          |
| 1103-12 | 411.477   | 86.078    | 0.487      | 0.003162            | 0.000035      | 0.039072          | 0.002407     | 0.001461                                   | 0.000083 | 0.036  | 19.39                       | 0.26      | 0.053 | 19.27                       | 0.25      | 1.5     | 1.73 | 1        |
| 1103-13 | 478.836   | 78.396    | 0.591      | 0.003423            | 0.000056      | 0.060966          | 0.004930     | 0.002376                                   | 0.000131 | 0.117  | 19.24                       | 0.40      | 0.102 | 19.79                       | 0.43      | 1.5     | 1.73 |          |
| 1103-14 | 506.150   | 136.808   | 0.505      | 0.003154            | 0.000019      | 0.023074          | 0.000844     | 0.001093                                   | 0.000021 | 0.007  | 20.01                       | 0.13      | 0.008 | 20.13                       | 0.13      | 1.2     | 1.20 |          |
| 1103-15 | 514.589   | 104.889   | 0.511      | 0.003084            | 0.000026      | 0.027365          | 0.001501     | 0.001129                                   | 0.000034 | 0.013  | 19.44                       | 0.18      | 0.022 | 19.41                       | 0.19      | 1.2     | 1.15 |          |
| 1103-16 | 441.485   | 99.020    | 0.478      | 0.003080            | 0.000026      | 0.037622          | 0.001974     | 0.001511                                   | 0.000055 | 0.042  | 18.80                       | 0.18      | 0.052 | 18.79                       | 0.19      | 1.3     | 1.31 |          |
| 1103-17 | 432.292   | 99.674    | 0.472      | 0.003019            | 0.000028      | 0.026762          | 0.001384     | 0.001194                                   | 0.000039 | 0.019  | 18.91                       | 0.19      | 0.022 | 19.00                       | 0.19      | 1.3     | 1.50 |          |
| 1103-18 | 407.069   | 81.916    | 0.463      | 0.003276            | 0.000031      | 0.057686          | 0.001782     | 0.002232                                   | 0.000045 | 0.088  | 18.98                       | 0.20      | 0.100 | 18.98                       | 0.20      | 1.2     | 1.49 |          |
| 1103-19 | 452.368   | 81.260    | 0.416      | 0.003187            | 0.000028      | 0.036608          | 0.001846     | 0.001549                                   | 0.000057 | 0.036  | 19.63                       | 0.19      | 0.045 | 19.58                       | 0.20      | 1.2     | 1.06 |          |
| 1103-20 | 585.799   | 84.038    | 0.514      | 0.003125            | 0.000029      | 0.021502          | 0.001440     | 0.001146                                   | 0.000045 | 0.013  | 19.72                       | 0.21      | 0.004 | 20.03                       | 0.21      | 1.2     | 1.36 |          |
| 1103-21 | 822.240   | 127.543   | 0.708      | 0.003026            | 0.000025      | 0.020997          | 0.000975     | 0.000956                                   | 0.000020 | -0.001 | 19.34                       | 0.17      | 0.005 | 19.39                       | 0.17      | 1.2     | 1.18 |          |
| 1103-22 | 384.469   | 100.416   | 0.588      | 0.003926            | 0.000077      | 0.118440          | 0.004832     | 0.004225                                   | 0.000220 | 0.233  | 19.26                       | 0.48      | 0.212 | 19.90                       | 0.46      | 1.6     | 2.86 | yes, a   |
| 1103-23 | 419.244   | 75.710    | 0.400      | 0.003278            | 0.000035      | 0.044530          | 0.003178     | 0.001898                                   | 0.000105 | 0.053  | 19.82                       | 0.25      | 0.064 | 19.75                       | 0.28      | 1.6     | 1.63 |          |
| 1103-24 | 277.830   | 58.604    | 0.522      | 0.003343            | 0.000036      | 0.062849          | 0.002230     | 0.002221                                   | 0.000048 | 0.095  | 19.33                       | 0.23      | 0.111 | 19.13                       | 0.24      | 1.2     | 1.34 |          |
| 1103-25 | 621.219   | 80.888    | 0.488      | 0.003766            | 0.000039      | 0.110059          | 0.003162     | 0.004398                                   | 0.000102 | 0.215  | 18.88                       | 0.24      | 0.204 | 19.30                       | 0.26      | 1.4     | 1.83 |          |
| 1103-26 | 430.095   | 115.067   | 0.525      | 0.002973            | 0.000026      | 0.028364          | 0.001056     | 0.001124                                   | 0.000031 | 0.016  | 18.73                       | 0.17      | 0.028 | 18.60                       | 0.17      | 1.3     | 1.55 |          |
| Notes:  | a:        | Date excl | uded based | l on the spot MS    | WD being la   | rger than 2       |              |                                            |          |        |                             |           |       |                             |           |         |      | -        |
|         | b:        | Date excl | uded based | on the ratio bety   | ween the obs  | erved error to ex | pected error | being larger than                          | 3        |        |                             |           |       |                             |           |         |      |          |
|         | c :       | Date excl | uded based | i on the plot of pr | obability dis | tribution; inheri | ted grain    |                                            |          |        |                             |           |       |                             |           |         |      |          |
|         | d :       | Date excl | uded based | on the plot of pr   | obability dis | tribution; possib | ly due to Pb | loss                                       |          |        |                             |           |       |                             |           |         |      |          |

| APPE    | NDIX      | 7-10      |             |                    |              |                    |              |                     |          |        |                             |          |         |                 |          |         |      |          |
|---------|-----------|-----------|-------------|--------------------|--------------|--------------------|--------------|---------------------|----------|--------|-----------------------------|----------|---------|-----------------|----------|---------|------|----------|
| Summa   | ary of th | he U-Th-  | Pb zirco    | n dates analy      | sed by E     | LA-ICP-MS          |              |                     |          |        |                             |          |         |                 |          |         |      |          |
| Plata D | acite S   | ample N   | 0. 1121     |                    |              | ley.               |              |                     |          |        |                             |          |         | <u>8</u> .      |          |         |      |          |
| Sample  | P(ppm)    | U(ppm)    | 232Th/238U  | Uncorrected        | <u>+</u>     | Uncorrected        | <u>+</u>     | Uncorrected         | <u>+</u> | f208   | <sup>208</sup> Pb corrected | Observed | f207    | 207Pb corrected | Observed | Obs/Exp | Spot | Exclude? |
| No.     |           |           |             | 206Pb/238U ratio   |              | 207Pb/235U ratio   | 3            | 208Pb/232Th ratio   |          |        | 206Pb/238U Date             | Error    |         | 206Pb/238U Date | Error    | Error   | MSWD |          |
|         |           |           |             |                    |              |                    |              |                     |          |        | (Ma)                        | (±1s.e.) |         | (Ma)            | (±1s.e.) |         |      |          |
| 1121-01 | 246       | 510       | 0.935       | 0.002869           | 0.000017     | 0.018371           | 0.000313     | 0.001000            | 0.000009 | 0.015  | 17.88                       | 0.11     | 5.6E-05 | 18.46           | 0.11     | 1.0     | 0.98 |          |
| 1121-02 | 210       | 339       | 0.628       | 0.002894           | 0,000018     | 0.020315           | 0.000616     | 0.000996            | 0.000015 | 0.009  | 18.25                       | 0.12     | 0.006   | 18.53           | 0.12     | 1.3     | 1.54 |          |
| 1121-03 | 280       | 303       | 0.874       | 0.002909           | 0.000023     | 0.019539           | 0.000628     | 0.000973            | 0.000017 | 0.008  | 18.29                       | 0.18     | 0.003   | 18.67           | 0.15     | 1.4     | 1.78 |          |
| 1121-04 | 279       | 393       | 0.985       | 0.002904           | 0.000019     | 0.023307           | 0.001129     | 0.001029            | 0.000015 | 0.020  | 17.95                       | 0.13     | 0.015   | 18.42           | 0.14     | 1.2     | 1.12 |          |
| 1121-05 | 270       | 341       | 0.914       | 0.002888           | 0.000017     | 0.022807           | 0.000554     | 0.000944            | 0.000018 | 0.002  | 18.29                       | 0.12     | 0.013   | 18.34           | 0.11     | 1.2     | 1.23 |          |
| 1121-06 | 505       | 1285      | 2.457       | 0.002871           | 0.000021     | 0.018678           | 0.000327     | 0.000934            | 0.000008 | 0.012  | 17.15                       | 0.43     | 0.001   | 18.46           | 0.14     | 1.3     | 1.58 |          |
| 1121-07 | 214       | 303       | 0.809       | 0.002886           | 0.000019     | 0.018081           | 0.000712     | 0.000873            | 0.000017 | -0.007 | 18.51                       | 0.14     | -0.001  | 18.60           | 0.13     | 1.3     | 1.56 |          |
| 1121-08 | 289       | 384       | 1.103       | 0.002952           | 0.000019     | 0.027718           | 0.000706     | 0.001081            | 0.000022 | 0.030  | 18.07                       | 0.15     | 0.027   | 18.49           | 0.12     | 1.1     | 1.14 |          |
| 1121-09 | 344       | 102       | 1.046       | 0.003151           | 0.000027     | 0.023930           | 0.001144     | 0.001059            | 0.000019 | 0.009  | 19.78                       | 0.21     | 0.011   | 20.06           | 0.18     | 1.3     | 1.46 | yes; c   |
| 1121-10 | 274       | 431       | 1.069       | 0.002867           | 0.000026     | 0.019149           | 0.000593     | 0.001008            | 0.000009 | 0.020  | 17.69                       | 0.17     | 0.003   | 18.41           | 0.17     | 1.0     | 0.89 |          |
| 1121-11 | 239       | 306       | 0.943       | 0.002847           | 0.000015     | 0.018906           | 0.000439     | 0.000892            | 0.000012 | -0.003 | 18.17                       | 0.11     | 0.002   | 18.29           | 0.10     | 1.4     | 1.63 |          |
| 1121-12 | 209       | 328       | 1.061       | 0.002925           | 0.000027     | 0.019829           | 0.001258     | 0.000880            | 0.000017 | -0.011 | 18.76                       | 0.19     | 0.003   | 18.77           | 0.19     | 1.3     | 1.40 |          |
| 1121-13 | 768       | 371       | 0.862       | 0.002873           | 0.000020     | 0.019839           | 0.000413     | 0.000951            | 0.000010 | 0.005  | 18.18                       | 0.14     | 0.005   | 18.41           | 0.13     | 1.0     | 0.99 |          |
| 1121-14 | 229       | 348       | 0.930       | 0.002857           | 0.000012     | 0.018105           | 0.000433     | 0.000858            | 0.000008 | -0.010 | 18.34                       | 0.09     | -0.001  | 18.40           | 0.08     | 1.3     | 1.38 |          |
| 1121-15 | 354       | 296       | 0.901       | 0.002925           | 0.000014     | 0.021536           | 0.000535     | 0.000960            | 0.000013 | 0.005  | 18.55                       | 0.10     | 0.009   | 18.67           | 0.09     | 1.3     | 1.49 | 1        |
| 1121-16 | 224       | 281       | 0.801       | 0.002933           | 0.000016     | 0.020503           | 0.000858     | 0.000945            | 0.000017 | 0.000  | 18.66                       | 0.13     | 0.005   | 18.78           | 0.12     | 0.9     | 0.67 |          |
| 1121-17 | 217       | 404       | 0.933       | 0.002881           | 0.000021     | 0.019068           | 0.000427     | 0.000970            | 0.000008 | 0.010  | 18.09                       | 0.13     | 0.002   | 18.51           | 0.13     | 1.1     | 1.19 |          |
| 1121-18 | 244       | 316       | 0.796       | 0.002950           | 0.000047     | 0.021123           | 0.000719     | 0.000968            | 0.000017 | 0.005  | 18.67                       | 0.31     | 0.007   | 18.86           | 0.30     | 1.3     | 1.54 |          |
| 1121-19 | 226       | 410       | 1.055       | 0.002870           | 0.000014     | 0.019314           | 0.000432     | 0.000940            | 0.000008 | 0.005  | 18.09                       | 0.10     | 0.003   | 18.42           | 0.10     | 1.3     | 1.63 |          |
| 1121-20 | 384       | 909       | 1.561       | 0.002922           | 0.000019     | 0.021274           | 0.000456     | 0.000996            | 0.000010 | 0.020  | 17.98                       | 0.20     | 0.008   | 18.66           | 0.12     | 1.2     | 1.33 |          |
| 1121-21 | , 445     | 374       | 0.900       | 0.002873           | 0.000022     | 0.021004           | 0.000809     | 0.000966            | 0.000020 | 0.010  | 18.12                       | 0.16     | 0.008   | 18.35           | 0.15     | 1.3     | 1.57 |          |
| 1121-22 | 282       | 398       | 1.073       | 0.002902           | 0.000016     | 0.020095           | 0.000606     | 0.000938            | 0.000010 | 0.003  | 18.32                       | 0.11     | 0.005   | 18.60           | 0.11     | 1.2     | 1.33 |          |
| 1121-23 | 283       | 86        | 0.908       | 0.003033           | 0.000047     | 0.024584           | 0.001985     | 0.001116            | 0.000129 | 0.026  | 18.80                       | 0.54     | 0.015   | 19.23           | 0.32     | 1.4     | 1.79 | yes; c   |
| 1121-24 | 241       | 325       | 0.939       | 0.002929           | 0.000025     | 0.021290           | 0.000807     | 0.000910            | 0.000011 | -0.004 | 18.69                       | 0.16     | 0.008   | 18.71           | 0.17     | 1.4     | 1.91 |          |
| 1121-25 | 316       | 795       | 1.544       | 0.003151           | 0.000024     | 0.021708           | 0.000572     | 0.001122            | 0.000009 | 0.037  | 19.09                       | 0.16     | 0.004   | 20.19           | 0.16     | 1.4     | 1.98 | yes; c   |
| 1121-26 | 209       | 297       | 0.861       | 0.002919           | 0.000013     | 0.020233           | 0.000554     | 0.000907            | 0.000012 | -0.004 | 18.72                       | 0.09     | 0.005   | 18.70           | 0.09     | 1.2     | 1.20 |          |
| Notes:  | a :       | Date excl | uded based  | l on the spot MS   | WD being la  | arger than 2       |              |                     |          |        |                             |          |         |                 |          |         |      |          |
|         | b:        | Date exc  | luded based | l on the ratio bet | ween the ob  | served error to e  | xpected erro | r being larger that | n 3      |        |                             |          |         |                 |          |         |      |          |
|         | c :       | Date excl | luded based | l on the plot of p | robability d | istribution; inher | ited grain   |                     |          |        |                             |          |         |                 |          |         |      |          |
|         | d:        | Date exc  | luded based | I on the plot of p | robability d | istribution; possi | bly due to P | b loss              |          |        |                             |          |         |                 |          |         |      |          |

| APPH   | ENDIX      | 8-1              |            |                  |          |         |                  |          |         |         |
|--------|------------|------------------|------------|------------------|----------|---------|------------------|----------|---------|---------|
| Summ   | ary of th  | e U-Th-Pb z      | circon dat | es analysed b    | y ELA-IC | CP-MS   |                  |          |         |         |
| Kelian | River D    | etrital Zirco    | on Sample  | No. 123230       |          |         |                  |          |         |         |
| Sample | 232Th/238U | Uncorrected      | +          | Uncorrected      | +        | f207    | 207 Pb corrected | Observed | Obs/Exp | Exclude |
| No     |            | 206Pb/238U ratio |            | 207Pb/235U ratio |          |         | 206 Pb/238U Date | Error    | Error   |         |
| 110.   |            |                  |            |                  |          |         | (Ma)             | (+1se)   | Larton  |         |
| 220.01 | 0.9/7      | 0.01/201         | 0.000081   | 0.005027         | 0.004262 | 0.0010  | (Ma)             | 0.61     | 1.41    |         |
| 230-01 | 0.867      | 0.016294         | 0.000081   | 0.095937         | 0.004252 | -0.0010 | 104.19           | 0.51     | 1.41    |         |
| 230-02 | 1.059      | 0.015807         | 0.000032   | 0.109413         | 0.002338 | -0.0010 | 101.48           | 0.55     | 1.38    |         |
| 230-03 | 0.995      | 0.010137         | 0.000037   | 0.008298         | 0.003400 | 0.0010  | 115 47           | 0.24     | 1.41    |         |
| 230-04 | 1.180      | 0.016602         | 0.000000   | 0.114081         | 0.003709 | 0.0004  | 106.15           | 0.36     | 1.35    |         |
| 230-05 | 0.566      | 0.016002         | 0.000036   | 0.106657         | 0.002800 | 0.0004  | 103.10           | 0.50     | 1.50    |         |
| 230-00 | 0.300      | 0.010122         | 0.000103   | 0.100037         | 0.003304 | 0.0014  | 20.52            | 0.07     | 1.51    |         |
| 230-07 | 0.401      | 0.003188         | 0.000038   | 0.021009         | 0.001766 | 0.0120  | 121.20           | 0.24     | 1.15    |         |
| 230-08 | 0.705      | 0.016979         | 0.000141   | 0.121280         | 0.004755 | -0.0002 | 121.20           | 6.42     | 1.57    | 100 #   |
| 230-09 | 0.938      | 0.010384         | 0.001013   | 0.010081         | 0.088905 | 0.0090  | 104.77           | 0.42     | 4.50    | yes +   |
| 230-10 | 0.809      | 0.018370         | 0.000101   | 0.122913         | 0.004803 | 0.0097  | 117.34           | 0.64     | 1.40    |         |
| 230-11 | 0.5/1      | 0.010395         | 0.000000   | 0.102012         | 0.002399 | 0.0007  | 106.10           | 0.42     | 1.55    |         |
| 230-12 | 0.701      | 0.016497         | 0.000078   | 0.096575         | 0.003031 | 0.0017  | 105.48           | 0.50     | 1.40    |         |
| 230-13 | 0.932      | 0.017869         | 0.000091   | 0.104566         | 0.004/33 | 0.0022  | 114.18           | 0.58     | 1.54    |         |
| 230-14 | 0.959      | 0.017944         | 0.000078   | 0.111013         | 0.004034 | -0.0003 | 114.65           | 0.49     | 1.19    | _       |
| 230-15 | 0.534      | 0.018703         | 0.000081   | 0.122338         | 0.003215 | -0.0004 | 119.45           | 0.51     | 1.31    |         |
| 230-16 | 1.035      | 0.002538         | 0.000026   | 0.018322         | 0.001347 | 0.0074  | 16.34            | 0.17     | 1.31    |         |
| 230-17 | 1.206      | 0.016946         | 0.000072   | 0.106474         | 0.005144 | 0.0008  | 108.33           | 0.46     | 1.41    |         |
| 230-18 | 1.107      | 0.016719         | 0.000063   | 0.106773         | 0.002541 | -0.0013 | 106.89           | 0.40     | 1.52    |         |
| 230-19 | 0.890      | 0.002448         | 0.000013   | 0.014575         | 0.000702 | 0.0054  | 15.76            | 0.09     | 1.21    | _       |
| 230-20 | 0.741      | 0.016198         | 0.000080   | 0.103378         | 0.003121 | -0.0005 | 103.59           | 0.50     | 1.43    |         |
| 230-21 | 0.701      | 0.019273         | 0.000062   | 0.120353         | 0.002167 | 0.0007  | 123.06           | 0.39     | 1.60    |         |
| 230-22 | 0.631      | 0.019082         | 0.000085   | 0.124384         | 0.003350 | -0.0006 | 121.85           | 0.54     | 1.30    |         |
| 230-23 | 0.248      | 0.041619         | 0.000134   | 0.297828         | 0.006940 | -0.0003 | 262.86           | 0.83     | 2.00    |         |
| 230-24 | 1.119      | 0.013662         | 0.000084   | 0.089404         | 0.004251 | 0.0023  | 87.47            | 0.53     | 1.44    |         |
| 230-25 | 0.837      | 0.016877         | 0.000073   | 0.097310         | 0.006222 | 0.0009  | 107.89           | 0.47     | 1.21    |         |
| 230-26 | 0.385      | 0.057002         | 0.000181   | 0.398940         | 0.010448 | 0.0001  | 357.37           | 1.11     | 1.79    |         |
| 230-27 | 0.737      | 0.019317         | 0.000077   | 0.116992         | 0.003722 | -0.0011 | 123.34           | 0.49     | 1.49    |         |
| 230-28 | 0.667      | 0.017184         | 0.000062   | 0.109645         | 0.002785 | 0.0009  | 109.84           | 0.39     | 1.12    |         |
| 230-29 | 1.289      | 0.012258         | 0.000057   | 0.072689         | 0.003156 | 0.0010  | 78.54            | 0.36     | 1.47    |         |
| 230-30 | 0.928      | 0.019792         | 0.000071   | 0.122290         | 0.004206 | 0.0000  | 126.34           | 0.45     | 1.18    |         |
| 230-31 | 0.459      | 0.003253         | 0.000039   | 0.019704         | 0.001799 | -0.0006 | 20.94            | 0.25     | 1.23    | _       |
| 230-32 | 0.820      | 0.012482         | 0.000078   | 0.078060         | 0.004201 | 0.0025  | 79.97            | 0.50     | 1.23    |         |
| 230-33 | 1.359      | 0.016291         | 0.000058   | 0.098514         | 0.005327 | 0.0009  | 104.17           | 0.37     | 1.40    |         |
| 230-34 | 0.852      | 0.016925         | 0.000063   | -0.003338        | 0.002154 | -0.0008 | 108.19           | 0.40     | 1.05    |         |
| 230-35 | 0.965      | 0.034838         | 0.000129   | -0.005806        | 0.001543 | -0.0019 | 220.76           | 0.80     | 1.57    |         |
| 230-36 | 0.988      | 0.016965         | 0.000083   | -0.010265        | 0.001777 | -0.0007 | 108.44           | 0.53     | 1.55    |         |
| 230-37 | 0.630      | 0.000263         | 0.000008   | 0.061381         | 0.012636 | 0.0979  | 1.69             | 0.05     | 1.39    |         |
| 230-38 | 0.355      | 0.003138         | 0.000057   | 0.007426         | 0.003728 | 0.0108  | 20.20            | 0.37     | 1.33    |         |
| 230-39 | 0.798      | 0.017280         | 0.000441   | 0.212051         | 0.014039 | 0.2138  | 110.44           | 2.79     | 6.38    | yes *   |
| 230-40 | 0.700      | 0.017083         | 0.000077   | -0.001585        | 0.001145 | -0.0001 | 109.19           | 0.49     | 1.28    |         |
| 230-41 | 1.066      | 0.016631         | 0.000081   | -0.008833        | 0.001966 | -0.0012 | 106.33           | 0.51     | 1.30    |         |
| 230-42 | 0.654      | 0.016531         | 0.000081   | -0.002460        | 0.001117 | -0.0017 | 105.69           | 0.51     | 1.26    |         |
| 230-43 | 1.233      | 0.016353         | 0.000075   | -0.007933        | 0.004434 | -0.0010 | 104.57           | 0.48     | 1.85    |         |
| 230-44 | 0.902      | 0.015892         | 0.000084   | -0.002450        | 0.002109 | -0.0003 | 101.64           | 0.54     | 1.50    |         |
| 230-45 | 0.820      | 0.018614         | 0.000101   | 0.000416         | 0.002048 | 0.0001  | 118.89           | 0.64     | 1.63    |         |
| 230-46 | 0.871      | 0.016101         | 0.000062   | -0.002856        | 0.001117 | -0.0017 | 102.97           | 0.40     | 1.41    |         |
| 230-47 | 0.833      | 0.017354         | 0.000062   | -0.001149        | 0.002149 | -0.0002 | 110.91           | 0.40     | 1.23    |         |
| 230-48 | 1.522      | 0.016570         | 0.000069   | -0.000718        | 0.003081 | -0.0003 | 105.94           | 0.44     | 1.47    |         |
| 230-49 | 0.823      | 0.016449         | 0.000061   | -0.001541        | 0.001084 | -0.0008 | 105.17           | 0.39     | 1.10    |         |
| 230-50 | 0.584      | 0.000435         | 0.000019   | 0.060661         | 0.013205 | 0.0448  | 2.80             | 0.12     | 1.67    |         |
| 230-51 | 0.666      | 0.050041         | 0.000265   | -0.004444        | 0.001174 | 0.0016  | 314.78           | 1.63     | 1.45    |         |
| 230-52 | 0.607      | 0.018571         | 0.000086   | -0.002778        | 0.000971 | -0.0027 | 118.62           | 0.54     | 1.44    |         |
| 230-53 | 1.312      | 0.016093         | 0.000052   | -0.005227        | 0.002190 | -0.0009 | 102.92           | 0.33     | 1.64    |         |

| APPE    | ENDIX      | 8-1                |           |                  |           |         |                                          |           |         |         |
|---------|------------|--------------------|-----------|------------------|-----------|---------|------------------------------------------|-----------|---------|---------|
| Summ    | ary of th  | e U-Th-Pb z        | ircon dat | es analysed b    | y ELA-IC  | CP-MS   |                                          |           |         |         |
| Kelian  | River D    | etrital Zirco      | on Sample | No. 123230       |           |         |                                          |           |         |         |
| Sample  | 232Th/238U | Uncorrected        | +         | Uncorrected      | +         | f207    | <sup>207</sup> Pb corrected              | Observed  | Obs/Exp | Exclude |
| No      |            | 206 Pb/238 U ratio | -         | 207Pb/235U ratio |           |         | <sup>206</sup> Pb/ <sup>238</sup> U Date | Error     | Error   |         |
| 110.    |            |                    |           |                  |           |         | (Ma)                                     | (+ 1s.e.) |         |         |
| 220 51  | 1.070      | 0.016622           | 0.000070  | 0.000000         | 0.001/01  | 0.0000  | (1012)                                   | 0.46      | 1.24    | -       |
| 230-54  | 1.078      | 0.016627           | 0.000073  | -0.000060        | 0.001684  | -0.0008 | 106.30                                   | 0.46      | 1.34    |         |
| 230-55  | 0.842      | 0.016222           | 0.000081  | -0.005212        | 0.001322  | -0.0012 | 105.74                                   | 0.51      | 1.52    |         |
| 230-56  | 1.2/5      | 0.016576           | 0.000066  | -0.004035        | 0.002339  | 0.0004  | 105.98                                   | 0.42      | 1.40    |         |
| 230-57  | 0.020      | 0.018127           | 0.000080  | -0.000933        | 0.001232  | -0.0003 | 75.05                                    | 0.33      | 1.14    |         |
| 230-58  | 0.889      | 0.011851           | 0.000032  | -0.005182        | 0.001726  | -0.0015 | 103.95                                   | 0.33      | 1.07    |         |
| 230-39  | 0.900      | 0.010108           | 0.000176  | -0.004337        | 0.0013973 | -0.0003 | 246.30                                   | 1.00      | 1.30    |         |
| 230-60  | 0.903      | 0.038901           | 0.000170  | 0.000802         | 0.001383  | -0.0012 | 100.35                                   | 0.38      | 1.21    |         |
| 230-01  | 0.091      | 0.017108           | 0.000000  | 0.000892         | 0.002009  | -0.0012 | 20.10                                    | 0.38      | 1.13    |         |
| 230-62  | 0.455      | 0.003122           | 0.000029  | 0.001114         | 0.002208  | 0.0004  | 20.10                                    | 0.19      | 1.00    |         |
| 230-03  | 0.580      | 0.039343           | 0.000100  | -0.002418        | 0.000993  | -0.0014 | 05.69                                    | 0.99      | 1.59    |         |
| 230-04  | 0.079      | 0.014955           | 0.000130  | 0.00403          | 0.002933  | 0.0003  | 10.01                                    | 0.02      | 1.52    |         |
| 230-05  | 0.444      | 0.003094           | 0.000050  | 0.004249         | 0.002542  | 0.0007  | 102.91                                   | 0.19      | 1.13    |         |
| 230-00  | 0.961      | 0.015995           | 0.000003  | -0.001048        | 0.002009  | 0.0007  | 102.28                                   | 0.40      | 1.55    |         |
| 230-07  | 1.271      | 0.016428           | 0.000092  | 0.022000         | 0.0003342 | 0.0201  | 1 76                                     | 0.58      | 1.20    |         |
| 230-68  | 1.271      | 0.000273           | 0.000006  | 0.074528         | 0.009949  | 0.0759  | 1.70                                     | 0.04      | 1.43    |         |
| 230-69  | 1.080      | 0.016355           | 0.000058  | -0.003528        | 0.001308  | -0.0002 | 104.58                                   | 0.37      | 1.22    |         |
| 230-70  | 0.993      | 0.016452           | 0.000061  | -0.003948        | 0.001326  | -0.0013 | 105.20                                   | 0.39      | 1.51    |         |
| 230-71  | 0.665      | 0.019139           | 0.000068  | 0.000593         | 0.001017  | -0.0007 | 122.21                                   | 0.43      | 1.68    |         |
| 230-72  | 0.467      | 0.058466           | 0.000252  | -0.000851        | 0.000546  | -0.0011 | 366.29                                   | 1.55      | 1.95    |         |
| 230-73  | 0.586      | 0.016444           | 0.000062  | -0.000908        | 0.001359  | -0.0006 | 105.15                                   | 0.39      | 1.48    |         |
| 230-74  | 1.018      | 0.016574           | 0.000097  | 0.004312         | 0.001761  | 0.0013  | 105.97                                   | 0.62      | 1.45    |         |
| 230-75  | 0.900      | 0.015263           | 0.000082  | 0.002308         | 0.003535  | 0.0023  | 97.65                                    | 0.52      | 1.56    |         |
| 230-76  | 0.928      | 0.016873           | 0.000092  | 0.000185         | 0.001201  | -0.0019 | 107.86                                   | 0.58      | 1.78    | _       |
| 230-77  | 0.407      | 0.015767           | 0.000080  | 0.001035         | 0.005082  | 0.0013  | 100.84                                   | 0.51      | 1.16    |         |
| 230-78  | 0.593      | 0.011307           | 0.000055  | -0.003065        | 0.001361  | 0.0002  | 72.48                                    | 0.35      | 1.76    |         |
| 230-79  | 0.410      | 0.002958           | 0.000023  | -0.004277        | 0.001238  | -0.0004 | 19.04                                    | 0.15      | 1.82    |         |
| 230-80  | 0.433      | 0.003833           | 0.000062  | 0.013081         | 0.003241  | 0.0081  | 24.66                                    | 0.40      | 1.53    |         |
| 230-81  | 1.124      | 0.013021           | 0.000071  | -0.002818        | 0.001903  | 0.0007  | 83.40                                    | 0.45      | 1.29    |         |
| 230-82  | 0.068      | 0.002492           | 0.000025  | 0.004590         | 0.000851  | 0.0048  | 16.05                                    | 0.16      | 1.62    | _       |
| 230-83  | 0.570      | 0.013971           | 0.000120  | 0.016684         | 0.002221  | 0.0014  | 89.44                                    | 0.76      | 1.99    |         |
| 230-84  | 0.792      | 0.015607           | 0.000135  | 0.015001         | 0.001673  | 0.0002  | 99.83                                    | 0.86      | 2.45    |         |
| 230-85  | 0.497      | 0.011272           | 0.000046  | 0.007474         | 0.001865  | 0.0003  | 72.26                                    | 0.30      | 2.01    |         |
| 230-86  | 1.058      | 0.002840           | 0.000035  | -0.001690        | 0.004375  | -0.0025 | 18.28                                    | 0.23      | 1.37    |         |
| 230-87  | 0.399      | 0.018119           | 0.000094  | 0.000416         | 0.001099  | 0.0023  | 115.76                                   | 0.60      | 1.20    |         |
| 230-88  | 3.550      | 0.009355           | 0.000044  | -0.027632        | 0.014923  | 0.0089  | 60.02                                    | 0.28      | 1.38    |         |
| 230-89  | 0.199      | 0.010546           | 0.000041  | 0.000922         | 0.000373  | -0.0003 | 67.62                                    | 0.26      | 1.89    |         |
| 230-90  | 1.124      | 0.016145           | 0.000082  | 0.001702         | 0.001716  | 0.0017  | 103.24                                   | 0.52      | 1.60    |         |
| 230-91  | 0.452      | 0.059605           | 0.000277  | -0.002236        | 0.001879  | -0.0013 | 373.22                                   | 1.69      | 1.52    |         |
| 230-92  | 0.888      | 0.018344           | 0.000070  | -0.003286        | 0.001184  | 0.0000  | 117.18                                   | 0.44      | 1.38    |         |
| 230-93  | 0.464      | 0.013715           | 0.001229  | 0.098017         | 0.018144  | 0.2046  | 87.81                                    | 7.82      | 2.00    |         |
| 230-94  | 0.686      | 0.016870           | 0.000081  | -0.000955        | 0.001113  | 0.0007  | 107.85                                   | 0.51      | 1.36    |         |
| 230-95  | 0.787      | 0.024292           | 0.000071  | -0.002863        | 0.001390  | -0.0004 | 154.72                                   | 0.45      | 1.47    |         |
| 230-96  | 1.045      | 0.016609           | 0.000067  | -0.003185        | 0.001289  | 0.0005  | 106.19                                   | 0.43      | 1.55    |         |
| 230-97  | 1.278      | 0.016813           | 0.000077  | -0.001284        | 0.002093  | 0.0018  | 107.48                                   | 0.49      | 1.44    |         |
| 230-98  | 0.768      | 0.000263           | 0.000007  | 0.016941         | 0.009757  | 0.0647  | 1.70                                     | 0.04      | 1.21    |         |
| 230-99  | 1.149      | 0.016820           | 0.000070  | 0.001584         | 0.001985  | 0.0016  | 107.53                                   | 0.45      | 1.44    |         |
| 230-100 | 0.489      | 0.003211           | 0.000031  | 0.007962         | 0.002531  | -0.0033 | 20.67                                    | 0.20      | 1.07    |         |
| 230-101 | 0.452      | 0.010965           | 0.000054  | 0.001672         | 0.000929  | 0.0014  | 70.30                                    | 0.35      | 1.44    |         |
| 230-102 | 0.601      | 0.010805           | 0.000091  | 0.026674         | 0.002619  | 0.0205  | 69.28                                    | 0.58      | 1.12    |         |
| 230-103 | 0.998      | 0.016331           | 0.000075  | -0.003357        | 0.002444  | 0.0014  | 104.42                                   | 0.47      | 1.26    |         |
| 230-104 | 0.674      | 0.000270           | 0.000007  | 0.022813         | 0.010192  | 0.0686  | 1.74                                     | 0.05      | 1.25    |         |
| 230-105 | 0.750      | 0.017291           | 0.000100  | -0.003322        | 0.001558  | 0.0012  | 110.51                                   | 0.63      | 1.44    |         |
| 230-106 | 0.942      | 0.016342           | 0.000131  | 0.000497         | 0.002643  | 0.0058  | 104.50                                   | 0.83      | 1.38    |         |

| APPE    | ENDIX      | 8-1               |                |                  |              |             |                             |                   |         |         |
|---------|------------|-------------------|----------------|------------------|--------------|-------------|-----------------------------|-------------------|---------|---------|
| Summ    | ary of th  | e U-Th-Pb z       | ircon dat      | es analysed b    | y ELA-IC     | P-MS        |                             |                   |         |         |
| Kelian  | River D    | etrital Zirco     | on Sample      | e No. 123230     |              |             |                             |                   |         |         |
| Sample  | 232Th/238U | Uncorrected       | +              | Uncorrected      | ±            | f207        | <sup>207</sup> Pb corrected | Observed          | Obs/Exp | Exclude |
| No      |            | 206 Pb/238U ratio | -              | 207Pb/235U ratio |              |             | 206Pb/238U Date             | Error             | Error   |         |
| 140.    |            |                   |                |                  |              |             | (Ma)                        | ( <u>+</u> 1s.e.) | Life    |         |
| 230-107 | 0.736      | 0.016826          | 0.000065       | 0.001000         | 0.001239     | 0.0002      | 107.56                      | 0.42              | 1.09    |         |
| 230-108 | 0.440      | 0.013820          | 0.000060       | -0.000066        | 0.000907     | 0.0008      | 88.48                       | 0.38              | 1.35    |         |
| 230-109 | 0.668      | 0.016572          | 0.000063       | 0.000061         | 0.000988     | 0.0021      | 105.95                      | 0.40              | 1.18    |         |
| 230-110 | 0.978      | 0.016756          | 0.000068       | -0.005338        | 0.002806     | 0.0015      | 107.12                      | 0.43              | 1.40    |         |
| 230-111 | 1.036      | 0.016503          | 0.000067       | -0.004918        | 0.004011     | 0.0009      | 105.52                      | 0.43              | 1.33    |         |
| 230-112 | 1.005      | 0.016804          | 0.000061       | -0.006945        | 0.001132     | 0.0001      | 107.43                      | 0.38              | 1.23    |         |
| 230-113 | 0.821      | 0.016906          | 0.000077       | 0.000140         | 0.001485     | 0.0002      | 108.07                      | 0.49              | 1.29    |         |
| 230-114 | 0.809      | 0.017332          | 0.000091       | 0.003828         | 0.001366     | 0.0001      | 110.77                      | 0.58              | 1.46    |         |
| 230-115 | 0.393      | 0.036738          | 0.000186       | -0.000907        | 0.000952     | 0.0013      | 232.58                      | 1.16              | 1.38    |         |
| 230-116 | 0.527      | 0.003372          | 0.000047       | -0.005049        | 0.004173     | 0.0088      | 21.70                       | 0.30              | 1.04    |         |
| 230-117 | 1.155      | 0.016802          | 0.000080       | -0.004167        | 0.002254     | -0.0005     | 107.41                      | 0.51              | 1.40    |         |
| 230-118 | 0.439      | 0.003257          | 0.000029       | 0.025971         | 0.002504     | 0.0183      | 20.96                       | 0.19              | 1.20    |         |
| 230-119 | 1.177      | 0.016380          | 0.000061       | -0.004872        | 0.003337     | 0.0004      | 104.74                      | 0.39              | 1.27    |         |
| 230-120 | 1.079      | 0.016958          | 0.000094       | 0.001095         | 0.001876     | 0.0002      | 108.40                      | 0.60              | 1.47    |         |
| 230-121 | 0.734      | 0.016963          | 0.000090       | 0.006055         | 0.002079     | 0.0044      | 108.43                      | 0.57              | 1.43    |         |
| 230-122 | 0.427      | 0.038547          | 0.000294       | 0.001751         | 0.001568     | 0.0034      | 243.82                      | 1.82              | 1.20    |         |
| 230-123 | 0.877      | 0.015874          | 0.000064       | 0.005589         | 0.002823     | 0.0015      | 101.53                      | 0.41              | 1.63    |         |
| 230-124 | 0.838      | 0.017265          | 0.000086       | 0.004596         | 0.001755     | -0.0002     | 110.35                      | 0.54              | 1.21    |         |
| 230-125 | 0.698      | 0.017009          | 0.000139       | 0.005328         | 0.002423     | 0.0005      | 108.72                      | 0.88              | 1.17    |         |
| 230-126 | 0.705      | 0.015808          | 0.000053       | 0.002921         | 0.002025     | 0.0011      | 101.11                      | 0.33              | 1.59    |         |
| 230-127 | 0.861      | 0.000362          | 0.000015       | 0.005220         | 0.010641     | 0.0612      | 2.33                        | 0.10              | 1.70    |         |
| Notan   | R . Date   | aludad baas d     | a the matic ba | turner the above | and amonto - | uncoted are | ar haing larger th          | an A              |         |         |

.

| APPI    | ENDIX      | 8-1                |           |                  |          |         |                 |           |         |          |
|---------|------------|--------------------|-----------|------------------|----------|---------|-----------------|-----------|---------|----------|
| Summ    | ary of th  | e U-Th-Pb z        | ircon dat | es analysed b    | y ELA-IC | P-MS    |                 |           |         |          |
| Kelian  | River D    | etrital Zirco      | on Sample | No. 123230       |          |         |                 |           |         |          |
| Sample  | 232Th/238U | Uncorrected        | +         | Uncorrected      | ±        | f207    | 207Pb corrected | Observed  | Obs/Exp | Exclude? |
| No.     |            | 206 Pb/238 U ratio |           | 207Pb/235U ratio |          |         | 206Pb/238U Date | Error     | Error   |          |
|         |            |                    |           |                  |          |         | (Ma)            | (+ 1s.e.) | Dirot   |          |
| 220 64  | 1.070      | 0.01//07           | 0.000072  | 0.0000(0         | 0.001/04 | 0.0008  | (1012)          | 0.46      | 1.24    |          |
| 230-34  | 1.078      | 0.016027           | 0.000073  | -0.000060        | 0.001084 | -0.0008 | 100.30          | 0.40      | 1.34    |          |
| 230-55  | 0.842      | 0.016222           | 0.000081  | -0.003212        | 0.001322 | -0.0012 | 105.74          | 0.51      | 1.52    |          |
| 230-50  | 0.626      | 0.018127           | 0.000086  | -0.004033        | 0.002339 | 0.0004  | 105.96          | 0.42      | 1.40    |          |
| 230-57  | 0.020      | 0.011851           | 0.000080  | -0.003182        | 0.001232 | -0.0003 | 75.05           | 0.33      | 1.14    |          |
| 230-50  | 0.089      | 0.016168           | 0.000032  | -0.003182        | 0.001728 | -0.0013 | 103 30          | 0.33      | 1.07    |          |
| 230-59  | 0.968      | 0.018168           | 0.000075  | -0.004337        | 0.001383 | -0.0003 | 246.39          | 1.00      | 1.30    |          |
| 230-61  | 0.601      | 0.017108           | 0.000170  | 0.000892         | 0.001505 | -0.0012 | 109.35          | 0.38      | 1.15    |          |
| 230-62  | 0.433      | 0.003122           | 0.000000  | 0.000392         | 0.002009 | 0.0012  | 20.10           | 0.38      | 1.08    |          |
| 230-63  | 0.433      | 0.030543           | 0.000029  | 0.007418         | 0.002208 | -0.0014 | 250.00          | 0.00      | 1.00    |          |
| 230-64  | 0.580      | 0.039343           | 0.000130  | -0.002418        | 0.000993 | -0.0014 | 05.68           | 0.99      | 1.57    |          |
| 230-65  | 0.444      | 0.003004           | 0.000130  | 0.004249         | 0.002535 | 0.0000  | 10.01           | 0.02      | 1.52    |          |
| 230-65  | 0.444      | 0.015003           | 0.000050  | -0.001049        | 0.002542 | 0.0007  | 102.29          | 0.19      | 1.15    |          |
| 230-00  | 0.901      | 0.015995           | 0.000003  | -0.001048        | 0.002009 | 0.0007  | 102.28          | 0.40      | 1.55    |          |
| 230-07  | 0.807      | 0.010428           | 0.000092  | 0.022066         | 0.000040 | 0.0201  | 105.04          | 0.58      | 1.20    |          |
| 230-08  | 1.2/1      | 0.000273           | 0.000006  | 0.074528         | 0.009949 | 0.0739  | 1.70            | 0.04      | 1.43    |          |
| 230-09  | 1.080      | 0.016355           | 0.000058  | -0.003528        | 0.001308 | -0.0002 | 104.58          | 0.37      | 1.22    |          |
| 230-70  | 0.993      | 0.016452           | 0.000061  | -0.003948        | 0.001326 | -0.0013 | 105.20          | 0.39      | 1.51    |          |
| 230-71  | 0.665      | 0.019139           | 0.000068  | 0.000593         | 0.001017 | -0.0007 | 122,21          | 0.43      | 1.68    |          |
| 230-72  | 0.467      | 0.058466           | 0.000252  | -0.000851        | 0.000546 | -0.0011 | 366.29          | 1.53      | 1.95    |          |
| 230-73  | 0.586      | 0.016444           | 0.000062  | -0.000908        | 0.001359 | -0.0006 | 105.15          | 0.39      | 1.48    |          |
| 230-74  | 1.018      | 0.016574           | 0.000097  | 0.004312         | 0.001761 | 0.0013  | 105.97          | 0.62      | 1.45    |          |
| 230-75  | 0.900      | 0.015263           | 0.000082  | 0.002308         | 0.003535 | 0.0023  | 97.65           | 0.52      | 1.56    |          |
| 230-76  | 0.928      | 0.016873           | 0.000092  | 0.000185         | 0.001201 | -0.0019 | 107.86          | 0.58      | 1.78    |          |
| 230-77  | 0.407      | 0.015767           | 0.000080  | 0.001035         | 0.005082 | 0.0013  | 100.84          | 0.51      | 1.16    |          |
| 230-78  | 0.593      | 0.011307           | 0.000055  | -0.003065        | 0.001361 | 0.0002  | 72.48           | 0.35      | 1.76    |          |
| 230-79  | 0.410      | 0.002958           | 0.000023  | -0.004277        | 0.001238 | -0.0004 | 19.04           | 0.15      | 1.82    |          |
| 230-80  | 0.433      | 0.003833           | 0.000062  | 0.013081         | 0.003241 | 0.0081  | 24.66           | 0.40      | 1.53    |          |
| 230-81  | 1.124      | 0.013021           | 0.000071  | -0.002818        | 0.001903 | 0.0007  | 83.40           | 0.45      | 1.29    |          |
| 230-82  | 0.068      | 0.002492           | 0.000025  | 0.004590         | 0.000851 | 0.0048  | 16.05           | 0.16      | 1.62    |          |
| 230-83  | 0.570      | 0.013971           | 0.000120  | 0.016684         | 0.002221 | 0.0014  | 89.44           | 0.76      | 1.99    |          |
| 230-84  | 0.792      | 0.015607           | 0.000135  | 0.015001         | 0.001673 | 0.0002  | 99.83           | 0.86      | 2.45    |          |
| 230-85  | 0.497      | 0.011272           | 0.000046  | 0.007474         | 0.001865 | 0.0003  | 72.26           | 0.30      | 2.01    |          |
| 230-86  | 1.058      | 0.002840           | 0.000035  | -0.001690        | 0.004375 | -0.0025 | 18.28           | 0.23      | 1.37    |          |
| 230-87  | 0.399      | 0.018119           | 0.000094  | 0.000416         | 0.001099 | 0.0023  | 115.76          | 0.60      | 1.20    |          |
| 230-88  | 3.550      | 0.009355           | 0.000044  | -0.027632        | 0.014923 | 0.0089  | 60.02           | 0.28      | 1.38    |          |
| 230-89  | 0.199      | 0.010546           | 0.000041  | 0.000922         | 0.000373 | -0.0003 | 67.62           | 0.26      | 1.89    |          |
| 230-90  | 1.124      | 0.016145           | 0.000082  | 0.001702         | 0.001716 | 0.0017  | 103.24          | 0.52      | 1.60    |          |
| 230-91  | 0.452      | 0.059605           | 0.000277  | -0.002236        | 0.001879 | -0.0013 | 373.22          | 1.69      | 1.52    |          |
| 230-92  | 0.888      | 0.018344           | 0.000070  | -0.003286        | 0.001184 | 0.0000  | 117.18          | 0.44      | 1.38    |          |
| 230-93  | 0.464      | 0.013715           | 0.001229  | 0.098017         | 0.018144 | 0.2046  | 87.81           | 7.82      | 2.00    |          |
| 230-94  | 0.686      | 0.016870           | 0.000081  | -0.000955        | 0.001113 | 0.0007  | 107.85          | 0.51      | 1.36    |          |
| 230-95  | 0.787      | 0.024292           | 0.000071  | -0.002863        | 0.001390 | -0.0004 | 154.72          | 0.45      | 1.47    |          |
| 230-96  | 1.045      | 0.016609           | 0.000067  | -0.003185        | 0.001289 | 0.0005  | 106.19          | 0.43      | 1.55    | L        |
| 230-97  | 1.278      | 0.016813           | 0.000077  | -0.001284        | 0.002093 | 0.0018  | 107.48          | 0.49      | 1.44    |          |
| 230-98  | 0.768      | 0.000263           | 0.000007  | 0.016941         | 0.009757 | 0.0647  | 1.70            | 0.04      | 1.21    |          |
| 230-99  | 1.149      | 0.016820           | 0.000070  | 0.001584         | 0.001985 | 0.0016  | 107.53          | 0.45      | 1.44    |          |
| 230-100 | 0.489      | 0.003211           | 0.000031  | 0.007962         | 0.002531 | -0.0033 | 20.67           | 0.20      | 1.07    |          |
| 230-101 | 0.452      | 0.010965           | 0.000054  | 0.001672         | 0.000929 | 0.0014  | 70.30           | 0.35      | 1.44    |          |
| 230-102 | 0.601      | 0.010805           | 0.000091  | 0.026674         | 0.002619 | 0.0205  | 69.28           | 0.58      | 1.12    |          |
| 230-103 | 0.998      | 0.016331           | 0.000075  | -0.003357        | 0.002444 | 0.0014  | 104.42          | 0.47      | 1.26    |          |
| 230-104 | 0.674      | 0.000270           | 0.000007  | 0.022813         | 0.010192 | 0.0686  | 1.74            | 0.05      | 1.25    |          |
| 230-105 | 0.750      | 0.017291           | 0.000100  | -0.003322        | 0.001558 | 0.0012  | 110.51          | 0.63      | 1.44    |          |
| 230-106 | 0.942      | 0.016342           | 0.000131  | 0.000497         | 0.002643 | 0.0058  | 104.50          | 0.83      | 1.38    |          |

| APPE    | ENDIX      | 8-1              |               |                    |                |             |                             |                   |         |         |
|---------|------------|------------------|---------------|--------------------|----------------|-------------|-----------------------------|-------------------|---------|---------|
| Summ    | ary of th  | e U-Th-Pb        | ircon dat     | es analysed b      | y ELA-IC       | P-MS        |                             |                   |         |         |
| Kelian  | River D    | etrital Zirco    | on Sample     | e No. 123230       |                |             |                             |                   |         |         |
| Sample  | 232Th/238U | Uncorrected      | +             | Uncorrected        | ±              | f207        | <sup>207</sup> Pb corrected | Observed          | Obs/Exp | Exclude |
| No      |            | 206Pb/238U ratio |               | 207Pb/235U ratio   |                |             | 206Pb/238U Date             | Error             | Error   |         |
| 110.    |            |                  |               |                    |                |             | (Ma)                        | ( <u>+</u> 1s.e.) | Lifer   |         |
| 230-107 | 0.736      | 0.016826         | 0.000065      | 0.001000           | 0.001239       | 0.0002      | 107.56                      | 0.42              | 1.09    |         |
| 230-108 | 0.440      | 0.013820         | 0.000060      | -0.000066          | 0.000907       | 0.0008      | 88.48                       | 0.38              | 1.35    |         |
| 230-109 | 0.668      | 0.016572         | 0.000063      | 0.000061           | 0.000988       | 0.0021      | 105.95                      | 0.40              | 1.18    |         |
| 230-110 | 0.978      | 0.016756         | 0.000068      | -0.005338          | 0.002806       | 0.0015      | 107.12                      | 0.43              | 1.40    |         |
| 230-111 | 1.036      | 0.016503         | 0.000067      | -0.004918          | 0.004011       | 0.0009      | 105.52                      | 0.43              | 1.33    |         |
| 230-112 | 1.005      | 0.016804         | 0.000061      | -0.006945          | 0.001132       | 0.0001      | 107.43                      | 0.38              | 1.23    |         |
| 230-113 | 0.821      | 0.016906         | 0.000077      | 0.000140           | 0.001485       | 0.0002      | 108.07                      | 0.49              | 1.29    |         |
| 230-114 | 0.809      | 0.017332         | 0.000091      | 0.003828           | 0.001366       | 0.0001      | 110.77                      | 0.58              | 1.46    |         |
| 230-115 | 0.393      | 0.036738         | 0.000186      | -0.000907          | 0.000952       | 0.0013      | 232.58                      | 1.16              | 1.38    |         |
| 230-116 | 0.527      | 0.003372         | 0.000047      | -0.005049          | 0.004173       | 0.0088      | 21.70                       | 0.30              | 1.04    |         |
| 230-117 | 1.155      | 0.016802         | 0.000080      | -0.004167          | 0.002254       | -0.0005     | 107.41                      | 0.51              | 1.40    |         |
| 230-118 | 0.439      | 0.003257         | 0.000029      | 0.025971           | 0.002504       | 0.0183      | 20.96                       | 0.19              | 1.20    |         |
| 230-119 | 1.177      | 0.016380         | 0.000061      | -0.004872          | 0.003337       | 0.0004      | 104.74                      | 0.39              | 1.27    |         |
| 230-120 | 1.079      | 0.016958         | 0.000094      | 0.001095           | 0.001876       | 0.0002      | 108.40                      | 0.60              | 1.47    |         |
| 230-121 | 0.734      | 0.016963         | 0.000090      | 0.006055           | 0.002079       | 0.0044      | 108.43                      | 0.57              | 1.43    |         |
| 230-122 | 0.427      | 0.038547         | 0.000294      | 0.001751           | 0.001568       | 0.0034      | 243.82                      | 1.82              | 1.20    |         |
| 230-123 | 0.877      | 0.015874         | 0.000064      | 0.005589           | 0.002823       | 0.0015      | 101.53                      | 0.41              | 1.63    |         |
| 230-124 | 0.838      | 0.017265         | 0.000086      | 0.004596           | 0.001755       | -0.0002     | 110.35                      | 0.54              | 1.21    |         |
| 230-125 | 0.698      | 0.017009         | 0.000139      | 0.005328           | 0.002423       | 0.0005      | 108.72                      | 0.88              | 1.17    |         |
| 230-126 | 0.705      | 0.015808         | 0.000053      | 0.002921           | 0.002025       | 0.0011      | 101.11                      | 0.33              | 1.59    |         |
| 230-127 | 0.861      | 0.000362         | 0.000015      | 0.005220           | 0.010641       | 0.0612      | 2.33                        | 0.10              | 1.70    |         |
| Notor   | * . Date a | valudad bared a  | n the notic h | aturaan the observ | und arran to a | vpacted arr | or baing larger th          | on 1              |         |         |

| APPI   | ENDIX          | 8-2           | lussa dat | an amplement h | ELA M    | D MC     |                   |               |         |         |
|--------|----------------|---------------|-----------|----------------|----------|----------|-------------------|---------------|---------|---------|
| Summ   | ary of th      | e U-In-PDZ    | ircon dat | es analysed b  | y ELA-IQ | _P-1015  |                   |               |         |         |
| Mana   | 232-TL /2381 1 | er Detrital Z | ircon Sar | npie No. 1232  | .31      | 0007     | 207 Dh an smatted | 01 1          | 01 /5   | P. 1.1. |
| Sample | 10/0           | Uncorrected   | <u>+</u>  | Uncorrected    | <u>±</u> | 1207     | Po corrected      | Observed      | Obs/Exp | Exclude |
| No.    |                | Pb/23°U ratio |           | Pb/35U ratio   |          |          | Pb/23 U Date      | Error         | Error   |         |
|        |                |               |           |                |          |          | (Ma)              | $(\pm 1s.e.)$ |         |         |
| 231-01 | 1.133          | 0.015977      | 0.000058  | 0.102598       | 0.003026 | 0.0008   | 102.18            | 0.37          | 1.46    |         |
| 231-02 | 1.237          | 0.016129      | 0.000063  | 0.110518       | 0.002949 | -0.0003  | 103.15            | 0.40          | 1.52    |         |
| 231-03 | 0.393          | 0.030345      | 0.000073  | 0.204179       | 0.002320 | -0.0002  | 192.70            | 0.45          | 1.64    |         |
| 231-04 | 0.541          | 0.002587      | 0.000023  | 0.016652       | 0.000918 | 0.0052   | 16.65             | 0.15          | 1.51    |         |
| 231-05 | 0.799          | 0.054464      | 0.000199  | 0.380328       | 0.007564 | -0.0004  | 341.87            | 1.22          | 1.43    |         |
| 231-06 | 1.018          | 0.014180      | 0.000065  | 0.087076       | 0.004424 | -0.0009  | 90.77             | 0.41          | 1.48    |         |
| 231-07 | 0.490          | 0.019240      | 0.000125  | 0.125365       | 0.004000 | 0.0005   | 122.85            | 0.79          | 1.47    |         |
| 231-08 | 0.864          | 0.012369      | 0.000084  | 0.076904       | 0.003578 | 0.0003   | 79.25             | 0.54          | 1.53    |         |
| 231-09 | 0.551          | 0.001013      | 0.000015  | 0.006391       | 0.000794 | 0.0075   | 6.53              | 0.10          | 1.27    |         |
| 231-10 | 1.014          | 0.016076      | 0.000063  | 0.092998       | 0.003334 | -0.0002  | 102.81            | 0.40          | 1.62    |         |
| 231-11 | 0.259          | 0.002394      | 0.000014  | 0.015205       | 0.000345 | 0.0025   | 15.42             | 0.09          | 1.53    |         |
| 231-12 | 0.249          | 0.002367      | 0.000011  | 0.014689       | 0.000410 | 0.0016   | 15.24             | 0.07          | 1.21    |         |
| 231-13 | 0.816          | 0.016216      | 0.000081  | 0.099787       | 0.003027 | 0.0009   | 103.70            | 0.51          | 1.41    |         |
| 231-14 | 1.105          | 0.016169      | 0.000058  | 0.098664       | 0.004094 | 0.0006   | 103.40            | 0.36          | 1.22    |         |
| 231-15 | 1.244          | 0.012189      | 0.000060  | 0.075626       | 0.003557 | 0.0010   | 78.10             | 0.38          | 1.30    |         |
| 231-16 | 0.490          | 0.002787      | 0.000161  | 0.015345       | 0.002541 | 0.0243   | 17.94             | 1.04          | 8.81    | yes *   |
| 231-17 | 1.174          | 0.016927      | 0.000064  | 0.102960       | 0.002692 | -0.0003  | 108.21            | 0.40          | 1.58    |         |
| 231-18 | 0.860          | 0.000301      | 0.000007  | 0.000932       | 0.000376 | 0.0128   | 1.94              | 0.04          | 1.43    |         |
| 231-19 | 1.694          | 0.013881      | 0.000039  | 0.076458       | 0.006472 | 0.0003   | 88.87             | 0.25          | 1.48    |         |
| 231-20 | 0.931          | 0.018229      | 0.000076  | 0.119893       | 0.003514 | 0.0011   | 116.45            | 0.48          | 1.37    |         |
| 231-21 | 0.140          | 0.000522      | 0.000008  | 0.003837       | 0.000383 | 0.0231   | 3.36              | 0.05          | 1.23    |         |
| 231-22 | 0.525          | 0.017087      | 0.000093  | 0.095816       | 0.003281 | 0.0014   | 109.22            | 0.59          | 1.48    |         |
| 231-23 | 0.777          | 0.017529      | 0.000092  | 0.104002       | 0.006782 | -0.0001  | 112.02            | 0.58          | 1.32    |         |
| 231-24 | 0.474          | 0.039083      | 0.000150  | 0.268675       | 0.005319 | 0.0007   | 247.15            | 0.93          | 1.34    |         |
| 231-25 | 0.829          | 0.018024      | 0.000086  | 0.105992       | 0.004223 | 0.0006   | 115.16            | 0.55          | 1.30    |         |
| 231-26 | 0.903          | 0.016336      | 0.000065  | 0.102982       | 0.002412 | -0.0002  | 104.46            | 0.41          | 1.55    |         |
| 231-27 | 0.579          | 0.017569      | 0.000102  | 0.108480       | 0.004792 | -0.0003  | 112.27            | 0.65          | 1.41    |         |
| 231-28 | 0.707          | 0.014505      | 0.000079  | 0.089428       | 0.005632 | 0.0012   | 92.83             | 0.50          | 1.14    |         |
| 231-29 | 0.179          | 0.002494      | 0.000021  | 0.015154       | 0.000817 | 0.0036   | 16.06             | 0.14          | 1.33    |         |
| 231-30 | 0.807          | 0.019260      | 0.000068  | 0.128181       | 0.002937 | 0.0010   | 122.98            | 0.43          | 1.36    |         |
| 231-31 | 0.835          | 0.040259      | 0.000206  | 0.285272       | 0.011426 | 0.0001   | 254.44            | 1.28          | 1.37    |         |
| 231-32 | 0.311          | 0.002476      | 0.000012  | 0.015247       | 0.000496 | 0.0013   | 15.94             | 0.08          | 1.10    |         |
| 231-33 | 1.011          | 0.013298      | 0.000038  | 0.081040       | 0.002830 | 0.0000   | 85.16             | 0.24          | 1.45    |         |
| 231-34 | 2 049          | 0.002732      | 0.000025  | 0.015732       | 0.002623 | -0.0014  | 17.59             | 0.16          | 1.64    |         |
| 231-35 | 0.268          | 0.018520      | 0.000146  | 0.138741       | 0.005668 | 0.0005   | 118.29            | 0.92          | 1.28    |         |
| 231-36 | 0.524          | 0.017710      | 0.000102  | 0.120872       | 0.004050 | -0.0001  | 113.17            | 0.64          | 1.36    |         |
| 231-37 | 0.589          | 0.013849      | 0.000054  | 0.097425       | 0.001824 | -0.0020  | 88.66             | 0.34          | 1.00    |         |
| 231-38 | 0.509          | 0.017302      | 0.000080  | 0.122070       | 0.003548 | 0.0036   | 111.15            | 0.51          | 135     |         |
| 231.30 | 1 158          | 0.012428      | 0.000054  | 0.092522       | 0.003331 | -0.0020  | 79.62             | 0.35          | 1.18    |         |
| 231-40 | 1 166          | 0.014376      | 0.000061  | 0.111204       | 0.003655 | -0.0000  | 92.01             | 0.39          | 1 31    |         |
| 231-41 | 0.827          | 0.017433      | 0.000001  | 0.130663       | 0.003655 | 0.0005   | 111 41            | 0.58          | 1.01    |         |
| 231.42 | 0.500          | 0.000271      | 0.000092  | 0.001729       | 0.001151 | 0.1008   | 1.75              | 0.07          | 1.50    | _       |
| 231.42 | 0.730          | 0.0002/1      | 0.000011  | 0.005730       | 0.000810 | 0.0045   | 4.82              | 0.07          | 1 41    |         |
| 231.44 | 0.733          | 0.232258      | 0.002454  | 3 508584       | 0.057037 | 0.0210   | 1346.32           | 12.84         | 3.64    |         |
| 231.45 | 0.723          | 0.010430      | 0.000175  | 0.126514       | 0.003075 | 0.00210  | 124.11            | 1.11          | 2.60    | _       |
| 231-46 | 0.425          | 0.018683      | 0.000173  | 0.121367       | 0.003373 | -0.00039 | 110 33            | 0.83          | 1.46    |         |
| 231.47 | 0.495          | 0.010005      | 0.000151  | 0.726325       | 0.004310 | -0.0003  | 251.02            | 1.00          | 1.40    |         |
| 231-47 | 0.494          | 0.0039708     | 0.000101  | 0.200323       | 0.003420 | 0.0000   | 17.07             | 0.22          | 1.41    |         |
| 231 40 | 0.279          | 0.002/92      | 0.000035  | 0.010209       | 0.001082 | 0.0020   | 119.07            | 0.45          | 1.41    |         |
| 231-49 | 0.018          | 0.018027      | 0.000102  | 0.122/82       | 0.003943 | 0.0011   | 118.97            | 0.05          | 2.24    |         |
| 231-30 | 0.811          | 0.010983      | 0.000108  | 0.11//03       | 0.004/88 | -0.0014  | 01.64             | 0.08          | 1.24    |         |
| 231-31 | 0.827          | 0.014317      | 0.000087  | 0.099309       | 0.003446 | 0.0003   | 91,04             | 0.55          | 1.70    |         |
| 231-32 | 0.342          | 0.015975      | 0.000116  | 0.095489       | 0.003320 | 0.0005   | 102.17            | 0.74          | 1.70    |         |
| 231-35 | 0./15          | 0.014008      | 0.000272  | 0.102706       | 0.009422 | 0.0034   | 89.08             | 1.75          | 1.95    |         |

| APPH    | ENDIX      | 8-2                |           |                  |          |         |                 |           |         |          |
|---------|------------|--------------------|-----------|------------------|----------|---------|-----------------|-----------|---------|----------|
| Summ    | ary of th  | e U-Th-Pb z        | ircon dat | es analysed b    | y ELA-IO | CP-MS   |                 |           |         |          |
| Mahal   | kam Rive   | er Detrital Z      | ircon Sar | nple No. 1232    | 31       |         |                 |           |         |          |
| Sample  | 232Th/238U | Uncorrected        | <u>+</u>  | Uncorrected      | <u>+</u> | f207    | 207Pb corrected | Observed  | Obs/Exp | Exclude? |
| No.     |            | 206 Pb/238 U ratio |           | 207Pb/235U ratio |          |         | 206Pb/238U Date | Error     | Error   |          |
| 110.    |            |                    |           |                  |          |         | (Ma)            | (+ 1s.e.) | Entor   |          |
| 221 64  | 0.507      | 0.000773           | 0.000000  | 0.005005         | 0.0004/2 | 0.0167  | (1012)          | 0.00      | 1.07    |          |
| 231-54  | 0.506      | 0.000773           | 0.000009  | 0.005905         | 0.000465 | 0.0157  | 4.98            | 0.06      | 1.27    |          |
| 231-33  | 0.807      | 0.031/45           | 0.000218  | 0.1/8/85         | 0.005894 | 0.0006  | 201.40          | 1.30      | 2.50    |          |
| 231-30  | 0.198      | 0.01/496           | 0.000075  | 0.115303         | 0.004889 | -0.0017 | 0.10            | 0.47      | 1.55    |          |
| 231-37  | 0.549      | 0.001413           | 0.000042  | 0.006459         | 0.000895 | 0.00012 | 9.10            | 0.27      | 2.45    |          |
| 231-58  | 0.513      | 0.015149           | 0.000212  | 0.080815         | 0.000000 | 0.0042  | 96.92           | 1.35      | 1.92    |          |
| 231-59  | 0.717      | 0.015875           | 0.000172  | 0.094171         | 0.009929 | 0.0274  | 101.53          | 1.09      | 2.58    | _        |
| 231-00  | 0.794      | 0.013626           | 0.000091  | 0.106049         | 0.005285 | 0.0228  | 99.96           | 0.58      | 1.55    |          |
| 231-61  | 0.363      | 0.013773           | 0.000055  | 0.089564         | 0.001612 | -0.0004 | 88.18           | 0.35      | 1.42    |          |
| 231-62  | 0.647      | 0.000791           | 0.000008  | 0.005636         | 0.000343 | 0.0070  | 5.10            | 0.05      | 1.37    |          |
| 231-63  | 0.768      | 0.000260           | 0.000009  | 0.002012         | 0.000848 | 0.0968  | 1.68            | 0.06      | 1.34    |          |
| 231-64  | 0.679      | 0.032641           | 0.000104  | 0.235477         | 0.003652 | 0.0000  | 207.05          | 0.65      | 1.73    |          |
| 231-65  | 0.339      | 0.002500           | 0.000043  | 0.015883         | 0.001379 | 0.0117  | 16.09           | 0.28      | 2.03    |          |
| 231-66  | 0.443      | 0.026051           | 0.000542  | 0.114184         | 0.007156 | 0.0007  | 165.78          | 3,41      | 4.37    | yes *    |
| 231-67  | 0.819      | 0.014045           | 0.000128  | 0.097606         | 0.006119 | 0.0009  | 89.91           | 0.81      | 1.48    |          |
| 231-68  | 0.897      | 0.014261           | 0.000081  | 0.102924         | 0.003872 | 0.0027  | 91.29           | 0.52      | 1.48    |          |
| 231-69  | 0.644      | 0.015791           | 0.000095  | 0.097654         | 0.003302 | -0.0013 | 101.00          | 0.60      | 1.46    |          |
| 231-70  | 0.491      | 0.024147           | 0.000117  | 0.165723         | 0.003739 | -0.0006 | 153.81          | 0.74      | 1.41    |          |
| 231-71  | 0.732      | 0.016784           | 0.000149  | 0.095675         | 0.004379 | -0.0015 | 107.30          | 0.94      | 2.14    |          |
| 231-72  | 0.909      | 0.001690           | 0.000067  | 0.013968         | 0.002795 | -0.0037 | 10.89           | 0.43      | 2.27    |          |
| 231-73  | 0.876      | 0.018845           | 0.000079  | 0.123418         | 0.004104 | -0.0014 | 120.35          | 0.50      | 1.71    |          |
| 231-74  | 0.625      | 0.014498           | 0.000060  | 0.096043         | 0.002203 | -0.0007 | 92.79           | 0.38      | 1.35    |          |
| 231-75  | 0.380      | 0.017126           | 0.000094  | 0.119532         | 0.003137 | 0.0034  | 109.46          | 0.59      | 1.32    |          |
| 231-76  | 0.873      | 0.017326           | 0.000087  | 0.129572         | 0.004153 | 0.0012  | 110.73          | 0.55      | 1.12    |          |
| 231-77  | 0.942      | 0.018695           | 0.000106  | 0.143551         | 0.007079 | 0.0009  | 119.40          | 0.67      | 1.54    |          |
| 231-78  | 0.872      | 0.019566           | 0.000114  | 0.131961         | 0.006488 | 0.0009  | 124.91          | 0.72      | 1.57    |          |
| 231-79  | 0.781      | 0.017140           | 0.000073  | 0.123833         | 0.003355 | -0.0001 | 109.56          | 0.46      | 1.32    |          |
| 231-80  | 1.046      | 0.016390           | 0.000075  | 0.116192         | 0.003926 | 0.0002  | 104.80          | 0.48      | 1.48    |          |
| 231-81  | 0,588      | 0.011658           | 0.000083  | 0.066999         | 0.003491 | 0.0094  | 74.72           | 0.53      | 1.30    |          |
| 231-82  | 0.539      | 0.024427           | 0.000142  | 0.172456         | 0.007884 | 0.0003  | 155.58          | 0.89      | 1.22    |          |
| 231-83  | 0.404      | 0.014273           | 0.000130  | 0.066820         | 0.004845 | 0.0002  | 91.36           | 0.83      | 1.36    |          |
| 231-84  | 0.946      | 0.001047           | 0.000022  | 0.007538         | 0.001683 | 0.0236  | 6.75            | 0.14      | 1.22    |          |
| 231-85  | 1.228      | 0.011697           | 0.000050  | 0.084354         | 0.003234 | -0.0011 | 74.97           | 0.32      | 1.40    |          |
| 231-86  | 0.468      | 0.036544           | 0.000427  | 0.279196         | 0.014416 | 0.0046  | 231.38          | 2.65      | 1.47    |          |
| 231-87  | 0.925      | 0.002755           | 0.000031  | 0.021573         | 0.002254 | 0.0060  | 17.73           | 0.20      | 1.10    |          |
| 231-88  | 0.753      | 0.039084           | 0.000248  | 0.255831         | 0.009308 | -0.0012 | 247.15          | 1.54      | 1.79    |          |
| 231-89  | 0.546      | 0.011402           | 0.000087  | 0.069491         | 0.007051 | 0.0102  | 73.09           | 0.56      | 1.14    |          |
| 231-90  | 0.428      | 0.027476           | 0.000142  | 0,182071         | 0.006036 | 0.0015  | 174.73          | 0.89      | 1.48    |          |
| 231-91  | 0,730      | 0.033779           | 0.000167  | 0.249278         | 0.006670 | 0.0009  | 214.16          | 1.04      | 1.42    |          |
| 231-92  | 0.725      | 0.002505           | 0.000029  | 0.019382         | 0.001536 | 0.0013  | 16.13           | 0.19      | 1.17    |          |
| 231-93  | 0.478      | 0.018725           | 0.000095  | 0,125709         | 0.002967 | -0.0001 | 119.59          | 0.60      | 1.29    |          |
| 231-94  | 0.731      | 0.016079           | 0.000095  | 0,112063         | 0.004950 | 0.0008  | 102.83          | 0.60      | 1.32    |          |
| 231-95  | 0.645      | 0.013085           | 0.000094  | 0.086173         | 0.003408 | 0.0012  | 83.81           | 0.60      | 1.43    | 1        |
| 231-96  | 0.777      | 0.166095           | 0.000547  | 1 710969         | 0.019286 | 0.0020  | 990.56          | 3.02      | 1.55    |          |
| 231-97  | 0.657      | 0.018779           | 0.000106  | 0.128622         | 0.004376 | 0.0003  | 119.94          | 0.67      | 1 23    |          |
| 231-98  | 0.538      | 0.048349           | 0.000306  | 0.343467         | 0.008808 | 0.0034  | 304 38          | 1.88      | 1.48    |          |
| 231-99  | 0 337      | 0.038063           | 0.000166  | 0.273114         | 0.006255 | -0.0011 | 240.81          | 1.03      | 115     |          |
| 231-100 | 1.185      | 0.013446           | 0.000110  | 0 109337         | 0.004456 | 0.0022  | 86.10           | 0.70      | 1.87    |          |
| 231-101 | 0.800      | 0.087600           | 0.000355  | 0.756550         | 0.016306 | -0.0001 | 541 38          | 2.11      | 1.40    |          |
| 231-102 | 0.309      | 0.036606           | 0.000333  | 0.258401         | 0.010300 | 0.0007  | 232.22          | 1.49      | 1.49    |          |
| 231-102 | 0.550      | 0.037917           | 0.000238  | 0.238401         | 0.007732 | 0.0002  | 232.32          | 1.40      | 1.00    |          |
| 231-103 | 0.563      | 0.057817           | 0.000211  | 0.2/8/23         | 0.007723 | 0.0000  | 126.76          | 1.51      | 2.26    |          |
| 231-104 | 0.555      | 0.008441           | 0.000255  | 0.400804         | 0.019257 | 0.0003  | 420.70          | 0.44      | 1.11    |          |
| 231-103 | 0.034      | 0.014575           | 0.000070  | 0.100815         | 0.003030 | -0.0013 | 95.20           | 0.44      | 1.11    |          |
| 231-106 | 0.924      | 0.014/07           | 0.000062  | 0.098212         | 0.004675 | -0.0005 | 94.11           | 0.40      | 1.14    |          |

| APPE    | NDIX                                | 8-2              | 2 2 2     |                                           |          |         |                                          |           |         |          |
|---------|-------------------------------------|------------------|-----------|-------------------------------------------|----------|---------|------------------------------------------|-----------|---------|----------|
| Summ    | ary of th                           | ie U-Th-Pb z     | ircon dat | es analysed b                             | y ELA-IO | CP-MS   |                                          |           |         |          |
| Mahak   | cam Rive                            | er Detrital Z    | ircon San | nple No. 1232                             | .31      |         |                                          |           |         |          |
| Sample  | <sup>232</sup> Th/ <sup>238</sup> U | Uncorrected      | <u>+</u>  | Uncorrected                               | <u>+</u> | f207    | <sup>207</sup> Pb corrected              | Observed  | Obs/Exp | Exclude? |
| No.     |                                     | 206Pb/238U ratio |           | <sup>207</sup> Pb/ <sup>235</sup> U ratio |          |         | <sup>206</sup> Pb/ <sup>238</sup> U Date | Error     | Error   |          |
|         |                                     |                  |           |                                           |          |         | (Ma)                                     | (± 1s.e.) |         |          |
| 231-107 | 0.496                               | 0.005697         | 0.000056  | 0.030838                                  | 0.002701 | -0.0027 | 36.62                                    | 0.36      | 1.14    |          |
| 231-108 | 0.833                               | 0.016025         | 0.000051  | 0.109627                                  | 0.001641 | 0.0006  | 102.48                                   | 0.32      | 1.97    |          |
| 231-109 | 0.713                               | 0.016063         | 0.000109  | 0.112473                                  | 0.003772 | 0.0008  | 102.72                                   | 0.69      | 1.68    |          |
| 231-110 | 0.672                               | 0.033828         | 0.000113  | 0.241097                                  | 0.005242 | -0.0001 | 214.46                                   | 0.71      | 1.27    |          |
| 231-111 | 0.561                               | 0.000780         | 0.000014  | 0.002851                                  | 0.001624 | 0.0703  | 5.02                                     | 0.09      | 1.79    |          |
| 231-112 | 0.705                               | 0.033684         | 0.000173  | 0.243396                                  | 0.006712 | 0.0009  | 213.56                                   | 1.08      | 1.32    |          |
| 231-113 | 0.592                               | 0.014241         | 0.000194  | 0.086812                                  | 0.005760 | 0.0028  | 91.16                                    | 1.24      | 1.44    |          |
| 231-114 | 0.590                               | 0.010518         | 0.000051  | 0.075285                                  | 0.002315 | 0.0012  | 67.45                                    | 0.33      | 1.29    |          |
| 231-115 | 0.671                               | 0.018610         | 0.000105  | 0.134611                                  | 0.005361 | 0.0002  | 118.87                                   | 0,67      | 1.10    |          |
| 231-116 | 0.387                               | 0.021567         | 0.000133  | 0.148727                                  | 0.004656 | 0.0003  | 137.55                                   | 0.84      | 1.20    |          |
| 231-117 | 0,469                               | 0.024897         | 0.000220  | 0,199631                                  | 0.007023 | -0.0012 | 158.53                                   | 1.38      | 1.57    |          |
| 231-118 | 0.656                               | 0.019241         | 0.000088  | 0.131649                                  | 0.004294 | 0.0021  | 122.86                                   | 0.56      | 1.15    |          |
| 231-119 | 0.402                               | 0.037680         | 0.000228  | 0.265799                                  | 0.009368 | 0.0031  | 238.44                                   | 1.42      | 1.20    |          |
| 231-120 | 0.907                               | 0.018609         | 0.000090  | 0.137225                                  | 0.004666 | 0.0000  | 118.86                                   | 0.57      | 1.38    |          |
| 231-121 | 0.351                               | 0.039032         | 0.000401  | 0 282921                                  | 0.012211 | 0.0000  | 246.83                                   | 2.49      | 1.48    |          |
| 231-122 | 0.597                               | 0.018345         | 0.000095  | 0.125667                                  | 0.005445 | 0.0017  | 117 19                                   | 0.60      | 1.20    |          |
| 231-123 | 0.705                               | 0.047796         | 0.000237  | 0.337838                                  | 0.007825 | 0.0000  | 300.98                                   | 1.46      | 1.53    |          |
| 231-124 | 0.522                               | 0.020603         | 0.000101  | 0.140604                                  | 0.004890 | 0.0000  | 131.47                                   | 0.64      | 1.06    |          |
| 231-125 | 0.610                               | 0.020003         | 0.000022  | 0.016580                                  | 0.000028 | 0.0052  | 16.43                                    | 0.14      | 1.00    |          |
| 231-125 | 0.884                               | 0.018500         | 0.000022  | 0.105648                                  | 0.012816 | 0.0002  | 118.17                                   | 0.50      | 1.20    |          |
| 231-120 | 0.530                               | 0.002540         | 0.000073  | 0.016560                                  | 0.001573 | 0.0006  | 1635                                     | 0.15      | 0.88    |          |
| 231-128 | 0.748                               | 0.002540         | 0.000023  | 0.118155                                  | 0.001373 | 0.0000  | 112.36                                   | 0.46      | 1.50    |          |
| 231-120 | 0.460                               | 0.017585         | 0.000172  | 0.265700                                  | 0.007175 | 0.0000  | 234.34                                   | 1.10      | 2.33    |          |
| 231-129 | 0.403                               | 0.03/313         | 0.000178  | 0.237021                                  | 0.005670 | 0.0011  | 217.49                                   | 1.05      | 1.65    |          |
| 231-130 | 0.601                               | 0.004313         | 0.000108  | 0.005538                                  | 0.000500 | -0.0044 | 7 72                                     | 0.13      | 1.85    |          |
| 231-131 | 0.438                               | 0.001198         | 0.000020  | 0.120362                                  | 0.000390 | 0.0033  | 111 60                                   | 0.78      | 1.58    |          |
| 231-132 | 0.436                               | 0.057941         | 0.000123  | 0.120302                                  | 0.003799 | 0.0005  | 363.00                                   | 1.46      | 1.56    |          |
| 231-133 | 1.140                               | 0.037941         | 0.000239  | 0.442470                                  | 0.007830 | 0.0003  | 97.19                                    | 0.44      | 1.00    |          |
| 231-134 | 1.149                               | 0.013010         | 0.000009  | 0.100737                                  | 0.003227 | 0.0025  | 115 77                                   | 0.44      | 2.67    |          |
| 231-135 | 0.651                               | 0.018120         | 0.000142  | 0.136435                                  | 0.011313 | 0.0004  | 228.06                                   | 1.12      | 1.06    |          |
| 231-130 | 0.651                               | 0.057705         | 0.000180  | 0.208495                                  | 0.008020 | 0.0029  | 215.02                                   | 1.12      | 1.00    |          |
| 231-137 | 0.000                               | 0.030228         | 0.000200  | 0.397200                                  | 0.021345 | 0.0014  | 02.40                                    | 0.44      | 1.34    |          |
| 231-130 | 0.797                               | 0.152240         | 0.000009  | 1 401992                                  | 0.002733 | -0.0002 | 014.12                                   | 2.22      | 2.51    |          |
| 231-139 | 0.794                               | 0.132349         | 0.000370  | 0.005276                                  | 0.010205 | 0.0001  | 5 25                                     | 0.07      | 1 30    |          |
| 231-140 | 0.505                               | 0.000830         | 0.000010  | 0.262340                                  | 0.000417 | 0.0027  | 220.02                                   | 1.25      | 1.30    |          |
| 231,142 | 0.016                               | 0.000475         | 0.000201  | 0.007022                                  | 0.001252 | 0.0010  | 4.16                                     | 0.14      | 1.53    |          |
| 231-142 | 1 222                               | 0.500323         | 0.000022  | 21 758117                                 | 0.113777 | 0.0272  | 3027.11                                  | 8 56      | 2.12    |          |
| 231-143 | 0.485                               | 0.039525         | 0.002123  | 0.201850                                  | 0.011107 | 0.0300  | 244.00                                   | 1.84      | 1.51    | _        |
| 231-144 | 0.405                               | 0.000375         | 0.000290  | 0.003806                                  | 0.000575 | 0.0100  | 1.96                                     | 0.04      | 1.51    | _        |
| 231-145 | 1 1 60                              | 0.000289         | 0.000007  | 0.003800                                  | 0.000373 | 0.0037  | 60.40                                    | 0.75      | 1.12    |          |
| 231.147 | 1 352                               | 0.012099         | 0.000118  | 0.075080                                  | 0.011720 | 0.0033  | 83.10                                    | 0.15      | 1.45    | -        |
| 231-14/ | 1.030                               | 0.012988         | 0.000100  | 0.003920                                  | 0.011739 | 0.0010  | 78.00                                    | 1.21      | 1.09    |          |
| 231-148 | 0.424                               | 0.002173         | 0.000190  | 0.104087                                  | 0.000693 | 0.2308  | 5.26                                     | 0.10      | 1.55    |          |
| 231-149 | 1.022                               | 0.000817         | 0.000197  | 0.003819                                  | 0.000083 | 0.0082  | 84.77                                    | 1.10      | 1.59    |          |
| 231-150 | 2.415                               | 0.191206         | 0.001320  | 1 757295                                  | 0.154270 | 0.0077  | 1074.05                                  | 6.00      | 1.00    |          |
| 231-131 | 0.621                               | 0.181290         | 0.001280  | 0.120420                                  | 0.1342/9 | 0.0191  | 110 40                                   | 0.99      | 1.99    |          |
| 231-152 | 0.635                               | 0.018709         | 0.000134  | 0.120430                                  | 0.007411 | 0.012/  | 62.52                                    | 0.63      | 1.45    | _        |
| 431-135 | 0.033                               | 0.009903         | 0.000098  | 0.04/10/                                  | 0.00/12/ | 0.0239  | 03.33                                    | 0.02      | 1.28    |          |

## **APPENDIX 9-1**

## Table 5.1 : Instrumental operating conditions

| Instrument                                     |        | Agilent 7500 Series ICP-MS                                                   |
|------------------------------------------------|--------|------------------------------------------------------------------------------|
| RF Power                                       | :      | 1200 W                                                                       |
| <b>RF</b> Matching                             | :      | 1.7 V                                                                        |
| Nebuliser                                      | :      | Concentric Nebulizer                                                         |
| Carrier gas flow rate                          | :      | 0.86 L / minute                                                              |
| Make up gas flow rate                          | :      | 0.1 L / minute                                                               |
| Peripump1                                      | :      | 0.1 rps                                                                      |
| Spray Chamber                                  | :      | Scott Spray Chamber                                                          |
| Spray Chamber Temp                             | :      | 0°C                                                                          |
| Electron multiplier                            | :      | ETP model AF 220, a discrete dynode type                                     |
| Analog mode used at > each analytical session. | 400000 | cps. Pulse to analog conversion factors are measured at the start of         |
| Sensitivity                                    | :      | 350000 cps/ppm for <sup>115</sup> In and 220000 cps/ppm for <sup>238</sup> U |
| Ion collection                                 | :      | peak hopping                                                                 |
| Dwell time and points/                         | beak : | 0.33 seconds, 3 points per peak                                              |
| Analysis time                                  | :      | 33.2 seconds acquisition, 5 repeats                                          |

## Table 5.2 : Interference elements and correction factors

| Main Isotopes | Interference Elements | Type    | Interference Correction Factor |
|---------------|-----------------------|---------|--------------------------------|
| 197Au         | 181Ta                 | oxide   | 0.00169 - 0.00338              |
| 195Pt         | 181Ta                 | nitride | 0 - 0.00002                    |
| 108Pd         | 92Zr                  | oxide   | 0.00307 - 0.00408              |
| 106Pd         | 90Zr                  | oxide   | 0.00291 - 0.00378              |
| 106Pd         | 66Zn                  | argide  | 0.00003 - 0.00028              |
| 105Pd         | 89Y                   | oxide   | 0.00171 - 0.00203              |
| 105Pd         | 65Cu                  | argide  | 0.00005 - 0.00028              |
| 105Pd         | 67Zn                  | argide  | 0 - 0.00201                    |
| 103Rh         | 63Cu                  | argide  | 0.00004 - 0.00015              |
| 103Rh         | 89Y                   | nitride | 0                              |
| 102Ru         | 62Ni                  | argide  | 0.00004 - 0.00009              |
| 102Ru         | 64Zn                  | argide  | 0-0.00023                      |
| 101Ru         | 61Ni                  | argide  | 0.00004 - 0.00010              |
| 101Ru         | 63Cu                  | argide  | 0 - 0.00001                    |
| 99Ru          | 59Co                  | argide  | 0.00002 - 0.00004              |
| 99Ru          | 61Ni                  | argide  | 0.00002 - 0.00005              |

1

| APPEN        | DIX 9-2      | 2             |           |               |             |             |             |
|--------------|--------------|---------------|-----------|---------------|-------------|-------------|-------------|
| T 11 7 4     | The part     |               |           |               |             |             |             |
| Table 5.3    | : The PGE    | , Au and Cu   | abundance | es in the int | rusive ande | site of the | Kelian area |
|              |              |               |           |               | <u> </u>    |             |             |
| Magerang     | -Imang ho    | ornblende a   | indesite  |               | Concentra   | tion in pp  | b           |
| Rhenium      | Gold         | Palladium     | Platinum  | Rhodium       | Rutheniun   | Iridium     | Osmium      |
| 0.31189      | 0.03031      | 1.96281       | 1.35374   | 0.11536       | 0.12894     | 0.09977     | 0.09843     |
| 0.38513      | 0.07464      | 1.60800       | 1.10856   | 0.08917       | 0.06046     | 0.06093     | 0.07410     |
| 0.33771      | 0.07667      | 1.55507       | 2.28478   | 0.10468       | 0.09177     | 0.10219     | 0.35065     |
| 0.09383      | 0.01974      | 1.17937       | 1.41749   | 0.06674       | 0.05085     | 0.05855     | 0.03101     |
| 0.03600      | 0.01231      | 1.09482       | 0.59424   | 0.03515       | 0.04404     | 0.03671     | 0.02621     |
| 0.09285      | 0.01445      | 0.42364       | 0.23111   | 0.01635       | 0.02389     | 0.01249     | 0.06398     |
| 0.04634      | 0.01285      | 0.25408       | 0.12318   | 0.00644       | 0.00569     | 0.01445     | 0.00898     |
| 0.05336      | 0.00340      | 0.18886       | 0.11302   | 0.00874       | 0.00487     | 0.00348     | 0.00658     |
| Nakan py     | roxene and   | lesite        |           |               |             |             |             |
| Rhenium      | Gold         | Palladium     | Platinum  | Rhodium       | Rutheniun   | Iridium     | Osmium      |
| 0.02981      | 0.03975      | 1.91621       | 1.15147   | 0.07521       | 0.07504     | 0.01814     | 0.01306     |
| 0.02815      | 0.01448      | 1.69341       | 1.40663   | 0.06010       | 0.05463     | 0.01821     | 0.01784     |
| 0.09336      | 0.07003      | 2.85392       | 1.84565   | 0.12115       | 0.07676     | 0.02824     | 0.01193     |
| 0.02264      | 0.01342      | 1.65053       | 0.87799   | 0.04898       | 0.03767     | 0.01276     | u.d.1       |
| 0.02733      | 0.00408      | 0.99628       | 0.48053   | 0.02730       | 0.02217     | 0.00795     | u.d.l       |
| 0.02820      | 0.00461      | 0.96152       | 0.57654   | 0.03878       | 0.02101     | 0.01611     | 0.00630     |
| Kelian Mi    | ne altered   | andesite      |           |               |             |             |             |
| Renan Mi     | Cold         | Palladium     | Platinum  | Dhodium       | Duthonium   | Iridium     | Osmium      |
| 0 12540      | 0 80488      | 1 37616       | 0.87772   | 0.04105       | 0 11848     | 0.00701     | 0.00262     |
| 0.03376      | 0.00720      | 0.18080       | 4.07184   | 0.03613       | 0.11040     | 0.00791     | 0.00202     |
| 0.05441      | 4.45700      | 0.15086       | 0.06006   | 0.00370       | n d l       | 0.00792     | 0.01258     |
| 0.05551      | 0.03086      | 0.13080       | 0.00090   | 0.00370       | 0.00/19     | 0.01103     | 0.01556     |
| 1 12100      | 11 46116     | 0.11070       | 0.04704   | 0.00343       | 0.00410     | 0.00075     | 0.02030     |
| 1.13109      | 11.40110     | 0.34994       | 0.00011   | 0.06556       | u.u.1       | 0.01197     | 0.08005     |
| Fusion Bla   | ank (avera   | ge values)    |           |               |             |             |             |
| Rhenium      | Gold         | Palladium     | Platinum  | Rhodium       | Rutheniun   | Iridium     | Osmium      |
| 0.03233      | 0.01518      | 0.06247       | 0.02372   | 0.00257       | 0.00235     | 0.00277     | 0.01917     |
| Mantle va    | lues (Barn   | es et al., 19 | 88)       |               |             |             |             |
| Rhenium      | Gold         | Palladium     | Platinum  | Rhodium       | Ruthenium   | Iridium     | Osmium      |
| 0.35         | 1.2          | 4.4           | 8.3       | 1.6           | 5.6         | 4.4         | 4.2         |
| u.d.l. : und | er detection | n limit       |           |               |             |             |             |