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Abstract—Assume that it is desired to estimate α = f(θ),
where f(·) is an r-dimensional function. This paper derives
the general expression for the functional transformation of
the vector Cramér-Rao lower bound (CRLB). The derived
bound is a tight lower bound on the estimation of uncoupled
parameters, i.e., parameters that can be estimated separately.
Unlike previous results in the literature, this new expression is
not dependent on the inverse of the Fisher’s information matrix
(FIM) of the untransformed parameters, θ. Thus, it can be
applied to scenarios where the FIM for θ is ill-conditioned or
singular. Finally, as an application, the derived transformation
is applied to determine the exact CRLB for estimation of
channel parameters in amplify-and-forward relaying networks.

Index Terms—Cramér-Rao lower bound (CRLB), Fisher
information matrix (FIM), channel estimation.

I. INTRODUCTION

The Cramer-Rao lower bound (CRLB) provides a lower
bound on the variance of unbiased estimators, and is widely
used in the fields of communication and signal processing
[1]. It frequently occurs in practice that the parameters that
need to be estimated are a function of some more funda-
mental system parameters, θ. We refer to those required es-
timation parameters as transformed system parameters, α =
f(θ). The final Cramér-Rao lower bound (CRLB) expression
for the transformed system parameters has been well studied
for real [1] and complex parameters [2]. Subsequently, the
CRLB results in [2] were simplified in [3], and extended
for the estimation of constrained parameters in [4] and for a
combination of constrained and unconstrained parameters in
[5]. Recently, the asymptotic behavior (high signal-to-noise
ratio (SNR) and/or large number of samples) of the CRLB
was investigated in [6]. Note that the final expression of
the CRLB for transformed system parameters given in [1]–
[6] depends on the inverse of the Fisher information matrix
(FIM) of the fundamental system parameters, θ. However, it
may happen that the FIM of these parameters is rank deficient
or ill-conditioned implying that the CRLB expression is
infinity or numerically unstable [7], even when an unbiased
estimator and CRLB both exist. In such situations, it has
been proposed to take the reciprocal of the corresponding
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diagonal elements of FIM [8]. However, the resulting bound
is either loose for estimating untransformed system parame-
ters [8] or incorrect for the estimation of transformed system
parameters, as shown in this paper. Later, the use of pseudo
inverse of the FIM has been proposed for such problems
[7]. However, the calculation of pseudo inverse may be
numerically unstable and computationally prohibitive as the
dimension of an estimation problem increases.

In order to address this deficiency in the existing CRLB
expressions, this letter derives a new CRLB expression for
the estimation of transformed system parameters, which does
not depend on any type of matrix inverse and is valid even
when the FIM of the fundamental system parameters is rank
deficient. The application and usefulness of the proposed
result is demonstrated through its use in channel estimation
for amplify-and-forward (AF) cooperative relaying networks.
More specifically our problem concerns the estimation of
an overall channel gain vector, α from source-to-relays-
to-destination (transformed system parameters), which is a
function of individual channels from source-to-relays, h,
and from relays-to-destination, g. These component channels
are the fundamental system parameters or vector, i.e., θ ,
[h,g]T . In context of this channel estimation problem, the
existing CRLB results have ambiguity about formulating the
vector of parameters of interest, i.e., whether the derivative
of g with respect to α is zero or not (as can be observed
in [9] or [10], respectively). Thus, the evaluation of direct
CRLB is not obvious. Moreover, in the considered estimation
problem, the FIM of fundamental system parameters, θ, is
rank deficient. Hence in this situation no conclusions can
be drawn regarding whether there exists an unbiased estima-
tor and CRLB for estimation of the overall channel gains
α = f(θ). In contrast, as corroborated using a minimum
variance unbiased (MVU) estimator, the CRLB expression
in this letter, is numerically stable since it does not depend
on any type of matrix inverse.

Notation: Superscripts (·)∗, (·)T , (·)H , and (·)† denote
the conjugate, the transpose, and the conjugate transpose,
and Moore-Penrose pseudoinverse operators, respectively.
� and � are used for element-wise product and element-
wise division of two vectors, respectively. E{·} denotes the
expectation operator. <{·} and ={·} denote the real and
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imaginary parts of a complex quantity. x̂, represents the
estimated value of x. CN (µ, σ2) denotes a complex Gaussian
distributions with mean µ and variance σ2. Boldface small
letters, x, and boldface capital letters, X, are used for vectors
and matrices, respectively. [x]y represents the yth element of
vector x and [X]x,y represents the entry in row x and column
y of X. IX and 0X×X denote the X × X identity and all
zero matrices. Tr{X} denotes the trace of X. diag(x) is used
to denote a diagonal matrix, where its diagonal elements
are given by the vector x. Finally, a set of complex x-
dimensional vectors is denoted by Cx and f : Cx → Cy
is used to represent that the function f takes as its argument
a complex x-dimensional vector and returns a complex y-
dimensional vector.

II. FUNCTIONAL TRANSFORMATION OF VECTOR CRLB
Assume that it is desired to estimate α = f(θ), where

θ ∈ Cp, α ∈ Cr, and f : Cp → Cr. Using functional
transformation of the vector CRLB in [2], [7], the CRLB for
the estimation of αk = [f(θ)]k, for k = 1, . . . , r, is given by

CRLBαk
=
∂[f(θ)]k
∂θT

F−1θ

(∂[f(θ)]k
∂θT

)H
, (1a)

CRLBαk
=
∂[f(θ)]k
∂θT

F†θ

(∂[f(θ)]k
∂θT

)H
, (1b)

where Fθ is the FIM of the untransformed parameter, θ. If
Fθ is singular or ill-conditioned, the bound in (1a) results
in an invalid CRLB for estimation of αk. Moreover, the
bound in (1b) can also result in an invalid CRLB due
to numerical instability, e.g., due to quantization error or
can be computationally prohibitive to evaluate, e.g., if the
dimension of θ is significantly larger than α. To address
these shortcomings, here, a new expression for calculating
the CRLB of transformed parameter, α, that does not require
the evaluation of any form of matrix inverse is derived.

Let us assume that the likelihood function, p(y;θ), satis-
fies the regularity condition [1], i.e.,

E
{
∂ ln p(y;θ)

∂θ

}
= 0p×1, ∀θ, (2)

where p(y;θ) is the likelihood function of the complex
observation vector, y, parameterized by θ and expectation
is taken with respect to p(y;θ). For an unbiased estimator,

E {α̂} = α = f(θ). (3)

Using (2) and (3), we have∫
(α̂−α)

∂ ln p(y;θ)

∂θT
p(y;θ) dy =

∂f(θ)

∂θT
. (4)

Pre- and post-multiplying (4) by aT and b, respectively,
where a and b are arbitrary r × 1 and p × 1 vectors, we
have∫

aT (α̂−α)
∂ ln p(y;θ)

∂θT
p(y;θ)b dy = aT

∂f(θ)

∂θT
b. (5)

Applying Cauchy-Schwarz inequality [1, p. 71]∣∣∣ ∫ m(y)n(y)o(y)dy
∣∣∣2

≤
∫
m(y)

∣∣n(y)∣∣2dy ∫ m(y)
∣∣o(y)∣∣2dy. (6)

where m(y) , p(y;θ), n(y) , aT (α̂ − α), and o(y) ,
∂ ln p(y;θ)

∂θT b. Thus, (5) can be written as (7) given at the
bottom of this page, where Σα̂ is the covariance of α̂. Let
b =

(∂f(θ)
∂θT

)H
a. Then, (7) can be written as∣∣∣∣aT ∂f(θ)

∂θT

(∂f(θ)

∂θT

)H
a

∣∣∣∣2
≤ aTΣα̂a∗aH

∂f(θ)

∂θT
Fθ

(∂f(θ)

∂θT

)H
a. (8)

In order to find the lower bound on the estimation αk =
[f(θ)]k for k = 1, . . . , r, let a = [01×k−1, 1,01×r−k]

T .
Thus, (8) can be written as∣∣∣∣∂[f(θ)]k∂θT

(∂[f(θ)]k
∂θT

)H ∣∣∣∣2 ≤ σ2
α̂k

∂[f(θ)]k
∂θT

Fθ

(∂[f(θ)]k
∂θT

)H
,

(9)
where σ2

α̂k
= [Σα̂]k,k is the variance of α̂k. Subsequently,

σ2
α̂k

is given by

σ2
α̂k
≥

∣∣∣∣∂[f(θ)]k∂θT

(∂[f(θ)]k
∂θT

)H ∣∣∣∣2
∂[f(θ)]k
∂θT

Fθ

(∂[f(θ)]k
∂θT

)H , k = 1, . . . , r.

(10)

Using (9), the CRLB for the estimation of all the elements
of the transformed parameter vector α can be obtained.

Remark 1: Unlike the CRLB expressions for the trans-
formed parameters in (1) that rely on the inverse or pseudo
inverse of FIM of the untransformed parameters, the trans-
formed CRLB in (10) does not depend on any type of
inverse of the FIM of untransformed parameters, θ. Thus, the
proposed functional transformation of vector CRLB in (10)
results in a valid lower bound for α regardless of whether
the FIM of the untransformed parameter is singular or not
(see Section III-C for more details). It is also important to
note that following (10), we are able to find the diagonal

∣∣∣aT ∂f(θ)

∂θT
b
∣∣∣2 ≤ ∫ p(y;θ)aT (α̂−α)(α̂−α)Ha∗ dy

∫
p(y;θ)bH

(∂ ln p(y;θ)
∂θT

)H ∂ ln p(y;θ)
∂θT

b dy

= aTΣα̂a∗bHFθb. (7)



elements of the CRLB. Thus, the derived bound is a tight
lower bound for the estimation of uncoupled parameters,
i.e., parameters that do not need to be jointly estimated.
A practical application of the derived CRLB for lower
bounding channel estimation accuracy in AF cooperative
relaying networks is presented in the following section.

III. APPLICATION OF THE PROPOSED CRLB

In this section, as an application, the derived CRLB ex-
pression in (10) is used to obtain the lower bond on the chan-
nel estimation variance in a single-input-single-output (SISO)
multi-relay cooperative network. The network consists of
one source node, K relays, and a single destination node.
Quasi-static and frequency flat-fading channel parameters
from source to the kth relay and kth relay to destination
are denoted by hk and gk, respectively, for k = {1, . . . ,K}.
It is assumed that unit-amplitude phase shift keying (PSK)
training signals (TSs) are transmitted from source to the kth
relay and from the kth relay to the destination, ∀ k.

The received complex baseband signal at the kth relay,
rk , [rk(0), . . . , rk(L− 1)]T , is given by [11]

rk = hkt
[s] + uk, (11)

where L is the length of observation vector, t[s] ,
[t[s](0), . . . , t[s](L − 1)]T is the training signal from source
to relays, hk is the unknown flat fading channel parameter,
uk , [uk(0), . . . , uk(L−1)]T , and uk(i) for i = 0, . . . , L−
1, denotes the zero-mean complex additive white Gaussian
noise (AWGN) at the ith sample of the received signal at the
kth relay, i.e., uk(i) ∼ CN (0, σ2

uk
). Each kth relay applies

distinct training signal t
[r]
k , [t

[r]
k (0), . . . , t

[r]
k (L−1)]T to the

received signal [10]. The received signal at the destination,
y , [y(0), . . . , y(L− 1)]T , is given by [11]

y = Tα+ Nβ + w, (12)

where
• T , [t1, . . . , tK ] is an L×K matrix, tk = t[s] � t

[r]
k ,

∀ k, is combined training from source and kth relay,
• N , [n1, . . . ,nK ] is an L×K matrix, nk = uk�t

[r]
k , ∀

k, is the noise signal affected by the training signal from
the kth relay, such that the noise statistics of nk and uk
are same, i.e., nk(i) ∼ CN (0, σ2

uk
), for i = 0, . . . , L−1,

due to unit amplitude PSK training signals,
• α , [α1, . . . , αK ]T is the overall channel gain from

source to relay to destination such that αk = ζkhkgk,
ζk = 1/

√
σ2
uk

+ σ2
h is the kth relay’s power constraint,

• β , [β1, . . . , βK ]T such that βk = ζkgk,
• w , [w(0), . . . , w(L − 1)]T , and w(i) for i =

0, . . . , L − 1, denotes the zero-mean complex AWGN
at the destination, i.e., w(i) ∼ CN (0, σ2

w).
The following subsection evaluates the CRLB expression for
estimating transformed parameter α, which depends on the
fundamental system parameters θ , [hT ,gT ]T

A. CRLB Evaluation

Based on the assumptions in Section III, the AWGN at
the relays, uk, ∀k, and destination, w in (12), are mutually
independent. Accordingly, the received training signal at the
destination, y in (12), is a circularly symmetric complex
Gaussian random variable, y ∼ CN (µy,Σy), with mean
µy = Tα and covariance matrix Σy =

(∑K
k=1 σ

2
uk
|βk|2 +

σ2
w

)
IL. In order to find CRLB for the estimation of overall

channel gain α = f(θ), we can use the proposed CRLB
expression in (10), where

∂α

∂θT
=
[
diag(ζ � g) diag(ζ � h)

]
, (13)

where ζ , [ζ1, . . . , ζK ]T , and FIM for the untransformed
parameter, θ , [hT ,gT ]T , can be calculated using following
expression [1], [12]

Fθ =
(∂µHy
∂θ∗

Σ−1y

∂µy

∂θT

)
+ Tr

{
Σ−1y

∂Σy

∂θ∗
Σ−1y

∂Σy

∂θT

}
.

(14)

Using the definition of µy and Σy, defined above (13), Fθ

is given by

Fθ =
1

ρ

[
GHTHTG GHTHTH

HHTHTG HHTHTH+Tr{Σ−1
y Σ−1

y }εεH

]
, (15)

where G , diag(β), H , diag(ζ � h), ρ ,∑K
k=1 σ

2
uk
|βk|2+σ2

w, ε , [ε1, . . . , εK ]T , and εk , σ2
uk
ζ2kgk.

Remark 2: The FIM, Fθ in (15) is rank-deficient. Partic-
ularly, the rank of 2K×2K matrix Fθ is K+1. Thus, there
is a rank deficiency of K−1 degrees. The rank of the matrix
Fθ can be found by evaluating reduced row echelon form U
of Fθ, which is determined as

U =

 IK diag(h� g)
01×K xT

0K−1×K 0K−1×K

 , (16)

where x , [x1, . . . , xK ]T and xk =
σ2
uk
ζ2kg

∗
k

σ2
u1
ζ21g

∗
1

. The K − 1

rows of zeros in U indicates the rank deficiency of Fθ by
K − 1 degrees. Thus, the existing CRLB expression for the
evaluation of transformed system parameter in (1) results
in an invalid bound. However, using (13) and (15), our
proposed expression in (10) is able to calculate the CRLB
of transformed parameter, α, accurately (see Section III-C).

B. MVU Estimation

In this subsection, the best linear unbiased estimator
(BLUE) for the estimation of α is presented. Given that the
received signal in (12) is Gaussian distributed, the BLUE
can also be shown to be the MVU estimator [1, p. 133].
Following the approach given in [1, ch. 6], the BLUE or
MVU estimate of α is given by

α̂ = (THT)−1THy, (17)

where the estimation covariance matrix of the linear unbiased
estimate α̂ is (THΣ−1y T)−1.
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Fig. 1: MSE, proposed CRLB in (10), and the CRLB in
[8], for the estimation of transformed parameter, α =
f(θ) for training length L = 16 and different number of
relays, K = 2 and K = 4.
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16−bit quantized CRLB [7]
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8−bit quantized CRLB via Eq. (10)
True CRLB

Fig. 2: Comparison of the proposed CRLB in (10) with
[7] (see (1b)) for different levels of quantization. Other
parameters are set to K = 4 and L = 16

C. Numerical Simulation

In this subsection, we numerically simulate the proposed
CRLB in (10) and mean-square error (MSE) for the estima-
tion of overall channel gain α. Specific channels are used
to evaluate the CRLB and MSE of MVU estimator, i.e.,
h = [.279− .9603j, .8837+ .4681j,−.343+ .732i,−.734−
.451i]T and g = [.7820 + .6233j, .9474− .3203j,−.2413 +
.724i, .5141− .893i]T , similar to [13] and [10]. Note that the
first two and all four entries of h and g are used for K = 2
and K = 4 relays, respectively. Distinct unit-amplitude PSK
training signals are transmitted from source and different
relays with training length L = 16. It is assumed that
the noise at all relays have the same variance, i.e., σ2

u =
σ2
u1

= · · · = σ2
uK

. Moreover, without loss of generality, it
is assumed that σ2

w = σ2
u = 1/SNR. The estimation MSE

is numerically calculated as 1
R

∑R
r=1 (α1 − α̂1(r))

2, where
R = 10000 is the total number of simulations, α̂1(r) is
the estimate of α1 during rth simulation for r = 1, . . . , R.
Without loss of generality, CRLB and estimation MSE for
the first relay are plotted however similar results are obtained
for all the relays.

Fig. 1 plots the CRLB and MSE for the estimation of α
versus SNR for K = 2 and 4 relays. It can be observed
from Fig. 1 that estimation MSE of MVU estimator is close
to the proposed CRLB for the whole range of considered
SNR values. The results in Fig. 1 also verifies the proposed
CRLB expression in (10). On the other hand, the existing
CRLB expressions in (1a) depends on the inverse of Fθ,
which is undefined for singular FIM. Fig. 1 also plots the
CRLB in [8], where it has been proposed to replace F−1θ in
(1a) with a diagonal matrix, whose diagonal elements are the
reciprocal of the corresponding diagonal elements of Fθ. It

can be observed from Fig. 1 that such bound is above the
MSE of the proposed MVU estimator and is not a valid lower
bound.1

Fig. 2 compares the proposed CRLB in (10) with [7]
(see (1b)) for different levels of quantization. In order to
investigate the numerical stability of the proposed expression
in (10) over the existing result in (1b), 8, 16, and 32 bit
quantization is applied. It can be observed from Fig. 2 that
our proposed expression is not sensitive to quantization error
and even produce the true CRLB with 8-bit quantization.2

However, the CRLB expression in (1b) is very sensitive to
quantization error. This is because the CRLB expression
in (1b) depends on the pseudo inverse of Fθ, which is
numerically unstable.

IV. CONCLUSION

This letter derives the general CRLB expression for the es-
timation of transformed system parameters, α = f(θ) which
are a function of some fundamental system parameters, θ.
Unlike the previous results in the literature, the final CRLB
expression, derived in this letter, does not depend on the
inverse or pseudo inverse of the FIM of the untransformed
parameters, θ. Thus, it can be applied to scenarios where
the FIM of θ is ill-conditioned/singular or when the pseudo
inverse of the FIM of θ is numerically unstable or com-
putationally prohibitive to evaluate. Finally, as an example
the proposed bound is applied in the context of channel
estimation for in amplify-and-forward cooperative relaying

1According to [8], their CRLB should be loose bound for untransformed
parameter estimation. However, for the estimation of transformed parame-
ters, the CRLB in [8] is incorrect as demonstrated in Fig. 1.

2Similar results as true CRLB are obtained for 16 and 32 bit quantization
with the proposed expression.



networks, where shown that the MSE of an MVU estimator
is close to the derived CRLB for wide range of SNR values.
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