
A STILL SHARPER REGION WHERE π(x) − li(x) IS POSITIVE
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Abstract. We consider the least number x for which a change of sign of
π(x)− li(x) occurs. First, we consider modifications of Lehman’s method that
enable us to obtain better estimates of some error terms. Second, we establish
a new lower bound for the first x for which the difference is positive. Third,
we use numerical computations to improve the final result.

1. Introduction

The prime number theorem states that li(x) ∼ π(x), where π(x) counts the

number of primes not exceeding x, and where li(x) = limε→0

{

∫ 1−ε
0 +

∫ x
1+ε

dt
log t

}

.

It is known that π(x) < li(x) for 2 ≤ x ≤ 1014 [Kot08]. On the other hand,
Littlewood [Lit14] proved in 1914 that π(x) > li(x) infinitely often, although he did
not give an estimate on the first counterexample. The smallest number for which
π(x) > li(x) is often called Skewes’ number. For a history of refinements to Skewes’
number, see [SD10, §1].

In 2010, Saouter and Demichel [SD10] proved that π(x) > li(x) in a new re-
gion around exp(727.951335792). The main approach there was to refine Lehman’s
method, first used in [Leh66]. They also remarked that a region around exp(727.951-
335426) might contain a sign change; their theorems were not strong enough to
prove this.

In this article, we derive a stronger version of Lehman’s theorem involving a
different weight function. This new theorem enables us to certify the preceding
candidate region. We can then improve this region by appealing to a combination
of theoretical results and numerical computations.

2. Preliminaries

First, we gather some results that will be required in subsequent sections.

2.1. The function li(x).

Lemma 2.1. Let w be a complex number such that Im(w) $= 0. Then for any
integer n ≥ 1, we have

(2.1) li(ew) = ew

{

n
∑

k=1

(k − 1)!

wk
+ n!

∫ +∞

0

e−t

(w − t)n+1
dt

}

.

Proof. Lehman [Leh66, p. 402] proved this theorem in the case of n = 1 by inte-
gration by parts. Successive integrations by parts give the result. !

Date: June 11, 2013.
2000 Mathematics Subject Classification. Primary 11-04, 11A15, 11M26, 11Y11, 11Y35.
The second author was supported in part by ARC Grant DE120100173.

1

Jun 11 2013 10:56:07 EDT
Vers. 1 - Sub. to MCOM



2 YANNICK SAOUTER, TIMOTHY TRUDGIAN, AND PATRICK DEMICHEL

Though the sum in the right-hand side of (2.1) is not convergent, a judicious
selection of n gives an approximation of li(ew) that is sufficient in what follows.
The following theorem provides approximations to li(ew) in the case of real positive
arguments.

Lemma 2.2. Let n ≥ 1 be an integer and, for x > 1, let g1(x) = li(x) −
x
∑n

k=1
(k−1)!
(log x)k and g2(x) = g1(x) − x n!

(log x)n . It follows that g1(x) is increasing

for x > e and g2(x) is decreasing for x > en+1.

Proof. For x > 1, we have

g′1(x) =
1

log x
−

n
∑

k=1

(k − 1)!

(log x)k
+

n
∑

k=1

k!

(log x)k+1
=

n!

(log x)n+1
.

Thus g′1(x) is positive when x ≥ e. We also have

g′2(x) = g′1(x) −
n!

(log x)n
+

n.n!

(log x)n+1
=

n!

(log x)n+1
(n + 1 − log x).

Thus g′2(x) is negative when x > en+1. !

Lemma 2.3. For x > e5, we have

6x

(log x)4
< li(x) −

x

log x

{

1 +
1

log x
+

2

(log x)2

}

<
30x

(log x)4

2x

(log x)3
< li(x) −

x

log x

{

1 +
1

log x

}

<
8x

(log x)3

x

(log x)2
< li(x) −

x

log x
<

13x

5(log x)2

x

log x
< li(x) <

38x

25 logx
.

Proof. The first inequality comes from applying Lemma 2.2 with n = 4 and from
observing that g1(e5) > 0 and g2(e5) < 0. The others come from bounding the
terms of the first equation with the hypothesis x > e5. !

2.2. The prime counting function π(x). Dusart proved the following theorem
in [Dus98], [Dus10].

Theorem 2.4. We have, [Dus10, Thm. 6.9]

x

log x

(

1 +
1

log x

)

≤
x≥599

π(x) ≤
x>1

x

log x

(

1 +
1.2762

log x

)

x

log x − 1
≤

x≥5393
π(x) ≤

x≥60184

x

log x − 1.1

x

log x

(

1 +
1

log x
+

2

log2 x

)

≤
x≥88783

π(x)(2.2)

≤
x≥2953652287

x

log x

(

1 +
1

log x
+

2.334

log2 x

)

,

where subscripts describe the domains of the inequalities.
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2.3. The gaussian kernel. Let α be a positive real number. The gaussian kernel
we shall use is defined to be K(y) =

√

α
2π e−αy2/2. In [Leh66], Lehman proved

Lemma 2.5. For η > 0
∫ +∞

−∞
K(y)eiγydy = e−γ2/2α,

∣

∣

∣

∣

∫ +∞

η
K(y)eiγydy

∣

∣

∣

∣

≤
2

γ
K(η).

We will also need the following evaluation.

Lemma 2.6. We have, for η > 0
∫ η

−η
y K(y)eiγydy =

iγ

α
e−γ2/2α +

6ϑ

α
K(η).

Proof. We have K ′(y) = −αyK(y). Integrating by parts gives
∫ η

−η
y K(y)eiγydy =

[

−
K(y)

α
eiγy

]η

−η

+
iγ

α

∫ η

−η
K(y)eiγydy.

The result follows from Lemma 2.5. !

2.4. Summation over zeros of the Riemann zeta-function. In §4, some error
terms involve sums over zeros of the Riemann function in the critical strip. We
denote the imaginary part of such a zero by γ. We recall some results used by
Lehman.

Lemma 2.7. Let φ(t) be a continuous positive and monotone decreasing function
on the interval [T1, T2] with 2πe ≤ T1 < T2, then

∑

T1<γ≤T2

φ(γ) =
1

2π

∫ T2

T1

φ(t) log
t

2π
dt + ϑ

{

4φ(T1) log(T1) + 2

∫ T2

T1

φ(t)

t
dt

}

.

Lemma 2.8. If T ≥ 2πe, then, for n ≥ 2,
∑

γ>T

1

γn
< T 1−n log(T ).

Lemmas 2.7 and 2.8 were proved using the classical estimate of N(T ) obtained
by Backlund [Bac18]. This estimate has been refined, most recently by Trud-
gian [Tru12]. However, such a refinement does not lead to a substantial improve-
ment in the application of Lemmas 2.7 and 2.8.

Using Lemma 2.8 and computations over the first 100 million zeros of the zeta-
function, we obtained

Lemma 2.9. We have
∑

0<γ

1

γ2
< 2.31050× 10−2,

∑

0<γ

1

γ3
< 7.29549× 10−4,

∑

0<γ

1

γ4
< 3.71726× 10−5,

∑

0<γ

1

γ5
< 2.23119× 10−6.

We will also need the following evaluation.

Lemma 2.10. If T ≥ 2πe, then

∑

0<γ≤T

1

γ
=

1

4π

(

log
T

2π

)2

+ 0.9321ϑ.
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Proof. We use Lemma 2.7 with the function φ(t) = 1
t , whence

∑

2πe<γ≤T

1

γ
=

1

2π

∫ T

2πe

1

t
log

t

2π
dt + ϑ

{

2 log(2πe)

πe
+ 2

∫ T

2πe

dt

t2

}

=
1

2π

[

1

2

(

log
t

2π

)2
]T

2πe

+ ϑ

{

2 log(2πe)

πe
+ 2

[

−
1

t

]T

2πe

}

=
1

4π

{

(

log
t

2π

)2

− 1

}

+ ϑ

{

2 log(2πe) + 1

πe

}

=
1

4π

(

log
t

2π

)2

+ 0.8614ϑ.

For the summation to be over 0 < γ ≤ T , we add the contribution of zeros in the
range 0 < γ ≤ 2πe; that is to say, the contribution of the first zero only. !

3. Main theorem

The first purpose of this paper is to prove the following theorem.

Theorem 3.1. Let A be a positive number such that β = 1
2 for all zeros ρ = β + iγ

of ζ(s) for which 0 < γ ≤ A. Let α, η and ω be positive numbers for which
ω − η > 43.8 and for which

4A/ω ≤ α ≤ A2

and
2A/α ≤ η ≤ ω/2

hold. Let

K(y) =

√

α

2π
e−αy2/2

and

I(ω, η) =

∫ ω+η

ω−η
K(u − ω)

u{π(eu) − li(eu)}
eu/2(1 + 2

u + 9.336
u2 )

du.

Then for 2πe < T ≤ A

I(ω, η) = − 1 +
1

1 + 2
ω + 9.336

ω2

∑

ρ,0<|γ|≤T

e−γ2/2αeiγω

(

1

ρ
+

1

ρ2ω

)

+ R1 − R2 − R3 − R4 − R5,

where

R1 =
2√
α

K(η)

R2 = (ω + η)(log 2e−(ω−η)/2 + 3e−(ω−η)/6)

R3 = 0.19K(η) +
1.81

ω2
√

α

{

1

π

(

log
A

2π

)2

+ 3.78

}

+
2.92 × 10−3

(ω − η)2

R4 = e−T 2/2α

(

1

T
+

1

T 2ω

){

α

πT
log

T

2π
+ 8 logT +

4α

T 2

}

R5 = e(ω+η)/2A log Ae−A2/2α{4α−1/2 + 15η}.

If the Riemann hypothesis holds, the factor e(ω+η)/2 in R5 can be replaced by 1.
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4. Proof of the main theorem

We proceed as in Lehman [Leh66]. Let

Π(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + . . .

and let

Π0(x) = lim
ε→0

1

2

{

Π(x + ε) + Π(x − ε)

}

.

The Riemann–von-Mangoldt explicit formula states that, for x > 1,

Π0(x) = li(x) −
∑

ρ

li(xρ) +

∫ +∞

x

du

(u2 − 1)u logu
− log 2,

where ρ runs over the non-trivial zeros of the zeta-function. We have

1

3
π(x1/3) +

1

4
π(x1/4) + . . . ≤

1

3
π(x1/3)

⌊

log x

log 2

⌋

,

whence

π(x) − li(x) ≥ −
1

2
π(x1/2) −

∑

ρ

li(xρ) − log 2 − 3x1/3.

In Lehman’s paper, the function π(x1/2) is approximated by x1/2

log(x1/2)
. We use

Theorem 2.4 as it gives a better estimate. If x ≥ 1019, we have

π(x) − li(x) ≥ −
x1/2

log x

(

1 +
2

log x
+

9.336

log2 x

)

−
∑

ρ

li(xρ) − log 2 − 3x1/3.

Putting x = eu, we have, for u ≥ 43.8,

(4.1)
u{π(eu) − li(eu)}

eu/2
(

1 + 2
u + 9.336

u2

) ≥ −1−
∑

ρ

uli(eρu)

eu/2
(

1 + 2
u + 9.336

u2

)−
u(log 2 + 3eu/3)

eu/2
(

1 + 2
u + 9.336

u2

) .

Let ω > η > 0 and ω − η ≥ 43.8. We wish to multiply each term on the right-hand
side of (4.1) by K(u − ω) and integrate. First, note that

(4.2)

∫ ω+η

ω−η
K(u − ω)du = 1 − 2

∫ ∞

η
K(u)du = 1 − erfc(η

√

α/2).

When x > 0, we have
√

2
π e−x2

< erfc(x), whence

∫ ω+η

ω−η
K(u − ω)du > 1 −

√

2

π
e−αη2/2 > 1 −

2K(η)√
α

.

Second, we have, for ω − η ≥ 43.8,
∣

∣

∣

∣

∣

∫ ω+η

ω−η
K(u − ω)

u(log 2 + 3eu/3)

eu/2
(

1 + 2
u + 9.336

u2

)du

∣

∣

∣

∣

∣

(4.3)

≤ maxu∈[ω−η,ω+η]
u(log 2 + 3eu/3)

eu/2
(

1 + 2
u + 9.336

u2

)

≤ (ω + η)(log 2e−(ω−η)/2 + 3e−(ω−η)/6).

Jun 11 2013 10:56:07 EDT
Vers. 1 - Sub. to MCOM



6 YANNICK SAOUTER, TIMOTHY TRUDGIAN, AND PATRICK DEMICHEL

Equations (4.1), (4.2) and (4.3) show that, for ω − η ≥ 43.8,
∫ ω+η

ω−η
K(u − ω)

u{π(eu) − li(eu)}
eu/2

(

1 + 2
u + 9.336

u2

)du ≥ −1 +
2K(η)√

α

− (ω + η)(log 2e−(ω−η)/2 + 3e−(ω−η)/6)

−
∫ ω+η

ω−η
K(u − ω)

(

∑

ρ

u li(eρu)

eu/2
(

1 + 2
u + 9.336

u2

)

)

du.

Denote the integral on the right-hand side by J ; §§5 and 6 are devoted to giving
a good bound for J . The inversion of summation and integration is justified since
the summation over the zeros of ζ(s) converges boundedly for u ∈ [ω − η, ω + η].
Thus, if we write

Jρ =

∫ ω+η

ω−η
K(u − ω)

u li(eρu)

eu/2
(

1 + 2
u + 9.336

u2

)du,

then we may write J =
∑

ρ Jρ. Recalling that, as in Theorem 3.1, A is the height
to which the Riemann hypothesis has been verified, write

J = J1 + J2 =
∑

ρ,0<|γ|≤A

Jρ +
∑

ρ,|γ|>A

Jρ.

5. J1: summation below height A

For any zero ρ in J1, we have ρ = 1
2 + iγ, with |γ| ≤ A. From Lemma 2.1 with

n = 2, we have

Jρ =

∫ ω+η

ω−η

K(u − ω)uli(eρu)

eu/2
(

1 + 2
u + 9.336

u2

)du =

∫ ω+η

ω−η
K(u − ω)eiγu

(

1
ρ + 1

ρ2u + 2ϑ
γ3u2

)

(

1 + 2
u + 9.336

u2

) du.

The error in the last term can be bounded above by writing
∣

∣

∣

∣

∣

∣

∫ ω+η

ω−η
K(u − ω)eiγu

(

2ϑ
γ3u2

)

(

1 + 2
u + 9.336

u2

)du

∣

∣

∣

∣

∣

∣

≤
2

γ3(ω − η)2
.

Hence

(5.1) Jρ =

∫ ω+η

ω−η
K(u − ω)eiγu

(

1
ρ + 1

ρ2u

)

(

1 + 2
u + 9.336

u2

)du +
2ϑ

γ3(ω − η)2
.

Now, we put u = ω + y so that

(5.2)

(

1
ρ + 1

ρ2(ω+y)

)

(

1 + 2
(ω+y) + 9.336

(ω+y)2

) =

(

1
ρ + 1

ρ2ω

)

(

1 + 2
ω + 9.336

ω2

) +
y

ω2

{

f(ω, y)

ρ
+

g(ω, y)

ρ2

}

,

where

f(ω, y) =
w2{2ω2 + 2ωy + 9.336(2ω + y)}

(ω2 + 2ω + 9.336)(ω2 + 2ωy + y2 + 2ω + 2y + 9.336)
,

g(ω, y) =
w2(9.336− ωy − ω2)

(ω2 + 2ω + 9.336)(ω2 + 2ωy + y2 + 2ω + 2y + 9.336)
.
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Now w > 43.8 and, if η < ω/2, we have |y| < ω/2. It is easy to see that both
f(ω, y) and |g(ω, y)| are decreasing functions in y. Moreover,

f(ω,−ω/2) ≤ f(43.8,−21.9) ≤ 4.53, |g(ω, y)| = −g(ω, y) ≤ g(ω,−ω/2) ≤ 2.

Substituting all this in (5.2), we obtain
(

1
ρ + 1

ρ2(ω+y)

)

(

1 + 2
(ω+y) + 9.336

(ω+y)2

) =

(

1
ρ + 1

ρ2ω

)

(

1 + 2
ω + 9.336

ω2

) +
y

ω2

(

4.53ϑ1

ρ
+

2ϑ2

ρ2

)

,

which, when added to (5.1), gives

Jρ = eiγω

(

1
ρ + 1

ρ2ω

)

(

1 + 2
ω + 9.336

ω2

)

∫ η

−η
K(y)eiγydy

+
eiγω

ω2

∫ η

−η
yK(y)eiγyϑ1

(

4.53

ρ
+

2

ρ2

)

dy +
2ϑ2

γ3(ω − η)2

= eiγω

(

1
ρ + 1

ρ2ω

)

(

1 + 2
ω + 9.336

ω2

)

∫ η

−η
K(y)eiγydy

+
ϑ1

ω2

√

2

πα

(

4.53

γ
+

2

γ2

)

+
2ϑ2

γ3(ω − η)2
,

since |
∫ η
−η yK(y) dy| ≤ 2

∫∞
0 yK(y) =

√

2/(πα). Using Lemma 2.5 to estimate the
above integral and Lemmas 2.9 and 2.10 to estimate the sums over the zeros we
obtain

J1 =
1

(

1 + 2
ω + 9.336

ω2

)

∑

ρ,0<|γ|≤A

e−γ2/2αeiγω

(

1

ρ
+

1

ρ2ω

)

+ 0.19ϑ1K(η)

+
1.81ϑ2

ω2
√

α

{

1

π

(

log
A

2π

)2

+ 3.78

}

+
2.92 × 10−3ϑ3

(ω − η)2
.

We have thus obtained an expression giving J1, contingent on a value of A. If A
is so large as to prevent the computation of the summation in a reasonable time, we
may stop at a height below A at the expense of an additional error term. Indeed,
for 2πe < T ≤ A, we have, by Lemma 2.7

∑

ρ,T<|γ|≤A

e−γ2/2α

(

1

γ
+

1

γ2ω

)

≤

1

π

∫ A

T
e−t2/2α

(

1

t
+

1

t2ω

)

log
t

2π
dt + 8e−T 2/2α

(

1

T
+

1

T 2ω

)

log T

+ 4

∫ A

T
e−t2/2α

(

1

t2
+

1

t3ω

)

dt,

whence we obtain
∣

∣

∣

∣

∣

∣

1
(

1 + 2
ω + 9.336

ω2

)

∑

ρ,T<|γ|≤A

e−γ2/2αeiγω

(

1

ρ
+

1

ρ2ω

)

∣

∣

∣

∣

∣

∣

≤

e−T 2/2α

{

α

π

(

1

T 2
+

1

T 3ω

)

log
T

2π
+ 8

(

1

T
+

1

T 2ω

)

log T + 4α

(

1

T 3
+

1

T 4ω

)}

.
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6. J2: Summation beyond height A

Following Lehman’s approach [Leh66, §5] we introduce the function

(6.1) fρ(s) =
ρse−ρsli(eρs)
(

1 + 2
s + 9.336

s2

)e−α(s−ω)2/2.

Define D = {s : −π
4 ≤ arg(s) ≤ π

4 , |s| ≥ 54
5 }. Since all zeros in 0 < β < 1 have

|γ| ≥ 14 it follows that, for s ∈ D, π
6 < |Arg(ρs)| < 3π

4 , whence the numerator in
(6.1) is a regular analytic function on D. Moreover, the polynomial s2 +2s +9.336
has roots at t0 and t0, where t0 = −1 + i

√
8.336, which are outside D. Thus fρ(s)

is a regular analytic function on D.
We now proceed to proving an upper bound for fρ(s). Applying Lemma 2.1 with

n = 1 gives

|ρse−ρsli(ρs)| ≤
∣

∣

∣

∣

1 + ρs

∫ +∞

0

e−t

(ρs − t)2
dt

∣

∣

∣

∣

≤ 1 +
|ρs|

(Im(ρs))2
.

Since |s − t0| ≥ |s|− |t0| ≥ |s|− 3.06 > 0, and likewise for |s − t0|, we have

|s2 + 2s + 9.336| = |s − t0||s − t0| ≥ (|s|− 3.06)2.

Finally, on D we have | ρs
Im(ρs) | ≤ 2 and |ρs| > 152, so that

|fρ(s)| ≤ 1.999|e−α(s−ω)2/2| < 2|e−α(s−ω)2/2|.

In [Leh66], Lehman obtained the same bound for his candidate function fρ(s). As
a consequence, we can follow his bounding strategy to conclude that, if A2/α ≥ 1,
A/α ≤ ω/4 and η ≥ 2A/α, then

|J2| ≤ e(ω+η)/2A log Ae−A2/2α{4α−1/2 + 15η}.

This latter result establishes Theorem 3.1.

7. Roundoff error

Zeros with |γ| ≤ A lie on the critical line and appear as conjugate pairs. Thus if
we denote the expression to be computed by S, we have

S =
1

1 + 2
ω + 9.336

ω2

∑

ρ,0<γ≤T

e−γ2/2α

{

eiγω

[

1

1/2 + iγ
+

1

(1/2 + iγ)2ω

]

+(7.1)

e−iγω

[

1

1/2 − iγ
+

1

(1/2 − iγ)2ω

]}

=
1

1 + 2
ω + 9.336

ω2

∑

ρ,0<γ≤T

e−γ2/2α

{

4 cos(γω) + 8γ sin(γω)

1 + 4γ2
+

8 cos(γω) + 32γ sin(γω) − 32γ2 cos(γω)

(1 + 4γ2)2ω

}

.

We need to estimate the roundoff error arising from the precision with which the
zeros of ζ(s) can be calculated. For a given zero ρ = 1/2 + iγ, we let Sγ+ε′ denote
the value obtained for S using (7.1) if γ is replaced by γ + ε′, ε′ being eventually
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negative. We suppose that we have |ε′| < ε, where ε is a positive value denoting
the maximal roundoff error on the value of γ. We have then

|S − Sγ+ε′ | ≤
ε

1 + 2
ω + 9.336

ω2

Max
t∈[γ,γ+ε′]

∂

∂t

{

e−t2/2α

[

4 cos(tω) + 8t sin(tω)

1 + 4t2
+

(8 − 32t2) cos(tω) + 32t sin(tω)

(1 + 4t2)2ω

]}

.

We suppose that ε < 0.1, so that t > 14. Computing the derivative and bounding
cos(tw) and sin(tw) trivially we obtain, since ω > 43.8,

|S − Sγ+ε′ | ≤ 0.96ε Max
t∈[γ,γ+ε′]

t

1 + 4t2
(42ω + 42/α + 513)

≤ 0.96(42ω + 42/α + 513)ε
γ + ε

1 + 4(γ − ε)2

≤ 1.92(42ω + 42/α + 513)ε
γ

1 + γ2
.

Suppose now that all zeros of ζ(s) with imaginary part less than T have been
computed with a maximal error less than ε. Then the total roundoff error ∆S is
such that

∆S ≤1.92(42ω + 42/α + 513)ε
∑

ρ,0<γ≤T

γ

1 + γ2

≤1.92(42ω + 42/α + 513)ε
∑

ρ,0<γ≤T

1

γ
.

Then, with Lemma 2.10, we have

∆S ≤1.92(42ω + 42/α + 513)

{

1

4π

(

log
T

2π

)2

+ 0.9321

}

ε.(7.2)

8. Numerical applications

From [vdL01], the maximum value that A can take is AMAX = 3293531632.414.
In order to minimize the length of the interval, we set η = 2A/α. We have ω ∼
727.95. We set A = 3.2 × 109, α = 1015 and T = 2 × 108. The error term
is then bounded by 5.82 × 10−9. More precisely we have, R1 ∼ 3.56 × 10−8895,
R2 ∼ 4.46 × 10−50, R3 ∼ 5.53 × 10−9, R4 ∼ 2.84 × 10−10 and R5 ∼ 2.1 × 10−2059.
Concerning the roundoff error, values of the zeros were correct up to twenty decimal
places. Thus we have ε = 5 × 10−21, and (7.2) gives ∆S ≤ 7.37 × 10−15. We see
that R3 and R4 dictate the final error value.

These values were used to compute values of I(ω, η) for ω between 727.9513354
and 727.951338; the result is depicted in Figure 1. Actually, two curves are depicted
on the figure. The first was obtained with the use of 525 million zeros of the zeta-
function using the equations of Theorem 3.1. The second is a reproduction at the
same scale of [SD10, Fig. 4]. For the latter curve, only 22 million zeros were used,
the formula was different, and the error term was larger. In both cases, the error
term has been included to illustrate the worst case scenario. Together with the
curves, the axis I = 0 is also represented. It is clear on the figure that a new record
area is obtained for ω ) 727.9513355.
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New record
area

2010 record
area

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007
With 525Mz

5.5e-6
727.95133+

6e-6 6.5e-6 7e-6 7.5e-6 8e-6
727.95133+

With 22Mz

Figure 1. Comparison with previous work.

There are two reasons why this new record value cannot be found on the curve
made with the 2010 data. First, the two curves are, in fact, averaging functions of
π(x) − li(x). The 2010 curve corresponds to an average computed over an interval
of length 4.6 × 10−5. In this paper, the average was computed over an interval of
length 1.3×10−5. This shorter interval was obtained by considering larger values for
the parameter α in our computations. From the expression of R4, we deduce that
larger values for T are therefore required. Thus in order to obtain shorter intervals
it was necessary to consider more zeros of ζ(s). This enables the observation of
the subtler behaviour of π(x) − li(x): the newly obtained curve has a shape more
chaotic than that of [SD10].

The second reason is that the error term we obtain in this paper is smaller
than that of [SD10]. Indeed, in this new work, the total error is less than 10−6,
while it was larger than 2.7 × 10−3 in the previous work. This improvement was
obtained with the new weighing function we considered, which is more accurate in
its approximation of π(eu)−li(eu) in the integral. As a consequence, the new record
area is above the axis I = 0, while with the results of [SD10], the corresponding
zone is below the axis.

Figure 2 gives a magnification of the new record region. Our data indicate that,
in this interval, the least value of ω that gives a positive value for the average mean
is equal to ω0 = 727.951335426, for which we have J(ω0) = 0.0000070294± 10−10.
We considered then the value E = J(ω0) + R1 −R2 −R3 −R4 −R5. The roundoff
error was not added, since it only depends on the value ε which was kept small
enough to make the roundoff error negligible. Once ω and T have been fixed, the
expression for E depends only on A and α. We have η = 2A/α; thus if we treat η
as a constant, it is possible to eliminate A in the expression of E, which then only
depends on α.

We searched for maximum values of E by differentiating this value with respect to
α and using Newton–Raphson iterations to find values of α at which the derivative is
zero. When such a value, say α0, is obtained, we need to verify whether the following
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-6e-4

-5e-4

-4e-4

-3e-4

-2e-4

-1e-4

0

1e-4

2e-4

5e-4

3e-4

4e-4

727.951335+ 727.951335+
4e-7 4.5e-7 5e-7 5.5e-7 6e-7

Figure 2. Shape of the new region.

conditions are met. First, the corresponding value for E has to be positive. Second,
the corresponding value for A, viz. ηα0/2, has to be less than AMAX .

We apply this strategy by fixing η in the interval [10−6, 10−5] and searching by
bisection for the least value for which the two previous conditions are verified. This
search was greatly facilitated by the use of MapleTM [Map], which possesses general
purpose differentiation and Newton–Raphson operators. Close to optimal values
were found; we retain the following values α = 1.61 × 1015 and A = 1.13 × 109.
This choice gives η = 2A/α ∼ 1.4 × 10−6 and we obtain R1 ≥ 1.04 × 10−689,
R2 ≤ 4.45 × 10−50, R3 ≤ 5.53 × 10−9, R4 ≤ 8.92 × 10−7, R5 ≤ 3.55 × 10−9, and
∆S ≤ 7.37 × 10−15 so that I(ω0, η) ≥ 6.12 × 10−6.

9. Sharpening the interval

Further improvements are possible using the technique of [SD10, §5]. Using
Lemma 2.3 and Theorem 2.4, we can easily prove the following theorem.

Theorem 9.1. If x ≥ 2.96 × 109, then

π(x) − li(x) ≤
x

log3 x

(

0.334 +
6

log x

)

≤
0.61x

log3 x
.

From this result, if 0 < η0 < η and ω + η0 > 21.81, we deduce that
∣

∣

∣

∣

∫ ω+η

ω+η0

K(u − ω)
u(π(eu) − li(eu))

eu/2(1 + 2
u + 9.336

u2 )
du

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ω+η

ω+η0

K(u − ω)
0.61eu/2

u2(1 + 2
u + 9.336

u2 )
du

∣

∣

∣

∣

≤ 0.61(η − η0)K(η0)e
(ω+η)/2(ω + η0)

−2.

Likewise, if ω − η > 21.81, then
∣

∣

∣

∣

∫ ω−η0

ω−η
K(u − ω)

u(π(eu) − li(eu))

eu/2(1 + 2
u + 9.336

u2 )
du

∣

∣

∣

∣

≤ 0.61(η − η0)K(η0)e
(ω−η0)/2(ω − η)−2,

so that

|I(ω, η) − I(ω, η0)| ≤ 0.61(η − η0)K(η0)(e
(ω+η)/2(ω + η0)

−2 + e(ω−η0)/2(ω − η)−2).
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With previously chosen values and η0 = η/2.07, this gives

|I(ω0, η) − I(ω0, η0)| ≤ 5.37 × 10−8.

If we invoke the Riemann hypothesis, better results are available. In fact,
from [Sch76, p. 339] we have

Theorem 9.2. If the Riemann hypothesis holds and if x ≥ 2657, then

|π(x) − li(x)| <
1

8π

√
x log x.

If ω − η > 7.89 and the Riemann hypothesis holds, we have then
∣

∣

∣

∣

∫ ω+η

ω+η0

K(u − ω)
u(π(eu) − li(eu))

eu/2(1 + 2
u + 9.336

u2 )
du

∣

∣

∣

∣

≤
1

8π

∣

∣

∣

∣

∫ ω+η

ω+η0

K(u − ω)
u2

(1 + 2
u + 9.336

u2 )
du

∣

∣

∣

∣

≤ 3.98 × 10−2(η − η0)K(η0)(ω + η)2

and
∣

∣

∣

∣

∫ ω−η0

ω−η
K(u − ω)

u(π(eu) − li(eu))

eu/2(1 + 2
u + 9.336

u2 )
du

∣

∣

∣

∣

≤ 3.98 × 10−2(η − η0)K(η0)(ω − η0)
2

so that, we obtain finally

|I(ω, η) − I(ω, η0)| ≤ 3.98 × 10−2(η − η0)K(η0)((ω − η0)
2 + (ω + η)2).

Choosing η0 = η/7.23 we obtain

|I(ω0, η) − I(ω0, η0)| ≤ 5.42 × 10−8,

which allows us to deduce the following result.

Lemma 9.3. Let ω0 = 727.951335426 and η = 1.41 × 10−6. If the Riemann
hypothesis is assumed set η0 = η/7.23; otherwise set η0 = η/2.07. In both cases, we
have

I(ω0, η0) ≥ 6.07 × 10−6.

This allows us to deduce the following result.

Lemma 9.4. With the same numerical values as in Lemma 9.3, the function
π(eu)− li(eu) assumes a value larger than 9.85× 10149 at least once in the interval
u ∈ [ω0 − η0, ω0 + η0].

Proof. Since |
∫ ω+η0

ω−η0
K(u − ω)du| < 1, then, for at least for one value u ∈ [ω −

η0, ω + η0], we necessarily have

u(π(eu) − li(eu))

eu/2(1 + 2
u + 9.336

u2 )
≥ 6.07 × 10−6,

so that

π(eu) − li(eu) ≥
6.07 × 10−6e(ω0−η0)/2

ω0 + η0
.

!

At this point we recall a result obtained in [SD10, Theorem 6.2].

Lemma 9.5. Let x be a positive number such that π(x)− li(x) ≥ N . Then for any
value y such that 0 < y < N log x, we have π(x + y) − li(x + y) > 0.
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Together with Lemma 9.4, this lemma enables us to establish our last result.

Lemma 9.6. There are more than 7.17×10152 successive integers x in the interval
[exp(727.951334747), exp(727.951336105)] such that the inequality π(x) − li(x) > 0
holds. Moreover, if the Riemann hypothesis holds, the result is true on the interior
interval [exp(727.951335231), exp(727.951335621)].

10. Conclusion

Improvements to our work are certainly possible. For instance, sharper estimates
of the function π(x) could be introduced to provide lower error bounds. Indeed, in
what precedes, we essentially use the right-hand side of (2.2) of Theorem 2.4, which
gives an estimate valid for x ≥ 2.96 × 109. However, it seems most probable that
if we consider only x ≥ 10100, the constant 2.334 involved in (2.2) could be made
very close to 2. Thus one could review Dusart’s work to derive such an inequality
and then apply it to lower the global error term.

Unofficially the Riemann hypothesis has been verified to heights higher than that
considered here. For instance, in 2005, Gourdon and Demichel [GD04] reached the
1013-th zero. More recently, Platt [Pla12] computed the first 1011-th zeros and
put them online. But, although larger A values could be used to lower the global
error bound, they could not be used to verify shorter intervals, and in fact, when
we minimise the value η, we finally choose A = 1.13 × 109 which is lower than
the maximum allowed by van de Lune’s result [vdL01]. Since η = 2A/α, taking
lower values for η requires considering larger values of α. On the other hand, the
approximate order of R4 is e−T 2/2α. Thus keeping a low error bound with larger α
values requires us to consider larger values for T . In our work, the value for T is
fixed; increasing it would greatly increase the time for computation.

Another curious point is the modest impact obtained if we consider the Rie-
mann hypothesis. Indeed, in Lemma 9.6, the length of the interval obtained with
the Riemann hypothesis is roughly three times less than that obtained uncondition-
ally. This remark, together with the previous paragraph, suggests that the Skewes’
problem is not much influenced by computational or theoretical results concerning
the Riemann hypothesis.

The last point we shall address is the existence of smaller values of x for which
π(x) > li(x). There is no practical way to test an isolated value of x. Analytical
methods, such as the one described here, can only give intervals of positivity. Con-
sidering larger summations, it is certainly possible to tighten intervals given here.
Moreover, in our work, we encounter a potential new record. The related value is
ω = 727.951332982. We decided to discard it because, we estimate that it would
require the summation on the first 1012 zeros of the zeta-function. This seems an
awful lot of work for a secondary result, however it could be contemplated in a new
large-scale verification of the Riemann hypothesis.
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