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Abstract 

Ocean acidification and thermal stress due to anthropogenic greenhouse gas emissions 

present significant, potentially interacting, threats to the future of coral reefs. Coastal 

reef environments, as in the case of the Great Barrier Reef (GBR), can also be exposed 

to terrestrial stressors. This thesis evaluates the combined effects of ocean acidification, 

rising temperatures and river inputs on the calcification of Porites corals along a 

transect across-shelf the central GBR, north of Townsville. Calcification rates were 

obtained for 41 long-lived Porites corals from 7 reefs, in an inshore to offshore transect 

across the central GBR. The boron isotope composition (δ11B) of selected cores was 

used to reconstruct annual and sub-annual changes in seawater pH in inner-shelf and 

mid-shelf environments. These unique seawater pH records are integrated with sea-

surface temperature, river discharge and rainfall records to assess the nature and cause 

of seasonal, interannual, decadal and long-term (~50 years) trends in coral calcification. 

 

Significant across-shelf differences in the temporal variability and long-term evolution 

of coral calcification are documented and can be related to local and global-scale 

changes in environmental conditions and water quality. Corals in the mid-shelf and 

outer-reef regions of the GBR exhibit an increase in calcification of 10.9±1.1% (±1 

S.E.) and 11.1±3.9% respectively since ~1950 which are associated with the rise in sea-

surface temperatures. However, calcification rates of mid-shelf corals show a decline of 

3.3±0.9% over the recent period (1990-2008). This may indicate that a thermal optimum 

for calcification has been reached. Calcification rates in inner-shelf reefs over 1930-

2008 display a long term trend of decreasing calcification of 4.6±1.3%. The interannual-

decadal component of variation is modulated by wet and dry periods, particularly during 

the last ~40 years. The negative effects of bleaching on coral growth are evident in 

inshore reefs, and are particularly strong during 1998, with a significant recovery 

occurring after 3 years. This translates to constant calcification rates of 1.1±2.0% for the 

inner-shelf reefs over 1990-2008. These results highlight the need to consider regional 

differences in environmental factors when assessing and predicting changes in the GBR. 

 

Sub-annual and annual variation in the δ11B of inner-shelf corals record seasonal and 

interannual seawater pH changes of up to 0.5 pH units. This variability is overlain on a 

long-term decrease of 0.02 pH units per decade, consistent with estimates of surface 

seawater acidification due to rising atmosphere CO2 levels. Sub-annual low δ11B (pH) 
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values occur in summer and partly reflect the effects of higher temperatures and 

increased calcification (a source of CO2). Higher δ11B (pH) values are observed in wet 

years when nutrients supplied by river run-off promote extensive phytoplankton blooms 

that take up CO2 and increase seawater pH. Decreased calcification of inner-shelf corals 

during large flood events, despite higher pH conditions, may reflect increased shading, 

turbidity, sedimentation and/or competition for carbon. The complex interactions 

between processes that can affect coral calcification, particularly in coastal zones, need 

to be considered when predicting the future of coral reefs in warmer and more acidic 

oceans.  

 



 1

1. General introduction, project overview and 

literature review 

1.1. General introduction 

Coral reefs are unique and diverse marine ecosystems that are built on the calcium 

carbonate skeletons and cement secreted by corals, calcareous algae and other reef-dwellers 

(Kleypas et al. 2001; Buddemeier et al. 2004). Coral reefs provide nursery habitat, shelter 

and food for many organisms as well as contribute to the efficient recycling of nutrients 

(Buddemeier et al. 2004; Lough 2008b). Coral reefs are also a source of biochemical 

compounds and construction materials and provide important services to human society; 

including fisheries, tourist industries and coastal habitations (Hoegh-Guldberg et al. 2007). 

Global warming due to rising greenhouse gases and the closely linked effect of ocean 

acidification, as well as overexploitation by anthropogenic activities (overfishing, increased 

nutrient and sediment loading, pollution, direct destruction, and habitat modification), are 

threatening the future of coral reefs (Done 1999; Buddemeier et al. 2004; Hoegh-Guldberg 

et al. 2007; Lough 2008b). It has been predicted that under current scenarios coral reefs will 

undergo a phase shift towards seaweed dominated ecosystems, reduced biodiversity and 

accretion processes will fail to outcompete erosion (Hoegh-Guldberg et al. 2007; Lough 

2008b; Hughes et al. 2010; Andersson and Gledhill 2013). In the Great Barrier Reef (GBR) 

coral reefs have grown adjacent to the continental land mass where they are affected by 

terrestrial runoff (Furnas 2003), particularly inner-shelf reefs. Agricultural and urban 

development have modified river catchments and resulted in increased nutrient, pesticide 

and sediment fluxes to the GBR (McCulloch et al. 2003; Brodie et al. 2010a). In fact 

terrestrial pollution and its link to outbreak of crown of thorns starfish together with fishing 

and climate change are considered the main stressors to the GBR (see Brodie and 

Waterhouse 2012). These localized changes overlay the global scale changes due to ocean 

warming and acidification. Predicting the future of coral reefs in the GBR and elsewhere 

requires knowledge of the interactions between these global and local changes. The 

synergistic effect of multiple stressors could exacerbate the effect of a single stressor and 

produce threshold responses (Knowlton 2001; Manzello 2010). For example the reduction 

in aragonite saturation state is feared will reduce the calcification rates in corals which in 
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turn could increase their vulnerability to storm damage (Done 1999). The increase in 

frequency of storms and other extreme events, like coral bleaching, are believed to in turn 

reduce calcification rates and cause mass mortality leading coral communities to a degraded 

state (Done 1999; Baker et al. 2008).  

 

Scleractinian corals record changes in calcification rates and past environmental conditions 

in the form of growth bands and geochemical proxies that are incorporated into their 

carbonate skeleton. The information of growth bands provides important information on 

coral calcification and its relationship to environmental parameters (Lough 2008a; Lough 

and Cooper 2011). The geochemical proxies have been extensively used as tracers for sea 

surface temperature (SST) and salinity changes in the ocean (see reviews by Cohen and 

McConnaughey 2003; Corrège 2006a). One relatively novel proxy is δ11B which has been 

used to reconstruct seawater pH (Pelejero et al. 2005; Wei et al. 2009). The combined 

information from growth parameters and the δ
11

B proxy obtained from Porites corals in the 

central GBR will be explored further in this study. This information not only extends our 

knowledge of past environmental variability, but can also be used to develop models for 

future predictions of the sustainability of coral reef systems.  

 

1.2. Project scope and aims 

The primary goal of this study was to contribute to the understanding of how coral growth 

has responded to the combined effects of increased temperatures, ocean acidification and 

decrease in water quality on the central GBR during the last ~80 years. This is divided into 

two subordinated goals: (1) to test if the temporal changes in coral growth of Porites coral 

colonies are spatially consistent across an inner-shelf to outer-shelf transect in the central 

GBR. This transect represents a transition from a sheltered, more turbid, and terrestrial-

influenced environment (inner-shelf) to more exposed, less turbid, oceanic waters at the 

edge of the continental shelf (outer shelf; Lough and Barnes 2000). (2) Apply the δ11B 

paleo-proxy to Porites coral colonies from inshore and mid-shelf environments to 

reconstruct seawater pH. Particularly looking at how the pH is affected in the inner-shelf 

environment that during flood events receives the terrestrial influx of fresh water, 

sediments and nutrients. The obtained calcification data and reconstructed seawater pH 
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were compared to assess how these two parameters relate to each other in the inner-shelf 

and mid-shelf reefs of the central GBR. 

 

This thesis is organized as follows:  

• Chapter 1 provides a summary of the current state of the literature on ocean 

acidification and the use of corals as a source of environmental information from 

calcification rates and the δ
11

B proxy. 

• Chapter 2 includes a description of the study area for the central GBR and collection 

of coral samples. A description of the instrumental rainfall, river run-off and 

temperature data is also included. 

• Chapter 3 includes LA-ICP-MS data for the well-known environmental proxies for 

temperature and river discharge (e.g. Sr/Ca, U/Ca, Ba/Ca) applied to inner-shelf 

coral samples. These results are compared to previously reported data. A specific 

objective here was to updated previously reported Ba/Ca data for the inner-shelf 

area. Differences between records indicate possible local differences (e.g. island 

mass effects) or vital effects. 

• In Chapter 4 temporal changes in coral growth parameters annual extension, density 

and calcification rates are described of 41 coral cores for the last ~80 years. The 

data is compared in relation to cross-shelf environmental variability and put into 

context of previous studies. 

• Chapter 5 presents a reconstruction and interpretation of changes in surface 

seawater pH during the last ~50 years in the central GBR based on the δ11B 

paleoproxy measured in 3 coral core records. A model explaining the reconstructed 

changes in seawater pH and coral calcification in relation to environmental and 

biological process is postulated. 

 

1.3. Literature review: Coral calcification and ocean acidification  

The future of corals reefs is believed to be at risk from anthropogenic activities associated 

with increased ocean temperature, reduced seawater pH and environmental degradation. Of 

these, coral bleaching associated with thermal stress and increased ocean acidification have 

recently received particular attention from the scientific community as it is believed that 

they could severely affect the process of calcification of scleractinan corals. This review 
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starts by describing how the growth history of corals can be retrieved from information 

stored in the coral skeleton. Also included is a description on how environmental gradients 

relate to spatial and temporal changes observed in coral growth. This is followed by 

describing the changes in seawater carbonate chemistry that lead to ocean acidification and 

how these changes could affect coral calcification. Finally, the scientific basis for the use of 

the δ
11

B seawater pH proxy in coral samples is given. 

 

1.3.1. Coral calcification as a source of environmental information 

Most reef building corals are colonial, hermatypic organisms that belong to the order 

Scleractinia, and are characterized by the precipitation of an aragonitic exoskeleton. The 

coral colonies comprise interconnected anemone-like polyps that reside in a skeletal 

framework formed by individual corallites. The corallite architecture forms a central tube 

structure (collumnella), a series of radiating vertical plates (septa) and surrounding walls 

(theca), which together form the housing for the polyps (Veron 2000). The living tissue 

only occupies the top few millimeters of the skeleton, and it is here that biomineralization 

takes place. As the coral grows it precipitates new layers of skeleton leaving the old 

skeleton unoccupied. Given that many of the organisms that inhabit reefs depend on the 

coral structures, understanding the changes in coral growth rate is arguably a key parameter 

for evaluating the health of the coral reef ecosystem (De'ath et al. 2009; Tanzil et al. 2009). 

Coral growth occurs by vertical extension through the deposition of new material at the 

surface of the coral combined with the slow thickening of the underlying material within 

the tissue layer (Barnes and Lough 1993). Corals grow continuously throughout the year 

but changes in the environmental conditions affect their calcification rates. Massive coral 

colonies typically form of a series of alternating layers (bands) of low and high density in 

the skeleton, which usually represent seasonal variations. These annual/seasonal density 

patterns in massive corals were first identified by Knutson et al. (1972), and since then have 

been used extensively as markers to assign the chronology to coral records. Having a 

precise chronology is essential for accurately reconstructing past environmental conditions. 

If the collection date of coral is known counting back well displayed pairs of high and low 

density bands allows establishing a precise chronology (Lough and Cooper 2011). 
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Massive coral colonies are long-lived (up to hundreds of years) and as they growth a wide 

range of different proxies are incorporated into their skeleton, making corals excellent 

recorders of environmental variability (e.g. see reviews by Druffel 1997; Henderson 2002; 

Cole 2003; Felis and Patzold 2004; Corrège 2006a). This environmental information can be 

stored as changes in the growth parameters, as luminescent bands or as variations in the 

isotopic and elemental composition of the skeleton. The majority of recent studies on 

massive corals are based on geochemical analysis while the information from growth bands 

in corals has been mainly relegated to assist establishing the chronology and selecting 

transects for the geochemical analysis (Lough 2008a; Lough and Cooper 2011). However, 

several studies have demonstrated that coral growth records can be very useful sources of 

environmental information (e.g. Dodge and Lang 1983; Lough and Barnes 1990b; Scoffin 

et al. 1992; Draschba et al. 2000; Lough and Barnes 2000; Carricart-Ganivet et al. 2007; 

Lough 2008a; De'ath et al. 2009; Tanzil et al. 2009; Helmle et al. 2011; reviewed by Lough 

and Cooper 2011). Linking the changes in annual coral growth to changes in the 

environmental variables is an aim in sclerochronology; however, individual environmental 

variables typically explain only a fraction of the variability in coral growth (Helmle et al. 

2011).  

 

Some of the most basic information that can be obtained from coral growth bands is the rate 

of linear extension (cm yr
-1

) and the coral skeletal density (g cm
-3

). The product of linear 

extension and density can then be used to determine calcification rates (g cm
-2

 yr
-1

). Linear 

extension rate in massive Porites is usually directly related to changes in calcification rate 

while these parameters are inversely related to density changes (Scoffin et al. 1992; Lough 

and Barnes 2000; Lough 2008a).  

 

1.3.1.1. Chronology and linear extension 

Of the growth parameters, linear extension rates (also referred as annual extension or 

growth rate) is the easiest to measure and most frequently reported in the literature (Lough 

and Barnes 1990b,2000; Lough and Cooper 2011). Since changes in calcification rates of 

Porites corals are explained mainly by linear extension this variable by itself makes a good 

description of coral calcification (Lough 2011a). Linear extension can be obtained by 

several methods, including direct measurements of density bands from X-rays, gamma and 
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X-ray densitometry profiles, computerized tomography (CT) scans, luminescent bands or 

seasonally driven changes in element composition ratios. 

 

Density bands can be observed by X-radiographic examinations of sections (usually 5 -10 

mm in thickness) of coral cut along the growth axis (Weber et al. 1975). This method has 

been the most commonly used for dating coral records, but the complex three dimensional 

architecture of corals and changes in growth direction can produce artifacts in the X-rays, 

such as multiple bands or ambiguous banding patterns, that can cause difficulties with the 

chronology assignment (Lough and Barnes 1992; Hendy et al. 2003). Gamma densitometry 

and CT densitometry have been also been used to obtain the growth information stored in 

the density bands (e.g. Lough and Barnes 1990b; Bosscher 1993; Lough and Barnes 2000; 

Cantin et al. 2010).  

 

In some coral records, luminescent bands can be observed under UV light. Two types of 

luminescent bands are described in massive Porites corals; intense narrow luminescent 

lines associated with terrestrial run-off and faint luminescent bands associated with the 

annual density bands (Barnes and Taylor 2001; Barnes et al. 2003; Barnes and Taylor 

2005). In the Great Barrier Reef (GBR) the timing and intensity of the narrow luminescent 

lines is often correlated to rainfall and river runoff (Isdale 1984; Lough et al. 2002; Barnes 

et al. 2003; Hendy et al. 2003; Lough 2007). These bands tend to be more common in 

coastal corals that are subject to the effects of river discharge (Isdale 1984), with the 

expression of the luminescent bands reducing with distance from the coast (Barnes et al. 

2003; Lough 2002; Lough 2011a). No significant difference was found in the luminescent 

parameters along a depth transect, from 5 to 15-20 m, in corals from a mid-shelf reef of the 

central GBR (Carricart-Ganivet et al. 2007). The origin of these luminescent bands is still 

debated. Initially they were associated with higher concentrations of fulvic acids from 

terrestrial river input (Boto and Isdale 1985), but later work suggests the luminescent bands 

could be associated to regions of lower skeletal density (Barnes and Taylor 2001). In a 

subsequent study by Barnes and Taylor (2005) they concluded that the high intensity 

luminescent lines cannot originate simply by changes in density but more likely related to 

changes in crystal size and packing, differences in crystal chemistry, or with a combination 

of these possibilities.  
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Finally, the geochemical and isotopic composition of some elements in the coral skeleton 

(e.g. B, Ba, Sr, Mg, U, δ18O) commonly shows strong seasonal variation in response to 

environmental factors such as temperature or salinity (Cole 2003). Therefore, counting the 

number of density or luminescent bands, or geochemical cycles can be used to obtain the 

growth chronology for a coral, while measuring the distance between equivalent parts of 

these bands or cycles can be used to obtain the extension rate (Lough and Cooper 2011). 

 

1.3.1.2. Measurements of coral density 

Two different concepts of coral skeletal density are described in the literature, ‘micro-

density’ and ‘bulk-density’ (Barnes and Devereux 1988; Bucher et al. 1998). Bulk density 

relates to the variations in thickness and spacing of the principal components of the skeletal 

meso-architecture (essentially the septa, thecae and dissepiments) in a given volume 

(Barnes and Devereux 1988; Risk and Sammarco 1991; Le Tissier et al. 1994). Micro-

density refers to the arrangement and organization (packing) of calcium carbonate acicular 

crystals, which are the most fundamental architectural unit of the coral skeleton (Barnes 

and Devereux 1988; Bucher et al. 1998). The variation in the annual density band of 

Porites corals are associated with changes in the meso-architecture, which is the density 

measurement most frequently reported in literature (Barnes and Devereux 1988).  

 

Two methods are described by Barnes and Devereux (1988) to measure density that 

preserve the meso-scale variations of the skeleton. These are direct measurements of the 

volume (e.g. calipers) and the gamma densitometry method. Other methods include the use 

of X-ray densitometry (Buddemeier 1974; Buddemeier et al. 1974; Dodge and Brass 1984; 

Chalker et al. 1985; Dodge et al. 1992; Carricart-Ganivet and Barnes 2007) and CT 

densitometry (Logan and Anderson 1991; Bosscher 1993; Bessat and Buigues 2001; Cantin 

et al. 2010). Other methods destroy the meso-scale variations (e.g. density of powdered 

coral skeleton) or are not affected by it (e.g. water displacement) and therefore provide 

estimates of the micro-density (Barnes and Devereux 1988). The bulk density can be 

measured by the water displacement method by not allowing the voids in the skeleton to fill 

with the weighting medium (e.g. Bucher et al. 1998). Unless indicated otherwise the water 

displacement term will be used here after to refer to estimates of the bulk density. 
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1.3.1.3. Densitometry methods 

One of the main advantages of densitometry methods is that it provides a continuous scan 

of the skeleton at high spatial resolution. High and low density bands can be identified from 

this profile providing a high resolution measurement of the density variations. If the timing 

of the density bands is known (i.e. they are annual) then a chronology can be derived and 

linear extension measured. The gamma densitometry method measures the attenuation of a 

beam of gamma photons across the thickness of a coral slice and the beam is continuously 

scanned along the slice providing a density profile (Lough and Cooper 2011). This method 

has been extensively used in the literature (Chalker and Barnes 1990; Lough and Barnes 

1990a,b,1992,1997; Draschba et al. 2000; Lough and Barnes 2000; Cooper et al. 2008); 

however, it is dependent on having access to specialized technology.  

 

Another common densitometry method used to measure density variations along the growth 

axis is the x-radiograph film densitometry (Buddemeier 1974; Buddemeier et al. 1974; 

Dodge and Brass 1984; Chalker et al. 1985; Dodge et al. 1992; Carricart-Ganivet and 

Barnes 2007). This is an inexpensive method; however, it is sensitive to intensity 

heterogeneity of the X-rays that require careful correction. This is caused by the heel effect 

and spherical spreading (inverse square law; Carricart-Ganivet and Barnes 2007; Duprey et 

al. 2012). Furthermore, this method requires calibration against external standards whose 

absolute density values are obtained from direct measurement of the density, e.g. the water 

displacement technique (Carricart-Ganivet and Barnes 2007). Both of these densitometry 

methods assume the thickness of the coral slab to be constant. Another issue that can 

potentially affect these densitometry methods results from the complex three dimensional 

structures of Porites corals. Slices not following the growth axis and variations in corallite 

orientation can alter banding patterns and result in density bands not being equally well 

displayed (Lough and Barnes 1990b,1992; Le Tissier et al. 1994). Densitometry transects 

are typically only a few mm wide and susceptible to variations in corallite orientation. 

Several tracks are often required to be analysed to obtain a representative average as 

considerable variability is observed even between tracks only 12 mm apart (Lough and 

Barnes 1990a,b). Besides the conventional X-rays the medical X-ray CT scanning of corals 

has also been used successfully to measure variations in density (Logan and Anderson 

1991; Bosscher 1993; Bessat and Buigues 2001). This method is non-destructive allowing 
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coral cores or full colonies to be analysed without slicing them. This permits selection of 

the best track to measure the density variations, as well as providing information to select 

the optimum plane for sectioning (Bosscher 1993; Cantin et al. 2010). 

 

1.3.1.4. Direct measurements of density 

Direct measurements of the density are herein referred to those measurements in which 

density is obtained from the product of the weight and volume of sections or blocks cut out 

from a slice of coral skeleton. Obtaining the volume can be complicated as often coral 

samples do not have regular geometries, thus limiting the use of callipers or other similar 

techniques. The measurement of the volume of removed sections of coral has been archived 

by callipers (Allison et al. 1996), mercury displacement (Dustan 1975; Highsmith 1979), 

frozen material (Carricart-Ganivet et al. 2000) or more typically by water displacement 

(Jokiel et al. 1978; Brown et al. 1990; Risk and Sammarco 1991; Scoffin et al. 1992; 

Bucher et al. 1998; Edinger et al. 2000; Smith et al. 2007; Manzello 2010). These methods 

provide a direct measurement of the density over a larger area and do not require access to 

specialized technology, compared to densitometry methods. However, like all methods it is 

first necessary to carefully establish the chronology of the coral slice using the information 

obtained from luminescent bands, density bands or geochemical composition of the 

skeleton. One limitation of these direct methods is that samples are analysed in blocks 

encompassing several years and hence density is averaged over this period. The water 

displacement method has, however, been used to measure density of samples with an 

annual resolution (Brown et al. 1990) or even sub-annual resolution (Barnes and Devereux 

1988). Applying this method at high resolution can be labour intensive, especially for large 

number of samples. 

  

In the present study the water displacement method was used to estimate the temporal 

variation in density from pieces of coral skeleton (typically 0.7 cm × 2.5 cm × ~5cm in 

size) cut continuously from 41 long cores (~50cm in length; see Chapter 4). This is the first 

time this method has been used on such large scale. The data obtained were found to be 

very useful to extract the common variability in different cores and to describe the long-

term variations in density. This method provides an inexpensive alternative that only 

requires basic laboratory setup and, therefore, can be easily implemented. In the majority of 
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the geochemical studies for corals information on the growth parameters is not included or 

is only used as a mean to establish a chronology (Lough 2008a; Lough and Cooper 2011). 

The availability of this relatively straightforward method could encourage researchers to 

include coral growth information.  

 

1.3.1.5. Growth parameters from different massive Porites species 

Massive heads of Porites in the GBR are represented by five species P. australensis, P. 

lobata, P. lutea, P. mayensi and P. solida (Lough and Barnes 2000; Veron 2000). The 

genera Porites is characterized by a simple meso-architecture in which the vertical and 

horizontal components are less differentiated than in the skeletons of other genera (Barnes 

and Devereux 1988). This makes the precise and exact identification of massive Porites a 

challenging task. This difficulty is increased when working with cores because of the small 

surface available for examination, and because often this surface ends up being damaged 

during coring (Barnes and Lough 1992). Nonetheless, it has been shown that the five 

species of massive Porites found in the GBR show similar growth characteristics, only 

Porites solida shows a significantly higher density (Lough et al. 1999).. Combining the 

growth records from different species of Porites has been a common practice in several 

studies (e.g. Lough and Barnes 2000; Cooper et al. 2008; Lough 2008a; De'ath et al. 2009; 

Carricart-Ganivet et al. 2012). 

 

1.3.2. Spatial and temporal variations in coral growth parameters 

1.3.2.1. Latitudinal variations of coral growth and sea surface temperature  

The distribution of scleractinian corals is geographically constrained to latitudinal and 

depth limits imposed by environmental parameter such as temperature, aragonite saturation 

state, water quality, light and salinity levels (Isdale 1981; Kleypas et al. 1999; Grigg 2006). 

Growth parameters in massive corals usually show variations along environmental 

gradients (Smith et al. 2007). Growth parameters of Porites lobata corals from Hawaii 

exhibit a latitudinal gradient, with an increase in density, and reduction in linear extension 

and calcification towards higher latitudes (Grigg 1982). Average linear extension and 

calcification rates of Porites corals from the GBR increase with the higher SST’s towards 
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lower latitudes (Lough and Barnes 2000). Corals from Thailand, Hawaii, the Arabian Gulf 

and Papua New Guinea were found to adjust to the same linear relationship of ~3 mm yr-1 

per °C for linear extension and ~0.3g cm
–2

 yr 
–1

 per °C for calcification (Lough and Barnes 

2000; Lough 2008a). This spatial relationship of linear extension and calcification of 

Porites corals with temperature shows a stronger correlation with annual minimum SST 

than with annual maximum SST or annual average SST (Lough and Barnes 2000). Similar 

dependence of coral growth rates have been observed and results have been reported for 

other species of corals with a temperature sensitivity of linear extension for the Indo-Pacific 

corals Platygyra of 0.9 mm yr
−1

 per °C (Weber and White 1974) and for the Caribbean 

coral Montastrea annularis 0.94 mm yr
−1

 per °C (Weber and White 1977). A subsequent 

study on Montastrea annularis in the Caribbean indicates the relationship with temperature 

to be the opposite with an increase in density and decrease in linear extension associated 

with higher temperature (Carricart-Ganivet 2004).  

 

1.3.2.2. Across shelf variability  

In the GBR the largest environmental differences in coral communities occurs across-shelf 

(Lough and Cooper 2011) rather than latitudinally along the length of the GBR. This strong 

across-shelf gradient is the result of the transition from a terrigenous influenced 

environment close to the coast to near oceanic conditions in the outer shelf. A marked cross 

shelf variation exists with water properties such as turbidity decreasing towards the outer-

shelf (Done 1982). Inner-shelf reefs are characterized by high sediment loads, poor 

illumination, and high variability in salinity, mainly related to the periodic decrease in 

salinity, silt input and nutrient enrichment, as a result of the discharge from rivers 

(Wolanski and Jones 1981). The diversity of reefs is influenced by this across-shelf 

environmental gradient resulting in a higher diversity in the protected mid-shelf 

environment and decreases in outer and inner-shelf reefs (Done 1982). The skeletal growth 

of Porites corals from the GBR is also influenced by this across-shelf gradient. Growth 

rates tend to show larger variability close to the coast and slower and more consistent rates 

towards the outer-shelf. These patterns are the result of the largest environmental variability 

close to the coast (Isdale 1981). In a pioneer study Isdale (1983) found linear extension 

increased closer to the coast, while in a subsequent study by Risk and Sammarco (1991) 

density show the opposite trend, i.e, increased with distance from shore. In a more 
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comprehensive study by Lough and Barnes (1992), later expanded by Lough et al. (1999), 

they demonstrated that linear extension and calcification increased towards the coast while 

density showed the opposite trend. Furthermore, Lough et al. (1999) found that the inshore 

to offshore pattern was not evident in the south section of GBR; a reduction in tissue 

thickness related to upwelling nutrient enrichment in this area is given as a possible 

explanation for this.  

 

Other regions also show similar differences in near-shore and offshore environments. 

Higher concentration of suspended particulate matter (SPM) in Indonesia (Tomascik and 

Sander 1985) and a decrease in water quality in the Mayotte Island, in the south Indian 

Ocean (Priess et al. 1995), have been linked to reduced extension rates of Porites spp. 

corals. In Porites corals from Thailand linear extension rate decreased, bulk density 

increased while calcification showed no apparent change linked to a gradient of increasing 

hydraulic energy (Scoffin et al. 1992). In the Gulf of Mexico density and calcification rates 

of Montastrea annularis corals decreased along a gradient towards higher turbidity and 

sediment load, while linear extension showed the inverse trend (Carricart-Ganivet and 

Merino 2001). The growth of Montastrea annularis in Barbados was found to vary along a 

gradient of SPM (Tomascik and Sander 1985). Coral growth was found to increase with 

SPM until a certain maximum concentration, after this, coral growth is reduced due to 

smothering, reduced light levels and reduced zooxanthellae photosynthesis (Tomascik and 

Sander 1985). 

 

1.3.2.3. Depth  

Environmental gradients can occur between regions or reefs and even within the different 

zones of a reef or within the same zone of a reef with depth. In fact any factor that affects 

light levels will have an impact on the rates of coral calcification and reef development 

(Done 2011; Veron 2011). There have been several studies that report a decrease in linear 

extension with depth in massive corals around the world. Buddemeier (1974) reported a 

decrease in linear extension with depth for Porites lutea, collected from the Eniwetok Atoll. 

Rosenfeld et al. (2003) reported a significant decrease in linear extension in a colony of 

Porites lutea from the Gulf of Aqaba after it was transplanted from a depth of 6 m to a 

depth of 40 m. Grigg (2006) found a growth optimum depth of 6 m and a critical limit of 
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30-50 m for Porites lobata from Hawaii. Growth rates for Montastrea annularis corals 

have also been shown to decrease as depth increases. Hubbard and Scaturo (1985) found 

that Montastrea annularis on St. Croix clustered into two groups; the first one including 

corals at <12 m and the second those at >18-20 m, with the later showing lower growth 

rates. This marked decrease is associated by the authors to a ‘light compensation depth’ that 

affects photosynthetically driven calcification and suggests that coral growth rates at this 

site is mainly controlled by water depth, light level, turbidity and sedimentation rate. 

Bosscher and Meesters (1993) found a similar decrease of growth rate with depth in 

Montastrea annularis from Curacao that is related to the exponential decrease in light that 

is explained by a photosynthetic hyperbolic tangent function, with a light saturation depth 

at ~15 m. Other studies report similar reductions in growth rates of Montastrea annularis 

occurring at 18 m depth in St. Croix (Baker and Weber 1975; Dodge and Brass 1984) and 

at 15 m depth in Jamaica (Dustan 1975).  

 

A discrepancy occurs for Porites corals from the central mid-shelf GBR where no 

significant trend in growth rate was observed between 0 and 20 meters (Carricart-Ganivet 

et al. 2007). Al-Rousan (2012) showed that the decrease in extension rate with depth for 

Porites corals from the Gulf of Aqaba is almost exponential, with similar values in 

extension rates observed in the first 12 m and significantly decreasing at greater depths. 

This could suggest that the light compensation depth for Porites corals from the mid-shelf 

Rib Reef in the central GBR occurs below 20 m. The combination in light intensity, 

temperature and nutrients, amongst other variables (e.g. wave intensity) at specific 

locations most likely explains the differences in the light compensation depth observed 

between studies.  

 

1.3.2.4. Temporal variability  

Of particular interest is the temporal response of coral growth as this provides a perspective 

against which to assess environmental changes (Bessat and Buigues 2001). For the GBR 

Lough and Barnes (2000) reported an increase of 4% in the calcification rates of massive 

Porites between the two 50 year periods of 1880–1929 and 1930-1979, following a 

corresponding increase in SST. Furthermore, these authors identify that this temporal 

response of calcification varies with latitude over the 20-year periods between 1903–1922 
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and 1979–1998. They estimate an increase in calcification of 5% on the northern part of the 

GBR, 12% on the central GBR and 20% on the south GBR (up to 50% south to the GBR) 

based on the relationship between average calcification and SST. In a subsequent study 

Cooper et al. (2008) documented a decrease in calcification of 15% over the 17 year period 

of 1982 to 2008 for two inshore regions in the northern GBR. This recent decrease in 

calcification was generalized to the whole GBR by De'ath et al. (2009); the suggested 

causes for this decrease are associated with thermal stress and ocean acidification. In their 

study Cooper et al. (2008) describe that the temporal relationship of coral calcification and 

linear extension with temperature is not linear with an optimum value for coral growth of 

26.5°C. Shi et al. (2012) also report a nonlinear relationship with temperature. This 

indicates that after a maximum temperature threshold value is crossed coral growth can be 

significantly reduced. 

 

The widespread response of decreased calcification in the GBR reported by De'ath et al. 

(2009) is yet to be tested as the results from Lough and Barnes (2000) and Lough (2008a) 

suggest that the response of growth in Porites corals in the GBR shows important 

latitudinal and across-shelf variability. The study of Lough (2008a) was focused on growth 

changes over the period of 1960 to 2005 for three reefs from the central GBR, one inshore 

reef, one mid-shelf reef and one offshore reef. The author report a decrease in calcification 

for the inner and outer-shelf reefs; however, no significant change for the mid-shelf reef of 

Rib. Carricart-Ganivet et al. (2012) report an inverse relationship of linear extension and 

temperature for Porites from Rib Reef in the central GBR (1989-2002) and for Montastrea 

annularis corals from the Caribbean (1985-2009). Based on these results Carricart-Ganivet 

et al. (2012) suggests that the temperature threshold values for coral growth may have 

already been crossed at these locations. 

 

In the central Red Sea linear extension of Diplostrea heliopora corals increases as a 

response to the warming of the oceans; however, in the last decade (1998-2008), the 

warmest period, a decrease of 30% is observed (Cantin et al. 2010). The authors suggest 

that the thermal limit for these corals could have been crossed in 1998 as an explanation for 

this decline. An increase of calcification following the rise in temperature is described by 

Bessat and Buigues (2001) on Porites spp. for the period 1800–1990 in Moorea, French 

Polynesia. Tanzil et al. (2009) reported a decrease of ~21% in linear extension and 24% in 
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calcification between 1986 and 2005 for Porites lutea corals from Thailand. It is important 

to note that this is a discrete comparison between two short periods (December 1984–

November 1986 and December 2003–November 2005 and, therefore, highly subject to 

interannual variability and not necessarily representative of a long term trend. Coral 

calcification in Porites corals from the Meiji Reef in the southern South China Sea show a 

moderate increase in calcification rates associated with the rise in temperature during the 

20th century (Shi et al. 2012). A study on massive Porites corals form reefs along an 11° 

latitudinal range in the southeast Indian Ocean off Western Australia show no widespread 

decrease during the 20
th

 century but rather significant regional differences (Cooper et al. 

2012). Montastrea faveolata corals of the Florida Keys show that over 1937-1996 

extension increased, density decreased and calcification remained stable, while the most 

recent decade was not significantly different than decadal averages over the preceding 50 

years for extension and calcification (Helmle et al. 2011). In the western Caribbean Sea a 

decrease in linear extension linked to temperature changes was observed for the corals in 

Siderastrea sidereal corals for the forereef but no significant change was observed in the 

backreef and nearshore (Castillo et al. 2012). 

 

1.3.2.5. Effects of ocean acidification on calcifying organisms 

The process of ocean acidification is detailed in section 1.3.3 and the associated changes in 

the ocean chemistry are described in section 1.3.4. The general effects of ocean 

acidification on calcifying organisms are summarized in section 1.3.5. The effects of ocean 

acidification on corals at a physiological level are described in section 1.3.6, while the 

effects at the community level of the reef are provide in section 1.3.7. 

 

1.3.2.6. Anthropogenic pollution 

The natural reef environment is also disturbed by human influences such as anthropogenic 

pollutants. Toxic substances from sewage pollution may induce metabolic changes in 

corals, decrease rates of growth and reproduction, or reduce viability of corals (reviewed by 

Loya and Rinkevich 1980; Dodge and Brass 1984; Guzman et al. 1994). In Barbados 

reduced growth rates is observed in Montastrea annularis corals exposed to a variety of 

anthropogenic pollutants including discharge from a rum refinery effluent outlet (Runnalls 
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and Coleman 2003). Pollution from crude oil is also reported to have detrimental effects on 

coral reefs. Effects in corals from the Caribbean include reduced growth rates, direct 

damage to tissues, thinning of cell layers and disruption of cell structure, damage to tactile 

stimuli and normal feeding mechanisms, excessive mucus secretion leading to enhanced 

bacterial growth and eventual coral destruction (Dodge and Brass 1984; Guzman et al. 

1994). After a major oil spill on reefs of Panama concentrations of hydrocarbons in reef 

sediments were significantly positively correlated with amounts of coral injury and 

significantly negatively correlated with coral growth, with no signs of recovery 5 years 

after the spill (Guzman et al. 1994). Furthermore, the use of crude-oil emulsifiers is 

believed to enhance the toxic effects of spilt oil (Loya and Rinkevich 1980). Increased 

coastal activities, construction and urbanization during the 1960’s in the Jordanian Gulf of 

Aqaba is linked to significant enrichment in heavy metals and reduction in skeletal 

extension rates of Porites corals (Al-Rousan et al. 2007). A decrease in water quality 

recorded in the coral skeleton as heavy metals is associated with a decrease in growth rates, 

species number, abundance and diversity in corals from Hong Kong (Scott 1990). Guzman 

et al. (2008) found a gradual decline in coral growth linked to increased runoff and 

sedimentation to coastal areas resulting from the construction and operation of the Panama 

Canal. 

 

1.3.2.7. Storms and wave energy 

Wave energy and storm frequency is one of the main factors controlling coral growth and 

reef development (Dollar 1982). There is a typical energy gradient that creates a reef 

zonation based on reef structure and coral community structure (Done 1983). In the Indo-

Pacific massive Porites are more common in the most sheltered environments of the 

backreef and fringing coral reefs (Dollar 1982; Done 1983; Veron 2000). However, the 

variability of coral growth within zones in a reef is not well documented. Smith et al. 

(2007) observed that transplanted coral colonies from the back reef and the forereef 

consistently had higher skeletal growth rates, lower bulk densities, and higher calcification 

rates on the back reef than on the forereef. Coral growth for massive Porites spp. show a 

threshold response to water flow (this is an increase in growth followed by a marked 

decrease after an optimum flow value is crossed), whereas growth of the branching coral 

Porites irregularis increased linearly with flow rate (Goldenheim and Edmunds 2011). In 
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Belize storms cause breakage and scouring of corals at depths of up to 26 m, which 

according to Highsmith et al. (1980) appears to prevent coral reefs from reaching a mature 

state characterized by low calcification and growth rates. Furthermore, these authors predict 

that long-term reef calcification and growth rates are highest on reefs periodically disturbed 

by storms of intermediate intensity. Coral growth and reef accretion in Oahu, Hawaii, show 

that coral growth (linear extension) at optimal depths is comparable along a gradient in 

wave energy at all stations, but significant reef accretion occurs only at wave sheltered 

stations (Grigg 1998). 

 

1.3.3. CO2 in the ocean 

Since the beginning of the industrial revolution there has been an increase in the 

atmospheric CO2 concentrations, from 280 to 394 ppmv, produced mainly by the 

combustion of fossil fuel, cement production, agriculture and deforestation (Royal Society 

2005; most recent CO2 values available from http://scrippsco2.ucsd.edu/, 2013; IPCC 

2007). The present-day rapidly rising level of ~394 ppmv, represents an increase of 114 

ppmv over the last 200 yrs. This is already high in comparison to values observed during 

the previous 800,000 yrs when the atmospheric CO2 concentrations oscillated between 

~180 ppmv (ice ages) and ~280 ppmv (interglacials; Lüthi et al. 2008; Tyrrell 2008). In a 

more recent study Hönisch et al. (2012) suggest that current acidification of ocean related 

to the increase in atmospheric CO2 is occurring at least 10 times faster than during the 

Paleocene–Eocene Thermal Maximum. This indicates that the actual rate of change may be 

unprecedented over the last ~300 million years. Unless emissions are reduced, atmospheric 

CO2 levels are predicted to continue to rise to between 730 ppmv and 1000 ppmv by 2100 

at a rate of about 1% yr
-1

 (Royal Society 2005; Kleypas et al. 2006; IPCC 2007). This rate 

of increase is close to 100 times faster than any changes that have occurred during the 

previous 650,000 years prior to the industrial revolution (Fabricius 2008). 

 

Containing about 38000 Gt C, the oceans are the largest labile reservoir of carbon, 

accounting for 95% of the carbon in the oceanic, atmospheric and terrestrial biosphere 

systems (Royal Society 2005; Kleypas et al. 2006). The oceans are a very important 

component of the carbon cycle actively exchanging large quantities of CO2 with the 

atmosphere and providing an annual oceanic sink of 2.4±0.5 PgCyr-1 for 2010 (Peters et al. 
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2011), with annual rates of CO2 uptake increasing with time (Le Quéré et al. 2009). This 

exchange is governed by Henry’s law of gases; the increase in atmospheric CO2 results in 

an increase of the CO2 concentration in the oceans. Of the anthropogenic CO2 emissions 

released into the atmosphere, only about 40-50% continues to reside in the atmosphere, 

with approximately 20-30% being taken up by the terrestrial biosphere and the remainder 

20-30% absorbed by dissolution into the oceans (Sabine et al. 2004; Canadell et al. 2007; 

Le Quéré et al. 2009; Peters et al. 2011). Due to the slow exchange of waters between the 

surface and deep ocean, most of the carbon absorbed by the ocean is in the surface ocean 

layer (Tyrrell 2008), with 30% at depths shallower than 200 m and around 50% in the first 

400 m (Sabine et al. 2004). 

 

The increase in atmospheric CO2 and other greenhouse gases is responsible for a rise in 

global surface temperatures due to an enhanced greenhouse effect. The CO2 uptake by the 

oceans reduces the concentration of the greenhouse CO2 gas in the atmosphere and, 

therefore, the magnitude of global warming. However, this is at the cost of changing the 

chemistry of seawater, resulting in ocean acidification and a reduction in the carbonate ion 

concentration (Orr et al. 2005; Kleypas et al. 2006). The resulting changes in seawater 

inorganic carbon equilibrium are perhaps the most direct and predictable consequence of 

increased atmospheric CO2 (Kleypas and Langdon 2000; Doney et al. 2009). The CO2 

absorbed by the oceans over the last 200 years has already reduced the pH of the global 

surface ocean by ~0.1 pH units, which is equivalent to a 30% increase in [H
+
] (Royal 

Society 2005). Depending on future emissions scenarios, it is predicted that by 2100 

surface ocean pH will have decreased on average by between 0.14 and 0.4 units (Haugan 

and Drange 1996; Orr et al. 2005; IPCC 2007). These changes in ocean chemistry are likely 

to affect the organisms that inhabit the oceans especially aragonite calcifying organisms 

like scleractinian corals (Kleypas 1999; Langdon et al. 2000; Hoegh-Guldberg et al. 2007). 

 

1.3.4. The Carbonate system in the Ocean 

At modern seawater pH (8.0 to 8.2), dissolved CO2 in the ocean exists mainly as three 

species: CO2(aq), HCO3
-
 (bicarbonate) and CO3

�-
 (carbonate ion). Collectively, the sum of 

these three species is known as dissolved inorganic carbon (DIC). A fourth species, H2CO3 
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(carbonic acid), is short-lived and its trace concentration is usually included with CO2. 

Aqueous CO2(aq) represents around 1% of the total DIC, and of the two electrically charged 

forms, HCO3
- 	is the most abundant, making up around 90% of the total, with the remaining 

9% existing as CO3
�-

. The distribution between the three predominant carbon species varies 

as a function of seawater pH (Figure 1-1), and is temperature, salinity and pressure 

dependent. 

 

Figure 1-1. Bjerrum plot showing concentrations of the major dissolved forms of 

inorganic carbon in seawater. DIC = 2000 µmol kg
−1

, temperature T=15°C, 

salinity S=35, and pressure P = 1 atm (after Zeebe and Wolf-Gladrow 2001). 

 

When CO2 is dissolved into the ocean it reacts quite rapidly (milliseconds) with seawater to 

initially form H2CO3. This is followed by even faster reactions in which this weak acid 

dissociates and releases protons (H
+
) to form HCO3

-
 and CO3

�-
 (Zeebe and Wolf-Gladrow 

2001). As [H
+
] increases with the formation of HCO3

-
, some of the CO3

�-
 ions react with the 

H
+
 to become HCO3

-
. Hence the net effect of increasing CO2 in the atmosphere is to increase 

the oceanic concentrations of H
+
, HCO3

-
, CO2(aq) and H2CO3, and to reduce the 

concentration of CO3
�-

. Based on present day conditions, models indicate that even if CO2 

emissions stabilize, atmospheric CO2 levels will rise to double preindustrial levels by the 

end of the century if not sooner (Kleypas and Langdon 2000). This will decrease the �CO3
2-
 

from ~9% to ~6%, representing a significant overall decrease of ~30% relative to current 

values (Kleypas and Langdon 2000). 
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Because a large part of the released H
+
 reacts with CO3

�-
 to form	HCO3

-
, the changes in pH 

related to the dissolution of CO2 are relatively small; this is referred as the carbonate buffer 

effects (Royal Society 2005). However, as this process consumes some of the CO3
�-

 ions, the 

oceans eventually become under-saturated with respect to CO3
�-

 ions and deposited CaCO3 

starts to dissolve. The solubility of CaCO3 increases with decreasing temperature and 

increasing pressure, thereby making cold- deep carbonate deposits the most susceptible to 

dissolution. The depth at which seawater CaCO3 in seawater dissolves is known as the 

saturation horizon (Royal Society 2005). 

 

Calcium carbonate predominantly exists as two polymorphs: aragonite, with an 

orthorhombic symmetry, and calcite, with trigonal symmetry. The saturation state (Ω) of 

seawater with respect to the calcite or aragonite polymorphs is given by the product of the 

concentrations of the carbonate ions and calcium, at the in situ temperature, salinity, and 

pressure, divided by the stoichiometric solubility product of calcite or aragonite ( *

spK ): 

[ ] [ ]
*

2-2

3 CaCO

sp
K

+⋅
=Ω  

 

For Ω>1, seawater is supersaturated with the mineral phase; Ω<1 indicates under-saturated 

conditions, and where Ω is equal to one saturation is reached; so the saturation horizon is 

defined where Ω = 1. The structural differences between calcite and aragonite make the 

latter more soluble, that is, aragonite has lower saturation state Ω values (Tyrrell 2008). 

 

[Ca
2+

] is conservative in seawater and can be considered almost constant. Therefore the 

saturation state of carbonates in seawater is mainly controlled by the variations in �CO3
2-
, 

and in turn, atmospheric CO2 (Feely et al. 2004). In tropical regions, surface waters are 

supersaturated with respect to all the mineral phases of CaCO3, with aragonite saturation 

state (Ωarag) values currently around 3 to 4 (Kleypas 1999). The tropical oceans are likely to 

remain supersaturated with respect to aragonite with future atmospheric CO2 emissions, but 

the saturation state values will be significantly reduced. A number of studies (e.g. Kleypas 

1999; Royal Society 2005; Hoegh-Guldberg et al. 2007; Erez et al. 2011) predict that this 
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will negatively affect the calcification rates for calcifying organisms like corals, and inhibit 

their ability to compete with non-calcifying organisms. However, as discussed in the next 

section there are still large uncertainties on the response of corals to ocean acidification. 

1.3.5. Effects of increased CO2 on corals 

The decrease in Ωarag and seawater pH associated with the increase in dissolved CO2 in the 

ocean has received much attention in recent years for its potentially negative effect on coral 

calcification (Kleypas 1999; Kleypas et al. 2006; Hoegh-Guldberg et al. 2007; Holcomb et 

al. 2010; Manzello 2010). As described, changes in ocean chemistry due to increasing 

atmospheric CO2 levels are predictable; however, the response of calcifying marine 

organisms and ecosystems to these changes is poorly understood and difficult to predict 

(Kleypas and Hoegh-Guldberg 2008; Vézina and Hoegh-Guldberg 2008). It is generally 

believed that there will be negative impacts on numerous marine taxa (Doney et al. 2009), 

with calcifying organisms considered to be especially at risk (Orr et al. 2005; Fabry et al. 

2008). As a consequence, corals and coral reef ecosystems are of particular concern as their 

existence depends on the massive and complex calcium carbonate structures deposited by 

calcifying organisms such as scleractinian corals and coralline algae. Precipitation of the 

calcium carbonate skeleton can be described in a simple form by the equilibrium reaction: 

3223

2

3

2

3

2

CaCOCOOH2HCOCa

CaCOCOCa

++⇔+

⇔+

−+

−+

 

 

The decrease in Ωarag resulting from the reduction in �CO3
2-
 is expected to result in a 

reduction in calcification rates and/or a reduction in the larval output (Kleypas 1999; 

Langdon et al. 2000; Hoegh-Guldberg et al. 2007), as well as limiting cementation and 

stimulating bioerosion (Manzello et al. 2008). The model of Silverman et al. (2009) 

predicts that when atmospheric pCO2 levels reach 560 ppmv, net calcification of coral reefs 

will approach zero; beyond this level reefs will start dissolving. Any significant reduction 

of calcification rates could inhibit the ability of scleractinian corals to compete with other 

organisms like algae and sponges that can result in an ecological “regime shift” (Kleypas 

and Yates 2009). 
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As described in section 1.3.2.4 a reduction in calcification rates has been observed in a 

number of studies during last ~20 yrs in corals from the GBR (Cooper et al. 2008; De'ath et 

al. 2009), Thailand (Tanzil et al. 2009), the Red Sea (Cantin et al. 2010) and the Arabian 

Gulf (Lough et al. 2003). Increased thermal stress and decreased saturation state both being 

suggested as the plausible causes for this apparent decline (Cooper et al. 2008; Lough 

2008a; De'ath et al. 2009). In situ studies show a decrease in calcification of corals along 

natural gradients of higher CO2, and lower Ωarag and seawater pH (Crook et al. 2013). 

However, experimental studies have revealed widely varying calcification responses of 

different organisms to higher CO2 and lower Ωarag (Doney et al. 2009; Ries et al. 2009). 

Tropical and temperate scleractinian corals are no exception as their response to acidic 

conditions and low Ωarag varies between different experimental studies from a relatively 

linear decrease to either no response or to a nonlinear decrease (Marubini and Atkinson 

1999; Marubini et al. 2001; Langdon and Atkinson 2005; Schneider and Erez 2006; Cohen 

et al. 2009; Holcomb et al. 2010; Jury et al. 2010; Ries et al. 2010; Comeau et al. 2013a; 

Comeau et al. 2013b). Three reasons have been proposed for the variety of responses 

observed. The first explanation is that corals exert control over their pH at the site of 

calcification (Al-Horani et al. 2003; Cohen and Holcomb 2009; Krief et al. 2010; Ries 

2011; Trotter et al. 2011; Venn et al. 2011; McCulloch et al. 2012a). The second is that 

depending on nutrient levels, the extra dissolved inorganic carbon from CO2 dissolution can 

result in either a positive or negative response of calcification depending on the balance 

between the negative effect on saturation state and the positive effect on gross carbon 

fixation (Holcomb et al. 2010). And finally it has been argue that the negative effect of 

declining �CO3
2-
	on the calcification can be partly mitigated by the use of HCO3

- 	for 

calcification (Comeau et al. 2013a). 

 

As corals elevate their pH at the site of calcification this could help them overcome 

environmental changes in the carbonate chemistry. It follows that the response in coral 

calcification to changes in the seawater carbonate chemistry will largely depend on the 

strength of internal pH control at the calcifying fluid (Ries 2011). Data from coral δ
11

B 

suggest that corals maintain a high internal pH at a constant offset to the external pH (Krief 

et al. 2010; Trotter et al. 2011). In a recent study McCulloch et al. (2012a) demonstrated 

that due to the up-regulation of pH at the site of calcification internal changes are 

approximately one-half of those in ambient seawater. This has recently been confirmed by 
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an in vivo experiment that showed a more gradual change of pH at the site of calcification 

relative to the surrounding seawater, leading to an increase in gradient at lower pH between 

the site of calcification and seawater (Venn et al. 2013). However, results from Ries et al. 

(2010) indicate that the response of coral calcification to reduced pH and Ωarag may not be 

linear. Therefore, at the early stages of ocean acidification the response in calcification may 

be weak, but after a pCO2 threshold level is crossed the negative effects on calcification 

changes could be more abrupt and severe (Ries et al. 2010). Given the general lack of field-

based carbonate chemistry data it is not yet possible to make a proper assessment of the 

impacts of ocean acidification on coral calcification. 

 

1.3.6. Physiological effects of CO2 on calcification 

Understanding how coral calcification occurs is critical for predicting the response of corals 

to ocean acidification (Kleypas et al. 2006). Unfortunately, there are still gaps in our 

knowledge as to how calcification occurs at a physiological level (Allemand et al. 2004). 

Calcification is a complex process that is mediated by the coral from a medium that is 

isolated from external seawater. The basic coral unit, the polyp, is a double-walled sack 

with each wall composed of double-sided layers of cells, an ectodermal and an endodermal 

layer (Figure 1-2; Cohen and McConnaughey 2003; Allemand et al. 2004). The aragonite 

skeleton is precipitated in a fluid filled space between the calcioblastic ectoderm. The 

chemistry of this fluid is controlled by the calcioblastic ectoderm. The calcification process 

involves synthesis/secretion of an organic matrix and transport of Ca
2+

 and dissolved 

inorganic carbon to the site of calcification (Allemand et al. 2004). Experimental studies 

indicate that scleractinian corals elevate their internal pH and Ωarag at the site of 

calcification to facilitate the precipitation of their carbonate skeletons (Al-Horani et al. 

2003; Ries 2011; Venn et al. 2011). Two mechanisms have been proposed to elevate the pH 

and Ωarag at the site of calcification: (1) the enzyme carbonic anhydrase catalyzes the 

hydration of CO2 and formation of 	HCO3
-
 (Allemand et al. 2004) but the associated 

production of protons would then reduce the 	CO3
�-

concentration; (2) Ca
2+

 is transported to 

the site of calcification via Ca2+-ATPase and accompanied by the removal of H+ 

(McConnaughey and Whelan 1997; Allemand et al. 2004). With the later mechanism, 

removal of H
+
 increases pH within the site of calcification and promotes diffusion of CO2 
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across the calcioblastic ectoderm increasing both Ωarag and DIC (Cohen and 

McConnaughey 2003). The control of pH by removal of H+ from the calcification site helps 

to explain how corals can tolerate and calcify at low pH conditions (Cohen and Holcomb 

2009), and could provide insight into the response of corals to changes in seawater 

carbonate chemistry. 

 

 

Figure 1-2. (a) Anatomy of a typical coral polyp (http://coralreef.noaa.gov; Gini 

Kennedy). (b) Schematic of the coral tissue showing the ectodermal and endodermal layers 

separated by the mesoglea (modified from Allemand et al. 2004). 
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Calcification by corals and photosynthesis by the zooxanthellae are physiologically linked 

processes, as evidenced by coral calcification rates being usually three times higher in the 

day than at night (Gattuso et al. 1999a). However, details of the relationship between 

calcification and photosynthesis remain controversial with several links proposed (Cohen 

and McConnaughey 2003; Allemand et al. 2004). Photosynthesis is a primary source of 

ATP required for energy dependent processes like calcium transport to the site of 

calcification (Al-Horani et al. 2003) and may further stimulate calcification by supplying 

food (Muscatine 1990) and oxygen in support of coral respiration (Rinkevich and Loya 

1984). Furthermore, modification of the DIC equilibrium by photosynthesis could promote 

carbonate precipitation by lowering the pCO2 in the coral tissue (Goreau 1959). 

Alternatively, it has been postulated that excess H
+
 produced by calcification could be 

neutralized by the OH- produced by the zooxanthellae (Allemand et al. 2004). It has also 

been proposed that photosynthesis contributes to the synthesis of the organic matrix into 

which aragonite crystal are deposited (Gautret et al. 1997; Cuif et al. 1999). 

 

Marubini and Davies (1996) suggested that photosynthesis and calcification compete for a 

limited source of DIC, so that under nutrient-rich conditions the algae population increases 

and calcification decreases. However, Holcomb et al. (2010) found that under high nutrient 

and high CO2 conditions, the excess DIC can alleviate the competition between 

photosynthesis and calcification. In this sense, some of the negative effects on coral 

calcification caused by ocean acidification could be reduced by the accompanying increase 

in DIC. It follows that the response of calcification to changes in CO2 depends on multiple 

factors, including the Ωarag, light, temperature, DIC, nutrient levels (Holcomb et al. 2010), 

as well as factors that influence the internal pH control at the site of calcification (Cohen 

and Holcomb 2009; Ries et al. 2009; Ries 2011; Trotter et al. 2011). 

 

1.3.7. Effects of elevated CO2 on coral reef communities 

In addition to physiological changes of the coral and zooxanthellae, there is also the 

community level response to increased CO2. This can be especially important in semi-

isolated environments (e.g. enclosed lagoons) and/or highly productive areas where 

biological processes actively modify the seawater chemistry (e.g. Hinga 2002; Andersson et 

al. 2005; Bates et al. 2010; Anthony et al. 2011; Drupp et al. 2011). Little is known about 
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the impact of ocean acidification in coastal environments, where organisms are subject to 

natural variations as large as one pH unit on both seasonal and daily timescales (Hinga 

2002). Reconstructed seawater pH from coral δ
11

B suggests that there is significant sub-

annual, interannual, and also decadal variability of around 0.3 pH units in the coral reef 

systems that have been studied to date (Pelejero et al. 2005; Wei et al. 2009). These 

variations are significantly larger than the long-term trend in surface ocean pH (i.e. -0.020 

pH units per decade) and also the open ocean seasonal variability of 0.1 pH units (Pelejero 

et al. 2010). Coral reef metabolism influences the seawater chemistry and is controlled by 

the balance between calcification-dissolution and production-respiration (Gattuso et al. 

1995; Bates et al. 2010). Respiration of organic matter and calcification shifts seawater pH 

to lower values through the generation of CO2, whereas photosynthesis removes CO2, 

shifting the equilibrium towards higher pH values. Changes in seawater pH are mainly the 

result of the uptake and release of CO2, but are also affected by the metabolic uptake and 

release of nutrients. For instance, assimilation of NO�
 increases the alkalinity and pH 

whereas assimilation of NH�
� has the opposite effect (Gattuso et al. 1999b). The magnitude 

of metabolically driven changes in pH also depends on the rate of equilibration with the 

atmosphere (Hinga 2002), and with the action of waves and wind promoting faster 

exchange. 

 

1.3.8. Coastal environments and the effect of river plumes on carbonate 

chemistry: the Burdekin River  

The GBR is the world’s largest coral reef ecosystem. It extends along the continental shelf 

of the northeastern Australia margin for a distance of 2300 km, and includes 3,244 

catalogued reefs that cover an estimated area of 20,000 km
2
 or 10% of the continental shelf 

(Hopley 1982; Furnas 2003). The majority of these reefs are freestanding platform reefs 

that are located in the outer waters of the continental shelf generally immersed in low 

nutrient, clear oceanic waters (Furnas 2003; Hopley et al. 2007). However, about 900 reefs 

are fringing reefs, proximal to the mainland or islands near the coastline (Hopley et al. 

1989; Furnas 2003; Devlin and Brodie 2005) and subject to a range of terrestrial influences. 

The northern part of the GBR has the highest reef density and compromises a sequence of 

ribbon reefs, and, as the shelf is narrow, most of these reefs are influenced by terrestrial 

runoff. The central area, categorized as “Dry tropics”, has the lowest reef density of the 
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GBR and is affected by the largest river discharge (Devlin et al. 2001; Devlin and Brodie 

2005). Broad widely distributed patch reefs characterize the southern GBR, where the shelf 

widens to 200 km and the majority of reefs are well separated from land, making them less 

susceptible to terrestrial influences (Furnas and Mitchell 1997). 

 

The continental drainage basins draining into the GBR between the tip of Cape York and 

Fraser Island have an aggregate area of 425,000 km2 (Furnas and Mitchell 2001). This 

study focuses on reefs from the central GBR, which are mainly affected by the Herbert 

River and Burdekin River basins. The Burdekin River has the second largest drainage area 

(covering 130,000 km
2
) and largest mean annual flow (9.7 billion m

3
 yr

-1
) in the GBR 

Marine Park with annual discharge reaching up to 50 km
3
 during the biggest flood events 

(King et al. 2001; Furnas 2003). The Burdekin River episodically floods to some degree in 

most years, but the duration and intensity of the flood events, and therefore river runoff, are 

characterized by high year-to-year and decadal variability (Furnas 2003; Lough 2007). 

 

Most of the river discharge (70%) occurs during the wet-season in the form of flood events 

limited to the Austral summer (December-March), with the peak in river discharge 

following discrete storms or cyclonic events (Furnas and Mitchell 2001; King et al. 2001; 

Lough et al. 2002; Furnas 2003). After the wet season little or no freshwater discharge 

occurs (Devlin and Brodie 2005). The discharge from the river forms a low salinity buoyant 

plume (usually 10-20 m thick) which can extend for hundreds of kilometers along the coast 

(Figure 1-3 and Figure 1-4) and can last up to several weeks (Devlin et al. 2001). The 

plume is progressively dispersed (usually drifting in a northward direction) and mixed by 

the winds and currents (King et al. 2001; Furnas 2003). As some inner-shelf reefs and mid-

shelf reefs are periodically exposed to these low salinity waters, their habitants are 

susceptible to major river runoff events. River runoff is the main input of terrestrial 

material and contaminants on the GBR (Devlin et al. 2001; Brodie et al. 2012b); this is 

reflected in higher concentrations of dissolved nutrients, particulate matter and plankton 

biomass near the coast (Furnas 2003). In the case of the Burdekin River 98% of the nutrient 

load is discharged during flood events (Brodie et al. 2010b). Despite being short lived, 

monitoring of the water quality (e.g. suspended particulate matter and chlorophyll level) 

indicates that most flood plume events can have impacts that last far longer than the 

duration of the plume intrusion (Devlin et al. 2001; Devlin et al. 2008). As the plume 
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waters are transported away from the river mouth SPM decreases while dissolved nutrients 

remain high; the combination of increased light and dissolved nutrients leads to an increase 

in phytoplankton mass (Devlin et al. 2008). The levels of chlorophyll-a (an indicator of 

phytoplankton biomass) are higher in waters of the central and south GBR adjacent to 

catchments with agricultural development compared to those less disturbed catchments 

typical of the northern regions of the GBR (Brodie et al. 2007).  

 

 

 

Figure 1-3. Satellite image from the 2011 flood event showing the Burdekin River 

plume.  
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Figure 1-4. Salinity map of the simulation for the 1991 strong flood of the Burdekin 

River after 63 days of flooding (after King et al. 2002). 

 

Changing land-use practices since the arrival of European settlers has produced an increase 

in discharge of terrestrial material from the Burdekin River into the GBR (Furnas 2003; 

McCulloch et al. 2003; Lewis et al. 2007). Because river plumes are generally acidic (lower 

pH) relative to the ocean waters, this could affect the development of coastal calcifying 

organisms (i.e. corals, shellfish). Salisbury et al. (2008) have suggested that a reduction in 

Ω in the Gulf of Maine to levels around 1.5 during river discharge events is a potential 

threat to shellfish of that area. These authors also estimated Ω from salinity for several 

rivers plumes of the world (Figure 1-5). Based on their modeling and considering that 

salinity values close to the inner-shelf reefs off the coast from Townsville can be as low as 

24 ppt during large Burdekin flood events (King et al. 2001; Figure 1-4) Ωarag could be 

reduced to values close to 3 for these reefs. This is below the limit of ~3.2 suggested for 

coral reef development (Kleypas 1999; Hoegh-Guldberg et al. 2007). Salisbury et al. (2008) 



 30

suggest that the potential effect of low Ω of river plumes on calcifying organisms could be 

exacerbated as atmospheric CO2 increases and the patterns of river discharge change. It 

follows that the episodic discharge of acidic waters from rivers to inner-shelf corals of the 

GBR could be adding to the stress caused by global acidification. 

 

 

Figure 1-5. Estimated Ωarag vs. salinity for several major world river 1, Mississippi; 

2, Yangtze;3, Nile; 4, Congo; 5, Amazon; 6, Mekong; 7, Orinoco; 8, Yenisey; 9, 

Amur; 10, MacKenzie; 11, Ob. The different colors are used to denote the strong 

grouping of rivers by alkalinity and latitude (after Salisbury et al. 2008). 

 

1.3.9. Boron isotopes in marine carbonates 

1.3.10. Past changes from δ
11

B as a seawater pH paleo-proxy  

To make predictions about the impact of future increases in atmospheric pCO2 and 

accompanying acidification of the surface ocean, it is important to determine the baseline 

natural variability. Unfortunately, pH measurements are sparse to non-existent and long 

time-series in the Pacific are limited to the HOTS open ocean station in Hawaii (Dore et al. 

2009). The longest time-series for seawater carbonate parameters in the GBR comes from 

Heron Island where monitoring commenced in 2009 (http://www.pmel.noaa.gov/co2/) 

Interest in boron isotope (δ11B) composition of marine carbonates has grown in recent 
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years, as a means of constraining past changes in the global carbon cycle and atmospheric 

CO2 (e.g. Hönisch et al. 2003; Pelejero et al. 2005; Wei et al. 2009). The δ11B composition 

of different biogenic carbonates has been used to estimate changes in pH of the ocean. This 

technique has been applied to foraminifera (Spivack et al. 1993; Sanyal et al. 1997; Foster 

2008; Hönisch et al. 2009; Rae et al. 2011; Henehan et al. 2013). Its application to corals 

has been evaluated by Hönisch et al. (2004), Reynaud et al. (2004) and Trotter et al. (2011), 

and has been successfully used for seawater pH reconstructions using massive Porites 

corals by Pelejero et al. (2005), Liu et al. (2009), Wei et al. (2009), Douville et al. (2010) 

and Shinjo et al. (2013). Reported [B] in corals vary from ~40 to 80 ppm with a typical 

value of 50 ppm, about 5 times higher than in foraminifera (Vengosh et al. 1991; Hemming 

and Hanson 1992; Gaillardet and Allègre 1995). The high [B] found in coral skeletons, in 

addition to their fast and continuous growth rates, makes corals ideal for reconstructing past 

pH changes in seawater (Hemming et al. 1998) 

 

The δ
11

B seawater pH paleo-proxy relies on the preferential incorporation in marine 

carbonates of the isotopically lighter B�OH�4
-
 over the B�OH�� species and the pH control 

on the relative species concentration and isotopic distribution (Hemming and Hanson 1992; 

Hönisch et al. 2004). Because changes in seawater pH depend on the HCO3
-
/CO2 ratio, and 

the HCO3
-
 content of seawater is essentially constant, at least on short timescales (<10

6
 

year), the changes in δ11B composition can be interpreted as reflecting variations in the 

atmospheric pCO2 (Hemming et al. 1998). Accordingly, reconstructions of past seawater 

pH variations can help to better understand the effects and implications of increased 

atmospheric pCO2 in the oceans. In the same way the information from this proxy can 

contribute to a better understanding of the effects of ocean acidification on corals reefs. 

 

1.3.10.1. Boron in seawater 

Dissolved B in seawater comprises two dominant species: boric acid B�OH�� and the borate 

anion B�OH�4
-
 (Hershey et al. 1986). At low concentrations, the distribution of these 

aqueous B species is related to pH though the equilibrium reaction: 

( ) +−
Η+ΟΗΒ↔ΟΗ+ΟΗΒ 423)(  (Hemming and Hanson 1992). 
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The relative proportion of the two species is dependent on pH according to the relationship: 

( )[ ][ ]
( )[ ]

BpK−
+−

= 10
OHB

HOHB

3

4  (Gaillardet and Allègre 1995) 

with the dissociation constant of boric acid (pKB) defined by a value of 8.597 at T=25 and 

S=35 (Dickson 1990). At low pH, virtually all B in seawater exists as the B�OH�� species; 

at high pH B dominantly occurs as the B�OH�4
-
 species (see  

 Figure 1-6). In seawater at a typical modern pH of 8.2, ~80% of the B is present as B�OH�� 

and ~20% as B�OH�4
-
 (Hemming and Honisch 2007). 

 

Boron has two stable isotopes, 10B and 11B, with abundances of 19.82% and 80.18%, 

respectively (Barth 1993; Coplen et al. 2002). Variations in natural samples are given in 

conventional δ notation, such that:  

( ) 3

standard

sample11 101
R

R
‰Bδ ×








−







=  

(relative to NBS SRM-951 standard), where R = 
11

B/
10

B (Barth 1993). The 
11

B/
10

B ratio of 

the NBS SRM-951 standard is certified as 4.04362±0.000137 (2σ) for the Positive Thermal 

Ionization (PTI) methods (Catanzaro et al. 1970). The isotopic exchange reaction between 

the two B species is given by the equilibrium reaction: 

( ) ( ) ( ) ( )−−
ΟΗΒ+ΟΗΒ↔ΟΗΒ+ΟΗΒ 4

10

3

11

4

11

3

10
 

for which the originally determined fractionation factor α(B3-B4) = 1.0193 at 25°C (Kakihana 

et al. 1977). The borate anion B�OH�4
-
 is therefore enriched in 

10
B relative to boric acid 

(Kakihana et al. 1977). This isotopic offset between the B species is the result of 

differences in the number and modes of vibrational energies (Kakihana et al. 1977). After 

analyzing most of the experimental data to date, Barth (1993) concluded that the isotopic 

exchange between B species, mainly B�� �OH�4
-
 and B�� �OH��, controls the B isotopic 

fractionation and isotopic variations in nature (Kakihana et al. 1977; Palmer et al. 1987; 

Spivack and Edmond 1987; Vengosh et al. 1991). The fractionation factor has recently 

been theoretically recalculated: α(B3-B4) ≥1.030 (Zeebe 2005) and α(B3-B4)=1.026-1.028 

(Rustad et al. 2010), and experimentally determined: α(B3-B4) = 1.0272±0.0006 (Klochko et 

al. 2006).  

 



 

 Figure 1-6. (a) Bjerrum plot for the concentration of B species vs seawater pH. (b) 
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(a) Bjerrum plot for the concentration of B species vs seawater pH. (b) 

Boron isotopic composition of individual aqueous species vs pH calculated from the 

fractionation factor from (Klochko et al. 2006) with the typical values found in 

modern marine carbonates (after Rae et al. 2011). Values at approximately present 

day ocean pH of 8.2 are highlighted (blue line). The isotopic composition of the 

individual B species vs. pH is calculated from the proportion of species and the 

isotope exchange reaction (Vengosh et al. 1991; Hemming and Hanson 1992)

Seawater is enriched in 11B by 40‰ relative to continental material and has a 

+39.5‰ relative to NBS SRM 951 (Spivack and Edmond 1987; Foster 2008)

 
(a) Bjerrum plot for the concentration of B species vs seawater pH. (b) 

aqueous species vs pH calculated from the 

with the typical values found in 

. Values at approximately present 

e line). The isotopic composition of the 

individual B species vs. pH is calculated from the proportion of species and the 

(Vengosh et al. 1991; Hemming and Hanson 1992). 

material and has a δ11B of 

(Spivack and Edmond 1987; Foster 2008). This heavy 
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isotopic composition results from the isotopic fractionation between B species, and the 

preferential adsorption onto detrital clays, secondary minerals formed during the low-

temperature alteration of oceanic crust, and carbonates minerals (Palmer et al. 1987; Barth 

1993). Because the dominantly adsorbed species on active surfaces are the negatively 

tetrahedral charged species, the marine environment becomes enriched in the isotopically 

heavier trigonal species (Barth 1993). 

 

1.3.10.2. Boron in marine carbonates 

The δ
11

B of marine carbonates is typically ~24‰, which is similar to the B�OH�4
-
 

composition of seawater (Hemming and Hanson 1992; Gaillardet and Allègre 1995). The 

low δ11B values found in marine carbonates strongly implies the preferential incorporation 

of B�OH�4
-
 (Hemming and Hanson 1992; Barth 1993). 

 

11
B MAS NMR spectroscopy of synthetic aragonite and of aragonitic coral samples 

indicates the presence of tetrahedrically coordinated BO4 groups in aragonite (Sen et al. 

1994). This is consistent with B being structurally incorporated rather than present in fluid 

inclusions or trace mineral phases (Sen et al. 1994). Experimental results further indicate 

that the composition of the synthetic minerals is identical to the δ
11

B of the B�OH�4
-
 species 

in the parent solution (Hemming et al. 1995). Since the δ
11

B composition of the precipitated 

mineral increases with pH, it is then expected that the incorporation and isotopic 

fractionation in the aragonite will be strongly correlated to pH (Hemming et al. 1995). 

 

Experimental studies show that the increase of total [B] in the parent fluid results in an 

increase of the bulk [B] in precipitated calcium carbonates (Kitano et al. 1978; Hemming et 

al. 1995). Boron is incorporated at two to five times higher concentrations in aragonite than 

calcite for a given fluid [B] (Kitano et al. 1978; Hemming et al. 1995), consistent with 

differences in substitution site size coordination between calcite and aragonite. 
11

B MAS 

NMR spectroscopy (Sen et al. 1994) and synthetic growth of aragonite and calcite under 

controlled laboratory conditions (Hemming et al. 1995) suggests that B in calcite is present 

principally in trigonal coordination, whereas tetrahedrally coordinated species dominate in 

aragonite. If B�OH�4
-
 is the predominant species that interacts with carbonate surfaces a 
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change in coordination of B is necessary for incorporation into calcite, whereas no such 

change is required for incorporation into aragonite. This change in coordination should be 

energetically or kinetically hindered and reflected in the partitioning behavior. This is 

consistent with observations that B is preferentially incorporated in aragonite relative to 

calcite and with the δ
11

B of these carbonates (Hemming et al. 1995). More recent MAS 

NMR experiments by Klochko et al. (2009) suggest that in addition to the tetrahedral 

species some of the 11B enriched trigonal species may be incorporated into the carbonate 

lattice. This would explain the enrichment in 
11

B observed in biogenic carbonates (Klochko 

et al. 2009) in respect to re-calculated α values of Klochko et al. (2006). This supports 

previous hypotheses for the enrichment in 
11

B observed in marine carbonates, modifications 

of the pH at the site of calcification, and B partitioning in carbonates during mineralization 

(Klochko et al. 2006). 

 

The incorporation of B as B�OH�4
-
 into carbonate has been suggested to occur via 

substitution of the CO3
2-

 group in the carbonate lattice by HBO3
2-

 (Vengosh et al. 1991; 

Hemming and Hanson 1992). The HBO3
2-

 species has been favored because its size and 

charge characteristics are most similar to the carbonate ion (Hemming and Hanson 1992). 

The trigonal coordination observed in calcite is consistent with the postulated HBO3
2-

 

species, but inconsistent with NMR observations on aragonite of BO4 groups (Sen et al. 

1994). Klochko et al. (2009) report similar relative proportion of boron species in two coral 

aragonites and one foraminiferal calcite, with BO3 and BO4 groups representing roughly 

36–46% and 54–64%, respectively. These authors propose a three stage-model of B 

incorporation into carbonates. This model incorporates the formation of transition 

B�OH�2CO3
-
 isomers described by Tossell (2006) that break down to simpler forms and 

coordination of BO3 and BO4 as they are incorporated into the carbonate structure. This 

could help explain the detection of BO3 groups by NMR (Klochko et al. 2009). 
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If the incorporation of B (as HBO3
2-

) occurs by substitution of CO3 a thermodynamic 

coefficient for B partitioning between the solution and the precipitated solid can be defined 

as:  

( ) ( )[ ]
[ ]
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−
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DK  (Gaillardet and Allègre 1995) 

 

This suggests that the [B] of marine carbonates depends on variations of B�OH�4
-
 and HCO�

 

in the seawater, and therefore on pH and the total inorganic carbon (∑CO2) content of 

seawater (Gaillardet and Allègre 1995). 

 

1.3.11. Factors affecting B isotope distribution and incorporation in corals 

1.3.11.1.  Boron composition of seawater 

Boron has a concentration of 4.5 ppm and isotopic composition of 39.6‰ at S = 35 and T = 

25°C (Spivack and Edmond 1987; Hemming and Hanson 1992; Lemarchand et al. 2000; 

Foster et al. 2010). Boron flux estimates indicate a residence time in the oceans of 14 Myr 

(Lemarchand et al. 2000), this is around 7 Myr less than the previous value of 21 Myr 

reported by Spivack et al. (1993). However, given the analytical uncertainties, the δ11B of 

the oceans can only be considered constant over the last 3 Myr (Lemarchand et al. 2000). 

This indicates that during this time interval the variations in marine carbonates can be 

interpreted as changes in the isotope fractionation between seawater and precipitated 

carbonate minerals due to changes in seawater pH (Spivack et al. 1993).  

 

1.3.11.2. Kinetic fractionation of B isotopes 

If only B�OH�4
-
 is absorbed onto the growing crystal surfaces of the aragonite skeletons of 

corals, kinetic fraction might occur because the lighter B�OH�4
-��  molecules are adsorbed 

more readily than the heavier B�OH�4
-�� . This requires growing layers of CaCO3 to form 

fast enough to bury the light B beneath subsequent layers before further exchange can take 

place. Alternatively, if the exchange with dissolved B occurs and is sufficiently rapid, no 

kinetic isotopic effects are expected. Zeebe et al. (2001) have evaluated the kinetic isotopic 
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effects during calcification as a function of the time scale for crystal growth and the time 

scale for equilibration between the dissolved B species. Given that relaxation times 

calculated for B compounds are around 100 µs and that the time for crystal layer growth 

ranges from 0.5 s to 13 h, it was calculated that kinetic isotope fractionation effects are 

unlikely (Zeebe et al. 2001), and that the δ
11

B of the carbonates should be independent of 

growth rates. 

 

1.3.11.3. Vital effects in the incorporation of B into the coral skeleton  

One of the main concerns when working with geochemical tracers in biogenic carbonates is 

the possible existence of biological effects on the incorporation of the tracers into the 

mineral structure (de Villiers et al. 1995; Meibom 2003; Weiner and Dove 2003; Cohen 

and Gaetani 2010). Hönisch et al. (2004) assessed the effects of light and feeding rate on 

corals, and found that δ13C isotope and δ11B isotope compositions do not show a clear 

relationship with these parameters. However, Al-Horani et al. (2003) found pH and [Ca
2+

] 

variations in the calcifying fluid, caused by illumination during the diurnal cycles, which 

suggest a coupling between the photosynthetic activity of the zooxanthellae and 

calcification. In considering these and their own results, Hönisch et al. (2004) suggest that 

once photosynthesis exceeds a threshold value and stimulates Ca2+-ATPase activity, the 

enzyme system works at a constant rate, independent of light-level and photosynthetic rate. 

Hönisch et al. (2004) further suggest that the boron isotope composition in biogenic 

carbonate responds to external changes in seawater pH, supporting the use of δ
11

B in corals 

as a proxy for pH changes in seawater. 

 

Reynaud et al. (2004) studied the effect of temperature on the δ
11

B of the coral skeleton by 

culturing Acropora sp. corals under two different temperatures (25 and 28°C) and pCO2 

conditions (~440 and ~720 ppmv). They observed a pH effect, but no temperature effect on 

the coral δ
11

B composition. Based on similarity of the δ
11

B values found in corals and 

seawater B�OH�4
-�� ( )−

ΟΗΒ 4

11 , these authors further suggest that corals do not significantly 

modify ambient seawater pH at the site of calcification These observations do not agree 

with the models for coral calcification by Cohen and McConnaughey (2003) and Allemand 

et al. (2004) or the experimental results from Al-Horani et al. (2003), Ries (2011) and Venn 
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et al. (2011), however, they can be reconciled if a different α value (e.g. Klochko et al. 

2006) is used. The use of the correct α value is critical as it affects both the absolute 

calculated pH value and amplitude of variation (Reynaud et al. 2004; Wei et al. 2009; 

Trotter et al. 2011). 

 

In order to precipitate aragonite, the Ωarag should be greater than one. Corals grow aragonite 

skeletons hundreds of times faster than the rate at which inorganic aragonite precipitate 

from seawater with a pH of 8. It has been suggested that this reflects an increase in the Ωarag 

up to a value of ~25 (Cohen and McConnaughey 2003; Ries 2011). This increase can be 

obtained by increasing the concentration of [Ca2+] and/or [CO3
2-

] at the site of calcification 

(Cohen and McConnaughey 2003). Using microelectrodes beneath the subcalcioblatic layer 

Al-Horani et al. (2003) suggested that the pH at the calcification site is significantly 

elevated, with observed pH values of 8.13 during the night and 9.28 during the day. 

Following a similar procedure Ries (2011) reported an increase of 1.9 pH units at the site of 

calcification at a seawater pH of ~8.17. More recent values obtained by live tissue imaging 

pH-sensitive dyes suggest that a seawater pH of ~8.0 internal pH at the site of calcification 

is elevated by ~0.5 and ~0.2 pH units during light and dark conditions, respectively (Venn 

et al. 2011) and in average by 0.4 pH units Venn et al. (2013).  

 

Models for elevating pH at the site of calcification and allowing the precipitation of 

aragonite at rates hundreds of times higher than from seawater pH, suggest that this can be 

achieved by importing Ca
2+

 to the site of calcification and removal of protons via the 

Ca2+ATPase (Cohen and McConnaughey 2003; Allemand et al. 2004). Although the 

increase in [Ca
2+

] is too small to significantly accelerate calcification, proton removal from 

the calcification site converts HCO3
-
 to CO3

2-
, and increases the Ωarag significantly. 

According to Cohen and McConnaughey (2003), a proton gradient of one pH unit can 

produce a 100-fold increase in the [CO3
2-

] at the calcifying site. Accordingly, it is expected 

to find higher δ
11

B values in the calcifying fluid.  

 

The δ11B curves in corals seem to mimic the shape of the theoretical curve for borate in 

seawater. Hönisch et al. (2004) noted a constant negative offset in the δ
11

B compositions of 



 

corals relative to the theoretical 

subsequently showed this offset to be much g

B�OH�4
-
 curve of Klochko et al. (2006)

values. This was confirmed by 

from corals shows an offset to more positive 

(2006) borate curve (

to physiological processes know

reconciled if a process occurs that enriches the skeleton in the heavier isotope or 

is increased at the site of calcification 

attributed to the elevation of the internal 

Trotter et al. 2011; McCulloch et al. 2012a)

ability of corals to up

the effects of ocean acidification 

 

Figure 1-7. Comparison of 

seawater pHT and borate reference curves. Error bars at ±1 SD 

2011). 
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corals relative to the theoretical B�OH�
4

-
 curve of Kakihana et al. (1977)

subsequently showed this offset to be much greater when referenced to the recalibrated 

Klochko et al. (2006), which is characterized by a steeper slope and lower 

. This was confirmed by Trotter et al. (2011) who showed that

an offset to more positive δ
11

B when compared to the 

borate curve (Figure 1-7). This has been interpreted as a fractionation ef

to physiological processes known as ‘vital effects’ (Trotter et al. 2011)

reconciled if a process occurs that enriches the skeleton in the heavier isotope or 

is increased at the site of calcification (Krief et al. 2010). In the case of corals this has been 

elevation of the internal pH at the site of calcification

Trotter et al. 2011; McCulloch et al. 2012a) in agreement with the 

ability of corals to up-regulate their pH at the site of calcification may help them mitigate 

the effects of ocean acidification (McCulloch et al. 2012a; Venn et al. 2013)

Comparison of δ
11

B for a suite of corals from the literature

and borate reference curves. Error bars at ±1 SD 

Kakihana et al. (1977). Krief et al. (2010) 

reater when referenced to the recalibrated 

, which is characterized by a steeper slope and lower 

who showed that all δ
11

B data available 

hen compared to the Klochko et al. 

This has been interpreted as a fractionation effect related 

(Trotter et al. 2011). This offset can be 

reconciled if a process occurs that enriches the skeleton in the heavier isotope or if the pH 

In the case of corals this has been 

H at the site of calcification (Krief et al. 2010; 

in agreement with the pH observations. This 

H at the site of calcification may help them mitigate 

(McCulloch et al. 2012a; Venn et al. 2013) 

 

the literature relative to 

and borate reference curves. Error bars at ±1 SD (after Trotter et al. 
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Ries (2011) proposed two scenarios to maintain the elevated pH at the site of calcification. 

In the first, a fixed amount of H+ is removed while the ratio between the internal pH at the 

site of calcification and seawater pH varies. In the second, the internal pH at the site of 

calcification is maintained at a fixed ratio to the external seawater pH and therefore the 

amount of H
+
 removed from the site of calcification varies. Experimental results for the 

coral Astrangia poculata seem to agree with this second scenario (Ries 2011). This is also 

consistent with the model proposed by Marubini et al. (2001) that the pH of the calcifying 

fluid is proportional to external seawater pH, and with studies that show that the δ
11

B 

composition of Porites and other scleractinian corals varies with changes in seawater pH 

(Hönisch et al. 2004; Krief et al. 2010; Trotter et al. 2011; McCulloch et al. 2012a). In their 

recent work Venn et al. (2013) confirmed that the internal pH at the site of calcification 

follows the external changes in seawater pH. Trotter et al. (2011) proposed an approach to 

quantify the fractionation resulting from physiological processes that can be used to 

estimate seawater pH from δ
11

B measured in corals. Trotter et al. (2011) specifically use 

the α value from Klochko et al. (2006) and adjust the pKB to the ambient seawater 

temperature and salinity of each sample to calculate the pH. The internal pH at the site of 

calcification is then adjusted using specific calibration equations based on the difference 

between the estimated seawater pH from δ
11

B measured in coral and measured seawater 

pH. 

 

1.3.12. Summary 

In general this review has highlighted the wide range of factors controlling coral growth. A 

variety of responses are observed in studies of coral growth parameters and their 

relationship to environmental parameters. A number of studies show decreasing trends in 

coral growth in recent times, but other studies show no significant change, slight increase or 

mixed response. Despite differences a general pattern emerges with higher nutrients, 

temperature and levels of light linked to an increase in linear extension and a decrease in 

density of massive corals. However, apparent threshold levels exist for these environmental 

parameters after which the rates of calcification are reduced. Increased pollution, wave 

energy and terrigenous influences (associated with reduced salinity, and increased 

sedimentation, turbidity and nutrient concentration) are generally related to a decrease in 

coral growth. The specific environmental settings, differences between species and regional 
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adaptability are suggested as a possible explanation for some of the differences between 

studies. There is general consensus in the literature that as oceans continue to become more 

acidic this will have negative effects on corals particularly on the calcification process; 

however, it is possible that the negative effects will be attenuated by the corals up-

regulation of their internal pH at the site of calcification. The calcification history of corals 

is stored in the skeleton as density or luminescent bands. Corals also incorporate a wide 

number of geochemical proxies, including δ11B which can be used to reconstruct seawater 

pH. Together this information can potentially be used both to reconstruct past 

environmental information and as an indicator of how coral calcification is affected by 

changes in the environment. 
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2. Study area and general methodology 

2.1. Study area and settings of the central GBR 

This study focuses on the region of the central GBR located between longitude 146.2- 

147.4°E and latitude 18.10–19.5°S. As described in section 1.3.8 this area of the central 

GBR is subject to periodic terrestrial runoff, principally from the Burdekin River 

generating buoyant freshwater plumes that are transported along the coast (Wolanski and 

Jones 1981). The currents result from the predominately south-east wind regime (Brodie et 

al. 2007) and the Coriolis force causes river plumes to travel northward from Cape Upstart 

near the Burdekin River mouth to Innisfall located 250 km north (Wolanski and Jones 

1981). As a result the effects from the plumes are usually constrained to the area close to 

the coast but occasionally can extend 100 km offshore (Devlin et al. 2001; King et al. 

2001). The effect of the river plumes are reflected as luminescent bands in the skeletons of 

massive corals (Isdale 1984), with the intensity of the luminescent bands directly related to 

the magnitude of the river flow (Lough et al. 2002; Lough 2007). There is also an inflow 

from the Coral Sea that occurs around the central GBR, which allows upwelled water from 

the deeper continental slope on the outer GBR to spread quickly across the GBR shelf and 

may protect coral reefs by preventing river plumes from spreading onto the outer shelf 

(Brinkman et al. 2002). Overall the cross-shelf flows are weaker than south-north currents; 

as a result inner-shelf waters are somewhat isolated from the outer shelf (Brodie et al. 

2007). Advective processes appear to be more significant than tidal flushing by the ocean 

and classical estuarine circulation in the lagoon, even in flood conditions (Wolanski and 

Jones 1981). 

 

The seasonal climate in the GBR and adjacent land area is dominated by the south-easterly 

trade wind circulation and the Australian summer monsoon westerly circulation (Sturman 

and Tapper 1996; Lough 2007). This effectively divides the year in two seasons a 

warm/wet summer from October to March and cool/dry winter from April to September, 

Based on this seasonality the year can be more properly defined from October-September 

(Lough 2007). The wet season is dominated by monsoonal rainfall, which brings ~80% of 

the annual rainfall and occasional tropical cyclone activity (Wolanski and Jones 1981). 

Over the past 100 years no significant change in either rainfall or river discharge is 
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observed towards wetter or drier conditions but is characterized by considerable interannual 

and decadal variability (Lough 2001; Lough 2007). Interannual and decadal variability in 

rainfall and river discharge is modulated by El Niño–Southern Oscillation (ENSO) events and 

the Pacific Decadal Oscillation (Lough 1994; Lough 2007). Annual river runoff of the 

Burdekin River can vary between 3% and 300% of the mean annual value of 9.7 x10 m
3
 

(Wolanski and Jones 1981). El-Niño (La-Niña) years are associated with weaker (stronger) 

summer monsoon circulation, which results in reduced (increased) rainfall, river flow and 

tropical cyclone activity (Lough 2001; Lough 2007).  

 

Sea surface temperature (SST) shows well defined seasonal cycles (Furnas and Mitchell 

1997). The annual range of variability in SST at the outer-shelf Myrmidon Reef is 4.8°C 

with a daily mean average reaching a minimum of 24°C in August and a maximum of 29°C 

in February with significant cross-shelf gradients (Lough 2001). Temperature is a major 

control of biological productivity and nutrient cycling in the GBR (Furnas and Mitchell 

1997). The major effects of ENSO on GBR are observed during La Niña events through an 

increase in freshwater inputs, reduced surface radiation and enhanced tropical cyclone 

activity (Lough 1994). Lough (1999) describes El Niño events as characterized by a two 

phase evolution of SST anomalies, with an intensification of seasonal variability; i.e. colder 

winters and warmer summers. The high variability that occurs between El Niño events 

indicates that the typical pattern may not be observed in any individual event (Lough 2001). 

Redondo-Rodriguez et al. (2012) found that ‘classic’ ENSO events have a strong signature 

in the atmospheric circulation but are not consistently associated with summer SST 

anomalies in the northern GBR. In contrast, these authors found El Niño Modoki to be 

associated with negative summer SST anomalies in the northern GBR, and anomalous 

warming during La Niña Modoki, with no relationship found in the southern GBR. An El 

Niño Modoki event is characterized by maximum warming in the central equatorial Pacific 

associated rather than in the eastern equatorial Pacific, as during a ‘classic’ El Niño event 

(Ashok et al. 2007). Since the beginning of the 20
th

 century temperatures have steadily 

increased in the central GBR, with annual SST increasing by 0.5°C, maximum SST by 

0.3°C and minimum SST by 0.8°C (Furnas and Mitchell 1997).  

 

The shelf in the GBR is relatively shallow, gradually deepening to 40 to 60 meters toward 

the shelf edge. Much of the lagoon, defined as the channel between inland and the mid-
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shelf, is less than 50 m in depth (Wolanski 2001; Steinberg 2007). In the central region 

(18°S) the shelf widens to 110 km and slopes to a depth of around 100 meters (Steinberg 

2007). In this study the reefs are divided into inner, mid and outer-shelf reefs according to 

three distinct shelf-parallel regions or zones coinciding with percentage distance from 

shore, water depth and surface sediment facies (Belperio 1983; Belperio and Searle 1988; 

Lough et al. 2002). The inner-shelf zone is located within 0-26% of the distance across the 

shelf, encompasses depths from 0-20 meters and is dominated by muddy terrigenous 

sediments. The mid-shelf zone is located within 26-100% of the distance from shore, with 

water depths of 20-40 m and is characterized by a mix of carbonate and siliciclastic 

sediments of terrigenous origin. The outer-shelf zone is located 60-100% of the distance 

from shore, has a water depth 40-100 m and is dominated by carbonate sediment (Mathews 

et al. 2007). The main reef matrix is located in the area between 30 km from the coast and 

the shelf break and consists of widely scattered reefs with deep passages (>40 m) between 

them (Wolanski and Pickard 1985).  

 

In the inner-shelf region, coral reefs are subject to relatively large temperature variations 

and degraded water quality due to frequent flood events; in comparison, the mid-shelf 

region is a more stable and sheltered environment, affected by only some large river flood 

events (Lough et al. 2002; Furnas 2003). Outer-shelf reefs are subject to a more energetic 

physical environment and periodic shelf-break upwelling (Furnas and Mitchell 1996; 

Berkelmans et al. 2010). For example, during Tropical Cyclone Ingrid (2005) wave heights 

were three times higher on the outer-shelf than on inner-shelf areas (Fabricius et al. 2008). 

Wave action is the main mechanism for sediment re-suspension; non-cyclonic wave re-

suspension is only significant in the inner-shelf area, seldom occurring in the mid-shelf. 

According to Orpin and Ridd (2012) exposure times and concentrations of suspended 

sediment carried by river plumes are an order of magnitude lower at the reefs compared to 

wave resuspension.  

 

2.2. Reefs studied 

This study focuses on seven corals reefs including the inner-shelf reefs of Magnetic Island, 

Havannah Island and Pandora, the mid-shelf reefs of Davies, Wheeler and Rib and the 

outer-shelf reef of Myrmidon. These reefs were selected to provide a description of the 



 

inshore to offshore gradient (Figure

influence of the Burdekin River flood plumes. Thi

main environmental gradients in the GBR with the other one being the latitudinal changes 

(Lough and Barnes 2000). 

 

Figure 2-1. (a) Bathymetric map of the GBR (

depicting (b) the locations of reefs sampled within the central GBR,

Havannah Is. and Pandora circled in red; these reefs lie in the pathway of the Bu

flood plumes. The mid-shelf reefs of Rib, Wheeler and Davies are circled in yellow, and the 

outer-shelf reef of Myrmidon is circled in green.
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Figure 2-1), with inner-shelf reefs directly under the path of 

influence of the Burdekin River flood plumes. This across-shelf gradient is one of the two 

main environmental gradients in the GBR with the other one being the latitudinal changes 

(a) Bathymetric map of the GBR (modified from http://h.e-atlas.org.au/

depicting (b) the locations of reefs sampled within the central GBR, inner-shelf reefs of 

Havannah Is. and Pandora circled in red; these reefs lie in the pathway of the Bu

shelf reefs of Rib, Wheeler and Davies are circled in yellow, and the 

shelf reef of Myrmidon is circled in green. 

shelf reefs directly under the path of 

shelf gradient is one of the two 

main environmental gradients in the GBR with the other one being the latitudinal changes 

 

atlas.org.au/, 2012) 

shelf reefs of 

Havannah Is. and Pandora circled in red; these reefs lie in the pathway of the Burdekin river 

shelf reefs of Rib, Wheeler and Davies are circled in yellow, and the 
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Inner-shelf reefs 

Havannah Island Reef (Figure 2-2a) is a fringing reef with an area of ~1.5 km2 and is 

located at 18°50’S 146°32’E, 23 km from the coast. The island has been continuously 

monitored for the last 20 years as part of the AIMS Long Term Monitoring Program (AIMS 

LTMP, 2013). Median reef-wide live coral cover increased from moderate levels in 1987 

(11-30%) to high (41-50%) levels by 1997. Coral cover levels collapsed in 1998 due to 

mortality from extensive coral bleaching. Since then the median live hard coral cover has 

remained low with a 0-5%.median live reef-wide coral recorded in 2011, lower than the 

23% mean average for the GBR. Low level bleaching was observed in 2011(AIMS LTMP, 

2013). Pandora Reef (Figure 2-2b) is a small planar reef with no lagoon that covers an area 

of 0.6 km
2
 located at 18°48’S 146°25’E; this is approximately 15 km from the coast and 

about 7 km away from Havannah Is. Pandora coral cover reached a maximum of 58% in 

1994 and decreased 20% as result a of the 1998 bleaching event. Levels steadily recovered 

to 50% in 2009, but reduced to 36% as a result of damage caused by Tropical Cyclone Yasi 

in February 2011 (AIMS LTMP, 2013). These reefs are inside the ≤20 m coastal area. This 

coastal area and reefs are impacted approximately annually by flood plumes, mainly from 

the Burdekin River, but also from the Herbert River and other minor local rivers. During 

flood events salinity lowers to values around 31-32 ppt and can drop to values of around 24 

during extreme flooding events (King et al. 2001). 

 

Magnetic Is. is a high continental island with an area of 52 km
2
 situated in Cleveland Bay 8 

km from the city of Townsville (Bull 1982). This island is influenced by the Burdekin and 

Ross Rivers and salinities in the range of 17 to 36 have been reported for Nelly Bay on the 

south east side (Collins 1978). This area has a semi-diurnal tidal regime with diurnal 

inequality (Bull 1982), which are tides characterized by unequal heights for successive high 

or low waters, or in both pairs of tides. For Townsville Harbor, the mean spring tide range 

is 2.5 m and the mean neap range is 0.8 m (Morrisey 1980). This area is catalogued as ‘No 

Outbreak’ which indicates that Crown-of-Thorns (COTS) outbreaks have never been 

recorded (AIMS LTMP, 2013). Intrusion of cold water resulting from upwelling can also 

occasionally affect this area (Berkelmans et al. 2010).  

 



 

 
Figure 2-2. Satellite images from Google Earth showing (a) Havannah Island, (b) 

Magnetic Island and (c) Pandora Reef. Yellow dots mark coral samples sites.
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48

Satellite images from Google Earth showing (a) Havannah Island, (b) 

Magnetic Island and (c) Pandora Reef. Yellow dots mark coral samples sites. 

is an elliptical lagoonal reef 5.5 km long and 2.5 km wide that is 

located 70 km from the coast at 18°49’S 147°38’E. Coral cover has fluctuated around

In 2011 coral cover decreased to 18%, the lowest cover recorded at Davies 
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is dominated by branching corals (mostly dead) with occasional 

spp. heads. Wheeler Reef (Figure 2-3b) is a circular planar reef about 1 km in 

diameter that is located approximately 14 km north of Davies Reef and 70 km away

the coast (18°48’S 147°31’E). It has very little algae cover and high coral cover dominated 

spp. with abundant Porites spp. colonies and members of many other genera.

COTS outbreaks were last recorded in 1988 when coral cover dropped to 8% and 

coral cover has recovered reaching 50% in the latest survey in 2007 (AIMS LTMP, 2013
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is a circular planar reef about 1 km in 

diameter that is located approximately 14 km north of Davies Reef and 70 km away from 

coral cover dominated 

spp. colonies and members of many other genera. 

and since then 

LTMP, 2013). 
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Rib Reef (Figure 2-3c) is a crescentic reef, 2 km in diameter, that is located at 18°29’S 

146°52’E, about 56 km from the coast. This reef had a live hard coral cover of 11% in 

2007-8 (AIMS LTMP, 2011) and is dominated by Acropora spp. corals, with a few Porites 

spp. and Diploastrea heliopora colonies, and with considerable algae cover. Since 

monitoring began in 1994 coral cover reached a peak in 1996 with 66%. Since then levels 

have decreased due to tropical cyclone damage and COTS outbreaks with an 8% coral 

cover documented in 2012. These mid-shelf reefs receive no influence from river plumes 

except during exceptional floods, such as the 1974 event (King et al. 2001).  

 

Outer-shelf reefs 

Myrmidon Reef (Figure 2-3d) is an irregular shaped planar reef with an area of 6.2 km
-2

, 

that is located on the outer edge of the GBR at 18°16’S 147°23’E, around 110 km from the 

coast. This isolated reef had a live hard coral cover of 24% in 2006-7, and is located close 

to the continental shelf, where it receives minimal if any influence from coastal processes 

and is dominated by oceanic conditions. This area is frequently subject to the effects of 

shelf-break upwelling (Wolanski and Pickard 1983; Berkelmans et al. 2010). This reef has 

been surveyed by AIMS LTMP since 1988, with COTS outbreaks only recorded in 1998 

and in insufficient numbers to cause coral mortality. Algae have dominated the benthos 

since 2000 and covered 67% of the substrate in 2011. Coral cover reached a maximum of 

39% in 1999. In 2002 bleaching caused an 11% decrease in coral cover and since then has 

continued to decrease with a coral cover of 20% in 2011 (AIMS LTMP, 2013). 

 



 

  

 

Figure 2-3. Satellite images from Google Earth of the mid

Wheeler and, the outer-shelf reef of (d) Myrmidon Reef. Yellow dots mark collection sites.
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Satellite images from Google Earth of the mid-reefs of (a) Davies, (b) Rib and (c) 

shelf reef of (d) Myrmidon Reef. Yellow dots mark collection sites.

, river discharge and sea surface temperature

Monthly rainfall data for Townsville were obtained from the Bureau of Meteorology 

http://www.bom.gov.au/climate/data/, 2011), and monthly river discharge for the Burdekin 

ere obtained from the State of Queensland, Department of 

reefs of (a) Davies, (b) Rib and (c) 

shelf reef of (d) Myrmidon Reef. Yellow dots mark collection sites. 

temperature 

obtained from the Bureau of Meteorology 

, 2011), and monthly river discharge for the Burdekin 

obtained from the State of Queensland, Department of 



 51

Environment and Resource Management (DERM, http://watermonitoring.derm.qld.gov.au, 

2011). In situ monthly SST were obtained from the Australian Institute of Marine Science 

(AIMS, http://data.aims.gov.au/, 2011), for the inner-shelf, mid-shelf and outer-shelf 

regions (Figure 2-4). For the inner-shelf SST data spanning from 1993 to 2008 were 

obtained by averaging temperature logger records at Pandora Reef, Havannah Is., 

Cleveland Bay, Pioneer Bay, Cattle Bay and Pelorous Is. Mid-shelf SST data were obtained 

from loggers from Kelso Reef, Davies Reef and John Brewer Reef and spans from 1992 to 

1994 and 1996 to 2008. Outer-shelf SST data spanning from 1991 to 1992 and 1996 to 

2004 were obtained from the temperature loggers at Myrmidon Reef. These periods only 

include complete years data (Oct-Sep) that is also covered by the coral data (see Chapter 4). 

For longer time periods (1930-2008) the extended reconstructed SST NOAA 

NCDCERSSTv3b (ERSSTv3b) monthly data from the Comprehensive Ocean-Atmosphere 

Data Set (COADS) with a spatial resolution of 2°×2° centred at 18°S and 147°E were used 

(http://iridl.ldeo.columbia.edu, 2011). Annual data is defined based on the water year 

(October–September) in Queensland (Lough 2007,2011a). 
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Figure 2-4. (a) inner-shelf, (b) mid-shelf and (c) outer-shelf in situ monthly SST data loggers 

from AIMS. Also shown in black is the average of all data series. 

 

The in situ SST records show a decreased seasonal variation across the shelf in the central 

GBR (Table 2-1) with more stable temperatures occurring in the deeper waters close to the 
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Coral Sea (Wolanski 1994). Annual maximum SST values are typically 0.6°C higher in 

inner-shelf than outer-shelf areas; however, mean annual SST (~26.5°C) is around 0.4°C 

warmer in the latter. This is because the seasonal range is larger in the inner-shelf area 

(7°C) compared to the outer-shelf area (5°C) with the largest difference occurring in winter 

when inner-shelf waters are 1.7°C colder than the outer-shelf area. Seasonal SST variability 

in the mid-shelf is similar to the outer-shelf values, indicating that the coastal effects are 

significantly reduced in the mid-shelf region. The reconstructed SST (ERSSTv3b) fails to 

capture the full seasonal variability particularly underestimating winter SSTs. This 

difference is higher with the data loggers closer to the coast (Table 2-1). This indicates that 

important across-shelf SST differences exist in the central GBR that can only be resolved 

by the in situ data. However; the data from in situ data loggers is often of limited length or 

can have gaps in the data (Alibert et al. 2003). 

 

Table 2-1. Annual (October-September) average SST, maximum monthly SST, minimum monthly 

SST and annual SST range (max – min) for the in situ SST data from AIMS and the reconstructed 

SST ERSSTv3b (2°x2°) data from COADS over the period of 1995-2006. 

 

    SST (°C) 

Database Region Mean SD Max SD Min SD Range SD 

In situ SST 

(AIMS) 

Inner-shelf 26.06 0.42 29.32 0.56 22.17 0.63 7.15 0.69 

Mid-shelf 26.04 0.45 28.96 0.39 23.29 0.48 5.44 0.39 

Outer-shelf 26.48 0.44 28.73 0.45 23.91 0.50 5.05 0.36 

COADS  18°S 146°E  26.64 0.39 28.94 0.33 24.24 0.51 4.70 0.46 

 

2.4. Methods 

2.4.1. Coral core collection 

This study is based on the analysis of 41 coral cores (Table 2-2) drilled from carefully 

selected Porites spp. colonies broadly representative of the seven reefs across the 

continental shelf of the central GBR shelf described (Figure 2-1). Before 1998 a hydraulic 

operated system was used to extract coral cores 70 mm in diameter and up to 550 mm in 

length. Later a more portable custom-built pneumatic system developed at ANU was used 

to extract 50 mm diameter cores and 550 mm in length. After the drilling operation the 
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coral colonies were cleaned of debris by creating water movement and the hole left in the 

colonies after core removal was sealed with concrete plugs. Full coral recovery from the 

coring procedure was incidentally documented in the 2009 coring campaign when an old 

cement plug was inadvertently hit while drilling on a coral colony at Magnetic Island. 

 

Thirty nine of the 41 coral core samples were collected from colonies living at depths 

generally between ~3 and 11 meters. Small heads (<1.5m) and very shallow-water colonies 

(upper surface <2m above low-tide mark) were specifically avoided to preclude possible 

ontogenetic artifacts (Lough 2008a) and effects from shallow-water induced stress (e.g. 

Barnes and Taylor 1973). Two cores were however collected from colonies of only 60 cm 

height, from a water depth of 25.5 m from the fore-reef of Myrmidon Reef, but are treated 

separately. Samples were identified to the genus level, as no significant differences in the 

growth parameters of massive Porites are apparent at species level (Lough and Barnes 

1992; Lough et al. 1999). 

 

Twenty two coral cores were collected from the inner-shelf reefs of Pandora (10 cores), 

Havannah Is. (8 cores) and Magnetic Is. (4 cores). Of these, 17 correspond to cores 

collected between 2006 and 2009; three were collected between 1998 and 2002, and the 

remaining two in 1988. The effect of flood plumes is recorded in coral cores from these 

reefs as luminescent flood bands (Isdale 1984; Lough et al. 2002) as well as peaks in Ba/Ca 

values (Alibert et al. 2003; McCulloch et al. 2003). For the mid-shelf region 13 coral cores 

are included from Davies Reef (5 cores), Wheeler Reef (5 cores) and Rib Reef (3 cores). 

All 13 cores from the mid-shelf reefs were collected in 2009. The mid-shelf region of the 

central GBR is relatively broad and largely unaffected by flood plumes, as indicated by a 

general absence of luminescent bands (Lough et al. 2002) and associated Ba/Ca peaks 

(Fallon et al. 2003). The exception however is during major reef-wide flood events, such as 

occurred during 1968, 1974, 1991, where strong luminescent bands are apparent. Six outer-

shelf cores were collected in 2005, cores from Myrmidon Reef are systematically shorter as 

Porites colonies in the GBR show a marked reduction in extension rate with distance from 

shore and depth (Isdale 1983; Lough and Barnes 1992; Lough 2008a). 
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Table 2-2. Reef locations, sites and details of coral core samples. 

Region Reef Core code 

Coring 

date Latitude Longitude 

Colony 

height (m) 

Depth from 

top (m) 

Length 

(cm) Age model 
In

n
e

r-
sh

e
lf

 

M
a

g
n

e
ti

c 
Is

 MAG88 1988 

19.17S 146.85E 

5 3-5 167 1871-1987 

MAG01 2001 3 3-5 33 1976-2000 

MAG09_1a 2009 2 2 106 1987-2008 

MAG09_2 2009 1.6 2.2 75 1962-2007 

H
a

v
a

n
n

a
h

 I
s 

HAV01 1987 

18.84S 146.54E 

6 2.5 530 1784-1985 

HAV02 2002 4 5 45 1980-2001 

HAV06A_S3 2006 2-3 3-5 55 1966-2005 

HAV06 #5 2006 2-3 3-5 37 1975-2005 

HAV06#6 2006 2-3 3-5 51 1962-2004 

HAV08_1 2008 2-3 3-5 50 1953-2007 

HAV08_2 2008 2-3 3-5 65 1964-2007 

HAV09_3 2009 2.2 3.6 100 1932-2008 

P
a

n
d

o
ra

 

PAN98 C3 1998 

18.81S 146.43E 

2-3 3.2 55 1972-1997 

PAN02A 2002 2-3 3-5 53 1964-2001 

PAN06A 2006 2-3 3-5 53 1985-2005 

PAN06 9 2006 2-3 3-5 48 1982-2005 

PAN07 17 2007 2-3 3-5 37 1985-2006 

PAN08_1 2008 2-3 3-5 62 1965-2007 

PAN08_2 2008 2-3 3-5 46 1977-2007 

PAN09_1 2009 1.5 5.8 68 1953-2008 

PAN09_2 2009 1.5 3 38 1990-2008 

PAN09_3 2009 1.6 3 60 1976-2008 

M
id

-s
h

e
lf

 

D
a

v
ie

s 

DAV09_1 2009 

18.83S 147.63E 

1.5 7 59 1982-2008 

DAV09_2 2009 3.5 6.5 47 1979-2008 

DAV09_4 2009 3 7.6 49 1975-2008 

DAV09_5_1 2009 3 3 50 1967-2008 

DAV09_5_2 2009 3 3 77 1947-2008 

W
h

e
e

le
r 

WHE09_1 2009 

18.80S 147.53E 

2 5.5 52 1974-2008 

WHE09_2 2009 1.2 5.2 47 1972-2008 

WHE09_3 2009 2.5 4 54 1978-2008 

WHE09_4 2009 1.5 4 66 1959-2008 

WHE09_5 2009 4 7.4 49 1980-2008 

R
ib

 

RI09_1_1 2009 

18.48S 146.87E 

4 4 100 1948-2008 

RIB09_2 2009 3 4 99 1952-2008 

RIB09_3 2009 2 5 97 1950-2008 

O
u

te
r-

sh
e

lf
 

M
y

rm
id

o
n

 

MYR05-272 2005 

18.27S 147.38E 

1 3.5 47 1981-2004 

MYR05-271 2005 3 4 80 1984-2004 

MYR05-S1 2005 0.7 16.5 30 1980-2004 

MYR05-S2 2005 2 11 47 1967-2004 

MYR05-S5a 2005 0.6 25.5 16 1966-2004 

MYR05-S5b 2005 0.6 25.5 20 1952-2004 
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After collection organic material was partly removed by submerging the top of the core in a 

solution of 30% H2O2 diluted with H2O in an approximately 1 to 6 ratio for a few hours. 

This bleaching was mild enough that in some cases part of the characteristic brown colour 

associated with the tissue layer was still present after cleaning; this was done in order to 

prevent dissolution of the skeleton (Nagtegaal et al. 2012). Cores were then rinsed with 

freshwater and let to dry at ambient temperature, preferentially under direct sun light. Each 

coral core was cut into slices (~7 mm thick) along the plane of the vertical growth axis 

using a table saw fitted with a diamond coated masonry blade. Each slice was then 

ultrasonically cleaned in ultrapure (18.2 MΩ) MQ water and dried at ambient temperature. 

The slices were X-rayed and observed under UV illumination to reveal the density and 

luminescent annual banding, respectively. 

 

X-rays were taken of all coral slices to reveal density variations using standard hospital X-

ray equipment (Figure 2-5). The film is X-rayed at 50 KvP and 10 mA with a source to 

object distance of 1.25 m for 5 to 15 seconds. For the inner-shelf samples black and white 

photographs of the slices were taken under UV illumination to capture luminescent bands. 

In some cases the luminescent bands were traced directly from the slices onto overhead 

transparencies. Corals were selected for analysis based on their band quality as determined 

from X-ray images and/or luminescent annual banding; corals with irregular bands or 

heavily bioeroded were discarded. The 41 samples included were carefully selected from a 

collection of 45 cores; the other 4 cores were discarded for showing severe bioerosion or 

off-axis growth. Some of the corals selected included show bioerosion or off-axis growth at 

specific sections in the core; data from these sections is not included in the present study. 

The low number of samples rejected may be a result of a careful selection of samples in the 

field. 

 

Figure 2-5. X-ray negative of a slice of a Porites spp. coral from Havannah Is. showing the 

annual density banding pattern. 
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3. Geochemical data from LA-ICP-MS in coral 

records 

3.1. Introduction  

Instrumental records of past environmental changes in the ocean are temporally and 

spatially limited. Various natural proxies have been exploited to fill this knowledge gap; in 

particular the use of geochemical changes in coral skeletons have been used to reconstruct 

past changes in the tropical oceans (Smith et al. 1979; Beck et al. 1992; Alibert and 

McCulloch 1997; Wei et al. 2000; Hendy et al. 2002; Marshall and McCulloch 2002; 

McCulloch et al. 2003; Corrège 2006a,b). Corals are particularly useful as paleoclimate 

recorders because they are widely distributed in the tropical oceans and can be accurately 

dated, forming continuous records that contain a broad array of geochemical tracers for 

temperature, salinity, pH and upwelling (Gagan et al. 2000; Corrège 2006a).  

 

During the process of calcification various geochemical tracers of environmental 

information are incorporated and stored in the coral skeletons. These include δ
18

O, δ
13

C and 

δ11B and various minor and trace elements, such as Sr, Mg, U, B, Ba, Mn, Sr, Pb, Y, Zn, 

Cd. The elemental ratios Sr/Ca, U/Ca, Mg/Ca and B/Ca have been used to reconstruct SST 

variations (Smith et al. 1979; Min et al. 1995; Shen and Dunbar 1995; Mitsuguchi et al. 

1996; Alibert and McCulloch 1997; Hendy et al. 2002; Fallon et al. 2003). Ba/Ca has been 

used to reconstruct land use changes, sediment fluxes, fluvial discharge and upwelling 

(McCulloch et al. 2003; Sinclair and McCulloch 2004; Fleitmann et al. 2007; Lewis et al. 

2007; Alibert and Kinsley 2008; Carilli et al. 2009a; Carriquiry and Horta-Puga 2010). 

Other ocean upwelling indicators include Cd/Ca and Mn/Ca (Shen et al. 1987; Shen et al. 

1991), with Mn/Ca also being described as an indicator of productivity (Alibert et al. 2003) 

and to local disturbances associated to infrastructure development (Lewis et al. 2012). 

 

Despite the potential for corals to serve as paleoenvironmental indicators a wide response 

in the climatic interpretation of corals has been observed ranging from: (1) no relationship 

with environmental variables, (2) temporally variable significance to (3) a significant and 

stable relationship (Quinn and Sampson 2002; Lough 2004; Sinclair 2005). A reduced 
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relationship with a given environmental variable can relate to errors in the assignment of 

the age of the coral, the introduction of non-climatic variability by growth, the effect of 

other environmental variables or true local variability in the environmental variable not 

observed in the instrumental data (Quinn and Sampson 2002; Lough 2004; Sinclair 2005; 

Lewis et al. 2012). Furthermore, the process of incorporation of major elements into the 

coral skeleton is still not fully understood (Corrège 2006a; Jones et al. 2009). For example 

in the case of the Sr/Ca ratio some non-temperature-related artefacts have been noted (de 

Villiers et al. 1995; Cohen et al. 2002; Gaetani and Cohen 2006). Early marine diagenesis 

can produce secondary calcite, which has significantly lower and more variable Sr/Ca 

values (Sayani et al. 2011), and secondary aragonite, which has higher Sr/Ca values that 

can translate into 4-5°C cooler SST (Müller et al. 2001). Thermal stress, caused by either 

low or high temperatures can produce lower Sr/Ca values due to the breakdown of the 

biological control on Sr/Ca fractionation (Marshall and McCulloch 2002). Analysis along 

the maximum growth axis, ensuring that coral skeleton has no diagenetic alteration and 

replication are some of the tools to reduce potential biases (Marshall and McCulloch 2002; 

Lough 2004; Sayani et al. 2011). 
 

The emphasis here is on the Sr/Ca and Ba/Ca ratios, as they are established proxies for 

temperature and riverine input to the central GBR, respectably. Particular attention has been 

given to updating previous inner-shelf Ba/Ca reconstructions (McCulloch et al. 2003) and 

using these to obtain more detailed information of the effects of river run-off directly at the 

reef, as compared to inference based on river discharge or inland river discharge measured 

at the river mouth or rainfall measured inland. Sr/Ca data was generated in an attempt to 

obtain in situ SST information that would extend the available instrumental in situ SST 

time series that extend back only to the early 1990’s. This is important as the reconstructed 

SST data available (e.g. COADS) lacks the spatial resolution necessary to resolve the 

across shelf variability in the central GBR. 

 

3.2. LA-ICP-MS Methodology 

From the core collection described in section 2.4.1 (Table 2-2) three inner-shelf coral 

records, one collected in 2006 (from Havannah Is.) and two in 2008 (one from Havannah Is 

and one from Pandora Reef ) were selected for geochemical analysis by LA-ICP-MS. These 
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cores were selected because they had clear density bands and were the most recent material 

available at that time. Core collection and slicing procedures are described in section 2.4.1. 

Selected slices were cut into pieces 2.5cm wide and < 9.5cm long following the maximum 

growth axis for density and laser ablation inductively plasma mass spectrometry (LA-ICP-

MS) measurements. The cut pieces were then cleaned in 18.2 MΩ ultrapure milli-Q water 

using an ultrasonic probe to remove any coral powder leftover from the sawing process. 

The ultrasonic probe was operated at a low output power to prevent damage to the 

microstructures of the coral skeleton. Cleaned pieces were then left to dry overnight in an 

oven set at a temperature <60°C.  

 

One of the advantages of analysis by LA-ICP-MS is that it provides fine-scale details that 

are not readily captured with bulk sampling techniques (Alibert and Kinsley 2008). The 

cores were analyzed for Ca, Sr, U, Ba, B, Mg, Mn, Cd, and Li using the ANU HelEx laser 

ablation ArF excimer system (Compex 110i) coupled to an ICP-MS (Varian 820 MS). The 

analysis protocol follows that reported by Sinclair et al. (1998), (Sinclair 1999), Fallon et 

al. (1999), Alibert et al. (2003) and Jupiter et al. (2008). As these are “routine” analyses 

only a short description and discussion of the data is presented in the current study.  

 

Ablation sampling was performed in an ANU HelEx laser ablation sample stage under a 

helium atmosphere. The stage is designed to hold two coral pieces 25 mm wide, 7 mm thick 

and up to 95 mm long. The coral pieces are placed in a sample stage, and scanned at 40 µm 

s-1 using 5 Hz pulse rate. A rectangular slit 400 µm wide (perpendicular to the growth axis) 

and 40 µm long (parallel to the growth axis) is used as the projection mask for the laser 

beam. The rectangular slit is used to ensure representative sampling of the complex coral 

structure (Fallon et al. 1999). Prior to analysis samples are cleaned by pre-ablating along 

the analysis track using a slit 500 µm wide and 50 µm long, a 10 Hz pulse rate and 

scanning at 100 µm s-1. The analysis track is aligned prior to analysis along the maximum 

growth axis based on the density or luminescent banding orientation (see Chapter 4). Coral 

sample analyses are bracketed between measurements of a soda-lime glass standard (NIST 

614) and an in-house coral standard from a coral from Davies Reef (Fallon et al. 1999). The 

background is measured for 60 seconds before every measurement and for 300 seconds at 

the beginning and end of each analytical run. All of the data reduction analyses were 

performed using an Excel software program developed at the Australian National 
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University (ANU)’s Research School of Earth Sciences (RSES) by L. Kinsley. Data 

reduction includes outlier removal, background subtraction, drift corrections based on the 

standard measurements, ratio calculations based on the Metal/
43

Ca and smoothing of the 

data. Data was smoothed with an 8 point running average to remove the fine scale 

variability in the data that is difficult to use for environmental interpretation (Sinclair et al. 

1998). Sr/Ca and 
138

Ba/Ca and 
137

Ba/Ca for the glass standard determined in 40 runs of LA-

ICP-MS are included in Figure 3-1, relative standard deviation for the corresponding 

selected ratios are presented in Table 3-1. 

 

 

Figure 3-1. Analyses of Sr/Ca and Ba/Ca in the NIST 614 SRM glasses in all the LA-ICP-MS 

runs. Error bars indicate standard deviation.  
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Table 3-1. Analytical precision for LA-ICP-MS measurements indicated as relative standard 

deviation for the NIST 614 standard for 40 runs. 

 

Ratio %RSD 
11

B/
43

Ca 5.99 
25

Mg/
43

Ca 5.88 
44

Ca/
43

Ca 1.00 
86

Sr/
43

Ca 2.62 
88Sr/43Ca 2.01 
137

Ba/
43

Ca 2.48 
138

Ba/
43

Ca 3.46 
238

U/
43

Ca 3.25 

 

3.3. Results 

Seasonal cycles for the Sr/Ca, U/Ca and B/Ca occur in the inner-shelf corals, with Ba/Ca 

displaying distinct seasonal peaks (Figure 3-2). Age models based on these seasonal cycles 

were adjusted using the Analyseries program (Paillard et al. 1996). Minimum and 

maximum trace element/Ca ratio values were correlated to satellite SST COADS 

ERSSTv3b data. This time-series analysis software allows compensation for the summer-

to-winter growth bias noted by Fallon et al. (1999) and simultaneous adjustments using 

several proxies; for this study Sr/Ca, B/Ca and Ba/Ca were used. As previously noted by 

(Sinclair et al. 1998), B/Ca ratios show the “cleanest” cyclic variations, however, the 

environmental significance of this variation remains uncertain. On the other hand Sr/Ca is 

predominantly controlled by temperature (Smith et al. 1979; Beck et al. 1992; Alibert and 

McCulloch 1997; Marshall and McCulloch 2002; Fallon et al. 2003), and therefore was 

used as the primary seasonal temperature cycle proxy to generate the age model.  
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Figure 3-2. Section of the trace elements profiles after applying an 8 point smoothing (a) 

Sr/Ca, (b) B/Ca, (c) Ba/Ca and (d) U/Ca plotted against distance for the HAV06_A S3 coral. 

 

The distance between peaks in the trace elements profiles for Sr/Ca, B/Ca and Ba/Ca can be 

used to calculate the linear extension rates. In the case of the inner-shelf corals Ba peaks are 

highly correlated with river flood events (McCulloch et al. 2003). The timing of flood 

events is well known, allowing the precise measurement of the amount of linear coral 

growth between different flood events. Similar linear extension data can be obtained using 

this approach compared to the more conventional methods like X-rays and UV 

luminescence (Figure 3-3 and Table 3-2). A detailed description of the X-rays and UV 

luminescence linear extension methods here employed is provided in Chapter 4. 
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Figure 3-3. (a)Annual linear extension rates obtained by measuring the distance between Ba/Ca 

peaks, density bands from X-rays and luminescence bands observed under UV light (black) for 

Havannah Is. inner-shelf core HAV08_2. (b) Smoothed versions of the annual time series after a 

low pass band filter of 8 years (0.125 Hz) was applied.  

 
Table 3-2. Pearson product moment correlation coefficients (r) for the annual linear extension data 

of core HAV08_2. 

 

X-ray UV luminescence 

  r p df r p df 

Ba/Ca 0.469 0.001 45 0.304 0.042 45 

X-ray       0.364 0.014 45 

 
 

The rescaled geochemical data were re-sampled at monthly resolution. The Sr/Ca monthly 

data obtained from the three inner-shelf corals is compared to satellite SST records in 

Figure 3-4. Sr/Ca series for the three corals usually follow the variations in temperature, 

except for some short periods where the Sr/Ca is offset from the SST data. These offsets are 

not consistent between the records, possibly due to variations between measurements or to 

different vital effects between the colonies. Possible reasons for differences in the 

measurements include different biases in the LA-ICP-MS data, or true differences in the 

skeleton composition.  



 

6
4
 

 

Figure 3-4. (a) LA-ICP-MS Sr/Ca time series for the inner-shelf cores HAV08_2, HAV06_A S3, and PAN08_1 vs ERSSTv3b reconstructed 

SSTs. Data is presented as standardized anomalies to facilitate comparisons. (b)LA-ICP-MS Sr/Ca data for the individual sections of the 

coral core HAV08_2 coral core vs distance. 
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Monthly Sr/Ca values are plotted against corresponding monthly in situ SST data for the 

common period for the all the data sets of 1993-2005 (Figure 3-5a). Regression lines were 

fitted to obtain Sr/Ca-temperature relationships for each of the three analyzed inner-shelf 

coralsFigure 3-5.  

 

  

  

Figure 3-5. (a) Linear regression of Sr/Ca vs in situ SST for inner-shelf corals from Havannah Is. 

and Pandora Reef. (b) Comparison of Sr/Ca-in situ SST calibrations obtained in this study to those 

previously obtained from central GBR reef of Havannah Is., Pandora Reef, Davies Reef and 

Myrmidon by Sinclair et al. (1998), Marshall and McCulloch (2002), Alibert et al. (2003) and 

Fallon et al. (2003). 
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Each Porites coral core produces a unique Sr/Ca – temperature relationship with different 

slopes and y-intercept values, even for corals from the same reef (Figure 3-5b). This is 

consistent with previous studies which have concluded this to be the result of different 

‘vital effects’ in individual colonies (Fallon et al. 2003). The two calibration curves for the 

Havannah Is. corals show y-intercept values that are consistent with previously reported 

data (Figure 3-5), whereas PAN08_1 is offset to significantly higher Sr/Ca values and 

displays a poorer correlation with SST (Table 3-3). Similar offsets have been previously 

reported for corals from the same region (Gagan et al. 2000; Fallon et al. 2003) and warrant 

further investigation. 

 

The Sr/Ca correlations with monthly SST data are shown in Table 3-3 and are similar to 

those previously reported from LA-ICP-MS studies (Sinclair et al. 1998; Fallon et al. 1999; 

Fallon et al. 2003). The correlations between the Sr/Ca data and the SST from ERSSTv3b 

are very similar to the ones based on just the in situ SST data (AIMS). This correlation 

validates the use of the satellite-derived data to assign the age model and to calibrate 

geochemical signals over the period not covered by in situ data. 

 

Table 3-3. Monthly Sr/Ca vs SST Pearson product moment correlation coefficients for three 

inner-shelf corals (all correlations are statistically significant at 95%, p<0.0001). 

 

  in situ SST ERSSTv3b SST 

Coral Period r Period r 

HAV06 S3 1993-2005 0.888 1966-2005 0.883 
HAV08_2 1993-2005 0.657 1962-2008 0.632 
PAN08_1 1993-2005 0.57 1993-2008 0.608 

 

However, when mean annual coral Sr/Ca is compared with mean annual ERSSTv3b data 

only core HAV06 S3 shows correlations that are statically significant (r=0.65 p<0.0001 

n=40). For HAV08_2 r=0.071 p=0.636 n=47 and PAN08_1 r=0.047 p=0.876 n=16. The 

lack of agreement with the other two corals suggests that either these corals are not faithful 

environmental recorders or indicate a potential error associated with the methodology (e.g. 

analytical bias between measured coral sections).  

 

To check for offsets due to errors in the measurements, selected coral sections were re-

analyzed along a parallel track. The majority of the repeat analyses show a good 
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reproducibility but others show offsets between runs. Figure 3-6 shows Sr/Ca analyses 

along parallel tracks for two adjacent sections of PAN08_2. There is a good reproducibility 

of the annual cycles in all pieces, but a clear offset is observed between the different 

analyses of the first section, which could account for a difference of up to ~0.4°C. This 

could be related to heterogeneity of the standard used to correct the samples or true 

differences in the coral skeleton along the analyzed parallel tracks. Further testing is 

beyond the scope of the present study but is required to explore this hypothesis, including 

the analysis of multiple tracks when possible. It is worth noting that the corals analysed 

here all possess regular growth rates. 

 

   

Figure 3-6. Sr/Ca profile along parallel track for two continuous sections of coral PAN08_2. 

The dashed lines are the mean values for the corresponding section. 

 

Monthly Ba/Ca data for inner-shelf corals were compared with previous results obtained by 

McCulloch et al. (2003) and are shown in Figure 3-7. All records show a pattern with 

distinctive peaks during late summer that coincide with the timing of seasonal river runoff. 

There is excellent agreement between the PAN08_1, and the Havannah Is. record (HAV01) 

reported by McCulloch et al. (2003) with both having similar average baselines. The two 

new Ba/Ca records from Havannah Is. show lower Ba/Ca baseline (Table 3-4) values than 

the PAN08_1 core and previously reported inner-shelf corals with typical values of ~4×10
-6

 

mol/mol (Fallon 2000; McCulloch et al. 2003). The baseline Ba/Ca level observed in these 
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two Havannah records is very similar to the value of ~2 × 10
-6

 mol/mol found in mid-shelf 

and outer-shelf reefs (Fallon 2000). 

Table 3-4. Ba/Ca baselines for individual coral cores (±SD) over the common period of 1970-1998 

(1982-1998 for PAN08_1). Record HAV01 obtained from McCulloch et al. (2003).  

 

Sample Ba/Ca × 10
6 
(mol/mol) ±1SD 

PAN08_1 4.2±0.5 

HAV08_1 2.6±0.5 

HAV06 S3 3±0.5 

HAV01 4.3±0.6 

 

 

Figure 3-7. Monthly time-series for: (a) high Ba/Ca baseline coral records, (b) discharge for the 

Burdekin River and (c) low Ba/Ca baseline coral records. Record HAV01 obtained from McCulloch 

et al. (2003).The dash line is used as a general reference for the different baseline values. 
 

All four records show a very large peak around 1998 that coincides with the timing of the 

‘1998’ severe bleaching event (Figure 3-7). Disruption of environmental proxies during 

bleaching events has been previously observed in coral geochemical records (Marshall and 

McCulloch 2002; Abram et al. 2003; Wei et al. 2009). Another feature of the three new 

coral records is the recent increase in baseline Ba/Ca values during the most recent period 

(since ~2002). This increase persists for several years (at least 2 or 3 cm from the core top) 

and is unlikely due to presence of the tissue layer, as this usually only covers the first ~0.5 

cm. Disturbance of these Ba/Ca results due to hydrogen peroxide cleaning of the core as 

shown by (Sinclair 2005) is unlikely. If this increase in coral Ba/Ca is a true environmental 
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signal it could reflect an increase of Ba or terrestrial material delivered to the reef due to 

changing land use practices, as no change in river discharge or rainfall levels is evident 

since 2002 (Figure 3-7b).  

 

Annual Ba/Ca for four corals and a master (average) Ba/Ca chronology generated from the 

normalized data of core PAN08_1 and HAV01 are compared to runoff data from the 

Burdekin River in Table 3-5. The HAV01 record reported by McCulloch et al. (2003) and 

the PAN08 from this study are significantly correlated with runoff, the two other records 

are not significantly correlated with river runoff. Based on the correlations with river run-

off and rainfall only cores HAV01 and PAN08 were combined to obtain the master Ba/Ca 

chronology. Chronological errors are unlikely to be responsible for the differences observed 

between records as luminescent bands were used to cross-date and validate the age model 

(see Chapter 3).  

 

Table 3-5. Pearson correlation coefficients for annual coral Ba/Ca time-series with rainfall 

at Townsville and river runoff data from the Burdekin River and Herbert River (non-

significant correlations indicated in gray). Record HAV01 was obtained from McCulloch et 

al. (2003). The master chronology was obtained from combining records PAN08_1 and 

HAV01. Correlations cover the period 1993-2007  for PAN08_1, 1962-2007 for core 

HAV08_2  1966-2005 for core HAV06_S3 and 1958-1998 for HAV01,  

 
  Correlations Ba/Ca 

  Rainfall 

(Townsville) 
Burdekin River Herbert River 

Record r p df r P df r p df 

PAN08_1 0.619 0.014 15 0.774 0.001 15 0.697 0.004 15 

HAV08_2 0.337 0.022 46 0.066 0.662 46 0.180 0.231 46 

HAV06 S3 0.289 0.071 40 0.129 0.428 40 0.187 0.247 40 

HAV01  0.587 <0.001 77 0.811 <0.001 77 0.675 <0.001 77 

Master 0.581 <0.001 86 0.800 <0.001 86 0.670 <0.001 86 

 

Anomalously low baseline Ba/Ca values and lower correlations between Ba/Ca and river 

discharge are observed in two of the Havannah Is. coral records. A difference in the Ba/Ca 

baseline of corals from the inner-shelf region of the central GBR was also noted by Lewis 

et al. (2007). These authors found a temporal variation in the baseline Ba/Ca value of a 

coral from Magnetic Island the later showing lower baseline values than reported by 

McCulloch et al. (2003) and similar to the ones reported here. To test if the incorporation of 

Ba is related in some way to the skeletal growth rate, the individual Ba/Ca average baseline 
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levels were compared against the average growth parameters of each core. However, no 

significant correlation was found (p<0.05). The possibility that these cores correspond to 

different species of Porites with different ‘vital effects’ affecting the Ba incorporation 

could not be tested as sampled colonies were not identified to the species level. The exact 

reasons as to why some corals are more reliable recorders of environmental changes than 

others remain unclear. This could be partly related to the presence of anomalous Ba spikes 

within some records and to possible local micro environment differences. 

 

Anomalous Ba spikes that are not related to river discharge could cause a loss of correlation 

with river/rainfall data. Such anomalous Ba spikes have been previously reported (Hart and 

Cohen 1996; Tudhope et al. 1996; Fallon 2000; Sinclair 2005; Lewis et al. 2012) but the 

cause of their occurrence is not fully understood. Unique oceanographic conditions have 

been called upon to explain differences in the Ba signal between nearby locations (Tudhope 

et al. 1996). Varying magnitude of correlation of some Ba/Ca records with Burdekin River 

discharge could relate to the variable nature of flood events, as the propagation of the flood 

plume not only depends upon the volume of flood water but also on the wind intensity and 

direction (Devlin et al. 2001). Luminescent lines for big flood events (e.g. 1968, 1974, 

1991) are present in all cores indicating that fresh water reached the corals, even for flood 

events for which there is no Ba/Ca spike in some of the cores. However, the Ba/Ca signal 

recorded by the coral will depend not only on the transport of flood plume waters to the 

reef, but also on how much Ba is delivered by the plume waters. This can be affected by the 

distribution of rainfall within the catchment and with the amount of sediment material 

accumulated inland (e.g during drought-breaking floods; McCulloch et al, 2003). Re-

suspension of sediments by wave and wind mixing could also influence the relationship 

between Ba/Ca and river discharge and in the case of Havannah Is., mass effects could 

generate local environmental differences. Topography generates secondary currents that 

form convergence zones and eddies that affect mixing, nutrient and sediments distribution 

(Hamner and Hauri 1981; Wolanski and Hamner 1988). In this way, the location of the 

colony with respect to the reef could modify the Ba/Ca signal recorded. Other factors that 

could complicate the interpretation of Ba/Ca ratios in corals include barite trapping 

following phytoplankton blooms, decaying blooms of Trichodesmium, physiological 

perturbations associated with coral spawning and events that cause sediment resuspension 

such as dredging (Esslemont et al. 2004; Sinclair 2005). 
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On a decadal time scale the master chronology Ba/Ca (HAV01 and PAN08_1) shows good 

agreement with the discharge and rainfall instrumental data with clear dry and wet periods 

observed over 1920-2008 (Figure 3-8). Wet periods characterize the 1950’s and 1970’s as 

well as the early 1990’s and 2000’s, and dry periods in the 1960’s and mid 1980’s, 1990’s 

and 2000’s (Lough 2007).  

 

 

 

Figure 3-8. Smoothed low pass band filter of 8 years (0.125 Hz) applied to highlight low frequency 

variability present in the master coral Ba/Ca, rainfall and river run-off (Burdekin and Herbert) 

time-series. Blue vertical bars highlight wet periods. 

 

The wavelet analysis (Figure 3-9) indicates that over the period 1920-2008 the Ba/Ca is 

characterized by interannual and decadal modes of variability. The last ~30 years (~1980-

2008) are characterized by a reduction of the interannual and decadal variability and are 

dominated by a decadal mode of variability. This could indicate a ‘switch’ in the mode of 

variability observed in the Ba/Ca. This might relate to the increase in variability of rainfall 

and river flow in north-eastern Australia reported by Lough (2011b), who also notes that 

and that the most recent period has witnessed more frequent wet and dry extremes. 
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Figure 3-9. Morlet wavelet analysis for the annual master Ba/Ca time series. The thick contour 

encloses regions of greater than 95% confidence for a red-noise process with a lag-1 coefficient of 

0.11. The region below the dashed line indicates the ‘cone-of-influence’, where zero padding has 

reduced the variance. Wavelet software provided by C. Torrence and G. Compo, and is available at 

http://atoc.colorado.edu/research/wavelets/. 

 

3.4. Summary 

Trace elements were analyzed by LA-ICP-MS in three inshore cores from the central GBR. 

Annual Sr/Ca was significantly correlated with SST for only one of the three cores 

analyzed, for this reason the Sr/Ca data was not used to extend the in situ SST records at 

this study site. However, core PAN08_1 was successfully used to update the Ba/Ca record 

published by McCulloch et al. (2003), but again two out of three cores here analyzed show 

anomalies and therefore have not been included in the master chronology used to 

reconstruct terrestrial runoff. The fact that not all records show the same or equally good 

correlations with environmental parameters highlights the importance of a multi-core 

approach and the validation of proxy records against instrumental records for paleo-climate 

reconstructions (Hendy 2003; Lough 2004; Jones et al. 2009). The reason for the lack of 

correlations with environmental parameters of some coral records remains uncertain and 

requires further analysis including assessment of the potential differences between species 

and local effects.    
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4. Coral Calcification in the Central Great 

Barrier Reef: Assessing the Impacts of River 

Runoff and Climate Change 

4.1. Introduction 

Coral reefs are in decline with clear evidence for major reductions in coral cover on a 

global scale (e.g. Gardner et al. 2003; Hughes et al. 2011; De'ath et al. 2012). Although 

clearly linked to anthropogenic disturbances, the identification of specific causes and their 

interactive effects remains unclear, with a combination of factors being likely. These range 

from the global effects of climate change with increasing stress and episodic bleaching 

caused by unusually high seawater temperatures (Hoegh-Guldberg et al. 2007), a 

progressive slow-down in the rates of calcification due to CO2 driven ocean acidification 

(Ries et al. 2010; McCulloch et al. 2012a; Venn et al; 2013), to more local impacts. The 

latter include a range of effects such as overfishing, increased levels of nutrients, tropical 

cyclones, degraded water quality and associated effects such as disease and crown of thorn 

outbreaks (McCulloch et al. 2003; Cooper et al. 2008; Lough 2008a; De'ath et al. 2009, 

2012; Brodie et al. 2010b). Discriminating between a range of spatial and temporal possible 

causative factors for reduced coral cover remains an important challenge that provides a 

rationale for ongoing efforts to improve local environmental conditions, essential for the 

overall maintenance of coral reef systems in the face of ever increasing global threats posed 

by climate change and ocean acidification (e.g. Buddemeier et al. 2004; Wei et al. 2009; 

McCulloch et al. 2012a). 

 

In the Great Barrier Reef (GBR) an important long-term indicator of the impacts of 

environmental changes and reef health generally has been constraints provided by coral 

growth records from long-lived massive Porites (Lough and Barnes 2000; Lough 2008a; 

De'ath et al. 2009). For the key parameter of coral calcification, a significant decline of 

14.2% from 1990 to 2005 (i.e. ~9% per decade) has most recently been reported for the 

GBR by De'ath et al. (2009). This study is based on an update of the original findings of 

Lough and Barnes (2000), and is notable for the large magnitude of recent declines, which 
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is a reversal from the previously reported increase in calcification between the 50 year 

periods of 1880–1929 and 1930-1979 (Lough and Barnes 2000). The large-scale declines in 

calcification reported by De'ath et al. (2009), if sustained and typical of the whole GBR, 

would have severe consequences for the GBR generally, and may for example be an 

important factor driving the rapid declines in coral cover of ~30% observed since ~1980 

(Hughes et al. 2011; De'ath et al. 2012). This in addition to COTS and tropical cyclones 

which according to De'ath et al. (2012) are the primary drivers of the decline in hard coral 

cover on the GBR. 

 

Although the De'ath et al. (2009) study examines a large number of records (328) from 

Porites heads, more than one-half (~170) of these are from only 5 reefs and the majority 

from the inshore rather than the main mid-outer reefs of the GBR. Thus whether major 

changes in calcification inferred by De'ath et al. (2009) reflect those of the inner reef rather 

than the whole GBR remains uncertain. The more recent period (1990-2005) emphasized in 

the De'ath et al. (2009) study is also characterized by intense 1998 and 2002 bleaching 

events in the GBR (Berkelmans et al. 2004). Although coral bleaching events are typically 

short-lived they can have significant longer-term effects on both coral cover as well as 

calcification with recovery usually only being observed after a few years, (typically 2-3 

years), but in highly stressed sites up to 8-10 years (Suzuki et al. 2003; Carilli et al. 2009b; 

Gilmour et al. 2013). Thus the large magnitude of the more recent (post 1990) changes in 

calcification reported by De'ath et al. (2009) may also reflect short-term fluctuations in 

calcification caused by the effects of the very intense 1998 bleaching event.  

 

Here temporal and spatial changes in coral growth (density, linear extension rate and 

calcification rates) from an independently collected set of cores obtained from relatively 

long-lived (>100 years) Porites colonies are documented. Cores were sampled from 7 reefs 

in a transect that is broadly representative of a strong inshore to offshore environmental 

gradient across the central portion of the GBR (Figure 2-1). The inshore reefs are 

episodically impacted by flood plumes, with increased sediment flux and degraded water 

quality resulting from a range of land-based activities such as grazing, agriculture, mining 

and land clearing in river catchments (Furnas 2003; McCulloch et al. 2003; Lewis et al. 

2007; Brodie et al. 2010b). The mid-reef, although occasionally affected by extremely large 

flood plumes, is generally subject to low local anthropogenic pressure, while the outer reef 
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is removed from land-based effects and only subject to major oceanic influences. Details of 

the coral samples and study area are provided in Chapter 2. Specific aims of this study are 

thus to independently document changes in coral calcification over 1930-2008 (inner-shelf) 

1947-2008 (mid-shelf) and 1952-2004 (outer-shelf), including the periods during and after 

the large-scale mass-coral bleaching events of 1998 and 2002 (Berkelmans et al. 2004). 

Importantly, by comparing the inner-, mid- and outer-shelf reefs this study attempts to 

discriminate between the impacts from local, mainly inshore changes in water quality from 

land-based effects, versus larger regional-scale impacts due to rising ocean temperatures, 

episodic bleaching, as well as the all-pervasive effects of CO2 driven ocean acidification. 

 

4.2. Material and Methods 

4.2.1. Sample analysis 

This study includes coral growth parameters for the forty one coral cores collected from 

seven reefs across the central GBR shelf described in Chapter 2. To describe the growth 

characteristics of the corals studied, two parameters were measured, the linear extension 

rate (cm yr-1), and the density (g CaCO3 cm-3). The calcification rate (g CaCO3 cm-2yr-1) 

was obtained from the product of the extension rate and density. 

 

4.2.2. Sclerochronology 

4.2.2.1. Linear extension and chronology  

Annual linear extension rates were determined by measuring the distance between the start 

of successive high-density bands or between the start of annual luminescent bands. These 

measures correspond to the mean coral growth from one summer to the next (Isdale 

1981,1984; Lough and Barnes 1990a,b,1992). Particular care was taken to follow the 

maximum growth axis. To avoid reporting incomplete years of growth the most recent data 

are reported for the first complete annual band that completely cleared the tissue layer. The 

linear extension measurements for one core typically consist of 2 or 3 parallel tracks 

following the growth axis. In sections where only one track could be followed through the 

maximum growth axis or when bands showed a consistent perpendicular angle along the 

width of the core only one track was measured. The luminescent lines or density bands 
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were traced onto an acetate transparency film directly from the skeleton exposed to UV 

light or from printout images of UV light or X-rays. The distance between density or 

luminescent bands was measured from these transparencies or from digital images with the 

aid of image analysis software Coral XDS (NOVA Southeastern University, 2010). Results 

from direct measurements (made using a ruler) and with the aid of the software for sections 

of cores WHE09_1, WHE09_2, WHE09_4 and DAV09_2a show a correlation coefficients 

of r=0.9 n=23, r= 0.8 n=38, r=0.9 n=18 and r=0.8 n=29, respectively, for which the t-test 

indicates no significant differences (p=0.8, p=0.8, p=0.48 and p=0.54, respectively). 

 

Lough and Barnes (1992) report a larger variability in the width and intensity of annual 

density bands in inner-shelf corals from Pandora Reef compared with mid-shelf corals from 

Rib Reef and outer-shelf corals from Myrmidon Reef. This enhanced variability 

complicates the identification of the density bands in inner-shelf corals, and as an 

alternative, luminescent bands can be used to measure linear extension when density bands 

are not clear (Allison et al. 1996; Lough 2011a). Using the luminescent bands can also 

reduce the uncertainty of assigning an age model as it allows cores to be visually cross-

dated based on characteristic flood events (see Lough and Barnes 1990a) and therefore 

prevent dating errors associated with partial, missing or double density bands (Castillo et al. 

2011). Furthermore, as measurements of luminescent bands are made along the surface of 

the corals they are less susceptible to being affected by the complex 3-D skeletal 

characteristics of Porites corals (Lough 2011a). Whilst comparable data sets can in 

principle be obtained from either methods (described in section 4.2.2.3); when present, 

luminescent bands are generally clearer and much better defined than the density bands. In 

the present study the chronology and linear extension measurements for all the inner-shelf 

corals were obtained from the luminescent bands. The information from X-ray negatives 

was used to assist in establishing the age model, ensuring the correct chronology was 

assigned. An example of the luminescent bands observed in inner-shelf corals from 

Havannah Is. and Pandora Reef is presented in Figure 4-1. 

 



 

Figure 4-1. Black and white images of luminescent bands photographed unde

for three inner-shelf corals from Havannah Is. and Pandora Reef, the high intensity bands 

relate to episodes of high river discharge.
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Black and white images of luminescent bands photographed unde

shelf corals from Havannah Is. and Pandora Reef, the high intensity bands 

relate to episodes of high river discharge. 

 
Black and white images of luminescent bands photographed under UV lighting 

shelf corals from Havannah Is. and Pandora Reef, the high intensity bands 



 78

Because density bands in corals from the mid-shelf region are obvious and luminescent 

bands are not always present (Lough and Barnes 1992), linear extension for corals from this 

region was based on the information from X-rays. Where present, luminescent lines linked 

to specific flood events (e.g. 1968, 1972, 1974, 1979, 1981, 1991 and 2009) were used to 

ensure chronological control. No clear evidence for luminescent bands was observed in the 

outer-shelf corals from Myrmidon Reef, a result of the minimal influence of terrestrial 

processes in this area (Lough et al. 2002). The age model and linear extension 

measurements for corals from Myrmidon Reef are based on the information obtained from 

X-rays alone. The uncertainty in the chronology was greater for corals from Myrmidon 

Reef, a result of the slow growing and curvature typical of corals from this reef that can 

cause distortions on the X-rays (Lough and Barnes 1992). 

 

4.2.2.2. Data interpolation 

An uncertainty in the timing of the formation of luminescent band exists associated with 

interannual variations in the timing in peak river run-off (Lough and Barnes 1990a). For the 

Burdekin River monthly peak river discharge is normally distributed with 92% of the flood 

events occurring between January and March, and a modal value of 42% in February 

(Figure 4-2). To account for this variability the exact month in which peak river discharge 

occurred for each year was included in the age model and incorporated into the derivation 

of linear extension data obtained from luminescent bands. For example, in the case of the 

luminescent band corresponding to the year 1970 the assigned date of the original 

chronology was 1970.083 as the peak in river discharge occurred in January. The linear 

extension time series generated were then resampled to an annual resolution using linear 

interpolation. 
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Figure 4-2. (a) Distribution of the number of years in which peak monthly discharge for the 

Burdekin River occurred during a given month over the period of 1924 to 2010. (b) Temporal 

variation in the timing of peak monthly river discharge from 1924 to 2010. 

 

A similar variability exists for the timing of the formation of the density bands, which for 

Porites corals in the GBR is reported to be on average 3 months, but up to 8 months 

(Barnes and Lough 1993). Applying a similar correction to the timing of density bands is 

not possible as their formation is probably affected by a combination of several 

environmental parameters (e.g. temperature and light). The variations in the timing of the 

luminescent and density bands could affect the absolute annual extension rate and density 
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values however; the effect on the long term changes is reduced as any offset from one year 

is usually compensated in the next year.  

 

4.2.2.3. Comparison between X-ray and UV luminescence linear extension data 

The two main methods used to measure linear extension in this study, from X-rays and UV-

luminescence, were compared to test if they produce similar information. The annual linear 

extension rates obtained from X-rays and UV luminescence were compared for four inner-

shelf corals: HAV08_1, HAV08_2, PAN08_1 and PAN08_2, all of which present regular 

density bands (Figure 4-3). Correlations between the two methods over the common period 

of 1975-2006 were statistically significant for cores HAV08_1 and HAV08_2 from 

Havannah Is. (r=0.6; p<0.0001 in both cases) and not insignificantly correlated for cores 

PAN08_1 and PAN08_2 from Pandora Reef (r=0.2 and r=0.1 respectively). Despite 

differences in the annual values between the two methods similar long-term variability is 

observed, which becomes more evident after applying a Gaussian low band pass filter of 

0.125 Hz to the data (Figure 4-4). The agreement between methods is again more evident 

for the two cores from Havannah Is. (HAV08_1 and HAV08_2) and not evident for the two 

cores from Pandora, particularly core PAN08_2. A visual inspection of the X-rays indicates 

that PAN08_2 has the least clear density bands of the four corals.  
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Figure 4-3. X-ray negatives for 4 slices of Porites sp. corals from the inner-shelf reefs of 

Havannah Is. (HAV08_1 and HAV08_2) and Pandora Reef (PAN08_1 and PAN08_2) 

showing the annual density banding pattern. 
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Figure 4-4. (left) Annual linear extension rates obtained from X-rays (gray) and UV light (black) 

for four inner-shelf cores. (right) Smoothed versions of the annual time series after a low pass band 

filter of 8 years was applied. The data were normalized by subtracting the mean and divided by the 

standard deviation from each series. 

 

Master chronologies for each method were obtained from the normalized data of the four 

corals records (Figure 4-5) and give a correlation between methods of r=0.5 (p=0.006) 

calculated over the common period for the four coral records of 1975-2006 (r=0.3, p=0.018 

over 1953-2008). The similarities between methods is again more evident after the data is 

smoothed using a low pass filter of 0.125 Hz to remove the interannual variability. The 

difference between the two methods increases as the number of cores is reduced towards 

the early part of the record. Reproducibility between tracks measured in a single coral slab 

by the same method is found to vary significantly between different cores, with correlations 

coefficients (r) varying between 0.3 and 0.9 for the UV luminescence data (with an average 
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r of 0.6 for 23 tracks) and 0.0 to 0.8 for the X-ray method (with an average r of 0.5 for 17 

tracks). Therefore, at least part of the annual variability observed between methods is to be 

explained by variations on the tracks analysed. These results indicate that two different 

methods do not always produce comparable results; however this can be improved when 

several records are included. 

 

 

Figure 4-5. (a) Master chronology for annual linear extension obtained from X-rays (gray) and 

UV light (black)  for four inner-shelf cores presented in Fig. 4.3. (b) Number of cores through time. 

(c) Smoothed versions of the annual series in (a) after a low pass band filter of 8 years was applied. 

4.2.2.4. Coral density 

Coral skeletal bulk density was measured using the water displacement method (Jokiel et 

al. 1978; Brown et al. 1990; Risk and Sammarco 1991; Scoffin et al. 1992; Bucher et al. 

1998; Edinger et al. 2000; Smith et al. 2007; Manzello 2010) applied to pieces of coral cut 
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out from a single slab of all cores. Care was taken to ensure that the pieces followed the 

maximum growth axis. Pieces were cut similarly to those used for coral laser ablation mass 

spectrometry analysis (e.g. Fallon et al. 2003), which are typically 0.7 cm thick, 2.5 cm 

wide and less than 9.5 cm long The length of the pieces used in this study have an average 

resolution of 5 years (±2 years SD, n=414). No major difference was observed between 

corals sampled with a 5 year or 10 year resolution (Jung-Ok Kang, pers. com., 2011). 

 

Pieces were cut from the start of a high density or luminescent band in the case of the inner 

shelf corals, except when there was a natural break in the core. The pieces were 

ultrasonically cleaned three times and then dried at ~50°C. The weight of each piece was 

measured in air and in water using a Mettler B6 manual hanging balance with an accuracy 

of ±0.00002g. After obtaining the dry weight each piece was vacuum-sealed with plastic 

wrapping using a domestic system (Sunbeam VAC420). The plastic was heat-shrunk using 

a heat gun to ensure an air tight seal and cut as close as possible to the skeleton to minimize 

the amount of plastic used to cover the piece. The dry weight of each plastic wrapped piece 

of coral was then measured. The weight in water was obtained by suspending coral pieces 

in distilled water. For the weight in water, a watch glass in an aluminium frame was 

suspended from the hook underneath the balance using nylon monofilament (Figure 4-6). A 

plastic container was filled with deionized water to cover the watch glass. The plastic 

enclosed coral was placed onto the watch glass, taking care to ensure that it was completely 

submerged in water and that no air bubbles adhered. Special care was taken to avoid 

punctures in the plastic. When this occurs it is easily recognized while weighing in water 

because the weight of the coral piece will drift as water invades the sample. Water 

temperature was routinely measured to calculate the density of the water.  

 

Water was prevented from filling the skeleton during the wet weighting to preserve the 

mesoscale variations associated with bulk density (Bucher et al., 1998); therefore, the 

method used here is equivalent to a direct measurement of the volume. One of the 

advantages of using the water displacement method to obtain the volume over the direct 

measurements (e.g. callipers) is that coral pieces with a simple or complicated geometry 

can be equally easily resolved. The difference between the weight in air and the weight in 

water is equivalent to the volume of each coral piece. Density (g cm-3) was obtained from 

the ratio of the weight (g) in air and the volume (cm
3
). A correction for the amount of 
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plastic used was considered in the calculations. The measurements involved in the 

calculation of bulk-density are: 

ρw = density of water (1 g cm
-3

 at 20°C) 

DWc = dry weight of the skeletal material unwrapped 

DWcp = dry weight of the skeletal material wrapped in plastic 

DWp = DWcp – DWc: dry weight of the plastic wrap 

BWcp = buoyant weight of the wrapped coral 

Vp = DWp/ ρp: volume of the plastic 

Vt = (DWcp – BWcp)/ δw: total volume (coral + plastic) 

Vc = Vt - Vp: volume of the coral 

ρc = DWc / Vc: coral density 

 

The formulae to obtain the density of the plastic (ρp) are: (the terms have the same meaning 

as above, where a refers to the acrylic instead of the coral) 

Va = (DWa - BWa)/ δw: volume of the acrylic 

ρa = DWa/Va: density of the acrylic 

DWp = DWa – DWap: weight of the plastic wrap 

Vp = (DWap – BWap)/ ρw - Va 

ρp = DWp / Vp  

 

A set of rectangular acrylic blocks, of known volume (measured using a caliper) were 

employed as standards to validate the method and calculate the density of the plastic used 

to cover the coral pieces. The reproducibility of the measured density of the acrylic 

standards and coral samples was 0.06% (n=35) and 0.55% (n=22), respectively.  



 

Figure 4-6. Schematic of the system used to measure buoyant weights involved in the bulk 

density calculations. 

 

A density of 0.61 g cm
-3

 was calculated for the plastic used to cover the coral from the 

previous formulae. This value was used to correct the density estimates derived from the 

wet weight of coral pieces after calculating the amount of plastic used to cover

piece. The resulting density of the acrylic pieces measured with no plastic and the average 

value of acrylic pieces corrected for the density of the plastic cover are all in excellent 

agreement (Figure 4-7) with a mean density 

respectively. 

 

Figure 4-7. Density vs volume for acrylic pieces used as 
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Schematic of the system used to measure buoyant weights involved in the bulk 

was calculated for the plastic used to cover the coral from the 

previous formulae. This value was used to correct the density estimates derived from the 

wet weight of coral pieces after calculating the amount of plastic used to cover

piece. The resulting density of the acrylic pieces measured with no plastic and the average 

value of acrylic pieces corrected for the density of the plastic cover are all in excellent 

with a mean density values of 1.186 g cm
-3

 and 1.188 g cm

Density vs volume for acrylic pieces used as standards.  

y = 0.0137Ln(x) + 1.1234

R2 = 0.9497

10 15 20

Volume(cm3)

density no plastic
density w/plastic
density corrected
avg w/plastic

Schematic of the system used to measure buoyant weights involved in the bulk 

was calculated for the plastic used to cover the coral from the 

previous formulae. This value was used to correct the density estimates derived from the 

wet weight of coral pieces after calculating the amount of plastic used to cover each coral 

piece. The resulting density of the acrylic pieces measured with no plastic and the average 

value of acrylic pieces corrected for the density of the plastic cover are all in excellent 

and 1.188 g cm
-3

 

 

25

density no plastic
density w/plastic
density corrected
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4.2.2.5. Data normalization  

To obtain the coral growth master chronologies each coral record was scaled to the mean 

value using a normalization procedure (e.g. Dodge and Lang 1983). The procedure 

involved calculating the mean of the growth of each core over the common period of 1981-

2002. This value was subtracted from the annual values of the corresponding core. This 

process equally weights all portions of the chronology. The average value for the period of 

1981-2002 was calculated from the raw data for each region (inner-shelf, mid-shelf or 

outer-shelf) and added to the normalized annual values of each core. The scaling equation 

can be expressed as: 

�� = ��� − ��� � + ��    

where xt is a growth parameter at certain point of time, ���  is the mean value of the growth 

parameter over 1981-2002 for a given core and ��    is the average mean value for all the 

standardized cores from a specific region. Finally the resulting time series for each core 

were combined into a master chronology (Figure 4-8, Figure 4-9 and Figure 4-10). The data 

for the two corals from Myrmidon Reef collected at a depth of 25.5 m are included in the 

master chronology; however, all the data from this reef were scaled in respect to the median 

values calculated for the shallow corals. The cores collected before 1988 from Havannah Is. 

and Magnetic Is. and the data from AIMS were normalized with respect to the mean value 

over the period of 1962-1988. These data were then scaled using the mean value over the 

period of 1962-1988 calculated from the previously scaled records that extended to this 

same period. HAV01 and MAG88 correspond to cores also included in the AIMS dataset 

but were independently measured from replicate slabs of the same cores.  

 



 88

 

Figure 4-8. Annual linear extension rates time-series for 22 coral cores from the inner-shelf reefs 

of Magnetic Is., Havannah Is. and Pandora in the central GBR presented as (a) raw data and (b) 

normalized data relative to 1981-2002 (see text). A master chronology is included for both datasets 

(black bold line). 

 

Figure 4-9. Annual linear extension rate time-series for 13 corals cores from the mid-shelf reefs of 

Davies, Wheeler and Rib in the central GBR presented as (a) raw data and (b) normalized data 

relative to 1981-2002 (see text). A master chronology is included for both datasets (black bold line). 
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Figure 4-10. Annual linear extension rates time-series for six corals cores from the outer-shelf reef 

of Myrmidon in the central GBR presented as (a) raw data and (b) normalized data relative to 

1981-2002 (see text). A master chronology is included for both datasets (black bold line). 

 

4.3. Results 

4.3.1. Cross-shelf variability in average coral growth parameters, 1981-2002 

Average growth parameters were calculated for individual cores (n=41) of seven reefs 

(Table 2-2) from across the central GBR relative to a common reference period of 1981 to 

2002 (Figure 4-11). The average linear extension rate is significantly correlated with 

calcification rates (r=0.83, p<0.001, n=41) and significantly inversely correlated with 

density (r=-0.69, p<0.001, n=41). Density shows no significant relationship with 

calcification (r=0.18, p=0.257, n=41).  
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Figure 4-11. Growth variables for 41 Porites colonies from the central GBR averaged over 1981-

2002 for (a) linear extension vs, density, (b) linear extension vs. calcification and (c) density vs. 

calcification. Linear regressions and their significance are included. The confidence bands indicate 

the uncertainty associated to the regression lines, while the prediction bands relate to the 

distribution of values within the 95% probability. Colonies are grouped according to reef (see 

legend) and shelf location as inner-shelf (red), mid-shelf (blue) or outer-shelf (green). 

 

The inner-shelf colonies have the largest variability and highest linear extension rates and 

lower density values, but no significant linear relationships are observed for coral growth 

parameters versus distance across-shelf at the reef-scale (Figure 4-12). The outer-shelf 

deeper-water colonies have denser skeletons that calcify at a slower rate (Figure 4-12). 

Average annual calcification rates are approximately constant and do not show any clear 

across-shelf linear relationships (Figure 4-12c), although the mid-shelf reefs (Table 4-1) 

have slightly higher and less variable values. The lowest calcification rates were obtained 

from the deep-water outer-shelf Myrmidon Reef, and the inner-shelf corals from Havannah 

Is. and Magnetic Is. Differences between average linear extension, density and calcification 

were tested for corals in inner-shelf, mid-shelf and outer-shelf groupings (1 way ANOVA). 
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The shelf groups show differences in the mean density and calcification values that are 

statistically significant (p<0.001) but not for linear extension. Pairwise multiple 

comparisons (Holm-Sidak) indicate statistically significant differences were observed 

between the three groups for calcification, while no significant difference were observed 

between groups for linear extension. Density is significantly lower in the inner–shelf versus 

mid-shelf corals. The Myrmidon cores collected at 25.5 m depths were not included in 

these statistical comparisons. 

 

 

Figure 4-12. Coral growth parameters: (a) linear extension rates, (b) density, and (c) calcification 

rates for individual reefs averaged over 1981-2002 plotted vs. distance across shelf expressed as a 

percentage of the width of the shelf (see Lough and Barnes 2000). The percentage distances to each 

reef correspond to: Magnetic Is. (5%), Pandora Reef (12%), Havannah Is. (18%), Rib Reef (50%), 

Davies Reef (60%), Wheeler Reef (60%) and Myrmidon Reef (100%). Error bars represent one 

standard deviation. The two fore reef corals from Myrmidon collected at 25.5m (open symbols) are 

not included in the linear fits and significance calculations. The confidence bands indicate the 

uncertainty associated to the regression lines, while the prediction bands relate to the distribution 

of values within the 95% probability.. 
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Table 4-1. Average growth characteristics for the 7 reefs based on the common period of 

1981-2002 (±1 SD). 

 

 

4.3.2. Co-variation between coral growth and environmental parameters  

Over interdecadal timescales, annual linear extension rates for colonies in the inner-shelf of 

the central GBR are highly variable, ranging from ~0.85 cm yr
-1

 to 2.28 cm yr
-1

 (Figure 4-

8; SD=0.38) and with standard deviations, from ~0.13 cm yr
-1

 to ~0.41 cm yr
-1

. Annual 

linear extension rates are less variable in the mid-shelf (Figure 4-9; SD=0.18) and outer-

shelf regions (Figure 4-10; SD=0.2 excluding the cores collected at a depth of 25.5 m). For 

the three regions there is a reduction in the number of cores in the earlier years. As 

described in section 4.2.2.5 each coral record was scaled using a normalization procedure 

that preserves original measurement units. The time overlap between the 5-year lengths of 

different corals pieces used for density measurements, results in a smoothed master 

chronology with a ~3 year resolution (Figure 4-13), but gives incompletely resolved 

interannual records. This approach however has the advantage of effectively averaging the 

relatively large seasonal fluctuations in density, capturing the main longer-term changes. 

Variations in annual calcification rate are in any case mainly controlled by annual extension 

rates in Porites (Lough and Barnes 1997). 

 

 

Reef Samples 
Distance across 

shelf (%) 
Linear Extension 

(cm yr
-1

) 
Density 
(g cm

-3
) 

Calcification 
(g cm

-2
 yr

-1
) 

Magnetic Is. 4 5 1.58±0.49 0.99±0.11 1.52±0.27 

Havannah Is. 8 18 1.30±0.29 1.23±0.11 1.58±0.29 

Pandora 11 12 1.66±0.35 1.18±0.10 1.94±0.32 

Davies 5 60 1.26±0.15 1.41±0.10 1.77±0.12 

Wheeler 5 60 1.29±0.12 1.35±0.09 1.73±0.09 

Rib 3 50 1.59±0.11 1.22±0.09 1.93±0.02 

Myrmidon  4 100 1.17±0.20 1.31±0.12 1.53±0.18 

Myrmidon (25m) 2 100 0.71±0.18 1.61±0.01 1.15±0.31 



 

9
3

 

 

Figure 4-13. Time-series of the growth parameters: (a) linear extension, (b) density and (c) calcification from the inner-shelf reefs of Havannah Is., 

Pandora Reef and Magnetic Is. (left), the mid-shelf reefs of Davies Reef, Wheeler Reef and Rib Reef (middle), and the outer-shelf Myrmidon Reef (right). 

The bold black line is the average for all colonies from each region; the gray bars represent the standard error (± SE).
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Time-series for density, calcification rate and annual linear extension rate were grouped 

according to their location on the shelf (Figure 4-13). In general there is good agreement 

between reefs from a given region (Table 4-2). Linear extension in the inner-shelf shows 

high interannual variations that are very similar within the three inner-shelf reefs (Figure 4-

13). Particularly notable is the pronounced 2-3 years decrease in linear extension of almost 

40% in the inner central GBR reef immediately following the 1998 bleaching event.  

 

For the mid-shelf reefs for the period of 1947-2008 a general increase in linear extension 

and calcification is observed. A similar increase was observed in the more poorly 

represented outer-reef of Myrmidon. This reef shows a marked increase in calcification 

during the early part of the record (~1950-1970), but then remains approximately constant 

from 1980 to 2004. In the case of Myrmidon Reef, no significant difference was found in 

the master chronology by including the two cores collected at a depth 25.5 m (r=0.97, 

p<0.001). 

 
Table 4-2. Correlation coefficients (r), probabilities (p) and degrees of freedom (df) of growth 

parameter time-series (linear extension, density and calcification) between proximal reefs in the 

central GBR. Gray values indicate lack of statistical significance (95%). The df for the density and 

calcification time series were adjusted to allow for the reduced resolution of these time series.  

 

    Linear extension Density Calcification 
 

     r p r p r p Period df 

Inner-shelf 

      

 

 Magnetic-Havannah 0.474 0.000 0.190 0.349 0.469 0.0149 1930-2008 77 

Magnetic-Pandora 0.346 0.010 -0.111 0.654 0.515 0.0255 1953-2008 55 

Havannah-Pandora 0.623 0.000 0.596 0.008 0.312 0.021 1953-2008 55 

Mid-shelf 

      

 

 Davies-Wheeler 0.465 0.001 0.191 0.463 -0.109 0.6771 1959-2008 49 

Davies-Rib 0.356 0.005 0.396 0.078 0.118 0.6137 1948-2008 60 

Wheeler-Rib 0.528 0.000 0.841 0.000 0.726 0.001 1959-2008 49 

Outer- vs Mid-shelf 

      

 

 Myrmidon-Davies 0.243 0.080 -0.100 0.693 -0.108 0.6697 1952-2004 52 

Myrmidon-Wheeler 0.418 0.004 0.006 0.9826 0.532 0.0362 1959-2004 45 

Myrmidon-Rib 0.111 0.430 0.096 0.7047 0.510 0.0306 1952-2004 52 

 

To analyse the long-term interdecadal variability and assess the relationships to 

environmental parameters, the growth variables were smoothed with an 8-year low-pass 

filter (to remove the interannual variability). The smoothed time series were compared to 

similarly smoothed data of mean ERSSTv3b, rainfall at Townsville, and discharge for the 
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Burdekin River and Herbert River (Figure 4-14). The smoothed inner-shelf linear extension 

and calcification rate time-series show interdecadal variability from ~1960 to 2008 that 

matches the ‘wet’ and ‘dry’ periods observed in rainfall and river discharge. A significant 

inverse relationship of coral growth with rainfall is most evident in the last ~30 years 

(1969-2008; r=-0.6, p<0.0001, n=40), and is not significant before 1969 (1930-1968 r=-0.2, 

p=0.239, n=39). This pattern of interdecadal variability does not appear in the density time-

series, and could relate to lower sampling resolution or indicate that density is less sensitive 

to these changes. 

 

The smoothed time-series (Figure 4-14) of mid-shelf and outer-shelf annual coral 

calcification rates generally show a similar trend with SST over most of the record, 

consistent with enhanced calcification from warming. The exception is the most recent 5 

year period (2003 to 2008) where there is a decrease in calcification in the mid-shelf mainly 

caused by a decrease in density (Figure 4-14). In contrast, in the inner-shelf, linear 

extension and calcification rates generally show the opposite long-term trend to SST, with 

linear extension and calcification decreasing with time, while SST has almost continuously 

increased. 

 

On annual timescales linear extension rates for the inner-shelf, mid-shelf (1991-2008) and 

outer-shelf (1991-2004) regions are compared with annual in situ SST (maximum, 

minimum and average values), discharge from the Burdekin and Herbert rivers, and rainfall 

at Townsville in Figure 4-15. The in situ SST data (c.f. reconstructed SST) provide the 

necessary spatial resolution (tens of km) to resolve the variability between the three regions 

studied. The 1998 value is excluded from the linear regressions for the inner-shelf data as 

this is an outlier influenced by the strong El Niño event in that year. Linear extension was 

severely reduced in inner-shelf corals during this year with some Porites showing scaring 

and growth hiatuses (J.P. D’Olivo pers. obs.; Lough; 2008). Mid- and outer-shelf corals 

show no significant correlation (95% significance level) with any of the environmental 

parameters. 
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Figure 4-14. Eight-year low pass filtered time series of the growth parameters: (a) linear extension, (b) density and (c) calcification. The data are 

grouped in inner-shelf, mid-shelf and outer-shelf and compared with (d) rainfall at Townsville, discharge at the Burdekin and Herbert rivers mouths, and 

(e) average SST from ERSSTv3b NOAA 2°×2°. The shaded areas highlight the wet and high discharge periods. 
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Figure 4-15. Scatter plots based on annual time-series of composite coral linear extension rates 

vs.: (a) average annual in situ SST, (b) maximum annual in situ SST, (c) minimum annual in situ 

SST, (d) Burdekin River discharge, (e) Herbert River discharge, and (f) rainfall at Townsville 

over the period 1991-2008 (1991-2004 for the outer-shelf). Gaps in the in situ SST data occur in 

1991-1992 for the inner-shelf, 1995 for the mid-shelf and 1993-1995 for the outer-shelf region. 

Regression lines for each region and their corresponding coefficient of determination indicated 

only when statistical significance exists. The calcification data for 1998 were not included in the 

linear fits for the inner-shelf data (see text). 

 

The inner-shelf in contrast, shows significant correlations of annual linear-extension 

rates with annual average SST, minimum SST, rainfall and discharge from the Herbert 
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River. It should be noted that while the river discharge correlates significantly with 

rainfall at Townsville (Table 4-3), the latter is a local indicator, whereas river discharge 

integrates variability in rainfall and runoff over the entire catchment. Furthermore, 

although the Herbert River is located closer to the studied inner-shelf reefs, it is 

expected to have a smaller effect on these reefs compared to the Burdekin River because 

of the much greater river discharge volumes and the predominant northward transport of 

the flood plumes from the latter (King et al. 2001; Furnas 2003; Wooldridge et al. 

2006). 

 

Table 4-3. Correlation coefficients (r) between annual rainfall at Townsville (mm) and annual 

discharge data (ML) from the Burdekin River and Herbert River (1930-2008). 
 

 Burdekin Herbert 

r p-value df r p-value df 

Herbert 0.73 <0.0001 78    

Rainfall 0.59 <0.0001 78 0.62 <0.0001 78 

 

4.3.3. Comparisons with AIMS coral calcification data  

Coral growth data from this study are compared with measured growth data from 151 

Porites cores from 100 individual colonies reported by De'ath et al. (2009) from the 

same central region of the GBR, which corresponds to 46% of the total number of 

samples reported by these authors. Part of the AIMS data set is available at National 

Oceanographic and Atmospheric Administration Paleoclimatology Data Center 

(www.ncdc.noaa.gov/paleo/) with the complete updated data set provided by J. Lough 

(pers. com., 2013). These data have recently been re-assessed by J. Lough (pers. com., 

2013) with 40 of the 151 cores here included (26.5%) containing incomplete years in 

the uppermost (i.e. youngest) portion of the cores (see Figure 4-16). Incomplete years 

are those in which the density band from the most recent year was still being formed at 

the time of collection (J. Lough pers. com., 2013) but nevertheless originally included 

as a full year. This has the effect of reducing the calcification rate mainly as a result of 

an abridged extension rate in the final year (Figure 4-16 and Figure 4-17). Further 

scrutiny of the De'ath et al. (2009) data set undertaken here also revealed other possible 

anomalous end-of-year records in the most recent sections (Figure 4-17 and Figure 4-

18). In addition 51 pairs of cores collected from the same colonies that were considered 

as individual samples in the De'ath et al. (2009) study are averaged here as single 

records. The revised AIMS data set is referred to herein as AIMS09, with the aberrant 

data identified by J. Lough (pers. com. 2013) removed and duplicate records averaged. 
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Both the original and modified data sets for central GBR from De'ath et al. (2009) are 

described in Table 4-4. 

 

 
Figure 4-16. Average annual linear extension rate time-series for AIMS coral cores from the 

outer-shelf showing the original data and corrected AIMS09 data for incomplete years removed 

and combining duplicate cores from single colonies.  

 

 

Figure 4-17. (a) Time series of the normalized (reference period 1981-2002) annual linear 

extension rates for the De'ath et al. (2009) and revised AIMS09 datasets for the central GBR 

data and (b) percentage of cores with linear extension rates values above the average (1981-

2002). The most recent year from each core was set as Year 1, regardless of the actual dates of 

collection, the latter ranging from 1983 to 2005. The low linear extension values and large 

number of cores with low values in the most recent year is indicative of artefacts generated 

from the inclusion of incomplete end of year records. 
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Table 4-4. Number of cores included from the AIMS dataset according to region. Original 

number of cores from the central GBR as reported by De'ath et al. (2009). Number of cores 

including incomplete years removed by J. Lough (personal communication 2013). Number of 

cores after combining pairs of cores obtained from the same colony  

 

 Original number of 

cores 

Cores with 

incomplete years 

Number of cores 

after combining pairs 

Inner-shelf 64 20 42 

Mid-shelf 48 6 33 

Outer-shelf 39 14 25 

Total 151 40 100 

 

For the inner-shelf central GBR region the original AIMS dataset includes 64 cores, but 

after combining duplicate cores from the same colonies reduces to 42 inner-shelf 

records from Pandora Reef (n=28), Magnetic Is. (n=18) and Havannah Is. (n=1). For the 

mid-shelf region 49 cores are included but after combining duplicate cores results in 33 

mid-shelf records from Rib Reef (n=28), Kelso Reef (n=2), Wheeler Reef (n=1), 

Lodestone Reef (n=1) and Yankee Reef (n=1). The outer-shelf includes 39 cores from 

25 colonies, all from Myrmidon Reef. The coverage of the AIMS data is thus similar to 

this study, but is strongly biased towards collections from just 4 reefs (Magnetic Island, 

Pandora, Rib, and Myrmidon reefs). For consistency the most recent year was removed 

from those paired cores for which an incomplete year was removed by J. Lough (2013) 

from one core but not the corresponding pair. 

 

Despite the issues of incomplete final year records affecting the AIMS data, over multi-

decadal (i.e. 1930-2004) timescales, there is generally good agreement in the long-term 

average calcification parameters determined with the AIMS09 data-set and this study 

(Figure 4-18). This is illustrated by comparing linear trends from the long-term (i.e. 

1930-1952 to 2004-2008) data sets of both studies (Table 4-5). For the mid-reef of the 

central GBR good agreement is observed between the studies with similar increases in 

linear extension (~15±3%; ±SE) and an overall increase in calcification from 1947 to 

2008 of 8.8±1.1% (this study) compared to 4.7±2.3% from 1930 to 2004 for the 

AIMS09 dataset. For the inner reef although both data sets show similar (within errors) 

long-term decrease in extension rates (~7.7±3%), the AIMS09 also shows a decrease in 

density (-4.4±0.6%) and hence a more pronounced decline in calcification. In contrast 

data from this study show the often reported inverse correlation between these 

parameters (e.g. Scoffin et al. 1992; Lough and Barnes 2000), i.e. an increase in density 

(3.2±0.6%) with declining extension rate, but both studies still show overall long-term 

declining rates of calcification.  
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Figure 4-18. Annual and ~5 year time-series for the normalized growth parameters; (a) linear 

extension, (b) density and (c) calcification obtained in this study and AIMS09 (De'ath et al. 

2009). (d) Number of colonies included in each data set. The data are grouped as inner-shelf 

(left), mid-shelf (middle) and outer-shelf (right). The anomalously low values in the final years 

particularly for the inner-shelf and mid-shelf in linear extension and hence calcification for the 

AIMS09 data is indicative of artefacts generated by inclusion of records with incomplete end-of 

-year (see text and Figure 4-17). 
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Correlations between the respective long-term data sets (normalized to the average of 

the records from each region) also show reasonable agreement. For example, for the 

parameter of annual linear extension, there is a significant correlation between this 

study and AIMS09 for long-term records from the inner-shelf (r=0.33, n=75, p=0.004), 

mid-shelf (r=0.38, n=57, p=0.004) and outer-shelf (r=0.29, n=53, p=0.038). There is 

also excellent agreement in duration and magnitude of the impact on coral growth rates 

of the 1998 stress event for both studies, with the main disparity being the aberrant final 

end-year record (Figure 4-18) in AIMS09. In contrast, for the recent period from 1990 

to 2008, data from this study show recovery from the 1998 bleaching event, with inner 

reefs having approximately constant calcification (1.1±2.0%), while the mid-shelf reefs 

show a decline of 3.3±0.9%. The recent values from this study are in marked contrast to 

the 14.2% reef-wide declines for the GBR, reported by De'ath et al. (2009) over 1990-

2005. 

 
Table 4-5. Percentage change (±SE) calculated from linear trends obtained for the periods of 

1930-2008* and 1990-2008 for the three growth parameters (linear extension, density and 

calcification) for this study and AIMS09 dataset. Gray values indicate the lack of statistical 

significance (p<0.05). 

 

 This study(ANU) 

 1930-2008* 1990-2008 

Region Lin. Ext. Density Calc. Lin. Ext. Density Calc. 

Inner -9.5±2.3 3.2±0.6 -4.6±1.3 2.1±4.1 3.1±0.7 1.1±2.0 

Mid 16.3±2.2 -6.6±0.6 10.9±1.1 -0.3±2.6 -2.6±0.7 -3.3±0.9 

Outer 13±5 -3.3±1.4 11.1±3.9 6.2±6.4 -2.9±1.1 -0.7±1.9 

 
 AIMS 

 1930-2004 

Region Lin. Ext. Density Calc. 

Inner -5.8±2.9 -4.5±0.6 -11.4±2.4 

Mid 13.6±2.1 -4.4±0.6 4.7±2.3 

Outer 8.3±4.3 -7.2±1.0 6.2±4.0 

 
* Trends for the mid-shelf data from this study include the period from 1947 to 2008 and for the outer-

shelf from 1952 to 2004. 

 

4.4. Discussion 

4.4.1. Spatial variability in coral calcification across the central GBR 

Although subject to large variability, there is a gradient of increasing extension and 

decreasing density from offshore to inshore across the central GBR (Figure 4-12). This 

is similar to trends reported previously by Lough and Barnes (2000), who attributed 

their results to reduced light and increased sedimentation rates with proximity to the 
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coast. Similar trends are found in the southern Gulf of Mexico (Carricart-Ganivet and 

Merino 2001). In the GBR outer-shelf, corals are subject to more physically energetic 

environments, extend more slowly and form denser stronger skeletons, possibly an 

adaptation to minimize physical damage by storms (Fabricius et al. 2008) or to greater 

wave energy. Corals from inner-shelf reefs which are subject to the effects of terrestrial 

runoff have higher linear extension rates at the expense of growing weaker (less dense) 

skeletons. Higher extension rates may help corals compete for resources, light and space 

(Carricart-Ganivet et al. 2012) or reflect growth induced effects of higher levels of 

nutrients. This indicates that on average Porites corals attempt to maintain near-constant 

calcification by offsetting increased (decreased) linear extension with decreased 

(increased) density, suggesting that maintenance of coral calcification is an 

energetically limited process (Cohen and Holcomb 2009). The clearest example of this 

relationship is the comparison of the growth parameters of the deep-water (25.5m) cores 

from Myrmidon fore-reef, which exhibit the highest densities, and lowest rates of linear 

extension (Table 4-1 and Figure 4-12). Depth has also been shown to have an effect on 

the growth of Montastrea annularis corals from the Caribbean with corals extending 

slower and forming denser skeletons with increasing depth (e.g. Bosscher and Meesters 

1993). In the case of the central GBR no significant effect on the coral growth of 

Porites corals was observed up to depths of 20 m (Carricart-Ganivet et al. 2007). 

 

4.4.2. Longer-term drivers of coral calcification in the central GBR  

The correlation between inner-shelf coral linear extension and minimum SST (Figure 4-

15) is consistent with the spatial relationships between average growth rates and average 

environmental conditions found by Lough and Barnes (2000). Minimum temperatures 

generally show larger variations in the inner-shelf compared to elsewhere in the central 

GBR (Table 2-1). It is therefore not surprising that linear extension for the inner-shelf 

shows a significant correlation with minimum rather than maximum temperature 

(Figure 4-15), as coral growth is more sensitive to changes at the lower temperature 

limits (Jokiel and Coles 1977). The average linear extension rate of inner-shelf corals is 

also inversely correlated with local rainfall and discharge from the Herbert River 

although, no significant relationship is observed with discharge from the Burdekin 

River. This could indicate that smaller localised terrestrial runoff has a stronger or more 

consistent effect in the reefs studied rather than the large flood plumes from the 

Burdekin River. 
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The interannual to decadal variability that characterizes the linear extension and 

calcification rates of the inner-shelf, however probably relates both to variations in SST 

and the effects of terrestrial runoff (Figure 4-14). Rainfall and river discharge do not 

show a significant long-term change in the region, although have become more variable 

since the late nineteenth century compared to earlier periods, possibly as a result of 

global warming (Lough 2007). Sedimentation and turbidity from terrestrial runoff in the 

inner-shelf of the GBR have also increased following European settlement and 

extensive land clearing in the late 19th century (Furnas 2003; McCulloch et al. 2003; 

Brodie et al. 2010). The chronic exposure of corals to elevated levels of nutrients and 

sediments has been linked to reduced coral calcification (e.g. Marubini and Davies 

1996; Marubini and Atkinson 1999; Anthony and Fabricius 2000; Carricart-Ganivet and 

Merino 2001; reviewed by Fabricius 2005; Silverman et al. 2007); however, a number 

of studies have also shown no change or higher calcification rates with increased 

nutrient levels (e.g. Koop et al. 2001; reviewed by Fabricius 2005; Holcomb et al. 

2010). These observations are thus consistent with higher suspended particulate matter 

levels providing energy for coral growth, until a maximum concentration is reached, 

after which a reduction in coral growth occurs due to smothering, reduced light levels 

and reduced zooxanthellae photosynthesis (Tomascik and Sander 1985). 

 

The strengthening of the inverse relationship between terrestrial runoff and coral 

calcification over the recent period 1969-2008 therefore probably relates to an overall 

decrease in water quality reflecting a combination of increasingly degraded catchments 

and greater variability in rainfall and river discharge (Furnas 2003; Lough 2007; Brodie 

et al. 2010b; Lough 2011b). These observations therefore suggest that locally derived 

nutrients may now be directly affecting coral calcification in parts of the inner-GBR, 

and can have severe consequences when associated with periods of additional stress, 

such as occurred during the 1998 bleaching event (see section 4.4.3). 

 

In contrast, the mid-shelf corals exhibit reduced interannual and decadal variability of 

coral growth parameters, probably due to the smaller seasonally driven range in SST 

and reduced terrestrial runoff effects compared to the inshore reefs. The long-term 

increase of ~0.8°C in SST over 1947-2008 is paralleled by increasing calcification and 

linear extension rates of mid-shelf and outer-shelf corals (Figure 4-13 and Figure 4-14). 

This positive temperature effect on calcification (c.f. McCulloch et al. 2012a) has so far 
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dominated and masked any negative effects from ocean acidification. However it is 

noted that in the last 5 years of the records from this study (i.e. 2003-2008) there is a 

decrease in calcification for the mid-shelf reefs primarily due to a decrease in density 

rather than extension rate as is usually the case (e.g. during 1998 bleaching). Whether 

this is a sustained change has yet to be confirmed, but if so, may indicate a changed 

regime where the negative effects of CO2 driven climate change (e.g. ocean 

acidification; Wei et al. 2009; McCulloch et al. 2012) are becoming pre-eminent. 

 

It is also noted that the long-term increase in calcification in the mid-shelf and to a 

lesser extent the outer-shelf corals is not necessarily a positive outcome, as it is also 

accompanied by a decrease in density which could make these corals more susceptible 

to damage from tropical cyclones and storms. A similar scenario is proposed by 

Carricart-Ganivet et al. (2012) for the Gulf of Mexico, with a reduction of density in 

Montastrea spp. predicted to increase the susceptibility to both physical and biological 

breakdown. 

 

4.4.3. Stress and bleaching event of 1998 

Although the 1998 bleaching was widespread throughout the GBR (Berkelmans and 

Oliver, 1999), in the central region, it is only the inner-reefs where effects are clearly 

evident in the Porites growth records (Figure 4-13 and Figure 4-18). This agrees with an 

aerial survey conducted during the 1998 bleaching event that found a higher percentage 

of reefs bleached and greater severity of bleaching on the inshore reefs compared to 

mid-shelf and outer reefs (Berkelmans and Oliver 1999). Based on the currently 

available records of coral growth, the 1998 event and the resultant decrease in 

calcification associated with it, appear to be unprecedented in both its severity and the 

extended duration for recovery. It is not until ~2002 that inshore extension rates and 

hence calcification, recovered to the pre-1998 bleaching levels. In the early 1930’s there 

is a similar prolonged (2-3 years) decrease in extension rates of ~20%, but this is not as 

extreme as  the ~35% decrease 1998 event. Whether this can be attributed to the effects 

of bleaching cannot be determined and would require high resolution Sr/Ca derived 

SSTs studies of the type undertaken by Marshall and McCulloch (2002) for the 1998 

bleaching event. The other notable event for which there is no obvious explanation is in 

1990, where there is an abrupt but short-lived (<1 year) decline in inshore extension 

rates of ~30%. Unlike the effects of the 1998 event, in 1990 there is no evidence for 
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anomalously high temperatures or bleaching, with only the timing of the flood event 

being unusual as the peak in the wet season occurred around April, two months later 

than is typical. 

 

The abrupt reduction in calcification and long lasting effects of the 1998 bleaching 

event were also noted by Marshall and McCulloch (2002) and Suzuki et al. (2003) in 

corals from Pandora Reef as well as elsewhere in the GBR (Lough 2008a). The spatial 

patterns and intensity of the 1998 bleaching event are unmatched with the severity only 

being approached by the 2002 bleaching event (Berkelmans et al. 2004). However, in 

2002 there are no signs in Porites growth records from this study for significant 

decreases in coral growth as occurred in 1998. Higher thermal stress (quantified as 

degree heating days) and surface irradiance observed in 2002 compared to 1998 led 

Maynard et al. (2008) to suggest that thermal adaptation must be responsible for the 

reduced bleaching in 2002. It is worth noting that the highest value recorded for 

monthly average maximum in situ SST from the inner-shelf corresponds to February 

1998 when values reached ~30.3°C whereas in 2002 maximum temperatures remained 

below 30°C. 

 

Thus, in addition to the extremely high thermal stress encountered by corals in inner-

shelf reefs during 1998 other factors may have led to the high levels of intense 

bleaching. Additional stress due to nutrient and sediment loading observed in the 

rainfall and river runoff data (Furnas, 2003) prior to the 1998 bleaching event could 

have been a major additional factor, with low salinity waters still being present during 

the early stages of bleaching. This is consistent with coral fitness and resilience to 

episodic events being reduced as a result of the compounded effects of local 

anthropogenic stressors (e.g. Hughes et al. 2003). 

 

4.4.4. Current state of the GBR 

Long-term 1947-2008 (1952-2004) changes in linear extension for the mid-shelf (outer-

shelf) corals of the central GBR are dominated by an overall increase of 2.7±0.4% 

(2.1±1.0%) per decade, consistent with enhanced rates of extension from the kinetic 

effects of higher temperature (McCulloch et al. 2012a). However, this is partially offset 

by significant declines in density of -1.1±0.6% (-0.6±0.3%) per decade resulting in only 

a modest increase in calcification of 1.4±0.2% (2.1±0.8%) per decade. Although this 
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study is only based on the findings from Porites cores, if ubiquitous across coral 

species, of the mid- and outer-shelf of the GBR, lower density skeletons could make 

corals more vulnerable to tropical cyclone damage, particularly delicate branching 

corals. This may be account for the finding of cyclone damage now being the major 

cause (48%) for declining coral cover in the GBR (De'ath et al. 2012). 

 

For the inner GBR, for the period from 1930 to 2008, a different pattern emerges. A 

persistent long-term decline in calcification (-1.2±0.3% per decade) is accompanied by 

little o no change in density. This together with large interannual variations in extension 

rates implies a marked negative influence of river runoff. The long-term declines in 

coral growth found here for the inner-shelf is also consistent with the decreased coral 

cover data reported for the same Townsville region, by Sweatman et al. (2011). 

Sweatman et al. (2011) and Sweatman and Syms (2011) note that the large reduction 

(20-28%) in coral cover inferred for the GBR during the last 20 years, is mainly due to 

pronounced declines in 6 inner reefs, compared to the total of 29 sub-regions studied. 

 

Furthermore, as already discussed the inner-GBR appears to exhibit a relatively high 

sensitivity to bleaching, particularly during the 1998 event when high temperatures 

were preceded by a major river runoff event. This now provides supporting field-based 

evidence from the inner-GBR reefs for strong negative interactive effects between 

degraded water quality and sensitivity to bleaching during extreme warming events (see 

Wooldridge 2009). It is also noted that these negative interactive impacts on 

calcification are occurring despite the larger natural variations in inshore seasonal SST, 

compared to mid-shelf, indicating that degraded water quality is more than offsetting 

any potential beneficial effect from adaptation to a large SST seasonal cycle. Thus local 

factors rather than long-term climate change appears to be the dominant driver causing 

the rapid declines in coral cover of ~30% observed since ~1980 (Hughes et al. 2011; 

De'ath et al. 2012). 

 

For the most recent period from 1990 to 2008 the central GBR has overall maintained 

approximately constant rates of calcification (Table 4-5). The updated data (2008) 

document a significant recovery of coral growth for inner-shelf corals following the 

1998 bleaching event, but offset by a moderate (3.3±0.9%) decrease in calcification for 

the mid-shelf reefs. Whilst the findings from this study are in marked contrast to the 

much more extreme (14.2%) reef-wide declines in calcification reported by De'ath et al. 
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(2009), they nevertheless give grounds for concern. As already noted, the inner reefs of 

the GBR show significant long-term trends of decreased coral calcification that can be 

attributed to degraded water quality, and during periods of thermal stress results in 

increased susceptibility to coral bleaching. Although the more distal mid-shelf and 

outer-shelf corals reefs areas are in better health, pronounced recent downturns in 

calcification maybe indicative of a transition from positive temperature enhancement of 

calcification to decreased rates due to thermal stress and/or the negative effects of ocean 

acidification (McCulloch et al. 2012a). It is thus clear that regional assessments provide 

an informative description of the changes in coral growth in the GBR, and importantly 

insights into their causes and thereby strategies for mitigation. Importantly these types 

of studies can help to identify those areas of the GBR for which direct local action will 

have beneficial outcomes. This has important management implications, re-enforcing 

the ongoing need to improve water quality in the inshore reefs, by for example 

remediating disturbed river catchments and minimizing/limiting impacts from large-

scale coastal developments. 
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5. The influence of coastal processes on 

seawater pH in coral reefs across the central 

Great Barrier Reef 

5.1. Introduction 

In the last decade there has been an increased concern about the effects of CO2 uptake by 

the ocean, particularly on calcifying organisms, including reef forming corals. 

Experimental data indicates that the increase in CO2 will cause a reduction on the 

calcification rates of marine organisms (Ries et al. 2010). However, the response of coral 

calcification during the early stages of reduced pH and Ωarag remains a topic of debate as 

results vary significantly between studies (Langdon et al. 2000; Marubini et al. 2008; 

Cohen and Holcomb 2009; Ries et al. 2009; Ries 2011; McCulloch et al. 2012a; McCulloch 

et al. 2012b). Predicting the calcification response of corals in natural reef environments is 

further complicated as calcification is influenced by other physical and chemical variables 

including temperature and nutrients (see section 1.3.2). This is further complicated as the 

combination of these factors vary between different oceanic provinces (Falter et al. 2012).  

 

Long-term changes in calcification rates of corals from the GBR have been suggested to be 

associated with thermal stress and ocean acidification (Cooper et al. 2008; Lough 2008a; 

De'ath et al. 2009). One of the limiting factors in linking the long-term response of corals 

calcifications to environmental changes results from a lack of field data; this is particularly 

true for seawater chemistry parameters including seawater pH measurements (Cooper et al. 

2008). In situ measurements in the central GBR reveal that the Davies Reef flat, a mid-shelf 

reef, are highly variable over diel and seasonal timescales with pH (total scale) ranging 

from 7.92 to 8.17, pCO2 ranging from 272 to 542 µatm, and Ωarag ranging from 2.9 to 4.1 

(Albright et al. 2013). Shaw (2012) observed that on a seasonal scale seawater pH on the 

reef flat of Lady Elliot Island, the southernmost island of the GBR, inversely varies with 

temperature and reports a seasonal range of ~0.06 units, the later established from 2-week 

sampling periods between seasons. On spatial scales Gagliano et al. (2010) reports a 

variability of 0.1 pH units between micro-regions within a reef (Magnetic Is.) and up to 
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0.39 pH units when comparing micro-regions of two reefs, Magnetic Is (sampled in April 

2008) and Lizard Is. (sampled in December 2007), separated by 100’s of kilometres in the 

GBR. However, all of these studies represent discrete measurements and are, therefore, 

difficult to relate to long-term temporal changes in seawater pH in coral reef communities 

of the GBR.  

 

Along with rising temperatures and reduction of seawater pH, inner-shelf coral reefs of the 

GBR are also being exposed to increasing terrestrial influences from grazing, agriculture, 

mining and land clearing that is causing a decrease in water quality (McCulloch et al. 2003; 

Lewis et al. 2007; Brodie et al. 2010b). Known impacts include the promotion of intense 

and extensive phytoplankton blooms, an increase in macro-algae abundance, and affects on 

the biodiversity, cover and recruitment of corals (Devlin and Brodie 2005; Brodie et al. 

2010b). Increased productivity during phytoplankton blooms can cause seawater pH to rise 

significantly (Hinga 2002). Nutrient-enhanced photosynthetic activity has been shown to 

amplify the seasonal pH cycle by more than 0.5 pH units in experiments on marine 

enclosures in Narragansett Bay, Rhode Island (Frithsen et al. 1985) and to increase 

seawater pH by 0.7 units in the Peruvian coastal upwelling zone (Simpson and Zirino 

1980). It is not known to what extent terrestrial runoff and the associated phytoplankton 

blooms influence seawater pH in the GBR partially because of the lack in seawater pH 

observations. 

 

On multi-decadal timescales, measurements of δ11B have been applied to coral skeletons to 

reconstruct changes in seawater pH. Pelejero et al. (2005) found a significant decadal 

component in δ
11

B reconstructed seawater pH that was linked to the Inter-decadal Pacific 

Oscillation through the effect of wind strength on flushing of the Flinders Reef lagoon in 

the Coral Sea. An interannual trend of decreasing seawater pH of ~0.2-0.4 units was 

observed by Wei et al. (2009) since the 1940’s at Arlington Reef, a mid-shelf coral reef 

from the northern GBR. In the northwestern Pacific the δ
11

B signal in a Porites coral from 

Guam was used to reconstruct a ~0.05–0.08 pH units decrease for surface seawater pH 

since the mid-20th century (Shinjo et al. 2013). 

 

In this chapter the δ11B proxy is applied to coral samples obtained from cores of massive 

Porites heads collected from two inner-shelf and one mid-shelf reefs of the central GBR. 
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The δ
11

B data is used to reconstruct the interannual variability in surface seawater pH over 

the past ~50 years in this part of the GBR. These results are complemented with 

measurements of coral calcification from multiple long cores collected from massive 

Porites heads along an inner-shelf to outer-shelf transect north of Townsville described in 

Chapter 4. This provides a comparison between the dynamic environment of the inner-shelf 

reefs, which are subject to terrestrial and anthropogenic influences compared to the mid-

shelf reefs characterized by more stable conditions, and less exposed to terrestrial runoff 

and pollutants (Lough 2001; Furnas 2003; Brodie et al. 2012a). Particular focus is placed 

on changes that have occurred in inner-shelf reefs, which are subject to episodic inputs of 

acidic fresh water, sediments and nutrients from river runoff from the Burdekin and Herbert 

Rivers. The sub-annual and interannual variability of the δ
11

B proxy provides unique 

information on how the seawater pH varies in a natural coastal system and how these 

changes relate to those observed in coral calcification. 

 

5.2. Material and methods 

Boron isotope ratios of coral and water samples were analyzed by positive thermal 

ionization mass spectrometer (PTIMS) method using a Finnigan TRITON at ANU RSES. 

The PTIMS mode was used in preference to the negative TIMS (NTIMS) because the latter 

produces poorer analytical precision due to mass fractionation and isotopic interference 

Lemarchand et al. (2002). The analytical method for δ
11

B is based on previous methods by 

Wei et al. (2009) and refined by G. Mortimer (RSES ANU). The B separation procedure is 

based on the method of Lemarchand et al. (2002) adapted to calcium carbonate samples and 

involves removal of organic matter and purification by three-step column chemistry 

involving the B-specific resin, Amberlite IRA 743. B isotope measurements are 

accomplished by simultaneous analysis of the	Cs2 BO2
+11  and Cs2 BO2

+10  species at masses 

308 and 309, respectively, using a double Faraday cup fixed in the H4 cup position.  

 

5.2.1. Sample preparation for δ
11

B analysis 

Three cores taken from massive Porites coral collected from the central GBR were selected 

from the core collection described in Table 2-2 for detailed (annual resolution) δ11B 

analysis; these were PAN02 and HAV06 S3 from the inner-shelf reefs of Pandora Reef and 
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Havannah Is., and core RIB09_3 from the mid-shelf reef of Rib Reef. These cores were 

selected based on availability (i.e. the more recent inner-shelf material was not available at 

the time the sample preparation started) and because these showed clear regular annual 

density banding. Samples representing annual growth increments, i.e. from the beginning of 

each high density band (for mid-shelf corals) or luminescent band (for inner-shelf corals), 

were milled along the maximum growth axis of slabs from the selected cores using a 5 mm 

drill bit. In addition, higher resolution sampling was undertaken in 2 mm increments using 

a 5 mm drill bit from cores HAV09_3 (Havannah Is.) and RIB09_3. The high-resolution 

samples were collected from two periods, 1997 to 2000 and from 1990 to 1992, which span 

the record Burdekin River flood of 1991 and the 1998 bleaching event. The 2 mm sampling 

interval provides a temporal resolution of between 2 and 3 months, based on measured 

extensions rates of between 1.3-1.6 cm yr-1. 

 

About 20 mg of coral powder (sufficient to recover approximately 1 µg of B) was weighed 

from each milled sample and placed in a 1.7 ml microcentrifuge tube containing ~0.5 ml of 

30% H2O2 to remove organic matter. The tubes were placed in an ultrasonic bath for a 

couple of minutes and then left to react for 2 to 3 days with occasional agitation. The tubes 

were then centrifuged and the supernatant was removed. The samples were then repeatedly 

rinsed with ultra-pure Milli-Q water, centrifuged again and the supernatant removed, this 

step being repeated three times. The coral powder was dissolved in 3 M HCl (~0.15 ml) and 

diluted with ~0.4 ml ultra pure Milli-Q water.  

 

5.2.2. Purification and separation of boron 

Boron was separated and purified from the samples to avoid isobaric interferences and 

suppression of the ionization of B species, and to maintain a good vacuum during PTIMS 

analysis (Aggarwal and Palmer 1995). The sample preparation protocol used follows Wei 

et al. (2009), which is based on the technique of Lemarchand et al. (2002) and incorporates 

modifications by Trotter et al. (2011). This method employs two AG50W-X8 cation 

exchange resin elutions and one Amberlite IRA 743 B-specific resin elution. In the first 

separation step the dissolved sample is eluted through a column containing 0.5 ml of the 

cation resin in a 2.5 ml BioSpin column. The purpose of this column is to remove the 

abundant Ca ions that dominate the coral skeleton and can cause B loss through the 
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formation of Ca(OH)2 precipitate when the pH is raised in subsequent steps (Wei et al. 

2009). The eluted sample is adjusted to a pH between 7 and 9 using concentrated NH4OH 

(Lemarchand et al. 2002). This solution is loaded into a stacked column system, comprising 

0.05 ml of the B-specific resin over a second column with 0.05 ml of the cation resin. 

Boron is strongly immobilized by the Amberlite IRA 743 column. The retention of B in this 

column increases with the pH of the solution. Sample loading is followed by a three step 

wash; ultrapure H2O is used first to eliminate residual sample volume, then 0.8M NaCl at 

pH=8 to exchange the anions fixed on the tertiary amine group of the resin with Cl
-
, and 

finally H2O to eliminate excess Na
+
. 

 

The B-specific column Amberlite IRA 743 behaves as an anion exchanger at pH values <7 

and therefore, to collect B for analysis, the column is eluted with (0.1 ml × 5) 0.1M HCl. 

The final cation column was added to eliminate any possible contaminants from the elution 

and washing steps (especially Na from the 0.8 M NaCl washes) that might cause isobaric 

interferences on Cs2BO2. The resin volumes used were smaller than used by Wei et al. 

(2009) with the purpose of reducing reagent volumes to minimize cost, eluted volume, 

reagent contamination (blanks) and preparation time. Minimizing evaporation times is 

particularly significant as some blank contribution is believed to be air-borne (e.g. from the 

HEPA filters, Foster et al. 2006). CsOH and mannitol are added after collection in 2:1 and 

4:3 ratios with respect to the amount of B (Lemarchand et al. 2002). The addition of the 

mannitol complex prevents the loss of volatile B(OH)3 during evaporation. CsOH is added 

to the mix to form the complex
+
22BOCs . The samples are slowly evaporated on a hot plate 

or under an infrared lamp at <60°C. They are removed and capped before reaching 

complete dryness to minimize the potential for B loss or isotopic fractionation through 

sublimation. 

 

All acids and NH4OH were prepared using distilled reagents while analytical grade H2O2 

and mannitol were used. Boron was removed from the Milli-Q system ultrapure water 

supply using a QGard–Boron (QGARD00B1) cartridge prior to the main de-ionizing 

cartridge. Small concentrations of B are difficult to measure by PTIMS hence, reagents and 

complete procedural blanks were measured by G. Mortimer and G. Wei using NTIMS. 

Measured procedural B blank levels of 10
-9

 g (Wei et al. 2009) compare to sample B 
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contents of ~10
-6

 g B, indicating blank contributions from reagent and from the procedure 

are insignificant. 

 

Boron isotope composition was determined by measuring Cs2 B11 O2
+ and Cs2 B10 O2

+ using a 

Finnigan TRITON thermal ionization mass spectrometer (TIMS) in static multi-collecting 

mode at the Research School of Earth Sciences the Australian National University. This 

instrument is fit with a double Faraday cup that enables simultaneous static analysis of 

masses 308 and 309. Samples were loaded onto a degassed single Ta filament to which ~1 

µl of graphite-ethanol-water slurry was added. Before the graphite slurry completely dried, 

the sample was added using 1 µl of 0.1 M HCl as the loading agent to form a sample-

graphite slurry and then dried under a ceramic lamp. Samples were then immediately 

loaded into the mass spectrometer and left for a period, usually over-night, to allow the 

instrument to reach a working vacuum of <10-7 mbar. Filaments were slowly heated to 

produce an ion current in the range 200 mV to 1000 mV for mass 309, data were collected 

after reaching this current range. 

 

Each sample analysis comprised one or two blocks of up to 200 three second measurement 

cycles. Figure 5-1 shows the within-run variability of a typical coral sample. The signal 

voltage was maintained relatively constant during the run by incrementing the filament 

current in steps as the signal decayed. The measured 
11

B/
10

B signal typically increased 

through a measurement due to an initial contribution on mass 308 from the interfering 

species Cs2308 CNO+, which is believed to derive from organic material (Wei et al. 2009). 

This interference is generally exhausted well before the Cs2BO�
�308  signal such that the 

measured 309/308 ratio typically plateaus. As described by Wei et al. (2009) 
301

Cs2Cl
+
 is 

also more readily exhausted compared to Cs2BO�
�308  and is used to monitor Cs2308 CNO+ 

(Figure 5-1). The final data for the sample analyses was taken from the point where the 

measured 11B/10B first plateaued (Wei et al. 2009). 
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Figure 5-1. Measured 

11
B/

10
B ratio during a typical coral sample analysis of 2 blocks of 200 

measurement cycles (black circles). The red line shows the variation in signal intensity of 

mass 302, and the shaded area marks the presence of 
301

Cs2Cl
+
, following the exhaustion of 

which a plateau is established in the 
11

B/
10

B ratios. Data were collected after the shaded 

area. 

 

The B isotope ratio (11B/10B) was obtained from measured intensity ratio of 309I/308I that has 

been corrected for a contribution from 
17

O (Spivack and Edmond 1986): 

0.00078IIBB 3083091011 −=  

 

The B isotope compositions (δ11B) are expressed in conventional δ notation corrected to the 

measured mean value of the NIST SRM 951 standard:  

( )
( )

( )
3

SRM951

1011

1011
11 101

BB

BB
‰Bδ ×








−= sample

 

 

Over the course of this study, analysis of the directly loaded SRM951 standard yielded a 

mean value of δ
11

B = +0.05‰ relative to a reference value for this standard of 4.054, with 

an external precision (2σ) of ±0.35‰ (n=43) and an internal precision of ±0.07‰ (Figure 

5-2). It is important to note that during a subset of 5 analytical sessions (blue shaded region 

in Figure 5-2) the standard values obtained were significantly lower than in other sessions. 

The reason for these low values was carefully scrutinized but no single cause was isolated. 

Excluding this group of 9 standard measurements results in a mean value for SRM 951 of 

+0.37‰ with an external precision of ±0.23‰ (2σ, n=39) and an internal precision of 

±0.06‰ (2σ). Most of the samples analyzed during the period of low standard values were 
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from core PAN02 and most of these were subsequently re-analyzed. Measurements of the 

SRM951 standard that were subject to the column chemistry procedure had a mean value of 

+0.42‰ with an external reproducibility of ±0.26‰ (2σ, n=9) and an internal precision of 

±0.06‰ (2σ). The in-house coral standard NEP-3B returned a mean value of 26.35‰ with 

an external reproducibility of ±0.44‰ (2σ, n=33) and an internal precision of 0.07‰. 

Because of the relatively poor external precision obtained for many samples, a large 

number (~50%) were analyzed twice (about n=20 in the case of HAV06 S3). These repeat 

analyses had an average reproducibility of ±0.2‰ (2σ). 

  

Figure 5-2. (a) Analyses of directly loaded (red) and chemically processed (blue) NIST 

SRM951 standard. The solid red line is the long-term mean for the directly loaded SRM951 

standard; the dotted line is the reference value. (b) Analyses of the in-house coral standard 

NEP3B. The solid green line is the long-term mean for the NEP3B standard, the dotted black 

line is the laboratory long-term average value for the NEP3B standard. The blue shaded 

area corresponds to a set of 5 analytical sessions during which low δ11
B values where 

obtained. Error bars represent the ±1SD internal precision. 
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Conversion of δ
11

B to pH values was determined through the relationship:  

)1(1000
log[

43

1111

43

1111

−+−

−
−=

−− BBSWCarbonateBB

CarbonateSW
B

BB

BB
pKpH

αδδα

δδ
 

where %��&'( is the B isotope composition of seawater (%11&)*= 39.5‰ Spivack and 

Edmond 1986; Foster 2008) and the B isotope fractionation factor ( 43 BB −α ) is taken from 

Klochko et al. (2006) as 1.0272. The B dissociation constant (pKB) was adjusted to the 

ambient temperature and salinity following Trotter et al. (2011). Since seawater in the 

inner-shelf reef region is diluted by fresh water during flood events, the associated change 

in salinity was taken into account in the applied pKB values. Seasonal variation in salinity 

was estimated based on the linear relationship observed between the magnitude of past 

flood events and corresponding salinity values reported by King et al. (2001) and Walker 

(1981) near the sampled reefs (Figure 5-3). Average annual salinity values were estimated 

using a mean seawater value of 35.5 and a dilution of this value for a period of two months 

based on the maximum river discharge in each year using the equation given in Figure 5-3. 

Despite limitations with this approach, as flood events are spatially and temporally variable 

(King et al. 2001; Furnas 2003), the effect after correcting the pKB for salinity and 

temperature on the estimated seawater pH value is small (<~0.01 pH units). The external 

seawater pH value was estimated following the method of Trotter et al. (2011) using a 

Porites specific correction factor: 

+H,- = �+H./012 − 5.96� 0.32⁄  

The latter has been calibrated from the results reported by Krief et al. (2010). Reconstructed 

pH values reported are relative to the total pH scale. 
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Figure 5-3. Comparison of salinity data from King et al. (2001) and Walker (1981) with river 

runoff of the Burdekin River. The regression line and corresponding equation were used to estimate 

the dilution from river runoff. The confidence bands indicate the uncertainty associated to the 

regression lines, while the prediction bands relate to the distribution of values within the 95% 

probability. 

 

 

5.2.3. Water Samples 

Water samples were collected to characterize the δ11B signature of the plume waters in the 

inner-shelf area during flood events and assist in the interpretation of δ
11

B coral signal. In 

February 2007 a total of 29 water samples were collected by Stephen Lewis from James 

Cook University (JCU) along a northward transect from the mouth of the Burdekin River to 

Magnetic Is (Figure 5-4). In February 2009 the author collected water samples from the 

Burdekin River at the Burdekin Bridge located between the towns of Ayr and Home Hill. 

Seven seawater samples were also obtained in February 2009 along a northward transect 

from the mouth of the Burdekin River to Pandora Reef (Figure 5-4). The effect of the river 

plume was evident at all the sampling sites as colored water. No water sample was 

collected directly from the river in 2007. After collection, 125 ml of each sample was 

filtered through 0.45 µm Teflon membrane and acidified using 2-3 drops of ~7 M HNO3. 



 

Samples were then stored in acid

Laboratory and refractom

 

 

Figure 5-4. Map of the central area of the GBR. Coral cores were obtained from Pandora Reef, 

Havannah Is and Rib Reef. Plume water samples collected during the flood events of 2007 (red) 

and 2009 (green). 

 

5.2.4. Solution ICP

Water samples were analyzed for B by solutio

RSES ANU. A set of standards were prepared with 5 ppb, 50 ppb and 100 ppb of B to 

obtain a calibration curve (

10
Be as a standard spiked at a concentration of 4 ppb. Water samples were diluted according 

to their salinity to have a dilution of 1000 times with respect to a seawater salinity of 35. 

The determined [B] were used to calculate the amount of sample required for 
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ere then stored in acid-cleaned, low-density polyethylene bottles in a cool room.

Laboratory and refractometer salinity data was provided by S. Lewis (2009).

. Map of the central area of the GBR. Coral cores were obtained from Pandora Reef, 

and Rib Reef. Plume water samples collected during the flood events of 2007 (red) 

Solution ICP-MS 

ater samples were analyzed for B by solution ICP-MS using a Varian 820 ICP

RSES ANU. A set of standards were prepared with 5 ppb, 50 ppb and 100 ppb of B to 

obtain a calibration curve (Figure 5-5). A number of the samples were re

Be as a standard spiked at a concentration of 4 ppb. Water samples were diluted according 

to their salinity to have a dilution of 1000 times with respect to a seawater salinity of 35. 

determined [B] were used to calculate the amount of sample required for 

density polyethylene bottles in a cool room. 

provided by S. Lewis (2009). 

 

. Map of the central area of the GBR. Coral cores were obtained from Pandora Reef, 

and Rib Reef. Plume water samples collected during the flood events of 2007 (red) 

MS using a Varian 820 ICP-MS at 

RSES ANU. A set of standards were prepared with 5 ppb, 50 ppb and 100 ppb of B to 

). A number of the samples were re-analyzed using 

Be as a standard spiked at a concentration of 4 ppb. Water samples were diluted according 

to their salinity to have a dilution of 1000 times with respect to a seawater salinity of 35. 

determined [B] were used to calculate the amount of sample required for δ
11

B analysis.  
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Figure 5-5. Calibration curve for the B standards used to calculate the [B] in water 

samples. Data has been corrected for blank levels. 

 

The δ
11

B composition of selected water samples was analyzed by PTIMS following a 

simplified purification procedure (cf. coral samples), that omitted the H2O2 cleaning step 

and employed a single AGW50-X8 cation column elution followed by an IRA743 column 

elution (i.e. the final cation column was omitted). The amount of water sample required to 

extract and purify 1 µg of B was estimated from the relationship between the measured [B] 

and salinity (S) in the flood plume (B=0.1299(S)+0.1188 and B=0.1302(S)-0.0374; 2007 

and 2009, respectively (Figure 5-6). 

 

5.3. Results 

5.3.1. Boron concentration and δ
11

B ratios in seawater during flood events  

Measured [B] and δ11B plotted against salinity of the water samples collected during the 

flood events of 2007 and 2009 are presented in Figure 5-6. Lowest salinities with values of 

0 were obtained at the river mouth and were highest nearest the reefs, with values of 30 

obtained at Havannah Is. and 26.5 at Pandora Reef. Significant correlations (r=0.9986; 

p<0.0001; n=10 for 2007 and r
2
=0.9917; p<0.0001; n=8 for 2009) exists between salinity 

and [B] concentration during the flood events of 2007 and 2009 consistent with 

conservative mixing of boron between seawater and flood-waters.  
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Figure 5-6. (a) Boron concentration plotted against salinity of waters from the flood events 

of 2007 and 2009. A linear regression through the data is compared to the theoretical 

conservative mixing relationship based on a seawater end member with 4.52 µg B/l at S = 35 

(black dashed line). (b) Boron isotope composition of waters along salinity transects from the 

2007 and 2009 flood events.  

 

The flood events sampled in 2007 and 2009 show significant differences in the δ
11

B of 

composition of flood-waters that were collected close to the river mouth (Figure 5-6b). The 

low δ
11

B (+15‰) measured during the larger 2009 flood event (Figure 5-7) contrast with 

the more consistent and higher δ
11

B (+42.8‰) of the 2007 flood event. River water 

collected from the Burdekin River Bridge (23 km upstream from the river mouth) during 

the 2009 flood event had a δ
11

B value of +28‰. Despite the large difference in the δ
11

B 
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value of waters from near the mouth in the two flood events, δ
11

B of samples taken close to 

the inner-shelf reefs are very similar, and have an average δ11B value of 40±0.2‰ (2 S.E. 

n=2). This value is identical to that of seawater samples from Lady Musgrave Island in the 

southern GBR (δ
11

B v= 39.8±0.37‰; 2 S.E.; n=2) and within previously reported seawater 

values (summarized by Foster et al. 2010). 

 

 

Figure 5-7. Monthly discharge for the Burdekin River measured at Clare from 2006 to mid 2011. 

Data obtained from DERM, 2011.  
 

A binary mixing curve for the flood events (Figure 5-8) was obtained using a river end-

member value of from river water collected in 2009 (no river water was collected in 2007) 

and seawater end-member from seawater samples collected from Lady Musgrave. The 

same end member value was used for both flood events as no river sample was collected 

during the 2007 flood event. The binary mixing curve was calculated as follows: 

δ
11

Bmix= 8FBseaδ
11

Bsea+�1-F�Briverδ
11

Briver9 Bmix:  

Bmix=FBsea+�1-F�Briver 

Where δ
11

Bsea, δ
11

Briver, and δ
11

Bmix are δ
11

B values from Lady Musgrave and Burdekin 

River, respectably, and the mixture and Bsea, Briver, and Bmix are corresponding B 

concentrations. F is the fraction of seawater components in the mixing. In general 2007 

water δ
11

B values are higher than in 2009, except for samples collected closest to the reef, 

which show similar values during both flood events. In a similar way during both flood 

events samples with salinities higher than ~20 show δ
11

B values lay closer to the binary 

mixing curve obtained for 2009. 
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Figure 5-8. (a) δ
11

B vs B concentration in water samples collected during flood events of 2007 and 

2009, and the theoretical binary mixing line. (b) Offset between measured δ
11

B during the 2007 and 

2009 samples and estimated δ
11

B mixing line vs salinity. 
 

5.3.2. Coral δ
11

B records 

5.3.2.1. Intra-annual variability 

The inner-shelf core from Havannah Is. (HAV09_3) and the mid-shelf core from Rib Reef 

(RIB09_3) show strong seasonal variations in δ11B  being anticorrelated with SST and river 

discharge/rainfall (Figure 5-9). The  δ
11

B values translate to a mean seawater pH of 7.85 

(1σ = 0.14) for RIB09_3 and 8.08 (1σ = 0.13) for HAV09_3, with a seasonal range of 0.3 

to 0.5 pH units. Disruption of the seasonal cycle is apparent during the summer of 1998, 

where δ
11

B values are abnormally high, coinciding with the effects of coral bleaching from 

the unusually warm SST’s. This disruption is most evident in the Havannah Is. coral but is 

also present at the mid-shelf Rib reef indicating that it is a reef-wide phenomenon.  
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Figure 5-9. Intra-annual time-series for coral δ
11

B from the inner-shelf reef of Havannah Is. 

(red) and the mid-shelf reef of Rib (blue). The coral records are compared to (a) instrumental 

SST, (b) discharge from the Burdekin River and (c) monthly rainfall measured at Townsville. 

A three-month running average has been applied to the instrumental records to match the 

resolution of the δ
11

B coral data. The δ
11

B scale was reversed to facilitate comparisons. 

 

5.3.2.2. Interannual variability 

The boron isotope coral data for annually sampled coral cores over 40-50 years periods 

from Havannah Is., Pandora Reef and Rib Reef are plotted versus time and compared to 

river discharge and rainfall data in Figure 5-10. Average δ
11

B values for whole cores of 

25.23‰ (Havannah Is.), 24.58‰ (Pandora Reef) and 23.87‰ (Rib Reef) are consistent 

with previously reported values for Porites corals (Hönisch et al. 2004; Pelejero et al. 2005; 

Wei et al. 2009; Krief et al. 2010). The δ11B values in the inner-shelf corals when de-

trended by subtracting the long term linear trend show a slightly larger interannual 

variability of ±0.11 pH units (1σ Havannah Is.) and ±0.14 pH units (1σ Pandora Reef) than 

the mid-shelf coral from Rib Reef (±0.08 pH units 1σ). The variability for the inner-shelf 

δ
11

B records is significantly larger in comparison to the mid-shelf Rib Reef record 

(p<0000.1, 1 way ANOVA). 



 

1
2

5
 

  

Figure 5-10. Annual δ
11

B time series for two inner-shelf corals from Havannah Is. (red) and Pandora Reef (blue), and one mid-shelf coral from Rib Reef 

(green) compared to annual discharge from (top) the Burdekin River and the (second) Herbert River, (third) rainfall and (bottom) SST from COADS 

ERSSTv3b (the temperature axis has been reversed to facilitate comparisons).  
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The annual δ11B data for the inner-shelf coral from Havannah Is. show the highest 

correlations with river discharge from the Burdekin River and the Herbert River and 

rainfall (Figure 5-11). The Pandora Reef annual δ11B results only correlate significantly 

with SST. The annual δ11B data for the mid-shelf coral from Rib Reef shows positive 

correlations with river discharge but these correlations are influenced significantly by a 

small number of extreme values. No significant correlation was found between the three 

different δ11B/pH coral records (not shown). 

 

 

Figure 5-11. Linear regression for seawater pH reconstructed from coral δ
11

B data for 

Havannah Is., Pandora Reef and Rib Reef against annual records of (a) discharge from 

the Burdekin River, (b) discharge from the Herbert River, (c) rainfall at Townsville and 

(d) reconstructed SST from COADS ERSSTv3b. Linear regressions are indicated by a 

continuous line where significant, dashed lines indicate non-significant relationships. 

Coefficients of determination and p-values included when significant (p<0.05). The 

seawater pH values were estimated according to Trotter et al. (2011). 
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5.3.2.3. Variability over the last 50 years 

Linear regressions applied to the reconstructed annual seawater pH annual time-series 

from all three coral records show a decrease that varies from 0.04±0.079 pH units at 

Pandora Reef, 0.115±0.067 pH units at Havannah Is. to 0.086±0.052 pH units at Rib 

Reef over the common period of 1966-2002 (Figure 5-12). The average decrease for the 

master chronology obtained from the three reefs over the common period of 1966-2002 

is 0.072±0.041 pH units at a rate of 0.020±0.022 pH units per decade. This rate is in 

good agreement with global estimates of 0.017 to 0.020 pH units decrease per decade 

from 1985-2010 based on instrumental data (Pelejero et al. 2010), but lower than the 

0.05 pH unit decrease per year for the period of 1940-2004 shown by the δ11B coral 

record from Arlington Reef (mid-reef) in the Central GBR reported by Wei et al. (2009) 

 

 

Figure 5-12. Annual time-series for estimates of seawater pH from coral δ
11

B of coral 

samples from the inner-shelf reefs of Havannah Is. and Pandora Reef, from the mid-shelf 

reef of Rib and a master chronology for the three records. The master chronology was 

calculated from normalized data by subtracting the individual mean average over the 

common period of 1966-2002 for each record, the mean average value for the three 

records over the same period was added to the master chronology data to preserve the 

measurement units.  
 

The 8 year low pass filter applied to the composite seawater pH data from the three δ11B 

coral records reveals a semi-decadal component of variation in the data (Figure 5-13). 

Similar variability is observed in inner-shelf coral calcification results where periods of 

lower calcification coincide with higher terrestrial runoff. It follows that more positive 

δ
11B (higher pH) values coincide with periods of increased river discharge and lower 
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calcification. Lower solar irradiance coincides with periods of maximum river discharge 

and wetter periods, and is most likely due to increased cloud cover. 

 

  

Figure 5-13. 8-year low band pass filter smoothed time-series for: (a) the composite 

seawater pH reconstruction obtained from all three δ
11

B coral records and for the two 

δ
11

B inner-shelf coral records, (b) averaged calcification rates of inner-shelf and mid-

shelf reefs in the central GBR (see Chapter 4), (c) terrestrial influx indicated by coral 

Ba/Ca (see Chapter 3), rainfall at Townsville and discharge from the Burdekin River and 

Herbert River, and (d) COADS SST from ERSSTv3b 2°x2° and CAYAN Solar irradiance. 

Shaded areas indicate wetter periods. 

 

5.4. Discussion 

5.4.1. Variations in river and seawater δ
11

B during flood events  

Historic mean pH values of 7.8±0.5 (1SD) for the Burdekin River and 7.1±0.4 (1SD) for 

the Herbert River (Figure 5-14; data from the Queensland DERM, 2011) indicate that 

considerably lower pH river waters are introduced into the coastal area of the GBR 

during wet periods. The river pH data for the Burdekin River shows significant intra-
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annual variability, with a decrease in pH during some high discharge events, but there is 

no consistent seasonal pattern. This indicates that factors other than the amount of 

rainfall determine the river water pH, which could relate to the nature of the material 

being carried by the river, or the rainfall composition. 

 

  

Figure 5-14. Monthly discharge and pH of the Burdekin River waters (data obtained 

from Queensland DERM, 2011). 
 

Boron isotope composition values obtained for flood plume waters from near the mouth 

of the Burdekin River were noted for being greater during the larger flood event of 2009 

(+42.8‰) than during the flood event of 2007 (+15‰). This is opposite to data obtained 

by Barth (1998) from the Elbe Estuary (Germany), where water samples collected near 

the Elbe River mouth during a minor flood event had a significantly lower δ11B value 

than samples collected during an extreme flood event following intense cyclonic 

activity. In the case of the Elbe Estuary the heavier δ11B signal during an extreme flood 

event is explained by the admixture of a 11B-rich component mainly rainwater (Barth 

1998). However, more work is still needed to properly characterize the B dynamics and 

isotope fractionation mechanisms during flood events, as factors other than rainfall are 

likely to play an important role in determining the δ11B signal of river waters. These 

factors include the type and amount of terrigenous material carried by the river during 

flood events, and the source of rainfall. Although the δ11B values show some variation 

close to the Burdekin River mouth, as shown by the 2007 and 2009 flood events, near 

the inner-shelf reefs the δ11B values are still typical of ocean waters (i.e. δ11B ~40‰). 
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5.4.2. Intra-annual variability of coral δ
11

B 

 

The inverse relationship between intra-annual δ11B coral data and both temperature and 

terrestrial runoff indicates that more acidic seawater conditions prevail in summer 

(Figure 5-9). This appears consistent with the expectation that summer should be 

associated with lower pH as temperature has an inverse effect on seawater pH. 

However, since the inner-shelf seasonal SST range is typically 6°C and no more than 

9°C, temperature changes can account for a change in seawater pH of no more than 

~0.12 pH units (Figure 5-15). This compares to variations of more than 0.3 pH units 

reconstructed from the δ11B results. The dilution of seawater from input of freshwater 

could also explain part of the seasonal pH variability, as an additional increase of 0.04 

pH units could be achieved if salinity drops to a value of 24 as during an extreme flood 

event (Figure 5-15). This is because increasing temperature or salinity results in an 

increase of the dissociation constants for carbonic acid in seawater (Zeebe and Wolf-

Gladrow 2001). These temperature and salinity changes account for only about half the 

observed seasonal range and would reflect extreme variations for the central GBR (c.f. 

most years). Interestingly, seasonal variations in δ11B (pH), equivalent to those during 

flood years, are observed in the inner-shelf coral during the dry year of 1992. 

Furthermore, mid-shelf corals not subject to significant salinity changes from flood 

waters, show seasonal variations in coral δ11B that are equivalent in magnitude to those 

observed in the inner-shelf.  
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Figure 5-15. (a) Estimated seasonal pH changes based on the in situ SST (AIMS) 

variation. The area between the gray lines shows the range of historic maximum and 

minimum values for a given month. The associated seawater pH changes related to a 

hypothetical two month decrease in salinity to values of 30 and 24 due to river discharge 

are respectively indicated by the dashed and dotted lines. (b) Estimated seasonal pH 

changes similar as in (a) but in this case calculations include a drawing down in pCO2 of 

100 ppm during flood events as a result of an increase in phytoplankton biomass. (c) 

Estimated annual seawater pH changes based on reconstructed SST (ERSSTv3b) and 

salinity changes associated with flood events obtained from the equation in Figure 5-3. 

The confidence bands (blue) indicate the uncertainty associated to the regression lines, 

while the prediction bands (red) relate to the distribution of values within the 95% 

probability. Seawater pH values were estimated considering a seawater end member with 

a TA of 2260 mmol kgsw
-1

 and DIC of 1920 mmol kgsw
-1

 measured by Suzuki et al. 

(2001) salinity and a river water end member with a of TA 787.7 mmol kgsw
-1

 and DIC of 

811.1 mmol kgsw
-1

 estimated from TA and pH data obtained from DERM. Calculations 

were made using CO2SYS with carbonate constants K1 and K2 from Merhbach et al. 

(1973) refit by Dickson and Millero (1987) and for sulfate from Dickson (1990) with 

atmospheric pressure = 1atm.  
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Strong seasonal variation in δ11B (pH) has been previously reported for Porites corals 

from the Western Pacific (Hemming et al. 1998) and the GBR (Pelejero et al. 2005; 

Jung-Ok Kang, personal communication). Hemming et al. (1998) found higher δ11B 

(pH) to be associated with high-density bands and attributed this to internal biological 

processes, mainly to the activity of symbiotic zooxanthellae during periods of high 

insolation, when increased C fixation by symbionts depletes the DIC pool in CO2 and 

results in higher seawater pH values. The seasonal variation reported by Hemming et al. 

(1998) has also been attributed to changes in the carbonate chemistry of seawater 

caused by biological productivity or a shift in the ocean currents that influence the reef 

(Hönisch et al. 2004). Pelejero et al. (2005) attributed seasonal pH variability to the 

interaction of physical and biological processes, whereby weaker winds promote CO2 

produced by calcification to buildup in the reef water. As the rate of water renewal slow 

down, the seawater pH values will decrease inside the reef lagoon, on a longer time 

scale these changes relate to the phases of the Interdecadal Pacific Oscillation (Pelejero 

et al. 2005). Monitoring studies of inorganic carbon chemistry of coral reefs reveal 

significant diurnal variations (279-352 ppmv; Kayanne et al. 1995) and seasonal 

variation (300-550 ppmv; Bates et al. 2010) in pCO2. These changes are the result of the 

reef metabolism, and are mainly controlled by the balance between two processes: 

calcification-dissolution and photosynthesis-respiration (Kayanne 2005; Bates et al. 

2010). Therefore the large intra-annual δ11B (pH) variations recorded in the corals are 

likely to be the combined result of both physical (such as temperature and salinity 

changes) and biological process (such as photosynthesis respiration and calcification). 

 

5.4.3. Origin of interannual δ
11

B variability in corals 

The correlations observed in Figure 5-11 indicate a relationship between coral δ11B and 

temperature, river discharge and rainfall, particularly for the coral from Havannah Is. 

However, the interannual variability of ±0.01 pH units modeled from temperature and 

salinity changes due to river run-off (Figure 5-15c) contrasts with the interannual 

variability of more than ±0.11 pH units reconstructed from the δ11B of the inner-shelf 

corals and ±0.08 for the mid-shelf coral. This suggests that coral δ11B is only indirectly 

related to temperature and terrestrial runoff. 
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5.4.3.1. Clay adsorption and sediments 

 A possible explanation for interannual B variations comes from the adsorption of B 

onto sediments and clays that are delivered to the coastal area by rivers. Clays 

preferentially remove the lighter isotope 10B from seawater according to the 

relationship: 

B�OH��+∝ −Al�O� B�OH���� ↔ B�� �OH��+∝ −Al�O� B�OH������  

(Palmer et al. 1987; Barth 1998). This results in the depletion of marine clays and the 

enrichment of seawater in 11B, and is the accepted explanation for the heavy isotopic 

composition of seawater of 39.5‰ relative to average continental crust (Spivack and 

Edmond 1986; Palmer et al. 1987; Barth 1998). Given the large silt and clay wash load 

transported from the Burdekin River (Belperio 1979) the fractionation of δ11B between 

the dissolved and adsorbed B phases might have a significant effect on the δ11B of 

seawater. However, the conservative mixing behavior of B concentration along the 

salinity transect indicates that boron is not being actively removed by clays from the 

plume waters (Figure 5-6). This indicates that the clay material is already in equilibrium 

with the river water before entering the ocean; similar results are reported by Barth 

(1998) and Xiao et al. (2007). Offset from the binary mixing line to higher δ11B values 

for brackish waters could indicate absorption from clays (Figure 5-8). It is important to 

note that the actual end member value for 2007 is unknown as no sample was collected 

from the river and a high seasonal variability has been observed in river waters 

(Lemarchand et al. 2000). Therefore it is not possible to know if the values during this 

year deviate from the binary mixing line at all. The biggest offset in δ11B values occurs 

for the sample collected closest to the river mouth during the 2009 flood event. The 

river water sample was collected 5 days earlier than the seawater samples and therefore 

differences could indicate that the δ11B value of the river water end-member varies as 

the flood evolves. This large difference may also be the result of processes that modify 

the δ11B composition just after the river waters enter the ocean. Nonetheless, the near 

oceanic δ11B values near the reefs during flood events and river water low B content 

suggest that at the reef sites the δ11B signal is dominated by seawater. 

 

5.4.3.2.  Effect of nutrient enrichment and biological productivity on seawater pH 

River discharge is an important source of particulate and dissolved nutrients as well as 

sediments to the inner-shelf area of the GBR (King et al. 2002; Devlin and Brodie 

2005), with about 90% of the particulate and dissolved nutrients introduced during flood 
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events (Mitchell and Bramley 1997; Furnas 2003). Fertilizer use and land clearing since 

European settlement has increased the amount of nutrients introduced to the GBR by 

rivers (Figure 5-16; Furnas 2003; Devlin and Brodie 2005). Most particulate matter and 

sediments are deposited within a few kilometers (~10 km) of river mouths, before 

reaching a salinity value of 10 (Wolanski and Jones 1981), whereas dissolved nutrients 

are carried to greater distances, up to about 200 km along the coast (Devlin and Brodie 

2005). Once the turbidity drops and light levels are no longer limiting, dissolved 

nutrients are rapidly taken up by primary producers resulting in phytoplankton blooms 

(Furnas 2003; Devlin and Brodie 2005). These blooms do not usually develop until the 

salinity has reached a value of ~25, typically between 50 and 200 km from the river 

mouth (Devlin and Brodie 2005). These distances correspond to areas where the inner-

shelf coral reefs investigated in this study are located. 

 

 

Figure 5-16. Annual nitrogen and phosphorus fertilizer use in the Burdekin catchment 

(Pulsford 1996). 

 

Nitrate (NO3
-
) is the most abundant form of dissolved inorganic nitrogen introduced by 

runoff into the GBR. The majority of the nitrogen from the Burdekin River enters the 

GBR as particulate NO3
-
 while that from the Herbert River enters as dissolved inorganic 

nitrate derived from groundwater sources (Furnas 2003). If NO3
-
 is the main source of 

nitrogen to the inner-shelf area of the GBR, plankton productivity can be expressed as: 

106CO2+16NO3
- +HPO4

2-+18H+
@AB�.CDDE
FG'@.HDDIC106H263O110N16P+138O2 
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with the resulting effect being to increase seawater alkalinity by 170 mmol per mole of 

fixed CO2 (Gattuso et al. 1999b).  

 

A strong coupling between CO2 dynamics and large phytoplankton bloom events has 

been observed at Kane’ohe Bay, Hawaii, that changes the reef system from being a CO2 

source to a CO2 sink (Drupp et al. 2011). In this case, bloom events are fueled by 

nutrient inputs following rainfall and terrestrial runoff events. The enhanced 

productivity is reflected in increased phytoplankton biomass from ~2 to ~6 µg l-1 Chl-a 

which is responsible for drawing down pCO2 by ~100 ppm (Drupp et al. 2011). Similar 

large changes in phytoplankton biomass occur in the central GBR, where Chl-a 

increases from between 0.3 and 0.7 µg l-1 Chl-a (Brodie et al. 2007) up to between 1 and 

20 µg l-1 Chl-a within flood plumes (Devlin and Brodie 2005; Brodie et al. 2010a). 

Anthony et al. (2011) has recently shown that in a reef environment with a mixture of 

algae and coral increased productivity removes CO2 and increases Ωarag. When a 

decrease in pCO2 of 100 ppm is included into the modeled response shown in Figure 5-

15 an increase of 0.2 pH units is observed during flood events. In this sense decreased 

pCO2 and increased seawater pH due to phytoplankton activity would reconcile the 

higher δ11B (pH) values observed in the corals from these reefs during periods of high 

river discharge. 

 

 

Higher pH (δ11B) values are found in corals from the inner-shelf compared to the mid-

shelf (Figure 5-9, Figure 5-10 and Figure 5-12). It is not surprising to find variations in 

seawater pH values reconstructed from different reefs as significant spatial differences 

in seawater pH have been reported for different habitats in the coral reef systems of the 

GBR and Ningaloo in Western Australia, with the highest pH recorded near filamentous 

algal beds Gagliano et al. (2010). The lower interannual variation of the coral δ11B 

record at Rib Reef compared to Pandora Reef and Havannah Is. could be explained by 

the decreased influence of river runoff on mid-shelf reefs. Wei et al. (2009) has 

previously suggested that the greater seawater pH variability recorded by the coral δ11B 

proxy at Arlington Reef (a mid-shelf reef) compared to Flinders Reef (an open ocean 

reef) reflects Arlington Reef’s location nearer to the coast. The lack of correlation of the 

Pandora record with the Havannah Is. record and the terrestrial run-off remains 

unresolved. Low external analytical replication, local variability or unknown biological 

effects are some of the possible explanations. The remarkably time consuming 
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methodology involved in the preparation and analysis of δ11B samples by PTIMS is the 

main limiting factor that prevented further testing this hypothesis in the current study. 

Nevertheless, the good agreement of the combined δ11B coral average with 

environmental indices is encouraging and suggests that multi-core replication is a key 

factor to extract meaningful information from this proxy (Lough 2004; Jones et al. 

2009). Analysis of other records from the same area should help clarify the uncertainties 

and improve our understanding of the δ11B proxy.  

 

5.4.4. Relationship between seawater pH (δ
11

B) and coral calcification  

Calcification rates of inner-shelf corals show a weak long-term decrease over the period 

from 1960 to 2008 (this study Chapter 4, Lough 2008a), but until now it has not been 

possible to attribute this decrease to thermal stress, bleaching, eutrophication, seawater 

acidification or a combination of these factors (Cooper et al. 2008; Lough 2008a; De'ath 

et al. 2009). The results from this study reveal a decadal-scale wet period and hence 

increased terrestrial runoff in the central GBR coinciding with periods of reduced inner-

shelf coral calcification (see Figure 5-13 and Chapter 4). This is despite δ11B evidence 

for concurrent higher seawater pH and hence higher seawater carbonate saturation. 

Given more favorable seawater carbonate chemistry (high pH and Ωarag) for coral 

calcification during wet periods clearly other factors must be responsible for the 

observed negative calcification response at these times.  

 

Besides high pH at the site of calcification other processes involved in promoting 

aragonite precipitation include the transport of ions to the mineralization site and the 

synthesis of an organic matrix (Allemand et al. 2004; Venn et al. 2011). Inhibition or 

reduced activity of these processes has been associated with significant reduction of 

calcification in other studies (Tambutte et al. 1996; Allemand et al. 1998; Al-Horani et 

al. 2003; Allemand et al. 2004). The reduction in calcification of inner-shelf coral can 

be explained by the effects of river discharge that can include increased shading, 

turbidity, sedimentation or competition for carbon by up-regulated photosynthetic 

activity of zooxanthella. These external factors can affect enzyme activity or synthesis 

of the organic matrix involved in the calcification process (Tambutte et al. 1996; 

Allemand et al. 1998; Al-Horani et al. 2003; Allemand et al. 2004) because energy and 

DIC required by these processes is reallocated into cleaning or mucus production (Riegl 

and Branch 1995; Telesnicki and Goldberg 1995; Philipp and Fabricius 2003). 



 
137

Therefore, it is not surprising to find reduced calcification during wet periods despite 

higher pH and Ωarag conditions. 

 

The δ11B record of the mid-shelf corals shows a more muted relationship to river 

discharge than the inner-shelf reefs, consistent with reduced impacts from river flood 

plumes. Extreme flood events can however occasionally reach the mid-shelf reefs, 

especially when offshore winds occur (King et al. 2002), as confirmed by the presence 

of luminescent bands in coral records from Rib Reef that coincide with some large river 

discharge events. Nevertheless, coral calcification at both mid-shelf and outer-shelf reef 

locations shows an increase over the last ~50 years that corresponds with the rise in 

temperature over this period. The moderate positive relationship of δ11B to increased 

river-discharge (Figure 5-11) in the mid-shelf region could also be due to increased 

photosynthesis arising from an increased nutrient supply to the GBR lagoon in these 

years, occurring at a reduced level that did not compromise coral calcification. 

 

5.4.5. Coral calcification response to bleaching 

Aerial surveys in 1998 indicate that in that year more than 60% of inner-shelf corals of 

the central GBR bleached (Berkelmans 2002). Both higher coral δ11B values and a 

partial loss of seasonal δ11B variability are observed during 1998. This contrasts with a 

decrease in δ11B reported by Wei et al. (2009) during the bleaching events of 1998 and 

2002 in a Porites coral from Arlington Reef (mid-shelf). The year 1998 was not only 

extremely warm, with average monthly temperatures in the inshore reefs reaching 

30.3°C in February, but also coincided with a wet period and hence, sediment and 

nutrient fluxes to the reef increased. A significant reduction in coral calcification 

occurred in the inner-shelf area during this year (Lough 2008a, Chapter 4), and in some 

cases coral extension rates were almost zero although calcification continued (see 

Carricart-Ganivet 2011). Kayanne (2005) reported a reduction in the reef pCO2 diel 

cycle following the 1998 bleaching event as a result of the breakdown of calcification 

and photosynthetic processes. It follows that the coral δ11B seasonal cycle could also 

have been influenced by the dramatic reduction in calcification observed during 1998. 

 

The combination of enhanced community productivity and reduced coral calcification 

would elevate local surface seawater pH values and account for the high coral δ11B 

values. This is the opposite response to bleaching observed by Wei et al. (2009). This 
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could reflect the differing response of individual coral colonies to the bleaching event (it 

is not known whether any of the analyzed corals in either study bleached or not during 

these events). Wei et al. (2009) attributed the very low pH (<7.6) recorded by coral δ11B 

at Arlington Reef to the decrease of internal pH at the site of calcification and linked 

this to the reduction in the rate of calcification. Interestingly, no evidence of flood-

plume effects were found at Arlington Reef, in contrast to the reefs analyzed in this 

study. The very similar response observed in the two intra-annual coral δ11B records 

analyzed from Havannah Is. and Rib Reef a indicate a common response of Porites 

corals in the central GBR to the 1998 thermal stress was a reduction in calcification. 

 

5.5. Summary and conclusions 

Boron concentration is correlated with the salinity in plume waters from flood events 

indicating conservative mixing. This and the near oceanic δ11B of waters close to the 

reefs suggest that the effect of clay adsorption of B on seawater δ11B near the reefs is 

minimal. 

 

Seawater pH reconstructions from δ11B coral records in the central GBR show strong 

seasonal and interannual variability equivalent to 0.3 to 0.5 pH units and 0.08 to 0.14 

pH units, respectively. These variations cannot be explained by changes in salinity and 

temperature alone, which account for only ±0.06 pH of the observed amplitude at a 

seasonal scale. Interannual variations in reconstructed seawater pH show a positive 

relationship with regional rainfall and river discharge, opposite to the relationship 

expected if seawater carbonate chemistry was influenced by the more acidic freshwater 

input. In addition to the temperature and salinity effects, it is speculated that 

phytoplankton blooms fueled by increased nutrient inputs from rivers and island mass 

effects may be responsible for taking up CO2 and shifting the surface seawater to higher 

pH. The results presented here highlight the importance of coastal and reef processes in 

controlling seawater pH, and support previous results from coral δ11B studies that show 

large intra-annual to decadal variability in seawater pH in reef systems (Pelejero et al. 

2005; Wei et al. 2009). 

 

The long term trend (1960-2008) observed in the three δ11B coral time-series 

corresponds to a ~0.02 seawater pH unit decrease per decade. This rate is consistent 

with previous estimates of surface seawater pH change and with these coral δ11B 
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records being influenced by ocean acidification from rising atmospheric pCO2. These 

results indicate the value of coral δ11B as a paleo-proxy for reconstructing past seawater 

pH changes in the absence of instrumental records. 

 

A decrease in calcification of inner-shelf corals is associated with river flood events 

despite higher seawater pH and Ωarag conditions recorded by coral δ11B. This reduction 

in calcification can be explained by increased shading, turbidity, sedimentation or 

competition for carbon by up-regulated photosynthetic activity of zooxanthellae. These 

external factors can affect enzyme activity or synthesis of the organic matrix involved in 

the calcification process because energy and DIC required by these processes is 

reallocated into cleaning or mucus production. Although seawater carbonate chemistry 

plays a fundamental role in coral calcification, no clear effects on calcification can be 

attributed to ocean acidification in the studied corals. Only inner-shelf corals show a 

long-term (~60 year) trend of decreasing calcification. While ocean acidification could 

be the cause of this decrease, evidence suggests it might be equally caused by 

greater/more frequent thermal stress and/or eutrophication by flood plumes. In contrast, 

mid-shelf and outer-shelf corals show a long term increase in calcification that can be 

related to increasing temperature. This could be masking negative effects from ocean 

acidification  

 

As coral reefs are a net source of CO2 to the environment, a decrease in coral 

calcification could partly mitigate the effects of rising atmospheric CO2. Primary 

producers may also fix more CO2 in the presence of extra nutrients and thereby shift the 

carbonate system equilibrium to higher seawater pH. Accordingly, enhanced 

productivity resulting from both increased nutrient loads and higher DIC due to CO2 

uptake from the atmosphere could lessen the negative effects on coral calcification from 

ocean acidification (Holcomb et al. 2010; Anthony et al. 2011). Future changes due to 

increased ocean acidification and eutrophication could result in shifts in coral reef 

community compositions particularly in coastal ecosystems. Such changes would 

conceivably lead to competition for space and resources between macroalgae, 

phytoplankton, corals and filter feeders. Predicting future changes in coral calcification 

may not be straightforward without considering the combined effects of all these factors 

and feedback mechanisms between the physical and biological components of the 

system. The coral δ11B data presented here indicates that the internal calcifying fluid pH 

is responding to external environmental changes. These changes are mainly controlled 
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by variations in biological productivity, respiration and calcification that in inner-shelf 

environments are coupled with terrestrial runoff. In situ monitoring of seawater carbon 

chemistry parameters will enable better prediction of the response of coral calcification 

to increased atmospheric pCO2 levels. 
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6. Summary and conclusions 

6.1. Variability in coral calcification across the central GBR  

The growth parameters (density, linear extension and calcification rates) of Porites sp. 

corals within the central GBR show some variations according to their location across 

the shelf. Linear extension rate and density show opposite across-shelf relationships, 

with higher extension rates (lower density) occurring in inner-shelf corals and lower 

extension rates (higher density) in outer-shelf corals. Although not statistically 

significant these trends are consistent with observations from Lough and Barnes (2000) 

and with the stretch modulation model from Carricart-Ganivet and Merino (2001). 

Higher calcification rates are associated with the more stable and protected 

environments within the GBR lagoon. The lower calcification rates but denser skeletons 

of outer-shelf corals may be an adaptation to more energetic wave action in that 

environment.  

 

Calcification rates of mid-shelf and outer-shelf corals show a continuous increase of 

~11% over 1947-2008 and 1952-2004, respectively, whereas inner shelf corals show a 

~5% decline over 1930-2008. The increase in mid-and outer-shelf calcification rates is 

most likely due to increased SST, but calcification rates of mid-shelf corals have slowed 

markedly over 1990-2008, possibly indicating that a thermal optimum for calcification 

has been exceeded. Although average calcification rates of inner-shelf corals are 

relatively high, they display significantly greater interannual variability, which can be 

linked to more dynamic coastal processes and enhanced temperature variability. 

Calcification rates of inner-shelf corals display particularly strong semi-decadal 

variability over the last ~40 years (~1970-2008) that relates to wet and dry periods 

evident in river discharge and rainfall data. A severe reduction in calcification and 

subsequent slow recovery over the period 1998 to 2000 coincides with the 1998 

bleaching event, which was caused by unprecedented high temperatures and may have 

been exacerbated by a wet period prior to the 1998 bleaching event. This may have 

induced additional stress due to pervasive low salinity plumes and also acted to amplify 

the summer warming (Marshall and McCulloch 2002). The long-term decline in inner-

shelf coral calcification rates could be due to changes in temperature, rainfall and 

eutrophication, however, it is not possible to discern their respective influences or the 

extent of interactions between these factors. 
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6.2. Seawater pH variability in the central GBR over the last 60 years 

reconstructed from coral δ
11

B data 

Reconstruction of annual and sub-annual changes in seawater pH from the δ11B 

composition of coral cores from inner- and mid-shelf environments reveals significant 

sub-annual variability, with particularly large variability (up to 0.5 pH units) evident in 

inner-shelf corals. Lower δ11B (seawater pH) occurs during summer and can be partially 

attributed to the effects of increased calcification (a source of CO2) in response to higher 

seasonal temperatures. The variability of average annual reconstructed seawater pH 

from inner-shelf corals of ±0.22 (1SD Havannah Island) to ±0.28 pH units (1SD 

Pandora Reef) is slightly greater than the ±0.16 pH unit (1SD Rib Reef) variability 

observed in a mid-shelf coral. Interannual and decadal variations in average annual δ11B 

correlate with terrestrial runoff, with higher seawater pH occurring in periods of high 

terrestrial runoff. This is in contrast to expectations based on terrestrial runoff being a 

source of relatively acidic freshwater, and indicates that coral δ11B and seawater are 

responding indirectly to river discharge or rainfall.  

 

Changes in the inorganic carbonate system parameters of seawater due to seasonal 

temperature variation (±0.42°C 1SD) and salinity (up to 10 units) during flood events 

cannot account for the observed interannual range of reconstructed seawater pH. The 

near oceanic B composition values in proximity to the inner-shelf reefs indicate that 

clay adsorption of B is not a dominant process controlling the δ11B seawater changes 

recorded in the coral. Reduced coral calcification and a simultaneous increase in 

productivity associated with the terrestrial input of sediment and nutrients during flood 

events may explain the observed δ11B changes. The combined effects of decreased 

calcification and increased productivity shift the seawater carbonate equilibrium to 

higher pH, as recorded in coral δ11B. A long-term decrease (~50 years) in coral δ11B 

reflects a decrease of 0.02 pH units per decade, in agreement with global estimates of 

seawater pH changes due to rising CO2 levels in the atmosphere (e.g. Pelejero et al. 

2010). These results highlight the utility of coral δ11B as a paleo-proxy for 

reconstructing past seawater pH changes in the absence of instrumental records.  

 

This study points to the importance of biologically- and physically-driven changes in 

the carbonate chemistry and pH of coastal waters within the GBR. Proximity to land 

exposes inner-reef corals to the strong influences of terrestrial freshwater, nutrient and 

sediment inputs. In the central GBR these inputs are mainly sourced from the runoff of 
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the Burdekin River. Exposure to these terrestrial derived stressors and the greater 

environmental variability of inner-shelf reefs makes them more sensitive to 

environmental changes. By contrast, the more stable and pristine environmental 

conditions in the mid-shelf area of the central GBR make these regions more robust and 

less susceptible to the negative effects of ocean warming and acidification. 

 

6.3. What is next? 

Coral calcification rates are sensitive to changes in temperature, nutrients, light, 

sedimentation and seawater pH (Ωarag). However, there are significant gaps in our 

understanding of the complex mechanisms controlling coral calcification in relation to 

changes in the carbonate chemistry of the reef system. This study highlights the 

importance of cross-shelf changes in coral calcification, particularly the effects of 

terrestrial inputs on calcification in inner-shelf reefs. This builds on previous studies, 

such as that by De'ath et al. (2009) which have developed an overall view of the status 

of the GBR but which may also be biased from the over-representation of inner-shelf 

regions. To improve our understanding of the present and future health of corals in the 

GBR, additional regional-scale studies are required. These studies should focus on 

changes in calcification in response to the combined effect of environmental variables 

such as: temperature, pH, nutrients, sedimentation and light level. This would help to 

identify regions that are susceptible to specific environmental changes and could help in 

the design and implementation of appropriate management plans. Clearly, a study of 

another cross-shelf transect within the central GBR would help to confirm the results of 

this study, as well as other regions in the northern and southern GBR, such as the Cape 

York area and the Capricorn Group in the south. To the north, the shelf width is 

reduced, reef density increases, terrestrial runoff is more frequent and anthropogenic 

impacts are reduced, whereas in the south, the shelf is much wider and mid-and outer-

shelf reefs are distant from terrestrial inputs. These areas represent markedly different 

environments from the central GBR, and it follows that our understanding of the GBR 

would be greatly enhanced by extending research into these regions. 

 

To predict the changes in coral calcification due to ocean acidification it will be 

important to develop models that consider the complex interactions of the physical and 

biological components of the reef that affect seawater carbonate chemistry. 

Measurements of calcification and productivity changes in reef systems in association 
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with monitoring of water chemistry will help to identify the dynamics and mechanisms 

that control reef seawater carbonate chemistry. A better understanding of the factors 

controlling the seawater carbonate chemistry in reef systems will aid in the initial 

interpretations drawn from paleo-seawater pH δ11B reconstructions made in this study, 

and also aid our ability to predict the future of the GBR in response to increased CO2 

levels. 

 

The low Ba baseline and variable correlation of the Ba/Ca and δ11B with terrestrial 

runoff proxies for the inner-shelf coral cores remains puzzling. A careful identification 

of samples to species level and comparisons of multiple records from different areas 

within a same reef would help clarify if the observed differences between coral records 

are due to species differences, local variability, analysis uncertainty or other  

unidentified factors. To date, the time consuming methodology involved in the 

preparation and measurement of δ11B is the main limiting factor to perform this kind of 

comparisons. However, new technologies, like solution multicollector ICP-MS, could 

drastically reduce the time and effort required to prepare samples making this kind of 

research possible in the near future. 
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8. Appendix 

 
The contents of chapter 4 have been published as: 
 
D’Olivo JP, McCulloch MT, Judd K (2013) Long-term records of coral calcification 
across the central Great Barrier Reef: assessing the impacts of river runoff and climate 
change. Coral Reefs 32: 999-1012. 
 
A copy of the publication is included at the end of this thesis. 
 
 
The CD attached to the back cover contains all seawater and coral geochemical data, 
and raw coral growth parameters.  
 
 
 
 


