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Abstract

Recent advances in the cataloguing of 3d nets mean a systematic search for
framework structures with specific properties is now feasible. Theoretical argu-
ments about the elastic deformation of frameworks suggest characteristics of me-
chanically isotropic networks. We explore these concepts on both isotropic and
anisotropic networks by manufacturing porous elastomers with three different pe-
riodic net geometries. The blocks of patterned elastomers are subjected to a range
of mechanical tests to determine the dependence of elastic moduli on geometric
and topological parameters. We report results from axial compression experiments,
three-dimensional x-ray CT imaging, and image-based finite-element simulations of
elastic properties of framework-patterned elastomers.

1 Introduction

Surveys of natural and manufactured materials show a significant gap in the low density
(ρ < 500 kg/m3), high Young’s modulus (E > 1GPa) range [1]; materials with high
Young’s modulus (e.g. solid metal alloys) tend to have high density. An elegant route to
low density materials is to form porous materials, whose solid phase is itself intrinsically
stiff. Hashin and Shtrikman (H-S) have derived theoretical upper bounds for elastic
moduli of composite materials as a function of volume fraction and moduli of the bulk
matrix [2], but the design of porous materials whose stiffness approaches those bounds
remains a challenge.

A common manufacturing technique for porous materials is to create a foam. How-
ever, foams tend to have significantly lower Young’s modulus than the bulk material,
well below the H-S bounds. An alternative route to porous materials is to form frame-
work materials, whose designs are based on periodic nets. In this paper we explore
the elastic behaviour of frameworks both in theory and practice as a function of the
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net geometry. We are particularly interested in net designs that resist deformation re-
gardless of the direction of the imposed stress, i.e. materially isotropic and stiff porous
elastomeric nets, as well as comparison of isotropic with anisotropic nets.

A key observation driving the design of framework materials is that a solid beam
of linear-elastic material is much stiffer under axial stress than under bending. Since
we can model a framework as an assembly of narrow beams (centred by net edges)
meeting at junctions (net vertices), such a solid will be maximally stiff if it carries stress
through axial deformation of these beams rather than bending. The question now is
what structures have this property? Open-cell foams, for instance, can be considered
as random frameworks made of beams that are polydisperse in size, but they usually
show bending dominated behaviour [3]. Here we consider only ordered (crystalline) net
geometries.

Deshpande et. al [4] argue that frameworks based on combinatorially rigid nets (in
the sense of Maxwell constraint counting) carry stresses axially along the beams and will
therefore show stretch-dominated behaviour. Frameworks based on under-constrained
nets which have floppy modes (or mechanisms), will carry stresses in the junctions or
through bending of their beams and should therefore have smaller moduli. In 2d these
two cases are exemplified by the triangular lattice, hxl (rigid, stretch-dominated), and
the honeycomb hcb (floppy, bending-dominated).∗

The Maxwell-Calladine [7] rule for a general pin-jointed 3d framework with b bars
and j joints is that the number of infinitesimal internal mechanisms m and states of self
stress, s, satisfy:

b− 3j + 6 = s−m (1.1)

If the framework has m = s = 0 then it is said to be isostatic; there are no moving
joints and no redundant bars. For large homogeneous random frameworks this leads to
a necessary condition on the average number of bars meeting at each joint, z, (i.e. the
vertex degree) that z ≥ 6. On the other hand, in [4] it is argued that a 3d periodic net
with ‘similarly situated nodes’ must have z ≥ 12. For other periodic and symmetric
nets the conditions for combinatorial rigidity are still being explored [8, 9], but there is
a possibility here for rigid nets with 6 ≤ z ≤ 12.

Thus, in 3d the simplest rigid net is the face-centred cubic lattice fcu and frame-
works with this topology have been analysed in depth [10]. The fcu framework is
materially anisotropic, with different elastic moduli along different directions. The ge-
ometric constraints necessary to realise elastically isotropic framework materials with
cubic symmetry is explored in detail by Durand and Gurtner [11]. Their analysis of the
linear-elastic stress-strain equations leads to explicit geometric conditions for isotropic,
stretch-dominated (affine) strain of a framework solid which are discussed further in
Section 2, as well as estimates of the elastic moduli of isotropic framework materials
that, to our knowledge, have yet to be explored experimentally.

The design of new micro-structured materials requires both a comprehensive dictio-
nary of potential target structures and a reasonable process for building them. System-
atic catalogues of periodic nets have arisen largely in structural chemistry. Examples
are nets derived from uni-nodal sphere packings [12], O’Keeffe’s RCSR database of

∗We describe nets by a boldface three-letter code developed for chemical frameworks. Structural
details for these nets can be found in the RCSR database at rcsr.anu.edu.au [5]. Patterned porous
materials whose channels lie on net edges are denoted by the epinet code, italicised ; see the EPINET
database epinet.anu.edu.au [6].

2



nets most relevant to crystal chemistry [5], real and hypothetical zeolites [13, 14], and
EPINET [6], a more general database that has the broadest range of topological pa-
rameters. For the engineer, these are new resources for exploring the dependence of
material properties on geometric and topological framework parameters.

We have systematically explored the most symmetric net geometries listed in the
EPINET (and RCSR) databases, to determine the simplest possible stretch-dominated
porous networks. Guided by this theoretical analysis, we have manufactured patterned
elastomeric materials based on some of those nets. We describe the experimental mea-
surement of elastic moduli from sample frameworks and compare these measurements
with x-ray CT image-based FEM numerical calculations.

2 Systematic search for isotropic stretch-dominated frame-
works

The criteria derived in [11] for elastically isotropic frameworks that exhibit affine strain
provide a natural starting point for our search, since these will select designs for
lightweight stiff materials regardless of the loading geometry. Driven by recent ad-
vances in tiling theory that allow systematic enumeration of net geometries, ordered by
their complexity [15, 16], we are now in a position to search for novel templates in a
rational fashion. We have therefore analysed the simplest structurally isotropic nets —
i.e. those with cubic symmetry — from the EPINET and RCSR databases. Nets with
lower symmetry considerably complicate the analysis. Our list comprises 74 nets and
includes all cubic nets whose vertices are symmetrically equivalent and contain up to
two symmetrically distinct edges (i.e. {vertex,edge} transitivity {1,1} and {1,2}, with
19 and 30 nets respectively) and cubic nets with two symmetrically distinct vertices and
a single edge type (transitivity {2,1}, 25 nets). We have sorted these nets according to
their crystal classes, to determine whether elastic features are related to crystal class.†

Results are collated in the Appendix.
Porous network materials can be considered as collections of elastic beams (centred

by net edges) meeting at nodes (net vertices). Durand and Gurtner’s analysis [17, 11] led
to a suite of equations that a network should satisfy to exhibit affine stretch-dominated
strain assuming no vertex contribution to the elasticity and standard beam elasticity
theory. (This assumption holds in practice if the edge radii are much smaller than their
lengths.) Adapting their notation in [11], denote by ei an edge vector and êi the unit
edge vector. Denote by `i, ai and vi the length, cross-sectional areas and volumes of
edges ei. The direction cosines of the edges with (Cartesian) coordinate axes are:

{cos(θxi ), cos(θyi ), cos(θzi )} = {êi · {1, 0, 0}, êi · {0, 1, 0}, êi · {0, 0, 1}}. (2.2)

Denote the average measure of a variable q as the weighted average (by edge volume,
vi):

< q >:=
Σiviqi
Σivi

=
Σiai`iqi
Σiai`i

. (2.3)

This average is made by summing over all edges within a single translational unit cell
of the net.

†Of the five cubic classes, the class 23 is not represented in this selection.
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Four additional sets of equations characterise materially isotropic nets that deform
by stretching of the beams without bending (i.e. with axial strains). The derivation
imposes a carefully chosen displacement field that ensures each (possibly curved) beam
will deform affinely. The first set of equations are:

< cos2(θα) > =
1

3
(2.4)

< cos4(θα) > =
1

5
(2.5)

< cos2(θα) cos2(θβ) cos2(θγ) > = 0 (2.6)

Note that the first two equations have three separate components each (α = x, y, z).
The last equation has nine components, corresponding to permutations of α, β and γ,
where (β 6= γ) [11]. For convenience, in the following discussion, we refer to net designs
that satisfy these equations as (elastically) isotropic. Lastly, Durand and Gurtner derive
an equation for mechanical equilibrium at the joints:

Σiai cos(θαi ). cos(θβi ). cos(θγi ) = 0 (2.7)

for α, β and γ = x, y or z. This equation contains ten separate equations. Where the
sum over all edges emanating from a single vertex vanishes, we refer to the net as being
at vertex-equilibrium.

We have calculated the sums given by the LHS of these four sets of equations for the
list of 74 cubic nets described above. The results are summarised in Tables 3 and 4 in
the Appendix. We do not find any clear correlation between cubic crystal class (point
group symmetry) and elastic behaviour. Most examples are neither elastically isotropic
nor at vertex-equilibrium. Indeed, all {1,1} and {2,1} transitive nets (i.e. with one
type of edge) fail the isotropy conditions, since the summands of equations (2.4–2.7) do
not give the required values. Therefore crystalline isotropic and stiff network materials
must contain at least two symmetrically distinct classes of beams, corresponding to the
distinct edges. In that case, the ratio of beam radii for the different edge classes can be
tuned to satisfy the isotropy and vertex equilibrium equations.

Just two cubic net geometries from the 30 {1,2} transitive nets lead to sums that
are exactly those demanded by the equations above for specific ratios of beam radii.
These are the sqc38 and sqc1649 examples, with 14 (6 of one type, and 8 of the other)
and 8 (6 and 2) edges meeting at each vertex respectively. The isotropy of the sqc38
pattern has been reported earlier by Durand and Gurtner [11]; the second example is
new. These nets are illustrated in Figure 1. They define frameworks that are elastically
isotropic with stretch-dominated strains provided their cross-sectional area ratios are
tuned as listed in Table 3.

3 Manufacture of elastomeric nets

The manufacture of patterned elastomers is now possible using 3d modelling software
and rapid prototyping (3d printing) technology. We have therefore manufactured real
materials based on some cubic net geometries to compare their elastic responses and
test the validity of the analyses in the previous section. We have built models of various
porosity based on the nets sqc1 (pcu), sqc3 (bcu) and sqc38 (sod-d), see Fig. 3. The
first two nets are anisotropic and not combinatorially rigid, but they are well-known
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Figure 1: The nets sqc38 and sqc1649. These nets define the skeleta of porous framework
geometries that can be tuned to be elastically isotropic, provided the edges are thickened
to give circular beams. The radii of beams along the [100] and [111] directions (axial
and diagonal directions) must be tuned to a specific ratio to form the optimal materials
(see Table 3).

cubic 3d patterns — simple (or primitive) and body centred cubic nets. The third
pattern, sqc38, is effectively the union of the first two. For a suitable choice of edge-
radii, it will satisfy Durand’s isotropy conditions, and it is combinatorially rigid (in
fact it is over-constrained). Since the manufacturing process described here is a new
technique, this initial experimental investigation is restricted to networks with uniform
edge radii.

Direct printing of porous geometries is readily done, however the bulk material is
typically a weakly consolidated granular solid, poorly suited for testing elastic properties
of framework materials. (In our case, the printed material is made of consolidated
gypsum powder, whose constituent particles are typically ca. 1µm in diameter.) To
form a suitable porous material, we first print a complementary gypsum mould, which
we then fill with liquid polymer polyvinylsiloxane (PVS) to create a block of framework-
patterned elastomer. The physical constraints on the mould are the 3d printer resolution
of 100 microns, and an effective casting limit on the minimum beam diameter of 1
millimeter. We construct models that are 6.6cm along an edge, with 93 repeat units of
the basic pattern as follows.

Given a target lattice structure described by crystallographic data (as in EPINET ),
we create a computer model of the framework by generating 93 unit cells of the struc-
ture, then thickening all edges to have equal circular cross sections (whose radius is
determined by the target porosity) and smoothing the nodes (see Fig. 2). A 3d digital
model of the complementary volume, containing all points in the 6.6cm cube that are
not in the framework is then formed. This is the mould geometry. The mould is then
built in a Zprinter 650 machine using monodisperse gypsum powder, glued to form a
consolidated monolith within the complementary volume. The resulting mould is typ-
ically filled with unconsolidated powder, which is removed carefully using a brush and
an air-gun.

The resulting porous monolith is then saturated with ethylene glycol to prevent
wetting by PVS. The PVS is then imbibed into the pore spaces, under pressure to give
uniform, almost bubble-free filling, and subsequently air-cured to form the polymerised
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elastomer. Lastly, the gypsum-PVS composite is washed in water to remove the gypsum
mould, leaving the patterned elastomer, see Figs 2 and 4. Defects can occur during the
process, due to the printing process and the presence of bubbles, but they usually
represent a negligible part of the global structure. (The discrepancy between the target
volume fraction and its actual realisation is within 1%.) The surface roughness of the
beams is usually the main source of defects as can be noticed in Fig. 7.

Figure 2: Clockwise from top left: An example of the computer model net geometry for
sqc38 and its complement, the PVS cast elastomer, and the gypsum mould as built in
a Zprinter 650 machine.

4 Experimental investigation of elastomeric nets

Given a block of patterned PVS, cast as described above, we investigate its elastic
properties with an axial compression apparatus (Instron). We also study the material
deformation behaviour in three dimensions under uniaxial loading, using CT images of
the material under various loading conditions.

The applied axial force and resulting displacement are measured using an Instron
machine. The resolution of force and displacement measurements are 10−4N and 10−7m
respectively. Data are shown in Fig. 5. When axially loaded along the z-axis direction
(defined in Fig. 3), we see that in the linear-elastic regime sqc1 has the stiffest response
to compression, followed by sqc38, then sqc3. The data show a sharp onset of buckling in
the sqc1 patterned block of PVS followed by post-yield softening. The sqc38 block yields
at a similar level of compression (d = 9mm) as sqc1 and thereafter the force changes
little for increased deformation. Finally, sqc3 shows a consistent linear response for the
full deformation range studied (0 < d < 21mm).

We calculate Young’s modulus under axial loading, Ez, from the compression mea-
surements by finding the slope, s, of the line that best fits the data in the linear-response
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Figure 3: The nets used as templates for building the porous PVS networks discussed
in this paper. From left to right: sqc1 (simple cubic), with vertex degree z = 6, sqc3
(body-centred cubic) z = 8, and sqc38 with z = 14. The diagram below shows the
orientation of axes referred to in the text.

Figure 4: Examples of patterned blocks of PVS. Clockwise from left: sqc38, sqc1 and
sqc3.

region. Then for s in units N/m, and l, the block side length in meters, we have E = s/l
(Pa). See Table 1 for a summary of the results.

Uniaxial deformation measurements on sqc1 and sqc38 networks have been made
for a range of axis orientations. To do those measurements, we manufactured a number
of PVS patterned materials with equal underlying net geometries and porosities (i.e.
sqc1 and sqc38), all bounded externally by cube faces, and various orientations. Those
models were then deformed, giving the experimental Youngs moduli plotted in Figure 6.
The orientations of the cubic blocks are as follows. The initial orientation (state 0), with
cube edges aligned with the axis of deformation (Fig. 4) is denoted θ0. θ1 describes the
rotated structure whose new z deformation axis is parallel to the body diagonal of state
0 (AB in Fig. 3). θ2 refers to the body formed by rotating state 0 35.2◦ around the y
axis and θ3 is the body formed by rotating state 0 45◦ around the y axis.
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(a) (b)

Figure 5: (a) Force vs. displacement curves for axial compression of three blocks of
patterned PVS. Each block has a volume fraction of φ = 0.34. (b) Close-up view of
linear region of plot in (a) with linear fits.

Table 1: Data used to calculate Young’s modulus for three blocks of patterned elastomer
based on sqc1, sqc3, and sqc38 frameworks with volume fraction φ = 0.34.

Line of best fit
slope, s (N/mm)

Block side length,
l (cm)

Young’s modulus
Ez (kPa)

sqc1 2.86 6.60 43.4

sqc3 0.479 7.05 6.79

sqc38 1.57 6.60 23.9

In order to explore the geometric deformation modes of these networks, we have also
imaged the patterned PVS materials using high resolution (65 microns) X-ray comput-
erised tomography (XCT). We use a helical tomography apparatus that is capable of
high resolution with a large imaging field of view [18]. The helical feature of our XCT
is especially suitable for our specimens as it allows three-dimensional imaging of the
complete sample under loading, including the compressing piston at the top of the
sample.

The PVS block is placed inside a uniaxial compression cell [19], designed with a rigid
piston, to load the top face of the patterned materials uniformly along the z-axis. The
strain is varied by adding suitable weights to the loading piston. This entire ensemble
is placed in the XCT machine and imaged with 2880 2D x-ray projections in 360◦. The
total image acquisition time was 5 hours for each stage of compression and tomographic
reconstruction was made using the Katsevich algorithm [20]. The result is a 20483

three-dimensional voxel array with each voxel representing 65 microns resolution. For
example a reconstructed image of sqc38 with no loading is given in Fig. 7. These three-
dimensional data contain a wealth of information. For example, we can extract medial
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Figure 6: Youngs modulus measured under uniaxial compression for different body
orientation and different geometry normalised by the modulus measured in state 0.
The patterns are sqc1 and sqc38 with all edge-radii equal. The various orientations are
described in the text.

axes from the volume data using numerical tools developed in-house [21], that allow
precise quantification of the network edge and vertex geometry as a function of load.
For the purposes of this paper, we use these three-dimensional data to build digital
models of our patterned materials from which we numerically estimate their elastic
moduli.

5 Image-based computation of elastic moduli

One advantage of tomographic imaging is that it permits direct simulation of an object’s
mechanical properties using a finite element method (FEM) [22, 23, 24]. First the x-ray
density map of the tomographic image is binarised : based on the x-ray density value each
voxel is assigned to be either PVS (i.e. part of the framework) or air. The voxels are then
taken to be tri-linear cubical finite elements[22]. In order to calculate the mechanical
response of the PVS framework, a constant strain (or displacement field) is initially
applied across all the voxels. For anisotropic materials, we run six independent FE
simulations to solve for the deformation field of six different applied external orthogonal
strains: {xx, yy, zz, yz, xy, zx}. This way, we can construct any particular applied
macroscopic strain as a combination of the selected strain basis producing sufficient
data to calculate all 36 components (Voigt notation) of the sample’s elastic stiffness
tensor (Cijkl).

Initial bulk and shear moduli of 850 and 139 KPa (Young’s modulus of 395 KPa)
were assigned to the solid phase (PVS)‡ and a constant strain boundary condition

‡We measured these values using the Instron apparatus on a solid block of PVS that had undergone
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Figure 7: A 3D rendering of a tomographic image of sqc38. The translucent red surface
is an isosurface of the x-ray density chosen to highlight the edges in the framework. The
thin struts are the medial axis corresponding to the PVS phase.

scheme was used in the simulations [25]. The final elastic result (displacement distribu-
tion) is such that the total elastic energy (E) stored in the microstructure is minimised:

E =
1

2

∫
v
εij Cijkl εkl dv (5.8)

Here, ε is the strain field (a 2nd rank tensor), C is the stiffness tensor (a 4th rank tensor),
dv is the volume element and the integration is over the entire sample. Minimisation of
elastic energy means that the gradient of the energy with respect to elastic displacement
variables, um, is zero ( ∂E

∂um
= 0). The FEM simulation outputs the full tensorial stress

response of the PVS frameworks from which we compare the compressive axial element
of the Young’s moduls (Ez) with the experimental results in Fig. 8 and Table 2. There is
good agreement between the values obtained by simulation and those from the Instron
experiments for both the sqc1 and sqc38 blocks. Our experimental finding —that
sqc1 is stiffer under axial loading parallel to edge directions than sqc38 loaded off-
axis to edge directions— is reproduced by simulations. Normalised values of all three
axial components of Young’s modulus and shear moduli for sqc1 and sqc38 blocks are
presented in Fig. 9. At the initial loading stage, when the force is sufficiently low that
the block deforms as a linear-elastic body (determined by the Instron data), we see that
the sqc1 framework has Ez/EPV S = 0.22 and Ey/EPV S = Ex/EPV S = 0.10, where Ez
and Ey denote moduli parallel and orthogonal to the loading axis respectively. With
increased loading in the z-axis, Ez maintains this value, while the other two components
increase to around the same level. The shear moduli for the sqc1 block have also been
estimated from the FEM simulations by imposition of uniform strains in xz, yz and
xy planes as described earlier. These moduli too show qualitatively different behaviour
between the initial and final loading stages. The initial configuration has one shear

the same curing process as the elastomeric nets.
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component much larger than the other two — relative values of 0.26 vs 0.10 — with the
large component representing a shear in the plane of the slight axial compression while
the other two components are in the transverse plane. This distinction disappears at
the higher loading configurations so that all three components are around 0.10 to 0.11.
In contrast, the moduli computed from images of the sqc38 block are quite consistent
at the different loading stages. All three components for Young’s modulus increase
slightly from an initial relative value of 0.11 to a final value of 0.14. The two transverse
components of the shear modulus sit at around 0.14 while the third component increases
slightly from 0.17 to 0.19.

Table 2: Summary of the elastic properties of sqc1 and sqc38 framework patterned
blocks of PVS. The Young’s moduli from the Instron experiment are calculated from
the full linear regime, for the simulation we report values from the initial loading stage.

Young’s modulus
(Yz) from experi-
ment [kPa]

Young’s modulus
(Yz) from simu-
lation [kPa]

sqc1 43.4 44 ± 0.87

sqc38 23.9 25 ± 0.91

Figure 8: Young’s modulus vs force. Graphical comparison of the z-axial Young’s
modulus as computed from Instron axial compression data and from FEM analysis of
xct images of the same models under three different loading conditions. These loadings
are within the linear elastic regime found with the Instron experiments Fig. 5.
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Figure 9: Axial components of Young’s modulus (left) and shear modulus (right) for
sqc1 (red dashed line) and sqc38 (blue dotted line) patterned blocks of PVS normalised
by modulii for a solid block of PVS. The values are computed from FEM analysis of xct
images of the blocks under three different loading conditions.

6 Discussion of results

Recall that our theoretical survey of cubic nets with symmetrically equivalent vertices
suggests just two patterns with up to two symmetrically distinct edges, according to the
criteria deduced by Durand et al. [11]. One of those, sqc38, is predicted to be isotropic
when the ratio of cross-sectional area between the two edge types is ≈ 0.77 (cf. Table 3).
Our sqc38 patterned material, with an edge ratio of 1.0, is therefore expected to be
nearly isotropic. That expectation is confirmed by the measurements of stiffness for
various loading orientations, both on- and off-axis relative to edge directions, as shown
in Figure 6. The axial Young’s modulus of sqc38 varies by around 10%, confirming a
largely isotropic response, as shown in Fig. 6.

In contrast, axial compression of sqc1 patterned materials display a reduction in
the axial Young’s modulus by 70% when the orientation of the pattern with respect to
the cast block changes from being aligned with the cubic edges to other non-aligned
directions. Evidently, this material is far from isotropic.

Nevertheless, axial compression results in Section 4, Fig. 5 show that the sqc1 block
is stiffer when strained along the z-axis direction than the sqc38 block with equivalent
porosity, despite the fact that sqc38 is combinatorially rigid, while sqc1 is not. This is an
instructive result, that belies a simple correspondence between rigid and stiff structures.
Although sqc1 is not combinatorially rigid, whereas sqc38 is, it is nevertheless relatively
stiff. That stiffness, is in part due to the fact that the sqc1 patterned elastomer was
built with a larger edge radius (1.69 mm vs 0.75 mm) to maintain equal porosities for
both materials. Perhaps more significantly, the axial compression occurs along an edge
direction of the sqc1 material, so the framework deforms by compression rather than
bending. In contrast, the edges of the rigid body-centred cubic framework sqc3 lie along
body diagonals of cubic unit cell, so z-axial compression of the block is bending- rather
than stretching-dominated. The sqc38 material shows intermediate stiffness to sqc1 and
sqc3 under uniaxial strain parallel to the z-axis of the cubic unit cell common to all three
patterns. Indeed, the axial Young’s modulus for sqc3 is considerably lower than that for
sqc38 (7.5kPa vs 24 kPa) despite the fact that the sqc3 block has framework edges that
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are thicker than those for sqc38 (1.1 mm vs 0.75mm). This too is consistent with the
relative stiffness of edges under compression along the z-axis compared with bending.
sqc1 deforms by edge compression only, sqc38 via a combination of compression (for
the edges that are also found in the sqc1 pattern) and bending (for other edges) and
the sqc3 deformation is dominated by bending.

Results from image-based FEM simulations in Section 5 confirm (see Fig. 8) and
extend the conclusions deduced from Instron data. In particular, the simulations at all
three loading stages (seef Fig. 9) are consistent with quasi-isotropic behaviour in the
axial and shear moduli computed from the sqc38 images .

It is interesting to note that the transverse components of Young’s modulus (Ex,
Ey) and one shear component of the sqc1 network change considerably as the loading
increases, however. This hints at a much more complex deformation process for the
sqc1 patterned elastomer, confirmed visually by anisotropic buckling of the material at
higher loading. A quantitative study of the structural deformation of these frameworks
from the XCT images will be included in a future paper.

To obtain a better picture of how elastic properties depend on the underlying net
structure, we need to consider the moduli as a function of porosity. Durand and Gurt-
ner [17] derive expressions for elastic constants of nets that satisfy their isotropy stretch-
dominated strain conditions and argue that Young’s modulus scales as E = (φ/6)E0,
where E0 is Young’s modulus for the bulk material. They also observe that this is
strictly lower than the bounds implied by Hashin-Shtrikman for general composite ma-
terials. Our block of sqc38 -patterned PVS does not quite fulfill their criteria since we
have made all edge radii the same. Nevertheless, taking a value of E0 = 395 kPa as per
the FEM simulations, we see that their theory predicts E = 22.4 kPa, which is con-
sistent with, although slightly lower than, the experimental determination of 24 kPa.
The source of this discrepancy may be traced to a number of factors, from structural
defects in our elastomeric models, to approximations in Durand and Gurtner’s theory
(that assume thin beams and neglect vertex contributions to the elasticity). A more
detailed analysis of Young’s modulus as a function of porosity for a given framework
type will be given in the follow-up paper.

In conclusion, the simple distinction between the stiffness of rigid (stretch-dominated)
structures and non-rigid (bending-dominated) structures does not hold for our blocks
of framework-patterned elastomers. Our experiments demonstrate the fact that non-
rigid, anisotropic structures may be stiffer than rigid isotropic ones along certain axes.
Further, a second candidate for isotropic stiff patterns, sqc1649 is identified from the
epinet database. Clearly, there is plenty of scope for further experiments and analysis,
and the search for light-weight stiff and strong materials continues.
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Table 3: Edge-1- and edge-2-transitive cubic nets analysed according to the functions in
equations (2.4)–(2.7). The expressions should evaluate to 1

3 ,
1
5 , 0, 0 respectively. The two

nets that satisfy all four conditions (sqc38 and sqc1649 ) are marked with an asterisk.
e2 (a2) refers to a second edge type (and its cross-sectional area), symmetrically distinct
from the first (there is a dash if the net is edge-1-transitive). The second edge is as listed
in EPINET [6] (all nets obtained from RCSR [5] are edge-1-transitive.) Summands
that depend on a2 are labelled ‘var’. If there is a value for a2 that satisfies the isotropy
condition, it is given in the e2 column. Negative values are unphysical.

s-net RCSR name space gp degree e2 (a2) eq. 2.4 eq. 2.5 eq. 2.6 eq. 2.7

- srs Ia3d 3 - 1
3

1
6

0 6= 0

sqc1 pcu Im3m 6 - 1
3

1
3

0 0

sqc3 bcu Im3m 8 - 1
3

1
9

0 0

sqc6 dia Fd3m 4 - 1
3

1
9

0 6= 0

sqc19 fcu Fm3m 12 - 1
3

1
6

0 0

sqc35 nbo Im3m 4 - 1
3

1
3

0 0

* sqc38 sod-d Im3m 14 0.7698 1
3

1
5

0 0

sqc877 reo Pm3m 8 - 1
3

1
6

0 0

sqc889 crs Fd3m 6 - 1
3

1
6

0 0

sqc947 hxg Pn3m 6 - 1
3

1
6

0 0

sqc970 sod Im3m 4 - 1
3

1
6

0 6= 0

sqc1568 cab Pm3m 5 1 1
3

var. 0 6= 0

sqc2201 pcb Im3m 4 4.5 1
3

var. 0 6= 0

sqc3059 nbo-a Im3m 3 0.5 1
3

var. 0 6= 0

sqc4991 bcs Ia3d 6 - 1
3

1
9

0 0

sqc5117 lcx Pm3n 8 - 1
3

1
6

0 6= 0

sqc5544 rhr Im3m 4 - 1
3

1
9

0 ∼= 0

sqc5579 lcs Ia3d 4 - 1
3

1
6

0 6= 0

sqc7309 ubt Fm3m 5 -2.29 1
3

var. 0 6= 0

sqc8843 Fd3m 9 1
3

1
6

0 6= 0

sqc8990 reo-e Fm3m 6 0.5 1
3

var. 0 6= 0

sqc9254 sod-f Im3m 3 1
3

1
6

0 6= 0

sqc9265 pcu-f Im3m 3 0.75 1
3

var. 0 6= 0

sqc9270 crs-f Fd3m 3 0.125 1
3

var. 0 6= 0

sqc9271 pbz Pn3m 3 1
3

1
6

0 6= 0

sqc10956 pyc Fd3m 8 1.963 1
3

var. 0 6= 0

sqc11143 hbo Pm3n 4 0.25 1
3

var. 0 6= 0

sqc11146 4/3/c9 Fd3m 4 1
3

1
6

0 6= 0

sqc11213 uks Pn3m 4 -1.09 1
3

var. 0 6= 0

sqc11215 rho Im3m 4 1 1
3

1
3

0 0

sqc11218 ana Ia3d 4 - 1
3

.238 0 6= 0

sqc12878 lcs-f Ia3d 3 0.611 1
3

var. 0 6= 0

sqc12886 pbg Ia3d 3 0.409 1
3

var. 0 6= 0

sqc13520 gie Ia3d 4 -1.23 1
3

var. 0 6= 0

* sqc1649 Ia3 8 2.6 1
3

var. 0 0

sqc2181 gsi Ia3 4 -0.19 1
3

var. 6= 0 6= 0

sqc9266 pcu-g Ia3 3 0.64 1
3

var. 6= 0 6= 0

- lcv I4132 4 - 1
3

1
6

0 6= 0

- lcy P4132 6 - 1
3

1
6

0 6= 0

- lcz P4132 12 - 1
3

1
6

0 6= 0

sqc2580 I432 9 5.66 1
3

var. 0 6= 0

sqc2969 P4232 6 0.612 1
3

var. 0 6= 0

sqc3050 utb I432 3 -0.39 1
3

var. 0 6= 0

sqc5115 I432 8 -1.73 1
3

var. 0 6= 0

sqc5523 unw I432 4 -1.0 1
3

1
3

0 6= 0

sqc9035 I4132 6 1
3

1
6

0 6= 0

sqc5052 thp I43d 8 - 1
3

1
6

0 6= 0

sqc5504 4/3/c7 P43m 4 1
3

1
6

0 0

sqc11142 ulj I43d 4 -0.393 1
3

var. 0 6= 0
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Table 4: Listing of vertex-2, edge-1-transitive cubic nets analysed for isotropy and
mechanical equilibrium according to eqs (2.4)–(2.7). The expressions should evaluate
to 1

3 ,
1
5 , 0, 0 respectively if the nets are isotropic. The vertex ordering is as listed in

EPINET or RCSR databases [6, 5].

s-net RCSR name space gp degree eq. 2.4 eq. 2.5 eq. 2.6 eq. 2.7

sqc169 flu Fm3m 1
3

1
9

0
vertx 1 4 6= 0
vertx 2 8 0

sqc867 ftw Pm3m 1
3

1
6

0
vertx 1 12 0
vertx 2 12 0

sqc5432 she Im3m 1
3

1
6

0
vertx 1 4 0
vertx 2 6 0

sqc5433 toc Pn3m 1
3

1
9

0
vertx 1 4 0
vertx 2 6 6= 0

sqc5591 pto Pm3n 1
3

1
6

0
vertx 1 3 0
vertx 2 4 6= 0

sqc11070 gar Ia3d 1
3

.227 0
vertx 1 4 0
vertx 2 6 6= 0

- iac Ia3d 1
3

.227 0
vertx 1 4 6= 0
vertx 2 6 0

- ibd Ia3d 1
3

1
6

0
vertx 1 4 6= 0
vertx 2 6 6= 0

- ith Pm3n 1
3

.227 0
vertx 1 4 6= 0
vertx 2 12 0

- mgc Fd3m 1
3

.229 0
vertx 1 6 0
vertx 2 12 6= 0

- ocu Im3m 1
3

1
9

0
vertx 1 6 0
vertx 2 8 0

- rht Fm3m 1
3

1
6

0
vertx 1 24 0
vertx 2 3 6= 0

- soc Im3m 1
3

1
6

0
vertx 1 4 0
vertx 2 6 0

- spn Fd3m 1
3

.144 0
vertx 1 3 6= 0
vertx 2 6 0

- spn-z Fd3m 1
3

1
3

0
vertx 1 3 6= 0
vertx 2 6 0

- tbo Fm3m 1
3

1
6

0
vertx 1 3 6= 0
vertx 2 4 0

- the Pm3m 1
3

1
6

≈ 0
vertx 1 3 6= 0
vertx 2 8 0

- twf Im3m 1
3

.227 0
vertx 1 3 6= 0
vertx 2 8 0

- pyr Pa3 1
3

1
6

0
vertx 1 3 6= 0
vertx 2 6 0

- cys P4332
1
3

0.228 0
vertx 1 3 6= 0
vertx 2 4 0

- ifi I4132
1
3

1
6

0
vertx 1 4 6= 0
vertx 2 6 ≈ 0

- ssc I4132
1
3

1
6

0
vertx 1 4 6= 0
vertx 2 6 6= 0

sqc975 bor P43m 1
3

1
6

0
vertx 1 3 6= 0
vertx 2 4 6= 0

sqc5593 ctn I43d 1
3

1
6

0
vertx 1 3 6= 0
vertx 2 4 ≈ 0

- ttt F43m 1
3

1
6

0
vertx 1 3 6= 0
vertx 2 12 6= 0
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