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ABSTRACT 

There is evidence to suggest that the South Molle Island stone quarry, in the 

Whitsunday Islands, central Queensland coast, has been used by the indigenous 

inhabitants of the region from at least 9,000 BP to the present. Distribution of 

stone from the quarry extends for at least 170km along the coast, from Abbott 

Point in the north to the Repulse Islands in the south. A comprehensive 

technological characterisation of the quarry has demonstrated that a range of 

manufacturing behaviours was conducted on-site, including the initial extraction 

of the raw material, through to the final stages of artefact retouch. The 

systematic production of backed artefacts is included among this suite of 

technological practice. This research has demonstrated that the antiquity of 

backed artefacts and the timing of high production rates of backed artefact 

manufacture occurs earlier in the Whitsunday region than elsewhere in southern 

Australia. In the Whitsunday Islands backed artefact production has been shown 

to be present from the start of the Holocene and to have been a key technological 

element in the early Holocene. A new understanding of backing technologies in 

Australia can be developed in light of this recognition of regional variation. A 

risk-oriented model of Holocene technological change in the Whitsunday region 

is presented here, as well as a discussion of the implications for wider coastal and 

island technological systems throughout the Holocene. 
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CHAPTER! INTRODUCTION 

INTRODUCTION 

The Whitsunday region presents a unique environment in which to analyse stone artefact 

provisioning, manufacture and use. The Aboriginal quarry on South Molle Island 

(South Molle Island Quarry, or SMIQ) was the predominant source of stone utilised 

over a period of at least 9,000 years, according to the evidence of several stratified 

rockshelter sites in the region (Barker 2004). These rockshelter sites contain stone from 

the quarry, in varying densities and varying discard rates for the duration of the 

Holocene, which also saw a widely changing landscape due to the rise of sea levels in 

the region. This altered landscape meant that the quarry on South Molle Island went 

from being a part of the mainland, to being contained on an island some 2km from the 

mainland. Not only was the quarry separated from the mainland, but the sites with signs 

of habitation also were modified in terms of place in the landscape. This changing 

environment had implications for access to the important source of stone on the SMIQ. 

Other changes that were occurring in the region were related to restructuring of the 

population around the landscape (demographic changes) during the mid to late 

Holocene. These changes had implications for social relationships and how people 

viewed themselves in relation to each other and the landscape, including resources 

contained within that landscape (Barker 2004). 

The main objective of this thesis is to examination the pattern of stone artefact discard, 

as well as changing technologies through time, and determine whether they correlate 
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with the environmental and social changes that were occurring in the region during the 

Holocene. By way of seeking an explanation for changes observed in the stone artefact 

assemblage, this thesis will attempt to find connections between the stone assemblage 

and the changing social and physical environment during the Holocene period in the 

Whitsunday region (Figure 1.1). 
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AIMS 

There are three general aims of this thesis: 

1 It aims to achieve a technological characterisation of the quarry, examining extraction 

technology, raw material preferences, manufacturing systems, the extent of a standardised 

industry. This can be broken down into three main areas: 

a) to determine the nature of the South Molle Island raw material. For example, how is 

it being procured? What is the morphology of the extant, unworked material? Which 

nodules of raw material are being selected for reduction? 

b) to determine how people worked the stone. For example, how are the cores being 

reduced? How does this compare with extant, unutilised materials? What can this tell us 

about raw material availability? How are hammerstones used? 

c) to determine what is being produced? For example, which flakes are selected for 

retouch? What is the variety of retouch that occurs on the SMIQ? How are flakes 

retouched? What is the range of backed artefact morphologies? 

A series of collections undertaken by Barker (1995) between 1990 and 1995 brought to 

light a sample of backed artefacts from the South Molle Island Quarry (SMIQ) and South 

Repulse Island. Although all specimens in the sample were indeed backed, the degree of 

morphological variation was high, and a study was undertaken to determine the degree of 

technological similarity in manufacturing methods, despite these morphological differences 

(for preliminary results see Lamb 1996). At the commencement of the fieldwork 

component ofthis project, greater numbers of backed artefacts were discovered, and it was 

determined that an investigation should proceed as to the extent of backed artefact 
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manufacture on the SMIQ, as part of the wider study. 

The possibility of a standardised industry occurring on the SMIQ brought to light the 

importance of several other key issues. Principally, the importance of the SMIQ in a 

national context (see Chapter 2). It is the only known quarry site in Australia where the 

entire reduction process of backed artefacts takes place; from initial procurement and 

extraction, to final stages of retouch. Thus the entire sequence, or sequences may be 

observed. This provided an unparalleled opportunity to study related aspects of the 

industry, such as preference of raw materials, how the preferred material was extracted, 

how it occurs in situ, how it was reduced, preference of materials and so forth. 

Thus, survey work was undertaken in order to determine what proportion of retouch 

occurring on artefacts could be classed as backing; that is, what proportion of retouched 

artefacts were backed artefacts. To this end, a technological analysis was undertaken on 

all retouched artefacts located on the quarry (see chapter 7). Furthermore, an analysis of 

the manufacturing debris was conducted. These data were then able to be applied to two 

distinct lines of questioning. Firstly, it evaluated the standardised nature of retouching on 

backed artefacts; secondly, it allowed the debris to be characterised, and thus for similar 

assemblages to be identified in temporal sequences (see below). 

Clearly, an important part of the technological characterisation of the South Molle Island 

Quarry will entail the description of the reduction sequence of backed artefacts. As 
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discussed above, an important part of this is the characterisation of the retouch, or final 

stages of reduction. However, an equally important component of the study involves the 

characterisation of early stages of reduction. This will involve determining the raw 

material preferences of the knappers (the size of the blanks selected and the identification 

of the main core size classes that were being produced), a characterisation of the reduction 

of the cores (which produces flake blanks on which backed artefacts are produced), and the 

characterisation of accompanying reduction technology (such as hammerstones). Once 

these technological processes have been described, it should be possible to determine the 

proportion of the quarry assemblage that could potentially be utilised for the purpose of 

backed artefact manufacture, and the proportion of the quarry that is the by-product of 

backed artefact manufacture, thus clarifying the extent of the backed artefact industry on 

the SMIQ. 

2 To achieve a characterisation of stone artefact assemblages through time, documenting 

any changes in extraction and manufacturing technology. This can be broken down into 

two main areas: 

a) to determine the temporal range of production, 

b) to examine how the unique and changing island geography influences the patterns of 

stone artefact discard 

There are several stratified rockshelter sites in the study area, all containing stone from the 

South Molle Island Quarry (Barker 2004). The two sites analysed in the context of this 

study were Nara Inlet 1 and Border Island I. These sites have been previously excavated 
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and the lithic component isolated by Bryce Barker of the University of Southern 

Queensland. Preliminary work (Barker 2004) has revealed distinct early/late Holocene 

patterns of stone use, with a definite reduction in the mid-to-late Holocene of stone 

material in the stratified rockshelter assemblages. Certain components of extraction and 

manufacturing behaviour relating to the quarry will be inferred by a detailed technological 

analysis of these assemblages, such as the extent of reduction prior to removal from the 

quarry, the amount of stone being removed, what percentage of the total quarry assemblage 

it represents and so on. Further, the characterisation of the reduction processes of backed 

artefact manufacture on the quarry (mentioned earlier), will assist in identifying similar late 

reduction assemblages within the stratified assemblages, thus dating the manufacture of 

backed artefacts in the Whitsunday region. 

3 Finally, I wish to evaluate the applicability of theories of change that have previously 

been proposed for the region. Theories regarding changing use of stone in Australia 

have taken several directions. One, with a predominantly environmental bent, is that 

changing patterns of use corresponded with the stabilising sea levels at c6,000B.P. This 

conceivably altered the landscape to a degree that people had to adjust their methods of 

provisioning and use. The South Molle Island Quarry provides an optimal opportunity 

for observing a technologically controlled situation. This is in part due to it being a 

unique and identifiable source of raw material, and also because it is the principal source 

of raw material in the Whitsunday region. Thus it has the potential to enable a 

determination of the precise nature of technological change in the region. Additionally, 

there is temporal control for this change within the stratified rockshelter deposits. 
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Through the analysis of several sequences from stratified rockshelters in the region, I 

can refine the timing of this reduction of stone use to determine if there were any 

environmental correlates. Principally, Nara Inlet 1 and Border Island 1, which have 

basal dates of c.9,000 B.P and c.7,000 B.P. respectively. If there are no environmental 

correlates, the issue of access needs to be explored outside the realm of environmental 

determinism. As environmental models seem to form the backbone of the more 

dominant explanations for lithic analyses at this time, they will be explored initially, to 

determine whether they can explain changing patterns of stone artefact production in the 

Whitsunday region. 

Structure of the Thesis 

This thesis is structured into three parts: introduction, analysis and finally modeling. 

Each part is described as follows. 

Firstly, there is an introduction to a range of broad theoretical concepts which have 

shaped stone artefact studies in an international context, followed by an examination of 

the aims and objectives of the thesis. The context of this study is refined by an outline 

of the models of Holocene change in Australia in which I draw upon the archaeological 

studies of offshore islands in Queensland; thus the theoretical and physical context of 

this project is set. This is followed by an examination of the methodologies associated 

with the project's aims and a chapter detailing the physical environment and 

palaeoenvironment of the study region (Chapters 1, 2, 3 and 4). Chapter One presents an 

introduction to the thesis, including a brief background to the objectives of this study, a 
7 



presentation of the aims of the thesis and a theory/literature review which places this 

study in the broad field of stone analysis. Chapter Two situates the current study in the 

context of previous studies which relate specifically to the Whitsunday region and the 

questions asked of the stone assemblage. Chapter Three presents a discussion of the 

methodology associated with the aims of this project. Chapter Four presents a 

description of the physical environment, geology and palaeo-environment of the 

Whitsunday region. 

Secondly , I present the results of the technological analyses which were undertaken to 

address the questions outlined in the aims and objectives of the thesis (Chapters 5, 6, 7 

and 8). Chapters Five, Six and Seven detail the results of the technological examination 

incorporating the nature of the SMIQ material, how people are working the stone and 

what kind of artefacts that are being manufactured. Chapter Eight outlines the temporal 

and geographic range of production. 

Thirdly, I discuss the previous models for the region in light of these technological 

analyses and model the use of the South Molle Island Quarry according to data outlined 

in the results chapters; this is followed by the conclusion to the thesis (Chapters 9, 10 

and 11 ). Chapter Nine examines how the temporal trends relate to previous modeling 

for the region. Chapter Ten presents a model of use for the South Molle Island Quarry. 

Chapter Eleven concludes the thesis. 
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Background 

As a response to a perceived lack of theory in archaeology, the last decade has seen 

various scholars devising theoretical frameworks at different levels (Preucel and Hodder 

1996:8-9), within which a wide range of behavioural patterns can be observed and 

explained in relation to one another. In stone artefact studies, this was largely initiated 

in such terms by Torrence (1989), who devised the concept of using "optimisation 

theory" (Torrence 1989:2) to investigate stone tool technologies in the archaeological 

record. Optimising theory sets out to provide a set of rules that can be applied to explain 

various aspects of human behaviour under the same theory umbrella: 

... the assumption [is] that tool using, as for many other forms of behaviour, 

was carried out in such a way as to optimise the expenditure of time and 

energy. Since tools are created and employed to satisfy a perceived need and 

to accomplish tasks which would themselves be susceptible to selective 

pressures, then an optimal technology would be favoured and would persist 

(Torrence 1989b:2). 

The benefits of this approach are that it allows many different human behavioural 

systems to be investigated "in the same way" (Torrence 1989:2) and behavioural 

systems can be investigated using a common theoretical approach, a common set of 

'rules', interpretive, predictive and explanatory guidelines - something that, previously, 

archaeologists had been unable (or unwilling) to do. Thus, using optimising theory, the 

study of stone tools can be "incorporated into a broader view of behaviour, and studied 

alongside and in the same way as subsistence, settlement and social organisation 
9 



(Torrence 1989:2). 

Prior to Torrence's formative work with optimisation theory in lithic studies, and in the 

decades proceeding the 'Man the Hunter Conference' (Lee and De Vore 1968), there was 

a significant body of literature developed, that looked at human adaptive systems, 

particularly organisation of technology, mobility/settlement patterns and population 

dynamics, in relation to regional environmental conditions (e.g. Cohen 1977; Dean et al. 

1994). This ecosystems approach is marked clearly in history by Binford's (1979) 

influential analysis of mobility patterns of the Inuit peoples of north-central Alaska. 

This paper was at the forefront of a movement in archaeology away from culture 

histories, and into processual archaeology. Archaeologists began to ask questions about 

the reasons for change in the archaeological record, about the functional relationships 

between systems rather than simply documenting and categorising that change into 

typological culture histories (Trigger 1989:294). This data was collected with the 

purpose of acquiring knowledge, to be expressed in general statements, about how 

culture is shaped by a population's adaptation to specific environmental conditions 

(Earle and Preucel 1987). 

During this time, archaeologists enjoyed the freedom to explore a range of dynamic 

relationships between people and the ecological contexts in which they existed; in 

Preucel and Hodder's (1996:7) words, they " ... stressed the centrality of process - the 

relationships between variables in adaptive systems". The generalised outcome of this 

was that theories of process abounded and the discipline of archaeology was subdivided 
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into a broad spectrum of specialist areas. Not only was there great diversity in different 

variables within adaptive systems, all viewed in relative isolation from one another, but 

there was also the plethora of regional ecosystems, all exhibiting variation throughout 

the late Pleistocene and into the Holocene. As a result of this emphasis on process, and 

a basically infinite amount of ecological/geographical variance, a great amount of theory 

was developed regarding different human systems as adaptive responses to the 

environment. 

A major underlying tenet of the ecosystems approach is the realisation of "carrying 

capacity" (Preucel and Hodder 1996:25-26), the driving force of which is seen to be 

population dynamics. The understanding is that sufficient population increase in a 

specific environment will impact negatively on available resources, causing a 

reorganisation of mobility/settlement patterns and/or mode of production/procurement. 

Examples of this method of inquiry are many and varied, covering a wide range of 

human endeavour. The transition from hunting and gathering to agriculture for 

example, was examined from an ecosystems approach (e.g. Cohen 1977; Dolukhanov 

1971; Ammerman and Cavalli-Sforza 1971). This transition saw both a widespread 

change in settlement/mobility patterns and mode of production, the latter affecting not 

only dietary production, but production of craft and utilitarian goods, as well as 

production related to ritual and ceremonial activities. The observation that these aspects 

of human activity, firstly, have all undergone change; that they, secondly, are all 

affected by population dynamics, and finally, that they are all ultimately defined within 

a specific environmental context, is to apply an explicitly inductive method of 
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reasonmg. The archaeological signatures of behaviour are observed individually before 

(or rather than) its patterns of change are predicted. 

This pattern of inquiry is replicated with other forms of hunter gatherer cultural change, 

albeit, sometimes it has tended to incorporate a more deductive method into its 

analytical framework (e.g. Hiscock 1994). A plausible reason for this is that the 

archaeological signatures of change relating to, and existing within, a hunter gatherer 

economy are commonly less visible than those relating to an agricultural economy, and 

a certain amount of theoretical framework must exist to fully recognise this change from 

within a Western archaeological discourse (for a discussion see Preucel and Hodder 

1996:667-677). It is worth noting at this point that the boundaries between theoretical 

perspectives pertaining to cultural economics (e.g. Hiscock 1994; see also Halstead and 

O'Shea 1989a) and the ecosystems approach (distinctions defined by Preucel and 

Hodder 1996) can be seen to overlap somewhat, the former often being defined by the 

latter. 

Lithic analyses play a role in examining hunter gatherer change as both an analytical 

tool and an explanatory tool, from within an ecosystems framework. Hunter gatherer 

settlement/mobility patterns, for example, are generally examined with the basic 

underlying tenet of natural resource distribution being the causal force. Lithic analysis 

can be used as a means of determining the extent and pattern of changes to 

settlement/mobility patterns (e.g. Sullivan and Rozen 1985; Kuhn 1995; Ricklis and Cox 

1993; Bamforth 1986; Bettinger 1977, 1979, but see Munday and Lincoln 1979; 
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Bamforth 1990, 1991; Rolland 1981; McNiven 1994; Odell 1980, 1996; Thacker 1996), 

as well being viewed as one of a variety of natural resources that people pattern their 

movements around (e.g. Binford 1979, but see Seeman 1994; Jochim 1976, 1981; Clark 

1983; Rowley-Conwy 1983; Bahn 1983; Bailey and Sheridan 1981: 1; Halstead and 

O'Shea 1989b:l; Mine and Smith 1989; Legge 1989; Halstead and O'Shea 1989c:123). 

The role of lithic studies within these two frameworks is often flexible and 

interchangeable (e.g. Kuhn 1995), fluctuating between analytical tool and ecological 

determinate. 

Choices determining settlement/mobility and demographic patterns are seen largely in 

response to perceived economic needs and wants of a society, the success and patterning 

of which are determined by ecological conditions (Jochim 1976:4). The changing 

configuration of settlement/mobility patterns, therefore, is often closely associated with 

changing subsistence practices, including lithic procurement and production. Because 

of the enduring and highly visible nature of the lithic component of the archaeological 

record, questions regarding changing subsistence practices often begin with the 

observation of technological variation within and between lithic assemblages themselves 

(e.g. in addition to references listed above, Kelly and Todd 1988; Kelly 1988; Shott 

1986; Nelson and Lippmeier 1993; Svoboda 1994; Byrne 1980; Newman 1994; Hiscock 

1988, 1994). 

The powerful interrelationships between settlement/mobility patterns, subsistence 

practices and technological variation in artefact assemblages were demonstrated 
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concisely in Binford's (1979) investigations into technological organisation among the 

Nunamiut peoples, and the debate which followed the publication of this study. In this 

study it was proposed, through a series of ethnographic observations, that the 

procurement of stone was a strategy "embedded" within other economically orientated 

activities. Thus, distance from source was maintained to be an irrelevant variable when 

examining formal artefact variation (utility), as these distances "would have been 

traveled anyway" as part of the regular, planned "basic subsistence schedule" (Binford 

1979:259; but see Gould and Saggers 1985). The portrayal of all lithic procurement as 

opportunistic prompted a response from some lithic analysts, who believed it could be 

demonstrated that lithic procurement was (contrary to Binford 1979) a specialised 

activity, one which was often conditioned as such by distance to the source (e.g. 

Bamforth 1986; Seeman 1994; Shott 1986). 

In seeking to determine the precise nature of lithic procurement in varying cultural 

contexts, lithic analysts began to focus attention on detailed, controlled examinations of 

technological factors directly relating to lithic procurement and use (Gould and Saggers 

1985:118; Seeman 1994). This line of investigation necessitates consideration of the 

sources of raw material themselves. The general underlying impetus of most quarry 

studies is that the extraction and reduction techniques/patterns observed can inform the 

analyst about aspects of behaviour both directly and indirectly related to lithic 

procurement and use (e.g. Rudebeck 1987; Mercer 1987; Miller 1987; Healan et al. 

1983; Biagi and Cremaschi 1991; Weisgerber 1987). 
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While theory relating to the "embedded" or "specialised" nature of lithic procurement 

(Seeman 1994, cf. Binford 1979) tended to be derived from analysis of materials that 

had been removed from procurement sites, the issue was also being approached from 

another direction, by examining the quarries themselves (Shafer and Hester 1983, but 

see Mallory 1986; Bradley and Ford 1986; Cleghorn 1986). For example, matters of 

access relating to direct or indirect procurement were being investigated, the former 

being synonymous with nonspecialised activity, and the latter with specialised activity 

(Fladmark 1984; McAnany 1989; Torrence 1984, 1986:169,214; Gramly 1984). Both 

separate modes of access leave distinct archaeological signatures that can be interpreted 

through detailed technological analysis of quarry and reduction sites. Tied in with 

concepts of specialisation are questions of demand. By documenting the degree of 

intensity of stone procurement and production at a quarry site, the scale of demand in 

the surrounding economy/landscape can be estimated (Luedtke 1984), which in turn has 

implications for questions of manufacture for trade. 

Specialised activity pertaining to quarry use is commonly extrapolated to considerations 

of trade and exchange (Burton 1987; Earl and Ericson 1977; Ericson and Earl 1982; 

Soles 1983; Sherratt 1987; Hatch and Miller 1985), frequently from within an economic 

or ecological framework (although, see McBryde 1978, 1984). In this context, the 

tracing of exchange/stone mobility patterns is frequently carried out via extensive 

petrographic/chemical/trace element comparisons between stone sources and artefacts in 

the surrounding landscape (e.g. Luedtke 1979; Hoard et al. 1993; Shackley 1988; 

Takacs-Biro 1986; Bush and Sueveking 1986; Briggs 1986; Spence et al. 1984; Stocker 
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and Cobean 1984). 

Both macroscopic and microscopic techniques have been used to trace artefacts to 

quarry sites, not only to document trade routes, but also to document movements of 

populations around the landscape (Singer 1984; Hiscock 1988; McBryde 1984). The 

nature of such movement (e.g. degree of mobility or sedentism) has been extensively 

explored through the study of the technological behaviour of people at and around the 

source itself. For example, distinctions between expedient or curative technologies have 

been utilised in a number of contexts to distinguish between different mobility patterns 

of hunter gatherer groups, as they move between economic resources (Bamforth 1986; 

Shot 1986, see Shott 1996 for an important discussion on the concept of "curation"). 

One of the key objections that was raised regarding the application of 'processual' 

theory was not that it was predominantly environmentally causal driven (although see 

Barker 1995; Jochim 1989), but that it was difficult to view different processes of 

change in relation to one another, under a strictly uniform theoretical approach 

(Torrence 1989). The research philosophy of most Processual archaeologists is that 

culture is a behavioural system composed of interrelated subsystems, each of which 

warrants individual investigation (Clark 1972). Additionally, such behaviour is 

perceived as directly aimed at improving group adaptation to a diverse range of external 

pressures, resulting in the varied material components of culture. Given the above, it 

could be said that the processual emphasis on process has produced a fragmented, albeit 

extensive set of theories regarding culture change. It was this perception that 

contributed to the development of theory that was seen to encompass many facets of 
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human behaviour together, as discerned from the archaeological record (see below). 

As a body of theory, evolutionary ecology (also termed evolutionary archaeology or 

Darwinian archaeology) is concerned with the design and application of theories of 

general sets, or general theories, as opposed to limited theories. To quote Bettinger 

(1991:vi) "such theories are constructed of fundamental principles that are meant to 

apply to widely divergent phenomena". Evolutionary ecology has its roots in Darwinian 

theory in the sense that, ultimately, human behaviour can be understood in terms of 

"fitness". Artefacts are commonly seen as an extension of the human phenotype, thus 

"the fitness of an artefact can be measured by its replication and spread through space 

and time" (Maschner and Mithen 1996:6). This aspect of evolutionary ecology is 

commonly referred to as cultural selection or the selectionist approach and is the most 

predominant form of Darwinian archaeology currently being applied (Maschner and 

Mithen 1996:6). 

In selectionist approaches to evolutionary theory (unlike Processual archaeology), 

technology is viewed as a set of variants, randomly generated, which may have 

differential consequences for people (groups or individuals), thus their own replication. 

Adaptations are only identified after it has been demonstrated that natural selection has 

taken place (Abbott et al. 1996:35). A point of contention that exists within the 

selectionist approach to evolutionary ecology regards the unit of analysis required to 

formulate credible statements about human behaviour and cultural change. The three 

main alternatives view selection and adaptation at the level of the individual, the group 
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or the cultural trait itself (Maschner and Mithen 1996:9). Recent theoretical 

developments in the study of changing lithic technologies have been formulated within 

an evolutionary ecology framework, specifically from a selectionist perspective which 

views items of material culture as the main unit of analysis. 

Another direction of theory which views stone tool technology particularly as having 

differential consequences is that of optimising theory, of which Torrence (1983, 1989a, 

1989b) was a major innovator in the context of stone tool procurement, manufacture and 

discard. Torrence (1983, 1989b) views the concept of risk, as relating to time stress, as 

a factor integral to the composition, diversity and complexity of the hunter gatherer 

stone tool assemblage. Composition is studied in terms of "the degree to which tools are 

effective at reducing the time spent in a task" (Torrence 1983:13) while diversity and 

complexity were seen to have inverse relationships with the amount of time available to 

conduct a task (Torrence 1983). Thus, the stone tool assemblage has the potential to 

reflect the optimal use of time, and in this way (assuming that it can lead to increased 

reproductive fitness) it can be considered 'adaptive' in the neo-Darwinian sense. It 

should be noted here that theory revolving around risk mitigation and optimisation 

(Bamforth and Bleed 1997; Hiscock 1994, 2004; Torrence 1983) differs on some 

fundamental levels to those proposed by the cultural selectionists. 

While cultural selectionists attribute variation to random processes akin to mutation in 

the biological sense, researchers that propose risk mitigation as the cause for 

technological variation are more open as to the original cause of the variation (Rindos 
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1996:161). Fitzhugh (2001:126) states "[w]hile humans may invent new tools and 

techniques to solve perceived problems, the persistence and spread of the innovation 

among members of the population will depend on the selection after the invention was 

created, not when it was inspired". So there appears to be an uneasy connection 

between the two approaches: while risk proponents utilise the method of transmission 

proposed by selectionists (selection), they maintain independence from the selectionists 

by acknowledging that directed invention/innovation may be responsible for the initial 

appearance a given trait. 

While approaching the notion of risk from a much broader standpoint, Hiscock (1994, 

2002) proposes that the composition of the Australian stone toolkit is affected by 

manufacturing behaviour aimed at risk reduction. This is demonstrated for the mid-late 

Holocene Australian context in conjunction with other risk minimising strategies such as 

high mobility, colonisation of new landscapes and rapid environmental change (Hiscock 

1994:278-283). Hiscock's risk mitigation theory is important in the context of this 

study and will be discussed in more detail in Chapter 2. 
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CHAPTER 2 HOLOCENE ECONOMICS, 
SETTLEMENT AND TECHNOLOGY 

Initial occupation of the Whitsunday Islands occurred at a time of great pan-

continental change. The late Pleistocene was characterised by a changing 

environment which manifested in higher temperatures than previously, rising sea 

levels and a suite of associated environmental changes. These changes preceded 

changes to demographic, settlement and technological patterns which were 

expressed archaeologically in the form of a greater number of sites being occupied, 

specialisation and intensification of resources, and technological change. This was 

particularly manifest in the mid-late Holocene. 

The Whitsunday Islands were first occupied at approximately 10,000 BP during a 

time of rising sea levels and a changing local environment which affected the range 

and availability of resources (Barker 2004). Throughout the Holocene, a stone 

source on South Molle Island was being utilised to supply stone for the production 

of artefacts (see Figures 2.1 and 2.1 ). There are stratified sequences in several 

rockshelters in the region which document the temporal component of quarry use. 

Throughout the Holocene changes in discard rates of stone artefacts are observed, 

with implications for our interpretation of quarry use. In this chapter I examine 

these changes in light of dominant paradigms for change in coastal Australia, 

including social theory, risk mitigation and the slowly altering environment. 

Thus the purpose of this chapter is to explore settlement patterns and resource use in 

coastal eastern Australia in the Holocene. I will examine archaeological patterns of 

change and theories seeking to explain these changes, with a view to modelling 
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changing use of stone artefacts in the Whitsunday Islands throughout the Holocene 

period. 

Figure 2.1 South Molle Island Quarry 

Figure 2.2 South Molle Island Quarry 
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AUSTRALIA IN THE HOLOCENE: SETTLEMENT AND TECHNOLOGY 

Use of the coast in early Holocene Australia has generally taken the form of a 

seasonal coastal/hinterland pattern of exploitation, with a land based terrestrial and 

estuarine diet being supplemented with more specialised seasonal marine resources 

(e.g. Draper 1978; Jones 1971; Lilley 1978; Poiner 1976; Vanderwal 1978). While 

environmental change in the form of rising sea levels and altering micro 

environments was occurring throughout the Holocene, there were few significant 

changes to settlement patterns until the mid-late Holocene. This is the case for 

mainland coastal and island settings. With the exception of islands in the 

Whitsundays (Barker 2004), all island occupation considerably post-dated the 

stabilisation of sea levels (see below). 

The mid-to late-Holocene saw changes which were part of a continental wide 

phenomenon. There was a steady increase in the numbers of sites utilised on the 

coast as well as an apparent increase in the use of existing sites particularly after 

about 3,500 BP (e.g. Attenbrow 1982; Barker 1991; Beaton 1985; David 1994; Hall 

and Hiscock 1988; Hughes and Lampert 1982; Ross 1985). There was also a change 

in the types of environments utilised with the increased use of the more peripheral 

environments such as rain forests (Horsfall 1987), arid areas (Smith 1989; Veth 

1989), highlands (Morwood 1992) and off shore islands (e.g .. Barker 1991; Beaton 

1985; Hall 1982; O'Connor 1982, 1992). 

The resource base also underwent significant change with the introduction of a wide 

range of previously little utilised foods into the regional dietary base, such as fem 

root (McNiven 1985, 1991), grass seeds (Smith 1988), and large marine mammals 
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and reptiles (Barker 1991, 1999, 2004). This was accompanied by a change in 

technology, which was also part of a larger, continent-wide phenomenon. Such 

changes included the increased visibility of a range of stone tools, once known as 

the 'Small Tool Tradition' (STT) (Gould 1969) as well as other tools suited to the 

procurement and processing of the new suite of resources. These include, for 

example, the seed grinding implements of the arid zone of Australia that Smith 

(1986:36) refers to as "distinctive seedgrinding implements [indicative of] a late 

Holocene development and may be associated with other widespread changes in 

assemblages at this time" (however see Goreki et al. 1997 regarding the general 

antiquity of seed grinding implements). 

Evidence for the existence of the purported Small Tool Tradition was initially 

gathered during excavations by McCarthy (1948, 1964) and subsequently affirmed 

by Mulvaney (1969) and Mulvaney and Joyce (1965) at Fromm's Landing in South 

Australia and in Kenniff Cave in south western Queensland. Since then, the Small 

Tool Tradition has become a chronological marker for many undated assemblages 

and late Holocene stone artefact assemblages. In general terms, the STT was 

claimed to incorporate the production of blades, points, geometric microliths and 

other forms of controlled artefact manufacture such as core preparation (Johnson 

1979; Hiscock 1994) and most commonly, backed artefact production. 

Reconstructions of the spatial distribution of backed artefacts in Australia have 

consistently drawn a line demarcating an 'absence' of backed artefacts in northern 

Australia (e.g. Mulvaney 1975; White and O'Connell 1979). The positioning and very 

existence of this line however, remains in a state of flux, with the continuing discovery 
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of backed artefacts in the northern part of the continent (e.g. Bowdler and O'Connor 

1991; Brayshaw 1977; Hiscock and Hughes 1980; Lamb 1996). Other factors centred 

around how sampling and typological distinctions (Hiscock and Attenbrow 1996) 

affect the known spatial distribution of backed artefacts, although Smith and Cundy's 

(1985) review would suggest that there are pockets within the north where backed 

artefacts appear genuinely absent (but see Hiscock 2001 for an alternative model). 

Temporal control of the emergence of backed artefacts in Australia has previously 

relied on a model which places them initially in the mid/late Holocene, or not before 

c4,500 BP (Beaton 1982:57; Bowdler 1981; Bowdler and O'Connor 1991; Johnson 

1979; Morwood 1979, 1981:43-45; White and O'Connell 1982). Termed the 'sudden 

appearance model' (Hiscock and Attenbrow 1998:49) it proposed that the backing 

technology which produced artefacts belonging to the 'Small Tool Tradition', was not 

developed until after c4,500 BP. Indeed, this model has been used to date open sites 

containing backed specimens, where there were no other dating options available (e.g. 

Ross 1981). 

The existence of the STT and the timing of various components of the tool kit has 

since been questioned (Hiscock 1994; Hiscock and Attenbrow 1998; McNiven 

2000), particularly the aspect known as 'backing'. Backing is a technological 

method used in the production of several implement types: microliths, geometric 

microliths, and backed 'blades' commonly known as eloueras and juan knives, but 

more conveniently known collectively as 'backed artefacts' (Hiscock and Attenbrow 

1996). The timing of the first appearance of backed artefacts has been found to be 

earlier than previously thought; contrary to the 'sudden appearance model' which 

places them at approximately 4,500 BP (Hiscock and Attenbrow 1998, 2004; 
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McNiven 2000; cf Johnson 1979; Morwood 1981). Hiscock and Attenbrow (1998), 

for example, apply a rigorous methodology aimed at establishing taphonomic 

integrity, which confirms backed artefacts in layers older than 5,370±60 BP at 

Mussel Shelter and layers older than 8,000 BP in Loggers Shelter in the Upper 

Mangrove Creek catchment area. McNiven (2000) argues that backing was part of 

the manufacturing process for 'thumbnail scrapers' in Bone Cave, southwest 

Tasmania, and has been a part of the 'technological repertoire' for 30,000 years. 

There is an undeniable flowering of the use of this manufacturing method in the 

Holocene onwards, however it is clearly not as temporally bounded as once thought. 

Off-shore islands of Queensland 

Use of offshore islands in northern Australia predominantly occurred in the late 

Holocene, considerably after the stabilisation of sea levels (Chapter 4). One notable 

exception to this pattern is the islands of the Whitsundays (Barker 2004). Varying 

degrees of marine resource utilisation can be observed in several island systems in 

northern Australia (Barker 2004; Hall and Hiscock 1988; O'Connor 1992; Rowland 

1982). These range from seasonal coastal/hinterland patterns of use to intensive 

marine specialisation. The Moreton region of southeast Queensland for example, 

appears to have relied on a less clearly defined pattern of seasonal use than systems 

to the south (e.g.. Draper 1978), but present none the less. The emphasis in the 

Moreton region appears to be on coastal, shore based estuarine environments with a 

seasonal exploitation of islands and hinterland areas (Hall 1982; Hall and Hiscock 

1988; Lilley 1978). 
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The nature of pre contact Aboriginal marine exploitation further north around the 

Tropic of Capricorn (Keppel Islands) and further to the Whitsundays was 

significantly different to that on the southern islands. The subsistence economy in 

the Keppels for example was oriented solely around marine resources, with no 

terrestrial component whatever and was exploited by a permanent population 

(Rowland 1982). The Whitsunday Islands demonstrate a similar marine 

specialisation with the procurement of large marine mammals and reptiles after 

approximately 3,000 BP (Barker 1989, 1996, 1999, 2004) and an associated marine 

specialised technology consisting of bone points, fish hooks and detachable 

harpoons (Barker 1996:36; and see also O'Connor 1992). Fish also figures 

significantly in the archaeological record, as does shellfish (although see Barker 

2004:6-7 for a discussion on the relative significance of shellfish). 

It is argued by Barker (2004) that people of the Whitsunday Islands were 'always' 

coastal. That is to say, they moved with the coast as the sea levels rose, thus 

inhabiting Nara Inlet 1 at the time of the sea's arrival at the 10,000 year old 

coastline. The implication of this model is that the Holocene peoples of the 

Whitsunday region were adapted to the coast, possessed watercraft and were adept at 

moving between the islands and the mainland. This method of movement between 

sites is unique to island contexts and has implications for stone artefact 

distance/decay models and associated archaeological signatures. 

Distance/decay models are traditionally viewed as an inverse relationship between 

distance from source and amount of stone artefact discard (e.g. Newman 1994). The 

basis for this is that people attempt to ration or preserve the amount of stone in their 
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possess10n, the further they move from the source of its procurement. The 

applicability of this model it seems, varies from context to context, depending on 

factors such as transport options and targeted production of particular types of 

artefacts (Close 1999). Distance decay models may work best on unretouched flakes 

rather than implement types (Hofinan 1991, cited in Close 1999:24). When looking 

at implement size, intended use has been seen to be more important than distance 

from source (Newman 1994; Peterson et al. 1997:200, cited in Close 1999:24). 

Another factor uniting amount of discard and distance is that of processing at the 

source. Models regarding central place foraging hold that as distance between 

central place and resource increases, field processing of materials becomes more 

cost effective, and thus degree of processing at the procurement site increases 

(Barlow and Metcalfe 1996; Bettenger et al. 1997; Metclafe and Barlow 1992; 

O'Connell et al. 1988; Beck et al. 2002). The degree of cost-effectiveness is 

determined by the time it takes to process the resource and the cost of transporting 

the unprocessed resource from the procurement site to the 'central place'. When the 

ratio between elements of resource non-utility and utility are high, cost effectiveness 

of field processing is increased when distances to be travelled are great. However, 

when distances are smaller, it may be more cost effective to transport the resource 

intact, rather than spend the time processing it in the field (Bettenger et al. 1997:888; 

Beck et al. 2002:486). 

This model of cost effectiveness is particularly applicable in the Whitsundays where 

several resources that were procured as part of the specialised marine economy had 

demonstrably high ratios between their non utility and utility aspects. For example 
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the exploitation of dugong and sea turtle, documented though it is, left few traces in 

the archaeological record. Cribb and Minnegal (1989) while examining dugong 

exploitation in Princess Charlotte Bay, north Queensland, demonstrated that field 

processing of the dugong carcass was commonplace, and that very little dugong 

bone found its way back to the residential sites. A similar explanation is invoked by 

Barker (2004) for the absence of dugong bone in the Whitsunday rockshelter sites, 

despite the historical record documenting dugong use in the region (Dalrymple 

1860:29, cited in Barker 2004:40). There is a high proportion of non-utility resource 

in dugong (that being the dense, and thus heavy bone) and processing of the 

resource took place at the procurement site (Barker 2004:40). 

Models for differential size of artefacts across the landscape are designed to explain 

assemblage variation. Thus, this variation is the expression of factors such as 

distance from source. While this type of model explains change insofar as it 

acknowledges changing visitation and provisioning patterns, it does not attempt to 

explain why such change occurs. These models are the subject of the following 

section. 

Models of Coastal Holocene Change 

Although the focus of this thesis is clearly on the stone artefact component of the 

archaeological record, the models outlined here focus on generalised change, which 

incorporates an expanding resource base, increased number of sites used, and 

increased use of individual sites. Technological change is usually discussed as 

being associated and inferred by these other, broader changes to entire systems (e.g. 

Rowland 1987). There are several notable exceptions to this, where technological 
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change is explained by models that specifically target the technological components 

of the economic system (e.g. Hiscock 1994). These will also be addressed in the 

following section. 

Published models for late Holocene change in Australia can generally be divided 

into five broad areas, with common areas of overlap: these centre around 

environment, population increase, post-depositional factors, social factors and 

technology. 

Environmental models 

The main protagonists for environmental models affecting Holocene change on the 

Queensland coast are Rowland (1983), Beaton (1985) and Walters (1989), who 

invoke a changing environment as the principal determinant in wide ranging 

systemic change for coastal peoples. Both Walters (1989) and Beaton (1985) link 

the late Holocene occupation of the coast with the altered range and distribution of 

marine biota, citing a 'lag' between sea level stabilisation and the establishment of 

coastal resources. 

In his wide ranging discussion of climatic impacts on human populations, Rowland 

(1983) discusses several transitional periods in Holocene climatic conditions. These 

periods were marked by a transition from warmer and wetter conditions that 

prevailed at 5,500 BP to somewhat cooler and dryer conditions extending from 

approximately 3,500 BP to 2,000 BP (Rowland 1983:71). Associated fluctuating 

sea levels, it is argued, would have ensured a period of resource instability, and thus 
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human populations widened their geographic and resource range as an adaptive 

measure (Rowland 1983:71). 

Four specific adaptive strategies are identified by Rowland (1983:72): the 

development of a set of generalised techniques for maximising resource 

procurement, both for consumption and exchange; the development of a range of 

economic strategies such as the incorporation of the 'Small Tool Tradition' into the 

toolkit, while retaining elements of previously utilised strategies; the cultivation of 

"knowledge of the fullest expanse of resource altel1,latives" within a given territorial 

area, as well as expanding social and political networks for maximum economic 

gain; and the stockpiling of surplus resources. 

More recent examinations of cultural change have emphasised the complex nature of 

human/environmental interactions and have made attempts to integrate internal 

socio/cultural processes with late Holocene environmental change (e.g. Rowland 

1999). As environmental data are refined (Nicholls 1993) and the connection 

between specific environmental events and the archaeological record are established, 

models that invoke the environment as an agent of change, by nature of their scale, 

appear to have considerable merit (Bird 1995). This however, needs to be viewed at 

a regionally specific level, as the connection between cultural change and 

environmental variability is not always there (see Genever et al. 2003). 

Population models 

The habitation of off-shore islands in Queensland, as one of the more ephemeral 

environments in the late Holocene, has been explained by several researchers as the 
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product of a 'slow, intrinsic population increase' that began at around the time of sea 

level stabilisation (Hiscock and Hall 1988:14; see also Beaton 1985). In an 

examination of the complex patterns of population dynamics, Beaton (1985:25) 

states that without an understanding of these dynamics "the interaction between 

population and culture change is difficult, if not impossible, to build into analyses 

and interpretations'. By invoking a link between the 'carrying capacity' of regional 

resources and limitations placed on population growth, Beaton (1985) concludes that 

the nature of resource distribution did, until the late Holocene, restrict populations. 

And while acknowledging the complexity of the relationship between the 

archaeological record and population number, he interprets changes to the record as 

indicative of population growth (Beaton 1985). 

Hughes and Lampert (1982) synthesise a range of data specifically relating to 

number of sites and intensity of site use in coastal New South Wales over the last 

5,000 years. They conclude that there was a two to three-fold increase in numbers 

of sites used and a six to ten-fold increase in intensity of site use. This was apparent 

across the suite of site types: rockshelters, open sites, those in estuarine 

environments, in protected and exposed coastal conditions (Hughes and Lampert 

1982:20). In advocating that population increase was the agent of this change to 

settlement and subsistence patterns, Hughes and Lampert (1982) argue against the 

implementation of other models of change, including that of environmental change 

for the late Holocene cultural patterns: " cannot be explained in terms of 

environmental change as the coastline had essentially taken on its present 

configuration by that time". 
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Post depositional models 

Site preservation factors have been used in varying contexts, to explain both the 

paucity of coastal sites in the terminal Pleistocene/early Holocene period, and the 

increase in the number of sites in the late Holocene (Head 1984; 1986; O'Connor 

and Sullivan 1994; Rowland 1989). Post depositional factors include cyclonic 

events, coastal and estuarine erosion and fluctuating sea levels. However, it appears 

that the expression of trends, which are interpreted as late Holocene cultural change, 

are replicated in a sufficient number of contexts as to discount post depositional 

factors as a pan-continental or island-specific agent of perceived change (e.g. Barker 

2004; David 1994; Lourandos 1983; McNiven 1988; Morwood 1987). 

Technological models 

In the coastal/island setting, technological models have been utilised to explain the 

initial and increasing use of these somewhat more ephemeral environments. Thus, 

both Sullivan (1982) and Vanderwal (1978) explain the late Holocene use of 

offshore islands by suggesting that it was enabled by the development/acquisition 

and improvement of watercraft technology (see also Rowland 1987). The 

Whitsunday region was initially occupied in the early Holocene, at which time the 

islands in question were still a part of the mainland (Barker 2004). However, 

because of certain provisioning patterns that were in place at the time, particularly 

procurement of the stone source on South Molle island, it can be concluded that 

watercraft were already in use in the early Holocene in this region. Thus, models of 

technological innovation which have been posited to explain the late Holocene use 

of off-shore islands are of little relevance to the current study. 
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Social models of change 

Lourandos' (1983) model of social change for the late Holocene phenomenon was 

the first of its kind. The concept of 'intensification' was being discussed in the 

international literature regarding cultural change (e.g. Bender 1981) but Lourandos 

(1983) was the first to identify it as a systematic and consistent pattern in the 

Australian assemblages, via an analysis of material from south west Victoria. 

Lourandos (1993:82) identified four main traits of the archaeological record which 

would indicate that economic intensification was occurring: a more intensive use of 

individual sites; increased establishment of new sites, an increased use of ephemeral 

environments; and an "increased complexity of site economy (i.e. resource 

management strategy)". 

Lourandos (1983:88-90) drew upon ethnographic data to establish some 

characteristics of Aboriginal social and political alliances. He then identified a 

range of systems within society, upon which social relations have an impact: 

economy, resources, services, goods and knowledge. Production and productivity, 

Lourandos (1983:90) argues, "are in this way affected for incentives exist (due to the 

dynamic nature of the social relations) for their manipulation". 

Subsequently, social models for change have been used in varying contexts (David 

1994; McNiven 1991). Importantly for the purpose of this study, Barker (1996, 

2004) constructs social models to depict and explain changes in the Whitsunday 

region and argues that the timing of environmental change is incongruent with the 

change in the archaeological record of the Whitsunday region. His studies of the 

economic systems in the region lead him to argue that the pattern of change 
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observed in the late Holocene marks a transition from ephemeral coastal exploitation 

to a specialised marine economy (Barker 1996, 2004). The archaeological 

signatures of this change are: an increased number of sites utilised in the late 

Holocene; more intensive use of existing sites; a wider range of resources 

incorporated into the diet; and a specialised technology specifically related to the 

procurement of marine resources. Socially, Barker (1996:37, 2004) argues, this 

indicates a restructured demography from that of an open, "generalised coastal

hinterland system where boundaries, cultural demarcation and access to resources 

were less rigidly structured" (see also Barker 1991). 

The transition to a more bounded system (Barker 1991, 1996, 2004) occurred in the 

late Holocene after approximately 3,000 BP. Barker (1996:38) states: 

"The boundedness of these systems intensified regional social interactions by 

formalising them. This can be viewed in terms of increasing 'complexity' of 

sociocultural relationships, and possibly as the outcome of a population 

increase." 

There are several indications of regional social interactions between the people of 

the Whitsundays, and coastal peoples to the north. Barker (1996:38) observes 

common items of material culture, which include turtle shell and shell fish hooks, 

outrigger canoes (observed historically and see also Rowland 1987) and decorated 

broad-bladed canoe paddles. Additionally, there is evidence for the transportation of 

South Molle Island Quarry stone further along the north coast of Queensland, some 

140km distance (Barker and Schon 1994). 
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There appear to be two distinct threads to Barker's social model for change in the 

Whitsunday region (Barker 1996, 2004). There are the ethnographic and historic 

observations which note material culture items suggestive of contact with coastal 

peoples to the north. There is also the notion of an archaeologically observable 

bounded cultural system, which is inclusive of a specialised marine economy, 

marine oriented technology and intensive use of the region and its resources. These 

factors in combination are used by Barker (1996, 2004) to argue for a significant 

demographic and social reorganisation of people across the landscape after 3,000 

BP. The socio-demographic results of such change are heightened social 

interactions and an increased expression of territoriality which are inferred by 

elements of the archaeological record indicative of a specialised economy and 

technology and a more intensive use of the region. 

These factors are expressed in the archaeological assemblage in a variety of ways. 

Firstly, there are two rockshelter sites in the region that were occupied for the first 

time in the late Holocene (Barker 2004:91-103 & 117-127). These are Hill Inlet 1 

and Nara Inlet Art site (2,770 cal. BP and 2,350 cal. BP respectively). They contain 

a variety of terrestrial and marine based resources that are not present in the early 

Holocene layers of other sites (Border Island 1 and Nara Inlet 1; 6,900 cal. BP and 

8,990 cal. BP respectively). This is despite the broad climatic pattern being in place 

throughout the Holocene (Genever et al. 2003) which supports the notion that the 

"macrophytic communities were in place throughout the period of occupation [thus] 

the species that appear only in the archaeological record after 3,000 BP were 

nonetheless available well before that time" (Barker 2004:143). 
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The specialised manne economy that Barker (2004) posits for the reg10n, 

particularly in the late Holocene is inferred by a number of factors. Primarily among 

these is the appearance of three new marine shellfish species Gelonia coaxons, 

Pinctada fucata, and Asaphis deflorata in Nara Inlet 1. Additionally, there is 

evidence of predation pressure on the shellfish species Nerita undata in Nara Inlet 1, 

and on Saccostrea cucullata at Hill Inlet Rockshelter 1 (Barker 2004:146). There 

is also an increase in the discard rates of other cultural materials including fish bone, 

shell, marine reptile bone particularly the green sea turtle, and the presence of pilot 

whale in Nara Inlet 1 (Barker 2004:146). 

Accompanying these dietary changes was a corresponding shift in the technology of 

the region. This included a decrease in the amount of stone discarded in the 

rockshelter sites in the late Holocene period of occupation and the incorporation of a 

range of tools made from marine products and/or geared toward the hunting of 

marine animals (Barker 2004:83-85). For example there is worked turtle shell in xu 

23 of Nara Inlet 1. Barker (2004:83) suggests that it may be a by product of turtle 

shell fish hook manufacture, as observed in the historical record. Also recovered 

from Nara Inlet 1 was a wooden point covered in resin which may have been a barb 

or point end of a spear (Barker 2004:83). Other non-lithic components of the tool 

kit include bone points (Hill Inlet Rockshelter 1, xu 10; Nara Inlet 1 xu 19, 22 and 

29), shell scrapers (three in Nara Inlet Art Site, xu 10; one Nara Inlet 1 xu 19 and 20 

and four in Hill Inlet Rockshelter 1, xu 2, 6, 8 and 13) and knotted string/netting 

(Nara Inlet 1 xu 1). Cut shell pieces (of the genus Anadara in addition to Gelonia 

coaxons) also occur in Nara Inlet 1 (xu 19 and 20) and Hill Inlet Rockshelter 1 (xu 

21). 
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Barker (2004:151) concludes that 

"the post-3,000 BP period marks the beginning of the process leading to the 

socio-cultural system described historically, in which the peoples of the 

Whitsunday Islands eventually became identified as the Ngaro, a 'tribal' 

entity described as the 'sea people', who were clearly distinguished from 

mainland populations". 

Modelling technological change 

The models outlined above deal with broad scale change to whole economic, social 

and demographic systems. Stone tool technology is frequently treated as an 

associative trait within these systems, and explanation for changing technologies 

tends to be inferred from explanations for wider systemic change. There are few 

models that relate directly to the changes in technological systems, that were 

observed in the mid-late Holocene. It is the purpose of this section to present 

theories that deal explicitly with change to the stone artefact component of the 

Australian archaeological record. 

I touched briefly on Torrence's (1983) theory of optimisation as being one of the 

first models to examine change to various aspects of the archaeological record under 

a united body of theory (Chapter 1). Her argument was that people adopt various 

technological strategies to mitigate risk expressed as time stress, which has links to 

other foraging strategies. I presented this approach as differing from the body of 

processual theory in that processual theory examines change as it occurs to 
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interrelated subsystems, each of which warrants individual investigation (Clark 

1972) using disparate and often unrelated theory. 

Related to Torrence's model for optimisation relative to risk as time stress, Hiscock 

(1994) approached risk from a broader perspective. In the Australian context, 

Hiscock (1994) proposed that the composition of the Australian stone toolkit is 

affected by manufacturing behaviour aimed at risk reduction. This is demonstrated 

for the mid-late Holocene in Australia in high "failure probability" contexts such as 

high mobility, colonisation of new landscapes and rapid environmental change 

(Hiscock 1994:278-283, 2001). The nature of the environmental change which 

could have triggered these changes to the Australian toolkit has been under 

subsequent review however (Hiscock 2001). Rather than focusing on "continuous 

and rapid environmental change ... More likely the conditions evoking this response 

involved an increase in the level of environmental variability" (my italics; Hiscock 

2001:169). 

While the impetus is clearly placed on environmental perimeters, Hiscock (1994, 

2001:169) acknowledges the role of social forces in mitigating and even inducing 

risk. However, he queries the link between the emergence of the late Holocene 

"compartmentalized cultural landscapes" (Hiscock 2001: 169) and the spread of 

backed artefacts because the timing of the purported late Holocene 

compartmentalizing 'event' is several thousand years after the proliferation of 

backed artefacts. Hiscock (2001:169) offers the following model instead: 
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During a time of increasingly dry conditions between 4,000 BP and 5,000 BP, when 

populations were at least steady but possibly increasing, a preexisting implement 

form (the backed artefact) began to be manufactured in much higher numbers. This 

was a response to a shifting of resources across the landscape, not only in terms of 

availability, but also in terms of predictability. Risk was heightened in these 

conditions because "at least some human groups were moving into new landscapes" 

(Hiscock 2001: 171) and the ongoing effects of a rising sea level continued to be felt. 

Hiscock (1994) argued that backed artefacts form part of a response to risk because 

they are versatile, reliable and are able to be readily maintained. Thus, in periods of 

greater risk they give a group using them an advantage and are therefore selected as 

a strategy, and proliferate. The extent to which backed artefacts are used across time 

and space depends on the following three factors: "the level and nature of foraging 

risk'', "the cost-benefit of this technological response relative to other available 

technological strategies" and "the relationship between stone working technology 

and the other risk-response adjustments being made" (Hiscock 1994: 171 ). The very 

fact that backed artefact numbers decline in the archaeological record after about 

2,000 BP, when precipitation levels rose abruptly, appears to confirm the link 

between resource stress and uncertainty, and the proliferation of backed artefacts 

(Hiscock 1994: 171). 

A goal of this thesis is to characterise the temporal trends of artefact production in 

the Whitsunday region, with a view to establishing these patterns of production as 

they relate to the palaeoenvironmental data outlined in chapter four. Coupled with 

this is the goal of characterising artefact production on the quarry. These two factors 

together will enable me to determine not only the range of technological strategies 
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practiced throughout the Holocene, but whether backed artefacts were incorporated 

into the tool kit as a response to aspects of 'foraging risk', principally that of 

environmental variability. The methods associated with the aims of this thesis are 

outlined in the following chapter. 
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CHAPTER 3 AIMS AND METHODOLOGY 

This chapter presents methodologies associated with the two field-based aims of the 

thesis, which were explored in detail in Chapter 1. It should be noted here that the 

raw data for this project are not included as an appendix, as it amounts to several 

thousand pages. They are however, available upon request from the author. 

FIRST AIM: TECHNOLOGICAL CHARACTERISATION OF THE QUARRY 

The first aim of this research is a technological characterisation of the quarry, 

examining extraction technology, raw material preferences, manufacturing systems and 

the extent of retouch variability. 

Field Methodologies 

To examination of factors relating to the above, the quarry was divided into eight 

survey areas (described below), based on stone artefact visibility and densities 

(Figure 3.1). The areas selected were all areas of high visibility, with minimal 

obstruction by the dense tropical grasses that are a feature of the quarry. They were 

also all areas of high artefact density, typically numbering in the hundreds of 

artefacts per square metre. While these areas are not spatially representative of the 

quarry, this was deemed an appropriate survey strategy as it had the potential to 

yield the largest and therefore most comprehensive sample for the purposes of this 

project. 

Area I is approximately 30m long by 15m wide and extends along the ridge top in a 

southerly direction, between the north east peg and excavation square Nl (Figure 

3.2). 
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Figure 3.2 Study Area one on the South Molle Island Quarry 

Area 2 is located south of the excavation square NL It extends along the ridge top 

for approximately 30m and is only 15m wide, thus it is confined largely to the level 

ground of the ridge top. 

Area 3 occupies the area east of excavation square S 1. It extends down slope for 

approximately lOm and is 15m in width (Figure 3.3). 
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Figure 3.3 Study Area 3 

Area 3a and 3a/l are located to the east and further downslope from Area 3. Area 

3a/1 is approximately 5m by 5m in dimension (being somewhat hampered by dense 

shrub) while 3a/1 is 5m by 12m 

Area 4 extends to the north and west of excavation square NL It is approximately 

Sm by 15m extending down the western slope of the ridge top (Figure 3.4). 
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Figure 3.4 Study Area 4 

Area 5 occupies a dense artefact scatter located at the northern end of the quarry, 

some 60m north west of the north east marker peg. 

Area 6 consists of the beach located to the north of the quarry, flanking the base of 

the ridge (Figure 3.6). Artefact densities on the beach are not as great as those on 

the quarry itself, but this area was included for analysis based on the fact that it was 

spatially distinct from the ridge top, and there was previously a quantity of 

retouched flakes recovered from that location which were analysed for a related 

study (Lamb 1996). 
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Figure 3.5 Study Area 6 

Area 7 is approximately 90m to the north of excavation square NI and occupies a 

portion of the western slope of the quarry (Figure 3.7). This area consists of a steep 

and mobile artefact scree-slope, punctuated by fern and shrubs, and bordered further 

to the west by a relatively level area. 

Figure 3.6 Study Area 7 
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Area 8 consists of the most northerly artefact scatter that was mapped for the 

purposes of this project (Figure 3.8). 

Figure 3.7 Study Area 8 
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Figure 3.1 Map of the study areas on the South Molle Island Quarry 

Unworked nodules 

The objective of collecting data on unworked nodules was to enable a comparison to 

be made between properties of material utilised and properties of material that had 

not been utilised. This comparison will enable statements to be made regarding 
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properties that affected choice of raw materials, and thus will assist in the 

explanation of spatial patterns of use observed on the SMIQ. 

Data on a sample of 177 unworked nodules were collected from survey areas 2, 3 

and 3a-I, as densities were greatest in these areas. The set of attributes selected for 

analysis was designed around illustrating the overall shape and dimensions of the 

unworked nodules, for the purposes of comparison with the sample of cores. To this 

end, 14 attributes were analysed on the unworked nodules (see Table 3.1). The 

analysis was conducted in the field with the aid of a set of Mitutoyo digital callipers 

to O.lmm and A&D digital scales with a measurement capacity of lg to 12kg. The 

data were recorded onto forms generated in Microsoft Exel, then transferred for the 

purpose of storage, into a Lotus Approach data base. The data were then analysed in 

SPSS. 

Table 3.1 List of variables and variable explanations for Unworked Nodules 

Variable Explanation 
Length The maximum dimension. Measured in mm. 
Width 1 At 90 degrees and approx. 1/3 of the way along the length. 

Measured in mm. 
Width 2 At 90 degrees and approx 1/2 way along the length. Measured in 

mm. 
Width3 

Thickness 

Weight 
Distance and angle 

Heat shattered 

At 90 degrees and approx 2/3 of the way along the length. 
Measured in mm. 
The measurement taken at right angles to the intersection of the 
length and width 2. Measured in mm. 
Measured in g. 
Distance and compass readings taken from a reference point for 
mapping purposes. 
Presence/absence variable defined as alteration to the nodule 
brought about by natural heating. 
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Reduced outcrops 

The rationale for collecting data on the reduced outcrops is that, technologically they 

can be classified as cores because knappers have utilised them as a source of raw 

material by flaking material from them. Thus the information gained from this 

analysis contributed to a more comprehensive understanding of core use on the 

SMIQ. The distinguishing feature of reduced outcrops is that they are masses of 

stone which remain embedded in the soil matrix. To this end, data on a sample of 

22 reduced outcrops were collected. The large (and unwieldy) size of these cores 

determined that a different set of attributes had to be designed for practical purposes 

of analysis (see Table 3.2). As with the core attributes, these were designed around 

characterising overall size and dimension, the number and nature of flakes removed, 

platform morphology and stage of reduction. Analysis was undertaken in situ, with 

the aid of a set of Mitutoyo digital callipers which measured dimensions to a 

precision of O. lmm and a tape measure. Data were recorded onto hand-drawn forms, 

then transferred for the purpose of storage, into a Lotus Approach data base. The 

data were then analysed in SPSS. 
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Table 3.2. List of general variables and variable explanations for Reduced Outcrops 

Variable Explanation 
General variables 
Length 

Width 

Thickness 

Total number of flake scars 
Number of platforms 
Total number of each termination type 

Platform variables 
Outcrop number 
Platform number 

Platform angle 

Platform type 

Number of negative flake scars 
originating from each platform 
Average length of negative flake scars 
Minimum length of negative flake scars 
Maximum length of negative flake scars 
Average width of negative flake scars 
Minimum length of negative flake scars 
Maximum length of negative flake scars 
Number of each negative termination 
type 

Cores 

The dimension orientated along the 
percussion direction of the first platform 
utilised. Measured in mm. 
Dimension at 90 degrees and half way 
along the length. Measured in mm. 
Dimension at right angles to the 
intersection of length and width. 
Measured in mm. 
Numeric variable. 
Numeric variable. 
Numeric variable, where types include 
feather, hinge, step and outrepasse 
terminations. 

Identifies the flaked outcrop. 
Identifies the platform specific to each 
outcrop. 
The angle between the platform surface 
and the outcrop face (where the face has 
been created by the removal of flakes 
from that platform). 
Where types are identified as having 
cortex, 1-2 flake scars, 3 or more flake 
scars or faceting. 
Numeric variable. 

Measured in mm. 
Measured in mm. 
Measured in mm. 
Measured in mm. 
Measured in mm. 
Measured in mm. 
Numeric variable, where types include 
feather, hinge, step and outrepasse 
terminations. 

As noted above, one of the objectives of this thesis was to determine which 

properties of stone were formative in decisions regarding choice of raw materials. 
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To this end, a sample of cores was analysed for the purpose of quantifying the 

characteristics of the raw materials utilised and as a means to understanding the 

process of core reduction. The attributes selected for analysis were designed around 

determining overall shape and dimensions of the cores, the number and nature of 

flakes removed, platform morphology, stage of reduction, degree of core rotation, 

grain size and extent of weathering (see Table 3.3). All cores were located within 

the survey areas 1, 2, 3, 4, 5 and 7. Analysis took place with the aid of a General 

Tools (NY) Goniometer No. 17 which measured angles to a precision of 1 degree; a 

set of Mitutoyo digital callipers which measured dimensions to a precision of O. lmm; 

A&D digital scales with a measurement capacity of O.Olg to 120g and lg to 12kg; 

and a revised edition (1967) Munsell Colour Chart. The data were recorded on 

forms generated in Microsoft Exel, then transferred for the purpose of storage, onto 

a Lotus Approach data base. The data were then analysed in SPSS. The total 

number of cores analysed was 424. 

Table 3.3 Core variables and variable explanations 

Variable 
General variables 
Length 

Width 1 

Width 2 

Width 3 

Thickness 

Weight 
Total number of negative flake scars 
Number of platforms 
Percentage cortex 

Distance and angle 

Explanation 

The dimension orientated along the 
percussion direction of the first platform 
utilised. Measured in mm. 
At 90 degrees and approx. 1/3 of the way 
along the length. Measured in mm. 
At 90 degrees and approx Y2 way along the 
length. Measured in mm. 
At 90 degrees and approx 2/3 of the way 
along the length. Measured in mm. 
Dimension at right angles to the intersection 
of length and width 2. Measured in mm. 
Measured in g. 
Numeric variable. 
Numeric variable. 
Measured as a proportion of the core's 
surface area. 
Distance and compass readings taken from a 
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Heat spalling 

Internal flaw 

reference point. 
Presence/absence variable defined as 
alteration to the nodule brought about by 
natural heating. 
Presence/ absence variable defined as a 
fracture on the core's surface that follows the 
line of a natural internal flaw. 

Total number 
termination type 

of each negative Numeric variable, where types include 

Platform variables 
Platform number 
Number of negative flake scars 

Platform angle 

Bipolar 

Number of each negative termination 
type 

Average length of flake scars 
Minimum length of flake scars 
Maximum length of flake scars 
Platform type 

Platform orientation 

Flake scar variables 
Core/outcrop number 
Platform number 
Scar number 

Length 

Width 

Truncated 
Termination type 

Munsell colour 

feather, hinge, step and outrepasse 
terminations. 

Identifies the platform specific to each core. 
A numeric variable which identifies the 
number of flake scars originating from each 
platform. 
The angle between the platform surf ace and 
the core face (where the core face has been 
created by the removal of flakes from that 
platform). 
Presence/absence variable where bipolarity is 
identified by crushing on the opposite end of 
the core to the platform. 
Numeric variable, where types include 
feather, hinge, step and outrepasse 
terminations, on flake scars originating from 
that platform. 
Measured in mm. 
Measured in mm. 
Measured in mm. 
Where types are identified as being cortex or 
partial cortex, 1-2 flake scars, 3 or more flake 
scars or faceting. 
Identified in relation to the first platform 
utilised. Eight positions are identified (see 
chapter 6 for a complete explanation). 

Identifies the core/outcrop. 
Identifies the platform specific to each core. 
Identifies the flake scar specific to each 
platform. 
Distance between flake scar initiation and the 
termination. 
Measured half way along and perpendicular 
to the length. 
Presence/absence variable. 
Where types include feather, hinge, step and 
outrepasse terminations. 
Specific to the revised edition (1967) Munsell 
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Patination type 

Hammerstones 

Colour Chart. 
Where types include no patination; smooth 
colour change (colour change as a result of 
weathering without visible texture change); 
course-hard granulated change (colour 
change accompanied by texture change as a 
result of weathering); course-chalky 
granulated (colour change accompanied by 
extreme texture change where the patina 
breaks down as a result of weathering). 

Data on a sample of 304 hammerstones were collected from survey areas 1-5 and 7, 

with the objective of quantifying size classes and their relationship to different 

stages of reduction observed across the quarry. To this end, a set of 17 attributes 

was designed (see Table 3.4), the principal emphasis of which was to examine 

overall dimensions, extent of use and raw material type. Analysis was undertaken in 

the field with the aid of a set of Mitutoyo digital callipers which measured 

dimensions to a precision of O. lmm and A&D digital scales with a measurement 

capacity of lg to 12kg. The data were recorded onto forms generated in Microsoft 

Exel, then transferred for the purpose of storage, into a Lotus Approach data base. 

The data were then analysed in SPSS. 

Table 3.4 Hammerstone variables and variable explanations 

Variable Explanation 
Length The maximum dimension of the cobble; Measured in mm. 
Width Half way along and perpendicular to the length. Measured in 

mm. 
Thickness 

Weight 
Split 

Dimension at right angles to the intersection of length and 
width. 
Measured in g. 
Presence/absence variable defined as damaged resulting in loss 
amounting to between one quarter and one half of the surface 
area of the cobble. 
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Worked one end 

Worked both ends 
Worked margin 
Material 
Distance and angle 
Fragment 

Retouched flakes 

Presence/absence variable where working is identified as 
pitting or other damage brought about by the striking of the 
cobble against another hard surface. 
Presence/absence variable defined as above. 
Presence/absence variable defined as above. 
Identified as either 'rough', 'smooth' or 'tuff'. 
Distance and compass readings taken from a reference point. 
Presence/absence variable, defined as damage resulting a radius 
which is less than half of its original diameter. 

As a means to characterising the range of retouch occurring on the quarry, a survey 

was undertaken for any evidence that artefacts were being reduced beyond initial 

procurement and reduction. To this end, the quarry was surveyed within the eight 

defined areas, for flakes exhibiting secondary retouch. For each retouched artefact, 

the distance and angle from a predetermined and constant point was recorded, for 

the purpose of mapping. Then, depending on time constraints, the artefact was 

analysed in the field or collected for analysis in the laboratory. 

Analysis took the form of a set of 97 attributes designed to provide a detailed 

morphological characterisation, and to illuminate manufacturing technique (Table 

3.5). Data resulting from the field analysis were recorded on forms generated in 

Microsoft Exel, and then transferred onto forms generated in Lotus Approach in the 

laboratory. These data were then analysed in SPSS. The total number of retouched 

flakes identified and analysed was 435. 

Table 3.5 Retouched flake variables and variable explanations 

Variable Explanation 
General variables 
Artefact number 
Weight 

Identifies the retouched artefact. 
Measured in g. 
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Distance and angle 

Heat alteration 

Snapped 

Portion remaining 

Retouch variables 
Backing 

Juan 

Unifacial retouch 

Bifacial retouch 

Bidirectional retouch 

From ventral surface only 

From dorsal surface only 

Retouch location 

Morphology variables 
Ringcrack 
Bulb 
Ripples 
Fissures 
Erailure scar 
No diagnostic indicators 
Combination including ringcrack 
Combination excluding ringcrack 
Primary reduction 

Secondary reduction 

Distance and compass readings taken from a 
reference point for the purpose of mapping. 
Presence/absence variable defined as 
alteration to the nodule brought about by 
natural heating. 
Presence/absence variable to denote whether 
the retouched artefact is broken. 
A presence/absence variable with the options 
of right lateral, left lateral, proximal, distal, 
medial and indeterminate portion remaining. 

Presence absence variable where backing is 
defined as steep retouch occurring on one 
lateral margin. 
Presence absence variable of a prescribed 
typological category. 
Presence absence variable where unifacial is 
defined as retouch occurring on one face of 
the artefact. 
Presence absence variable where bifacial is 
defined as retouch occurring on both faces of 
the artefact (both ventral and dorsal). 
Presence absence variable where bidirectional 
is defined as retouch originating from both the 
dorsal and ventral surface. This is further 
refined into 'dorsal first' and 'ventral first' 
categories. 
Presence absence variable denoting retouch 
occurring from the ventral surface only. 
Presence absence variable denoting retouch 
occurring from the dorsal surface only. 
This variable includes the categories right 
lateral, left lateral, proximal, distal and 
platform retouch, as well as retouch location 
indeterminate. 

Presence/absence variable. 
Presence/absence variable. 
Presence/ absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable defined as the 
dorsal surface being comprised entirely of 
cortex. 
Presence/absence variable defined as the 
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Tertiary reduction 

Microflaking 

Edge snapping 

Crushing 

Dorsal ridge 
Ventral weathering pattern 

Dorsal weathering pattern 

Platform variables 
Platform width 

Platform thickness 

Platform cortex 
1-2 flake scars 
3 or more flake scars 
Platform facetted 
No platform 

Metric variables 
Length of backing scars (mode) 

Length of backing scars (maximum) 

dorsal surface comprised partially of cortex. 
Presence/absence variable defined as the 
dorsal surface having no cortex. 
Presence/absence variable, further noted to be 
indiscriminate or localised. 
Presence/absence variable denoting edge 
damage. 
Presence/absence variable denoting edge 
damage, diagnostic of anvilling. 
Presence/absence variable. 
Where types of weathering include no 
patination; smooth colour change (colour 
change as a result of weathering without 
visible texture change); course-hard 
granulated change (colour change 
accompanied by texture change as a result of 
weathering); course-chalky granulated (colour 
change accompanied by extreme texture 
change where the patina breaks down as a 
result of weathering). 
Where types of weathering include no 
patination; smooth colour change (colour 
change as a result of weathering without 
visible texture change); course-hard 
granulated change (colour change 
accompanied by texture change as a result of 
weathering); course-chalky granulated (colour 
change accompanied by extreme texture 
change where the patina breaks down as a 
result of weathering). 

Measures the distance between each margin 
between the points where the margin connects 
with the platform. 
Perpendicular to the width, aligned from the 
ringcrack to the dorsal aspect of the platform. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 

From the negative point of impact to the distal 
end of the flake scar, along the line of 
percussion. 
From the negative point of impact to the distal 
end of the flake scar, along the line of 
percussion. 
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Maximum length 

Percussion length 

Maximum width 

Percussion width 

Maximum thickness 

Assumed length, width, thickness 

Length of retouch 

Thickness of retouch 

Midline thickness 

Cord length 

Edge angle 

Ventral retouch angle 

Dorsal retouch angle 

Ventral platform angle 

Dorsal platform angle 

Average Kuhn Index 

Index of retouch curvature 

Measured on the ventral surface, parallel to 
the cord on the retouched margin. 
Distance across ventral surf ace, from 
ringcrack to termination (follows percussion 
axis). 
greatest distance from one lateral margin to 
the other, at 90° to the maximum length. 
distance from one lateral margin to the other, 
half way along, and at 90° to, the orientated 
length. 
Greatest distance between the ventral and 
dorsal surfaces. 
These measurements are recorded in 
situations where there are no diagnostic 
features from which to orientate percussion 
measurements. 
length of the longest continuous series of 
retouch scars, measured on the ventral surface 
as a straight line. 
distance ventral to dorsal over which retouch 
is distributed. 
distance between ventral and dorsal surface 
(at 90° to the ventral surface), midway along 
the maximum length. 
a straight-line measurement on the ventral 
plane of the longest unretouched margin. 
ventral/dorsal angle of the chord, taken half 
way along the chord length. 
angle between the negative retouch scar of a 
flake and the ventral surface, taken midway 
along the maximum length. 
angel between the negative retouch scar of a 
flake and the dorsal surface, taken midway 
along the maximum length. 
angle between the platform and the ventral 
surface, taken at the ringcrack. 
angle between the platform and the dorsal 
surf ace, taken at the ringcrack. 
This measures the extent of reduction by 
establishing a ratio of retouch height to 
artefact thickness. The Kuhn index is 
calculated at three points along the length of 
the artefact, from which an average is taken 
(see chapter 7 for a more detailed 
explanation). It is measured on a scale of 0 
(no reduction) to 1 (complete reduction). 
Determined by dividing the depth of retouch 
by the retouch span. A negative value 
indicates a concave edge while a value of >0 
indicates a convex edge. 
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Backed artefact manufacturing debris 

For the purpose of characterising the backed artefact manufacturing debris, two 

lxlm squares were identified for collection (Nl and Sl). These squares were 

selected on the basis of several factors: they were situated in places of high artefact 

density (>300/m2); they were situated in areas of relative stability, where 

taphonomic processes such as down slope movement would have had minimal 

impact; visibility was not hampered by the dense tropical grasses typical of the 

region; most significantly, there was obvious clustering of small sized artefacts 

within these squares, indicative of late-stage reduction. Added to this was the fact 

that there were five and two backed artefacts laying on the surface of Nl and S 1 

respectively, seemingly in the middle of their manufacturing debris. In association 

with this debris, were 3 hammerstones on the surface of S 1, and 3 on the surface of 

Nl. Thus, these surfaces were interpreted as relatively intact knapping floors. 

The two squares (Nl and S 1) were excavated using arbitrary 3-5cm excavation units. 

Individual finds and start/end levels were plotted using XYZ coordinates and each 

excavation unit was weighed and recorded on conventional excavation forms. The 

soil matrix was sieved using a 3mm sieve fraction, and the remainder was bagged, 

labelled and transported back to the laboratory for further analysis. 

Macroscopic and microscopic analysis took place using a set of problem-orientated 

variables (Table 3.6), centred around morphology and retouch. These were 

quantified in the laboratory with the use of a General Tools (NY) Goniometer No. 

1 7 which measures precision to 1 degree, a set of Mitutoyo digital callipers which 

measures precision to O. lmm, A&D digital scales with a measurement capacity of 
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O.Olg to 120g and a similar set with a measurement capacity of lg to 12kg, a Nikon 

microscope obj. x2 and x4 and a revised edition (1967) Munsell Colour Chart. All 

data were recorded onto forms contained in several Lotus Approach data bases. 

Data were then analysed in SPSS. The total number of artefacts analysed from 

squares NI and SI was 5,238. 

Table 3.6 Quarry excavated materials (Nl and Sl) variables and variable explanations 

Variable Explanation 
General variables 
Artefact identification number 
Excavation unit 
Weight 
Fracture type 

No snap 
Lateral snap 

Transverse snap 

Other snap 
Portion remaining 

Morphology variables 
Crushing 

Snap fracturing 

Microflaking 

Cortex 
Primary reduction 

Secondary reduction 

Tertiary reduction 

Thermal alteration 

Initiation type 

This is broken down into flake, flaked piece, 
retouched flake, potlid, hammerstone, core. 
Presence/absence variable. 
Presence/absence variable where the snap is 
aligned to the direction of a lateral margin. 
Presence/absence variable where the snap is 
aligned at 90° to the lateral margins. 
Presence/absence variable. 
This variable is broken down into the 
categories of proximal, distal, lateral, left 
lateral, right lateral, medial and other portion 
remaining. 

Presence/absence variable denoting edge 
damage. 
Presence/absence variable denoting edge 
damage. 
Presence/absence variable denoting edge 
damage. 
Presence/absence variable. 
Presence/absence variable defined as the 
dorsal surface being comprised entirely of 
cortex. 
Presence/absence variable defined as the 
dorsal surface comprised partially of cortex. 
Presence/absence variable defined as the 
dorsal surface having no cortex. 
Presence/absence variable includes the 
categories of greasy lustre, colour change, 
potliding and crazing. 
Includes the categories of hertzian and 
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Erailure scar 
Erailure termination type 

Termination type 

Bipolar 

Dorsal scars 
Dorsal scar orientation 

Number of dorsal flake scars 

Dorsal weathering pattern 

Ventral weathering pattern 

Dorsal munsell colour 

Ventral munsell colour 

Metric variables 
Erailure scar length 

Erailure scar width 

Maximum dimension 

Percussion length 

Percussion width 

Percussion thickness 

bending initiation. 
Presence/absence variable. 
Includes the categories of feather, hinge, step 
terminations. 
Where types include feather, hinge, step and 
outrepasse terminations. 
Presence/absence variable, diagnosed by the 
presence of distal crushing or step fracturing. 
Presence/absence variable. 
Broken down into categories of proximal, 
distal, right lateral and left lateral. 
Numeric variable denoting the number of 
scars on the dorsal surf ace. 
Where types of weathering include no 
patination; smooth colour change (colour 
change as a result of weathering without 
visible texture change); course-hard 
granulated change (colour change 
accompanied by texture change as a result of 
weathering); course-chalky granulated 
(colour change accompanied by extreme 
texture change where the patina breaks down 
as a result of weathering). 
Where types of weathering include no 
patination; smooth colour change (colour 
change as a result of weathering without 
visible texture change); course-hard 
granulated change (colour change 
accompanied by texture change as a result of 
weathering); course-chalky granulated 
(colour change accompanied by extreme 
texture change where the patina breaks down 
as a result of weathering). 
Specific to the revised edition (1967) 
Munsell Colour Chart. 
Specific to the revised edition (1967) 
Munsell Colour Chart. 

Oriented along the direction of ringcrack to 
termination. 
Measured at 90 degrees and half way along 
the length. 
Measured in mm as the maximum dimension 
across the dorsal surf ace. 
Measured in mm orientated from the 
ringcrack to the termination. 
Measured in mm at 90 degrees to the 
percussion axis. 
Measured in mm as the distance between 

60 



ventral and dorsal smf ace measure at the 
intersection of the percussion length and 
width. 

Assumed length, width and thickness Measure in mm, these measurements are 
recorded in situations where there are no 
diagnostic features from which to orientate 
percussion measurements. 

Platform variables 
Platform width 

Platform thickness 

Platform angle 

Platform type 

Sampling Within the Squares 

Measures the distance between each margin 
from the points where the margin connects 
with the platform. 
Perpendicular to the width, running from the 
ringcrack to the dorsal surface. 
angle between the platform and the dorsal 
surface taken at the ringcrack. 
Presence/absence variable broken down into 
the categories of 1-2 flake scars, 3 or more 
flake scars, facetted and cortex. 

It should be noted here that there is very little soil matrix throughout the depth of 

each square. Artefacts were deposited in such numbers and at such a rate that there 

was no opportunity for the build up of soil to occur, as it does in other contexts such 

as rockshelter habitation sites. Therefore it must be assumed that without the 

supporting matrix of soil, there has been significant downward movement of 

artefacts. Thus the two squares were treated as 'collections' rather than excavations, 

the assumption being that there are no useful relative age/depth relationships within 

the squares. Accordingly, the analysis took place by sampling the collection rather 

than analysing the entire depth of the square as one would in an excavation. 

The sampling procedure was based on obtaining a representative sample of each 

square. Due to the downward movement of artefacts, the assumption was made that 

artefacts were distributed throughout the depth of the square in a pattern that did not 
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conform to the laws of stratigraphy. Predicting the extent of movement is 

problematic, but the lack of soil matrix suggests that it was at least possible that 

artefacts originally from the surface layers had come to rest in basal layers at the 

time of excavation. Thus, the surface and basal excavation units of Nl and Sl were 

analysed (Table 3.7). In addition to this, two middle units in square Sl were 

analysed, to provide a comparative measure for the representativeness of the method 

employed in square Nl (analysing the surface and basal units only). 

Table 3.7 Squares Nl and Sl, units analysed 

Square Excavation Units Analysed 

Nl 1, 2, 13 

Sl 1,4(c), 6(c), 14 

Fracture type squares 

The concept of 'fracture type' squares was developed with the aim of gaining a 

representative sample of fracture types that occurred across the quarry. For the 

purpose of this study, the term 'fracture type' is used to denote the type of artefact 

produced through the flaking process (core, flake, flaked piece etcetera). 

Identifying proportions of fracture types as they occurred in relation to one another, 

within these squares, enabled me to allocate a percentage value to the quarry 

assemblage as a whole, that could potentially be used for backed artefact 

manufacture. Seven fracture type squares were identified for analysis on the basis 

that they were placed in areas of high artefact density and that they were in areas of 

relative stability; that is, they were on relatively level ground, not subjected to 

gravitational taphonomic processes in the form of down slope movement. Analysis 
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of the fracture type squares took place in situ and was centred around a potential set 

of 48 attributes specifically designed to describe fracture type, metric data, and 

morphology, which could then be related to similar properties observed on backed 

artefacts (Table 3.8). The aim of this analysis is to document the percentage of the 

quarry assemblage that could potentially be utilised for backed artefact manufacture. 

Thus, fracture type and metric data will be emphasised in the results. Analysis was 

accomplished with the aid of a General Tools (NY) Goniometer No. 17 which 

measures precision to 1 degree, a set of Mitutoyo digital callipers which measures 

precision to O.lmm, A&D digital scales which measures precision from O.Olg to 

120g and from lg to 12kg and a revised edition (1967) Munsell Colour Chart. The 

data were recorded onto forms generated in Microsoft Exel, then transferred into a 

Lotus Approach data base. SPSS was used for the analysis of the data. A total of 

1001 artefacts from seven sample squares was analysed. 

Table 3.8 Fracture type square variables and variable explanations 

Variable Explanation 
General variables 
Identification number 
Munsell colour 

Core 
Complete flake 
Longitudinal break 

Transverse break 

Other break 
Flaked piece 
Hammerstone 
Potlid 

Retouch variables 
Backed 
Bifacial retouch 

Identifies each artefact specific to the square. 
Specific to the revised edition (1967) 
Munsell Colour Chart. 
Presence/ absence variable. 
Presence/absence variable. 
Further divided into categories of left lateral 
piece, right lateral piece. 
Further divided into categories of proximal 
piece, distal piece, medial piece. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 

Presence/ absence variable. 
Presence absence variable where bifacial is 
defined as retouch occurring on both faces of 
the artefact (both ventral and dorsal). 
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Unifacial retouch 

Other retouch 

Metric variables 
Weight 
Minimum edge angle 

Maximum dimension 
Percussion length 

Percussion width 

Percussion thickness 

Assumed length, width and thickness 

Morphological variables 
Primary reduction 

Secondary reduction 

Tertiary reduction 

Percentage cortex 

Microflaking 

Edge snapping 

Termination type 

Weathering pattern 

Presence absence variable where unifacial is 
defined as retouch occurring on one face of 
the artefact. 

Measured in g. 
Measured with a view to making 
comparisons with angles on other retouched 
flakes and "Yith the cord on backed artefacts. 
Measured in mm. 
Measured in mm along the percussion axis, 
from the ringcrack to the termination. 
Measured in mm at 90 degrees and half way 
along the length. 
The distance between the ventral and dorsal 
surface, measured in mm at the intersection 
of the percussion length and width. 
Measured in mm, these measurements are 
recorded in situations where there are no 
diagnostic features from which to orientate 
percussion measurements. 

Presence/absence variable defined as the 
dorsal surface being comprised entirely of 
cortex. 
Presence/absence variable defined as the 
dorsal surface comprised partially of cortex. 
Presence/absence variable defined as the 
dorsal surface having no cortex. 
Measured as a proportion of the artefact's 
surf ace area. 
Presence/absence variable denoting edge 
damage. 
Presence/absence variable denoting edge 
damage. 
Where types include feather, hinge, step and 
outrepasse. 
Where types of weathering include no 
patination; smooth colour change (colour 
change as a result of weathering without 
visible texture change); course-hard 
granulated change (colour change 
accompanied by texture change as a result of 
weathering); course-chalky granulated 
(colour change accompanied by extreme 
texture change where the patina breaks down 
as a result of weathering). 
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Mapping 

A topographic map was constructed with the aim of illustrating the position of the 

excavation squares, artefact type squares, and various artefact classes (cores, 

retouched flakes and hammerstones ). Also featured on the map are several high 

density artefact areas, the major rocky outcrops and the largest visible boulders, all 

for the purposes of refining spatial identification of the features listed above. The 

map was constructed using a geodometre laser dumpy and two Computer Assisted 

Drawing programs: LisCAD and AutoCAD. A surveying student assisted me in the 

field with the operation of the laser dumpy. 

SECOND AIM: TEMPORAL CHANGE IN QUARRY USE 

The second aim of the research is a characterisation of the South Molle Island quarry 

through time, documenting any changes in extraction and manufacturing technology. 

Field Methodologies 

Nara Inlet 1 and Border Island 1 yielded basal dates of 8,990 BP and 6,990 BP 

respectively. Both sites have continuous Holocene sequences with stone artefacts 

made on South Molle Island stone present throughout, in varying densities. Given the 

fact that Border Island 1 and Nara Inlet 1 are both stratigraphically intact (see Chapter 

8), span much of the Holocene and contain South Molle Island Quarry stone, they were 

selected for inclusion into this analysis because they provided an opportunity to 

examine changing technological behaviour in the study region. 

The analysis of the stone artefact assemblage of each site was achieved through the use 

of a predetermined set of variables targeted towards quantifying changing technologies 
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(Table 3.9). It was undertaken in a controlled laboratory setting with the aid of a 

General Tools (NY) Goniometer No. 17 which measures precision to 1 degree, a set 

of Mitutoyo digital callipers which measures precision to O. lmm, A&D digital 

scales with a measurement capacity of O.Olg to 120g and a revised edition (1967) of 

the Munsell Colour Chart. The data was stored in Lotus Approach, and analysed in 

SPSS. The sample size from the two combined assemblages numbered 718 artefacts. 

Table 3.9 Nara Inlet 1 and Border Island 1 assemblage variables and variable explanations 

Variable Explanation 
Artefact identification number Identifies the artefact specific to the excavation 

Excavation unit 
Core 
Flake 
Broken flake 
Longitudinal snap 

Transverse snap 

Flaked piece 
Potlid 
Hammerstone 
Core 
Retouched 

Morphology variables 
Crushing 

Edge snapping 

Microflaking 

Cortex 
Primary reduction 

Secondary reduction 

Tertiary reduction 

Heat alteration 

unit. 
Identifies excavation unit. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Further divided into left lateral remaining, right 
lateral remaining. 
Further divided into proximal remaining, distal 
remaining. 
Presence/ absence variable. 
Presence/absence variable. 
Presence/absence variable. 
Presence/ absence variable. 
Further divided into backed, unifacial, bifacial 
and other. 

Presence/absence variable denoting edge 
damage. 
Presence/absence variable denoting edge 
damage. 
Presence/absence variable denoting edge 
damage. 
Presence/absence variable. 
Presence/absence variable defined as the 
dorsal surface being comprised entirely of 
cortex. 
Presence/absence variable defined as the 
dorsal surface comprised partially of cortex. 
Presence/absence variable defined as the 
dorsal surface having no cortex. 
Further divided into greasy lustre, colour 
change, crenation, potliding and crazing. 
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Initiation type 

Erailure scar 
Erailure length 

Erailure width 

Erailure termination type 
Termination type 

Dorsal scars 
Dorsal scar metrics 

Dorsal step fracturing 
Dorsal weathering pattern 

Ventral weathering pattern 

Munsell colour 

Metric variables 
Maximum dimension 
Percussion length 

Percussion width 

Percussion thickness 

Assumed length, width and thickness 

Where types include hertizian and bending 
initiations. 
Presence/absence variable. 
Oriented along the direction of ringcrack to 
termination. 
Measured at 90 degrees and half way along 
the length. 
Includes feather, hinge and step terminations. 
Includes feather, hinge, step and outrepasse 
terminations. 
Presence/absence variable. 
Length and width measurements taken. The 
length was aligned from the initiation point to 
the termination and the width aligned at 90 
degrees and half way along the length. 
Presence/absence variable. 
Where types of weathering include no 
patination; smooth colour change (colour 
change as a result of weathering without 
visible texture change); course-hard 
granulated change (colour change 
accompanied by texture change as a result of 
weathering); course-chalky granulated (colour 
change accompanied by extreme texture 
change where the patina breaks down as a 
result of weathering). 
Where types of weathering include no 
patination; smooth colour change (colour 
change as a result of weathering without 
visible texture change); course-hard 
granulated change (colour change 
accompanied by texture change as a result of 
weathering); course-chalky granulated (colour 
change accompanied by extreme texture 
change where the patina breaks down as a 
result of weathering). 
Specific to the revised edition (1967) Munsell 
Colour Chart. 

Maximum dimension measured in mm. 
Measured in mm along the percussion axis, 
from the ringcrack to the termination. 
Measured in mm at 90 degrees and half way 
along the length. 
The distance between the ventral and dorsal 
surf ace, measured in mm at the intersection of 
the percussion length and width. 
Measured in mm, these measurements are 
recorded in situations where there are no 
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Platform variables 
Platform width 

Platform thickness 

Platform angle 

Platform type 

Platform crushed 
Cortex 
Partial cortex 

CONCLUSION 

diagnostic features from which to orientate 
percussion measurements. 

Measures the distance between each margin 
from the points where the margin connects 
with the platform. 
Perpendicular to the width, running from the 
ringcrack to the dorsal surf ace. 
angle between the platform and the dorsal 
surface taken at the ringcrack. 
Includes 1-2 flake scars, 3 or more flake scars 
and faceting. 
Presence/absence variable. 
Presence/absence variable. 
Presence/absence variable. 

Overall, a technological characterisation of the quarry will accomplish several things: 

it will provide a comprehensive description of a quarry site, something not yet done 

in Australia. It will also provide a characterisation of backed artefacts; one of (if not 

the) most common tool type in eastern Australia. It will also provide data to 

determine the degree of variation in the manufacturing behaviour. Analysis of 

technological change as investigated through the stratified rockshelter assemblages 

will direct the temporal framework of the theoretical discussion. Timing of this 

change will direct the nature of causal modelling for change and will establish 

patterns of use of the quarry through time. 
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CHAPTER 4 REGIONAL ENVIRONMENT, GEOLOGY 
AND PALAEOENVIRONMENT 

INTRODUCTION 

The goal of this chapter is to describe the physical environment of the Whitsunday region, 

with particular attention to the geology of the region, and particularly that of South Molle 

Island. Palaeoenvironment and sea level reconstructions are also described in this chapter. 

For the purposes of this study the study region is defined as the central group of the 

Cumberland chain of islands, also known as 'the Whitsunday Islands'. These are inclusive 

of the Molle group (North, Mid and South Molle Islands), Hayman, Hook, Border, 

Whitsunday, Hamilton, Long, Haselwood, Dent, Pentecost, Lindeman, Little Lindeman 

and Shaw Islands. Additional to these are several minor or satellite islands such as 

Daydream Island, Goat, Planton and Denman Islands (off South Molle Island), Pine Island 

(off Long Island), Teague, Lupton, Worthington and Edward Islands (off Whitsunday 

Island) and Doloraine Island (off Border Island) (Figure 4.1). 

REGIONAL ENVIRONMENT 

South Molle Island is the largest island in the Molle Group (also included in this group are 

North Molle, Mid Molle and West Molle or Daydream Island). The Molle Group of 

Islands is contained within the Whitsunday Group, which, itself, is a sub-group of the 

Cumberland Islands, lying off the central Queensland coast (Figure. 4.2). The study region 

lies between 20 and 21 degrees south, approximately 300 km within the Tropic of 

Capricorn, and can therefore be classified a having a tropical climate. Seasonal variation is 
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marked by hot, wet summers and moderate, dry winters. Annual rainfall totals for the 

Whitsunday region range from 1500 to 2000 mm, the majority of which falls between the 

months of December and March . 
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Figure 4.1 The main islands of the Whitsundays (from Barker 2004) 
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As a result of the high annual precipitation totals, vegetation in the Whitsunday region is 

prolific and varied. Typical vegetation types include vine thickets (Timonius timon, 

Ma/lotus, Ficus, Melia, Jagera and Albizia), grassy, open forest (Eucalyptus tereticornis, 

E. tessellaris, E. alba, Entermedia and Acacia sp.), grassland and shrub land (Timonius 

timon, Mallotus, Macaranga) and low, closed forest (Pisonia grandis predominates). The 

topography of the islands ranges from rolling hills to steep, rocky crags ranging up to 

300m and beyond. Shorelines are generally rocky and steep, although there are a few 

exceptions where sand or coral form a shoreline of gentle gradient. 

Land based birds occurring in the Whitsunday region include the Asiatic common tern 

Sterna hirundo, bar-tailed godwit Limosa lapponica, black tern Chlidonias niger, Black

naped tern Sterna sumatrana, Black-tailed godwit Limosa limosa, Bridled tern Sterna 

anaethetus, Brown booby Sula leucogaster, Caspian Plover Charadrius asiaticus, 

Caspian tern Sterna caspia, Cattle egret Ardea ibis, Common noddy Anous stolidus, 

Common sandpiper Actitus hypoleucos, Crested tern Sterna bergii, Curlew sandpiper / 

Calidris ferruginea, Eastern curlew Numenius madagascariensis, Eastern reef egret 

Egretta sacra, Fleshy-footed shearwater Puffinus carneipes, Glossy ibis Plegadis 

falcinellus, Great egret Ardea alba, Great knot Calidris tenuirostris, Greater frigatebird 

Fregata minor, Greater sand dotterel Charadrius leschenaultii, Greenshank Tringa 

nebularia, Grey plover Pluvialis squatarola, Grey-tailed tattler Heteroscelus brevipes, 

Lesser crested tern Sterna bengalensis, Lesser frigatebird Fregata ariel, Lesser golden 

plover Pluvialis dominica, Oriental cuckoo Cuculus saturatus, Pin-tailed snipe 
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Gallinago stenura, Wedge-tailed shearwater Puffinus pacificus, Wilson's storm petrel 

Oceanites oceanicus and the Wood sandpiper Tringa glareola (see Stokes and Dobbs 

2001 for a comprehensive list). 

Marine reptiles in the Whitsunday region include the flatback turtle Natator depressus, 

green turtle Chelonia mydas, hawksbill turtle Eretmochelys imbricata, leatherback turtle 

Dermochelys coriacea, loggerhead turtle Caretta carett and the olive ridley turtle 

Lepidochelys olivacea. Seabirds in the Whitsundays include the grey-headed albatross 

Diomedea chrysostoma and the wandering albatross Diomedea exulans (see Stokes and 

Dobbs 2001). Marine Mammals include the dugong Dugong dugon, bottlenose dolphin 

Tursiops truncatus, Bryde's whale Balaenoptera edeni, Cuvier's beaked whale Ziphius 

cavirostris, dense-beaked whale Mesoplodon densirostris, fin whale Balaenoptera 

physalus, Fraser's dolphin Lagenodelphis hosei, humpback whale Megaptera 

novaeangliae, Inda-pacific hump-backed dolphin Sousa chinensis, Irrawaddy dolphin 

Orcaella brevirostris, killer whale (Orea) Orcinus orca, Longman's beaked whale 

Mesoplodon pacificus, minke whale Balaenoptera acutorostrata, pantropical spotted 

dolphin Stene/la attenuata, pygmy killer whale Feresa attenuata, Risso's dolphin 

Grampus griseus, rough-toothed dolphin Steno bredanensis, sei whale Balaenoptera 

borealis, short-finned pilot whale Globicephala macrorhynchus, sperm whale Physeter 

macrocephalus, spinner dolphin Stene/la longirostris, strap-toothed beaked whale 

Mesoplodon layardii, and the striped dolphin Stenella coeruleoalba (Stokes and Dobbs 

2001). 
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Common fish species in the Whitsunday region include those of the family Scaridea and 

Labridae, which incorporate parrot fish, rainbow fish and wrasses. Shellfish species 

occurring commonly off the shore of many islands in the region include various species 

of Nerites, Monodonto labia and Acanthopleura gemmata. Common crab species in the 

region include Scylla serrata and Thalamita sima. 

South Molle Island 

South Molle Island lies between Shute Harbour on the mainland and Whitsunday Island, 

the largest of the Whitsunday Group. It is 420.5 hectares in size and forms part of the 

Great Barrier Reef Marine Park. The topography of South Molle Island consists of steeply 

rising peaks with an average slope of 1:3, but often reaching 1:2. The highest point on the 

island is 194 m above sea-level. All sides of South Molle Island are dissected by gullies, 

although these are not steeply embayed. 

Predominant vegetation types on South Molle Island consist of: 

Low microphyll vine forests (10%) plus Araucaria cunninghamii (hoop pine). The vine 

forests are usually restricted to the gullies and steep, exposed hill sides, while hoop pine 

clusters are found on the eastern or windward side of the island. 

Open forests with a grassy understorey (70%) consisting of Eucalyptus tereticornis, E. 

tessellaris, E. alba & E. intermedia with Acacia sp. The stands of Eucalypt species are 

found mostly on hillsides of a gentler gradient than those on which the vine forests are to 
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be found. 

Open grassland and shrubland (20%) consisting of Themeda, Imperata cylindrica, 

Xanthorroea, Lantana and Timonius. South Molle Island was heavily grazed in the early 

half of the 201h century. To facilitate the grazing environment, over half of the island was 

cleared of forest. It was this process, combined with heavy grazing, that brought about the 

grassland environment that is so typical of the island today. The grasses can reach over 

l.5m in height, especially in the centre and on sheltered parts of the island. 

The European constructed features on the island include a resort, jetty, water supply dam, 

rubbish dump, helicopter pad, golf course, houses, sheds, sewerage treatment plant, roads, 

walking tracks and cleared areas. Aboriginal places include the South Molle Island Quarry 

and South Molle Island Rockshelter 1. 

REGIONAL GEOLOGY 

In the Early Cretaceous there were two major simultaneous volcanic events that took place 

to form a large part of the regional exposed geology of the study area. These events are 

termed the Proserpine and Whitsunday Volcanics (Clarke et al. 1971; Bryan 1991), the 

timing of which fell between about 112mya and 96mya (Clarke et al. 1971:72). A basic 

distinction between the Proserpine Volcanics and the Whitsunday Volcanics is the 

conditions in which the sediments were deposited. The Proserpine Volcanics were 

probably erupted upon to a stable terrestrial block, while the Whitsunday Volcanics are 
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characterised as a "series of waterlaid pyroclastics" which were deposited in a land-locked 

basin to the east of the present day coastline (Clarke et al.1971 :72). Both events however, 

are considered to form the same volcanic province (Bryan 1991 :14). 

The following characterisation of the Whitsunday and Proserpine Volcanics is referenced 

to Clarke et al. (1971:35-47) unless otherwise indicated. The Whitsunday Volcanics is 

formed by a series of Pyroclastics and minor laval flows, which form most of the islands 

east of Long Island (refer to Figure 4.1, and see Figure 4.3). Many outcrops in this region 

consist of massive green, grey or brown rocks, ranging in size from small fragments to 

boulder size. These are all generally set within a fine tuffaceous matrix. The tuffs are 

composed of a fine devitrified ash (0.25mm - 0.005mm) and many are slightly 

recrystallised. Corrosion by sea water commonly weathers this finer material away, to 

leave the coarser rock exposed in sharp projections. Horizontal strata are rare in the 

Whitsunday Volcanics, with moderately steep, dipping beds alternating with gently 

undulating strata. The thickness of the strata is largely unknown, but they are speculated to 

be more than 1 OOOm thick. 

The Proserpine Volcanics are a sequence of minor pyroclastics, rhyolite and andesite, and 

are regarded as the 'terrestrial equivalent' of the Whitsunday Volcanics. As with the 

Whitsunday Volcanics, the Proserpine Volcanics are difficult to interpret due to faulting, 

but it is estimated that they are roughly 1 OOOm thick. 
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The geological strata that were the result of these volcanic events are divided into 'blocks' 

along several natural fault lines (these blocks also contain sub-strata from earlier 

geological episodes). There are two blocks that are relevant to this study: the Airlie Block 

and the Whitsunday Block. The Molle Group of islands is situated on the eastern 

boundary of the Airlie Block (Bryan 1991). The rest of the islands in the Whitsunday 

Group are contained within the Whitsunday Block, with the exception of Long and Pine 

Islands (refer to Figure 4.1 and see Figure 4.3). The following characterisation of the 

Airlie and Whitsunday Blocks are referenced to Clarke et al. (1971:69-71) unless 

otherwise indicated. 

The Airlie Block consists of the Edgecumbe Beds, the Airlie Volcanics and the Proserpine 

Volcanics, all of which are the result of volcanic events that took place between the Lower 

Carboniferous and the Lower Cretaceous. The Airlie Block is defined as a horst, formed 

as a result of Cretaceous or Tertiary earth movements, and its boundaries are defined by 

fault lines. Geological strata in the Airlie Block are nowhere horizontal, the majority 

having a north-northeast or south-southwest trend. The Whitsunday Block consists largely 

of Whitsunday Volcanics. The pattern of folding is obscure and gradients are of variable 

direction. No definite trends have been recognised. 

Clarke et al. (1971) place the Molle Group of islands on the western boundary of the 

Whitsunday Block. However, more recent studies have called this placement into 

question, and have modified the location of the Molle Group to the eastern boundary of the 
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Airlie Block (Bryan 1991). This revision is based largely on the system of major and 

minor fault lines that occur in the region. In earlier studies the Molle Fault has been 

interpreted as a major boundary fault (Clarke et al. 1971), while the Whitsunday Fault was 

considered a fault of secondary bounding significance between the Airlie and Whitsunday 

Blocks. However, aeromagnetic data for the Proserpine 1:250,000 map sheet area has 

revealed that the Molle Fault has little or no magnetic signature, while the Whitsunday 

Fault shows up as a major magnetic anomaly (Figure 4.4) (Bryan 1991:13; Bryan et al. 

2000). On the basis of this, the Whitsunday Fault is now considered to form the boundary 

between the Airlie and Whitsunday Blocks, thus placing the Molle Group of islands on the 

eastern boundary of the Airlie Block (Figure 4.4). 
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South Molle Island 

The following characterisation of the geological sequence of South Molle Island is 

referenced to Bryan (1991 :20-60) and Bryan et al. (2000) unless otherwise indicated. The 

volcanics in the Molle Group are considered to be part of a steeply dipping section of the 

Proserpine Volcanics. The lower levels of the sequence have been characterised as 

consisting dominantly of Pyroclastic fall and flow deposits, while the upper levels are 

predominantly lavas. Listed below is the sequence of volcanic deposits for the northern 

end of South Molle Island, starting from the oldest and proceeding to the youngest: 

1) Pyroclastic Fall: finely bedded units of crystal rich deposits. Pyroclastic Flow: a hot, 

fluidised, gas rich, high particle concentration of pyroclastic debris. 

2) Basaltic lava interbeded with pyroclastic flows: lavas with a silica content of less than 

56%, with much textural variation. 

3) Silica lava flow: variable deposits with high silica content. 

4) Pyroclastic surges interbedded with minor lava flows and sediments: unidirectional beds 

of turbulent, highly expanded, low particle concentration flows. 

5) Intermediate and basaltic lava flows: lavas with medium to low concentrations of silica. 

6) Rhyolite flow/dome complex: rhyolite lavas of fine to medium grain size. 

South Molle Island Quarry 

The geology of the South Molle Island Quarry material has been broadly characterised by 

Bryan (1991:49,56) as being part of a pyroclastic base surge deposit, exhibiting secondary 
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silicification. Surge deposits are formed by the lateral movement of pyroclasts as 

"expanded, turbulent, low concentration gas/solid dispersions" (Wright et al. 1980:318). 

These dispersions can mantle topography, but tend more to concentrate in depressions 

(subsequent uplifting has obliterated this characteristic on South Molle Island). 

Unidirectional sedimentary bedforms are a common feature of pyroclastic base surge 

deposits, and this is clearly in evidence on the South Molle Island Quarry (Figure 4.5). 

Figure 4.5 Vertically bedded nodules 
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Other Islands in the Study Region 

To date, there are no studies relating specifically to the geology of other islands in the 

region. Indeed, regional characterisations, and characterisations of islands other than the 

Molle group, rely on focusing on the "well exposed and tilted volcanic sequences of the 

Molle group of islands (Bryan et al. 2000:56). There are statements that can be made 

regarding the geology of islands such as Hook and Border Islands, however they are 

restricted to generalised statements, the parameters of which are set by the regional 

constraints of studies further to the south on the mainland (Parianos 1993 cited in Bryan et 

al. 2000:56). It can be stated that both Hook and Border Islands are dominated by rhyolitic 

ignimbrites and minor basalt lavas with individual units up to 300m thick on Whitsunday 

Island (Finnis 1999). Resting atop these ignimbrites are the proximal deposits of lithic 

breccias, course lithic ignimbrites and rhyolite domes (Bryan et al. 2000:58). These can be 

observed in small pockets on South Molle Island, Hook Island and Border Island, as well 

as on other islands peripheral to this study such as Whitsunday, Hamilton and Lindeman 

Islands (refer to Figure. 4.1) (Bryan et al. 2000:58). 

PALEOENVIRONMENT RECONSTRUCTIONS 

Paleoclimatic reconstructions for the study region rely largely on data obtained for 

northern Australia, from palynological evidence (Kershaw 1970, 1971, 1975, 1983; Chen 

1988; Goodfield 1983), chenier research (Lees and Clements 1987; Chapell and Grindrod 

1984; Cook and Polach 1973; Rhodes 1982), coastal and ocean sediment cores (Chapell et 

al. 1983; Harris et al. 1990; Genever et al. 2003) and from research into geomorphic 
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evolution of land forms (Hopley 1974, 1975). Various bio-indicators have also been 

examined with specific reference to the study region, in Barker's (2004) investigations into 

coastal economies for the Whitsunday region. As a thorough and comprehensive climatic 

reconstruction for the study region has already been undertaken (Barker 2004), I will limit 

this discussion to an overview of this reconstruction. As Barker (2004:499) has already 

stated, there have been criticisms leveled at the broad application of certain localised 

climatic evidence. However, recent archaeological studies have demonstrated that the 

environmental conditions outlined by Kershaw (1970, 1971, 1975, 1983) may have 

broader applicability (Barker 2004:49). 

A combination of data pertaining to late Pleistocene climatic conditions led to the 

following paleoclimatic reconstruction for the study region (Barker 2004:45-54). 

Palynological evidence from Lynch's Crater indicates that between 50,000 and 38,000 

years ago low araucarian vine forests were the predominant vegetation type, signifying that 

the mean average rainfall ranged between 900mm and 1,000mm. There was a shift to 

sclerophyll woodland between 38,000 and 26,000 years ago, perhaps a combined result of 

reduced rainfall levels and cultural firing of the landscape. Between 26,000 and 15,000 

years ago sclerophyll woodland continued to dominate and precipitation and temperature 

levels were lower than they had been in the past 50,000 years. Temperature and 

precipitation levels rose between 15,000 years ago and the beginning of the Holocene, 

while sclerophyll woodland continued to dominate (Kershaw 1981 ). 
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Palynological data from Lake Euramoo and Quincan Crater spans the Holocene and 

reveals significant vegetation changes, which are indicative of changes in mean 

temperature levels and possibly (although not necessarily) precipitation levels (Kershaw 

1970, 1971). The period between 9,700 and 7,600 BP saw a shift from dry to wet 

sclerophyll species (i.e. Eucalyptus to Casuarina). This was followed by a further shift 

after 7,600 BP to warm temperate rainforests, and then to dry, subtropical rainforests. 

Rainforest species remained dominant until 2,000 BP until a decrease in temperature and 

possibly precipitation levels encouraged the reemergence of sclerophyll woodland 

(Kershaw 1970, 1971). Further palynological evidence from Bromfield Swamp (Kershaw 

1975) and various northern Australia Holocene mangrove swamps (Crowley et al. 1990, 

Grindrod 1985, 1988, Grindrod and Rhodes 1984, Woodroffe et al. 1985) are in general 

agreement with the Atherton sequence outlined above (Barker 2004:47). 

An important source of data pertaining directly to the study area comes from Genever et al. 

(2003) which details a palynological study of Whitehaven Swamp, Whitsunday Island. 

Drawing upon interpretations of this data, which present a local swamp vegetation 

succession (and an extra-local or regional fire history and dry land vegetation history since 

the early Holocene on Whitsunday Island), the following reconstruction is presented 

(Genever et al. 2003). Just prior to 7,000 years ago, freshwater swamp conditions were 

initiated on Whitsunday Island. This was indicated initially by the presence of Ceratopteris 

"an aquatic fem of ephemeral freshwater environments" (Genever et al. 2003:149), 

suggestive of initially unstable swamp conditions, followed by the rapid and sequential 
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colonisation of Melaleuca, Cyperaceae and Leptocarpus, indicative of permanent 

freshwater swamp conditions from 6957 BP (Genever et al. 2003: 149). This trend 

continues uninterrupted until close to the top of the palynological sequence, at which time 

the presence of Leptocarpus declines, marking the "recent return to ephemeral swamp 

conditions" (Genever et al. (2003: 149). At the time of swamp initiation around 7,000 

years ago, the marine transgression was complete and the configuration of the Whitsunday 

Islands was established (see below). 

Evidence from chenier research into paleoclimatic reconstructions is more equivocal than 

that from palynological research. There seems to be dissention between camps as to the 

cause of differing frequencies of chenier construction through time. As Barker (2004:48) 

states: 

There seems little doubt that chenier construction occurred in the late 

Holocene; but whether this is linked to periods of increased aridity in the 

late Holocene as suggested by Cook and Polach (1973), Lees (1987), Lees 

and Clements (1987) and Rhodes (1980), or to other factors such as 

geometry of sedimentation conditions (Chapell and Grindrod (1984) 

specific to local conditions is, as yet, unclear. 

Work by Hopley (1973) on the geomorphological evolution of paleo-landforms, yielded 

the conclusion that arid to dry conditions were in place from 15,000 BP and that present

day patterns were in place around 10,000 BP. A recent study by Lees (1992), 
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incorporating data from cheniers, dune fields and lake deposits, refines the climatic pattern 

of the late Holocene. To summarise: 

the evidence .... demonstrates a pattern of greatly increased climatic 

instability in the last 5,000 years which continues to the present day: the 

drying trend began at 5,000 BP, was interrupted between 3,500 and 2,800 

BP and began again between 2,100 BP and 1,600 BP, and probably 

numerous times over the last 1,000 years (Barker 2004:48). 

Data for continued climatic fluctuations over the last 250 years comes from core drilling of 

coral bommies near the Burdekin River (Australian Institute of Marine Science). This 

evidence is in the form of humic compounds between growth bands of coral skeletons, 

which occurred as a result of increased fluvial run off (Barker 2004:49). The emergent 

pattern is as follows: from 1785 to 1801 there was a period of normal precipitation levels. 

From 1801 to 1901 conditions were, on average, drier than the preceding period, with 

drought periods interspersed with the occasional good wet season. Between 1901 to the 

present there were fluctuating wet and dry phases, usually lasting for 10 year periods 

(Isdale 1988). 

Summary 

It can be summarised from the above overview that a tropical environment was in place 

between c 10,000 and 7,000 BP. Certainly for the Whitsunday region the bioindicators 

point to such a climate being established by 7,000 BP (Genever et al. 2003). It must be 
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noted however, that the timing and placement of this generally early Holocene phenomena 

is subject to many regional variables which make it difficult to apply the pattern generally. 

A tropical climate appears to have predominated throughout the mid Holocene and into 

the late Holocene when, at c 2,000 BP, lowered precipitation levels and higher 

temperatures saw the partial return of a temperate climate. Note here also that the timing 

of this late Holocene change varies between data sets and regions. 

SEA-LEVEL RECONSTRUCTIONS 

A detailed early Holocene sea-level reconstruction has previously been undertaken by 

Barker (2004:49-52) for the Whitsunday region of the Great Barrier ReefMarine Park (see 

also Lourandos 1997). While acknowledging the great regional diversity that can exist on 

the north east coast of Australia (Barker 2004:50), Barker (2004) draws upon primary 

geomorphic studies for the central and northern Queensland coast and presents a carefully 

constructed sea-level profile for the study area, inclusive of Bowen in the north and Midge 

Point to the south. I will limit this discussion to an overview of Barker's (2004) sea levels 

profile. 

By calculating periodic mean sea-levels from compatible data obtained for north eastern 

Australia (Thom and Roy 1983; Grindrod and Rhodes 1984; Belperio 1979; Carter and 

Johnson 1986; Peltier 1988, although see Barker 2004:52; Nakada and Lambeck 1989; 

Hopley 1983), Barker (2004:49-52) postulates that sea-levels for 10,000 BP were at 30m 

below present mean low-water spring tide levels (MLWS), for 9,000BP were at 15.3m 
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below present MLWS and for 8,000BP were at 9.2m below present MLWS. However, 

upon excluding Peltier's data which Barker (2004:52) treats as anomalous, the following 

mean sea-levels are calculated: 10,000BP at 30m below present MLWS, 9,000BP at 18.6m 

below present MLWS (Figure 4.5) and 8,000BP at 1 lm below present MLWS (Figure 4.7) 

(Barker 2004:49-52). Barker (1995: 117) argues that a high degree of confidence can be 

placed in these calculations, as they conform closely to Hopley's data obtained from local 

reef core-samples taken off Hayman Island. 
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When applying sea level reconstructions to the Whitsunday region settlement patterns, 

Barker (2004:53-54) is able to make the following statements: at 9,000 years ago when 

people initially occupied Nara Inlet 1, the sea level was approximately 20m below present 
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levels and the island geography was significantly different. The Whitsunday Passage was a 

drowned valley, which separated a peninsula formed of the larger islands of the 

Whitsunday group, from the mainland (Barker 2004:53). Significantly, at this time the 

Molle group of islands (South, North and Mid Molle Islands) were already separated from 

the mainland, and formed one larger island. Nara Inlet 1, which was situated in a deeply 

cut river valley as part of the Hook catchment, would have been within lkm of the 9,000 

coastline. Between 9,000 and 7,000 years ago, the peninsula would have been separated 

from the coastline due to rising sea levels, and thus the islands were established with some 

degree of variation to the present day formation. Hook, Whitsunday, Haselwood and Cid 

Islands were part of a single landmass, and Long Island may still have been part of the 

mainland (Barker 2004:54). Initial occupation of Border Island at 6,900 BP would have 

corresponded with stabilisaiton. Distances between the Molle group and the mainland and 

other islands would have increased, although the difference is probably negligible. 

Stone provisioning strategies would have been affected to some degree, by changing sea 

levels and changing regional topography throughout the Holocene. The timing of 

technological changes in the stone artefact assemblage are assessed in chapter eight, and 

sea level reconstructions are revisited in chapter nine as part of modeling changing 

provisioning strategies and use of the South Molle Island Quarry. 
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CHAPTER 5 A CHARACTERISATION OF THE RAW 
MATERIAL SOURCE AND PROCUREMENT ON THE 
SOUTH MOLLE ISLAND QUARRY 

THE SOURCE 

As discussed in chapter 4, the South Molle Island stone is characterised as a 

pyroclastic surge deposit of a base surge type, and is referred to as a siliceous 

volcanic tuff (Barker and Schon 1994:5). These surges typically produce 

unidirectional bedforms which can include dune forms, low angle cross stratification, 

pitch and swell structures and wavy lamination. Unweathered, base surges range in 

colour from gray to black, and demonstrate a 'flint-like' habit which is the result of 

secondary silicification (Brian 1991 :55-56). 

The quarry stone occurs in several different physical forms, and the procurement 

techniques differ accordingly as will be outlined below. The two main 

distinguishable forms of raw material are the vertically bedded nodules (Figure 5.1) 

and the much larger, horizontally bedded slabs (Figure 5.2). The former occur 

primarily towards the southern end of the quarry. They tend to be rectangular in 

shape, and roughly as thick as they are wide, thus 'blocky' as opposed to tabular and 

range from l.2m to 15.Scm in length. Many of these vertically bedded nodules are 

still in their original geological context. That is, they are embedded in a soil matrix, 

with the top portion visible. There are also several incidences where the nodules 

have been worked loose from the soil matrix, however it is unclear whether this is a 

result of natural weathering forces, or by the knappers' design. 
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Figure 5.1 Vertical nodules (flaked) 

Figure 5.2 Horizontal bedrock 
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The horizontally bedded slabs tend to occur most frequently on the extreme northern 

end of the quarry where it begins a steep decent down to the beach, and on the beach 

itself. They differ from the vertically bedded nodules both in terms of size and the 

manner in which they occur in the soil matrix. Ranging from 2.Sm to 1.3 m in 

length, and l. lm to 3.2m in thickness, there are no obvious signs of systematic 

directional orientation within the soil. Further, due to the fact that they occur on a 

particularly steep slope on the northern end of the quarry, it is possible that they have 

shifted from their original positions as soil erosion occurs around them. 

Grain size, colour, and texture of the SMIQ raw material varies substantially across 

the site. This is in keeping with the overall characteristics of pyroclastic base surge 

deposits, which due to differing cooling rates, are typically finer grained further 

away from the source (Fisher 1999:http://magic.geol.ucsb.edu/~fisher/hydro.htm). 

Colours observed on unweathered rock were recorded for flake scars on cores, and 

on artefacts within the 'fracture type sample squares', and are discussed in the 

following section (see Table 5 .1 ). These samples form the largest taken across the 

quarry (batches of 5,786 and 1,003 respectively). Unweathered colour patterns were 

identified based on visual assessments of rock that had been freshly fractured 

through the process of heat spalling. 
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Table 5.1 Munsell colours on unweathered artefacts 
Percent Freguenc;r 

Munsell Description Unweathered Unweathered Unweathered Unweathered 
Flake Scars on Artefact Type Flake Scars Artefact Type 

Cores Data Data 
N2/0 Black 3.8 2.0 20 5 
N3/0 Dark gray 60.1 42.6 314 84 
N4/0 Grey 26.8 39.l 140 77 
N5/0 Grey 4.0 1.5 21 3 

10Y4/l Grey 0.5 1 
10Y5/l Grey 6.1 12 
5GY4/1 Dark olive gray 0.6 0.5 3 1 
5GY5/l Olive Grey 2.9 6.1 15 12 
5GY6/l Olive Gray 0.6 3 
5BG6/1 Bluish Gray 0.2 1 
10BG4/l Dark bluish Gray 0.2 0.5 1 

5G5/l Greenish Gray 0.2 1 
10GY5/l Greenish Gray 0.6 3 

Total 100 *98.9 
* munsell values are missing for several unweathered artefact specimens 

Table 5.1 demonstrates that the colour of the SMIQ source ranges from black, 

through dark gray, gray and olive gray, and finally at the other end of the spectrum, 

greenish gray. The further from black the colour, the larger the grain size of the 

stone (this value is unquantified and based on in situ visual assessments alone). 

Thus, it can also be said that (based on the observed trend between distance from 

source and grain size) the further from the volcanic source, the darker the stone. This 

extends in a clear north/south orientation in line with the quarry ridge top. The 

black, fine grained material occurs at the northern or beach end of the quarry, and 

grades into gray, courser grained material at the southern end. 

WEATHERING PATTERNS 

The degree of weathering on an artefact was characterised using the 

presence/absence of several variables: colour-change, and texture plus colour-

change - texture change being an indicator of greater weathering than colour change 

alone. These data were obtained from three samples on the quarry: flake scars on 

cores, retouched artefacts and the fracture type sample squares which collectively 
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represent a quarry-wide sample (Table 5.2). 

Table 5.2 Differential weathering patterns on the SMIQ 

Flake scars on cores 
Fracture-type 
squares 
Retouched artefacts 

No Colour change 
weathering (moderate weathering) 

% (N) % (N) 

10% (522) 
25% (198) 

26% (18) 

66% (3532) 
73% (576) 

64% (45) 

Colour + texture 
change 

(heavy weathering) 
% (N) 

24% (1279) 
1 % (10) 

10% (7) 

The dominant weathering pattern in all three samples is that of colour change alone, 

which implies that most of the quarry assemblage has been affected by moderate 

weathering as opposed to heavy weathering or no weathering at all (Table 5.2). Thus 

the quarry can be divided into three general components: not weathered, moderately 

weathered and heavily weathered. The possibility that differential weathering 

patterns were a product of microclimate variations or material variations was 

explored by comparing weathering patterns between individual fracture-type squares. 

These squares range in location from the northern tip of the quarry as it slopes down 

to the beach, to the southern end of the ridge top. Thus an examination of 

weathering patterns in relation to both microclimate variations and raw material type 

(grain size) variations can be achieved. 

Seven fracture type squares were analysed, covering four general study areas on the 

quarry (Figure 5.3). Generally, these study areas corresponded with areas of 

particularly high density artefact scatter). Within each study area, the pattern is 

similar to that observed on core flake scars, retouched artefacts and the collective 

sample of fracture type squares (Table 5.3). Moderate weathering identified by the 

presence of a colour change to the rock repeatedly presents as the dominant 
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weathering pattern, followed by that of no patenation and lastly the heavily 

weathered pattern. Expressed as individual samples, the pattern within each fracture 

type square is similar, with moderate weathering forming the bulk of each sample 

square, with some proportional variations between them (Table 5.4). 
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Figure 5.3 Fracture type square locations on SMIQ 
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Table 5.3 Weathering patterns across the quarry, according to study area 

No Patenation 
Smooth Colour Change (moderate weathering) 
Colour+ Texture change (heavy weathering) 

Area 2 Area 5 
26%(116) 12%(18) 
59% (261) 56% (83) 

2% (7) 

Area6 
21% (58) 

44% (121) 
.5% (1) 

Table 5.4 Weathering patterns across the quarry, according to fracture type squares 

Area 7 
4.5% (6) 

82% (110) 
.5% (1) 

Square 1 (area Square 2 Square 3 Square 4 Square 5 Square 6 
2) (area 2) (area 2) (area 5) (area 7) (area 6) 

Square 7 
(area 6) 

No Patenation 36% (38) 31 % 20% 12% (18) 4% (6) 26% (50) 10% (8) 
(27) (51) 

Smooth Colour 36% (38) 37% 75% 56% (83) 82% 
(110) 

36% (70) 61 % (50) 
Change 

(moderate 
weathering) 

Colour+ 
Texture Change 

(heavy 
weatherin ) 

5% (5) 

(32) (191) 

2% (2) 1% (2) 

The argument can be made that the pattern of moderate weathering that dominates 

across the quarry, mitigates the variation that can occur due to raw material variation 

and microclimate variation. Thus, a case can be made for differential weathering of 

flaked stone across the quarry, indicating varying lengths of exposure time, as 

opposed to variation between microclimates. This suggests that a relative 

chronology for periods of quarry use can be established. Although these differential 

weathering patterns can not be calibrated, we can say that most of the assemblage 

was flaked after one component and before the other. The implications of the relative 

chronology for quarry use are that there are multiple periods of use and further, that 

one period (the period represented by the moderately weathered artefacts) is a more 

intensive period of use than that preceding and proceeding it. 
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EXTANT, UNWORKED MATERIAL 

Unworked raw material on the SMIQ takes the form of nodules, originally bedded in 

a unidirectional manner and having once formed the ridge top of what is now the 

SMIQ (Cook unpublished report and 1998 pers. comm.). Data were recorded on 

unworked nodules from Areas 2, 3, and 3a/l. Most samples (84%) analysed exhibit 

a mantle of thick, course cortex with the exception of those shattered through thermal 

alteration (spalling) or other non-cultural means (16%). The mean nodule weight is 

3478gm. Length-to-width-to-thickness comparisons indicate that the majority of 

nodules are elongated and tabular in shape. This is further supported by the 

consistent width measurements. Three measurements for width were recorded at 

three equidistant points along the length of each nodule. The means for each width 

measurement are all within 30.2mm with remarkably similar standard deviations 

(Table 5 .5). The implication of this pattern is that the nodules are consistently wide 

along the three points selected for measurement, which indicates that they are tabular 

in shape (see also Figure 5.4). 

It is also important to note here that the mantel of cortex appears uniform in 

thickness both between specimens and on individual specimens of unworked 

nodules. Thus, knappers are not selecting nodules determined by the differential 

nature of the cortex, but rather determined by shape. A comparison of unworked 

nodule attributes and core attributes will be discussed below in an attempt to 

illustrate what type of raw material is being selected for reduction. 
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Figure 5.4 Length/width/thickness relationships for unworked nodules 

Table 5.5 Descriptive Statistics for unworked nodules 
N Minimum Maximum Mean Std. Dev. 

Weight gm 176 507 12000 3478.2 2312.2 
Length mm 176 107 560 265 89.9 
Width 1 mm 176 30 230 101.5 34.7 
Width 2 mm 176 48 260 120 37.4 
Width 3 mm 176 22 195 98.8 37.3 
Thickness mm 176 21 1527 71.5 112.8 

PROCUREMENT 

The use of the vertically bedded nodules is extensive and there appear to be several 

methods of procurement. The first I surmise, based on a set of assumptions 

regarding what we know about the source and how it outcrops. Base surge deposits 

result from a ground-level, horizontal surge of pyroclastic materials, mixed with 

water vapour and ash. These are frequently interspersed or overlain by pyroclastic 

fall deposits (Brian 1991 :55). In these instances, cross bedding can occur, with one 

type of material overlaying another. With differing capacity to withstand 

weathering, one material weathers faster than another, leaving discrete, 
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unidirectionally bedded nodules. These vary in size from several centimetres to 

several metres, and remain bedded in the soil matrix of the local sedimentary 

environment. Whether they are exposed or not, depends on local erosional 

conditions. 

Thus, the model is that procurement was a process of either selecting nodules for 

reduction in situ off the surface of the quarry ridge top, or obtaining nodules from 

just below the surface. There is evidence for both methods being employed on the 

SMIQ. Firstly, data from 22 in situ flaked outcrops (embedded raw material) was 

obtained which indicate that source material was selected from, and in these cases 

worked in, their original location. These data were recorded from Areas 2, 3, 6 and 

7. While all outcrops are of the typical siliceous volcanic tuff they vary considerably 

in size. The exposed portion of these outcrops ranged from 158mm to 2800mm in 

length, 105mm to 5 lOOmm in width, and 135mm to 3200mm in thickness (Table 

5.6). All outcrops examined had evidence of in situ flaking activity, with the average 

number of flake scars being 22 (maximum 127 and minimum 1). 

Table 5.6 Descriptive statistics of flaked outcrop dimensions 
N Minimum (mm) Maximum (mm) Mean (mm) 

Length 22 158 2800 758 
Width 22 105 5103 1163 
Thickness 22 135 3200 693 

Std. Dev. 
691 
1273 
717 

Secondly, a series of one square and three circular 'extraction pits' are situated on the 

ridgeline of the SMIQ, in Area 2. These pits are fashioned downward into the nodule 

bedforms, to a depth of up to l .5m, and varying from 1.2m to 2m in diameter. In one 

case, the base of the extraction pit reaches bedrock. It appears that the knappers were 
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retrieving stone from beneath the surface of the secondary artefact scatters, in an 

effort to either supplement depleted surface materials, or access materials of a better 

quality. The presence of slightly raised mounds of rock beside the pits suggest that 

people were not transporting the material far once it was retrieved. In fact, it seems 

likely that the material was reduced in situ, adjacent to the pits, given that they are 

located in one of the areas of particularly high artefact density along the quarry ridge 

top. 

Cores Selected for Reduction 

The general morphology of discarded cores on SMIQ, when compared with the 

extant, unreduced raw material, tends to be considerably more 'cubic' than 'tabular'. 

For example, the variance between average length and width of discarded cores 

remains consistently within 40mm of each other. A similar comparison between 

average length, width and thickness of unworked nodules demonstrates a much 

higher degree of variance, with differences between them reaching 194mm (see 

Figure 5.5). 
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Figure 5.5 Mean length, width and thickness for unworked nodules (left) and cores (right) 
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However, the possibility that the cubic shapes of cores selected for reduction are a 

product of the flaking process must be acknowledged. What is needed is an insight 

into the original size and shape of cores. In order to extrapolate the original size and 

shape of cores, I compare a sample of cores with the least amount of working (one 

platform worked only), with the unworked raw material (Table 5.7). This gives us 

the closest approximation possible of the original size and shape of material selected 

for reduction. 

Table 5.7 Dimensions ofunworked nodules and sinsle elatform cores 
Length Width 1 Width2 Width3 Thlckness 
(mm) (mm) (mm) (mm) (mm) 

Single Platform 128 ±45 124 ±45 135 ±46 108 ±42 91 ±32 
Cores (N=92) 
Unworked 269±90 101 ±35 123 ±37 98±37 73±27 
Nodules (N=176) 
T value -17.05 4.273 2.163 1.92 4.606 
d.f. 265 149 153 165 159 
Probabili~ <.001 <.001 0.032 0.055 <.001 

As Table 5.7 demonstrates, the mean length of the unworked material is more than 

twice that of the cores, while width measurements one and two and the thickness 

measurement are consistently higher. Thus on the basis of this simple test, it can be 

claimed that material selected for reduction is likely to be of a size and shape markedly 

different to the unworked material that remains on the quarry. 

On cores that have a greater degree of reduction in the form of more platforms used, we 

see a similar pattern (Table 5.8 and see Table 5.9 for significance tests). The mean 

length of unworked nodules is consistently higher than that of all cores, regardless of 

the number of platforms. T tests reveal that these means vary significantly between 

unworked nodules and cores with two, three, four and six platforms. All mean width 
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and thickness measurements on cores are also higher than the mean width and thickness 

measurements on unworked nodules, although they are closer to one another than the 

mean lengths and not all of the differences are significant. 

Width one varies significantly between unworked nodules and cores with one, two and 

three platforms. There are no significant differences when comparing width two, 

between unworked nodules and cores (Table 5.8). Width three on the other hand varies 

significantly between unworked nodules and cores with one and six platforms (although 

the latter is drawing on a very small sample size). Thickness varies significantly 

between unworked nodules and cores with one, two, three and four platforms. Overall, 

when comparing dimensions between unworked nodules and cores, we see significant 

differences being limited to cores that have been reduced the least amount. As one 

could expect, this difference is lost as cores are worked more extensively. This 

comparison leads me to conclude that the material selected for reduction tends to be 

considerably wider and thicker than the extant unworked material that was sampled 

from the quarry. 

Represented as a series of length/width2/thickness ratios, the pattern revealed by the 

comparisons of means suggests that the cores with two or more platforms worked are 

closer in length and width than are the unworked nodules (Table 5.10). It is also 

apparent that in most cases (apart from cores with six platforms) the thickness and 

width are closer than they are in the unworked sample. One possible interpretation of 

these data is that cores selected for reduction are more cubic in shape than the unworked 

material sampled. 
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Table 5.8 Mean length, width and thickness of cores with multiple platforms 
Number of Measurement Number Minimum Maximum Mean Std.dev. 
platforms 

2 Length 169 52 104 136.7 81.9 

Width 1 169 20 350 114.2 43.3 

Width2 169 23 360 130.7 50.1 

Width 3 169 18 330 108.0 48.9 

Thickness 169 26 250 94.3 38.1 

3 Length 106 14 260 129.4 45.8 

Width 1 106 20 270 114.3 44.5 

Width2 106 45 244 131.3 45.3 

Width3 106 29 210 101.8 41.8 

Thickness 106 34 225 95.7 36.5 

4 Length 36 42 280 131.8 48.3 

Width 1 36 53 240 126.5 43.l 

Width 2 36 47 250 133.5 44.6 

Width 3 36 38 200 99.5 36.5 

Thickness 36 40 186 90.7 30.6 

5 Length 13 73 622 186.3 139.9 

Width 1 13 48 210 128.2 46.9 

Width2 13 52 225 137.8 53.5 

Width 3 13 51 190 98.9 42.2 

Thickness 13 45 166 95.2 34.6 

6 Length 5 87 185 121.9 40.9 

Width 1 5 53 175 120.3 45.5 

Width2 5 78 240 167.3 67.6 

Width 3 5 79 195 163.2 48.1 

Thickness 5 42 120 83.5 29.6 

7 Length 3 67 195 138.3 65.2 

Width 1 3 72 138 112.0 35.2 

Width 2 3 81 173 135.7 48.4 

Width 3 3 102 127 113.0 12.8 

Thickness 3 79 130 96.3 29.2 
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Table 5.9 T tests for comparison of dimensions between unworked nodules and cores 
Unworked Two Three Four Five Six Seven 
nodules latforms Platforms latforms 
Length T=2.072 T=7.156 T=3.369 

d.f.=13 d.f.=6 d.f.=2 
=0.0529 =.000 =.0.086 

Width 1 

Width2 

Width3 

Thickness T=-5.97 T=-5.553 T=-3.223 T=-2.263 T=-0.784 T=-1.372 
d.f.=301 d.f.=174 d.f.=46 d.f.=13 d.f.=4 d.f.=2 
p=<.001 p=<.001 p=0.002 p=0.042 p=0.486 p=0.309 

Table 5.10 Length/Width2ffhickness ratios for cores and unworked nodules 
Un worked Two Three Four Five Six Seven 

platforms platforms platforms platforms platforms platforms 
L:W2 3.7/1. 1.4/1.4 1.3/1.4 1.4/1.5 1.9/1.4 1.5/2 1.4/1.4 
W2:T 1.7/1 1.4/1 1.4/1 1.5/1 1.4/1 2/1 1.4/1 

It appears from the discussion above that core selection was based on size and shape of 

available raw material, as evidenced by the contrast between the size and shape of 177 

unworked nodules and a sample of 424 cores from the South Molle Island Quarry. The 

following chapter will explore core reduction further, and in combination with the 

model for core selection presented here, will examine raw material availability on the 

South Molle Island Quarry. 
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CHAPTER 6 CHARACTERISATION 
REDUCTION SYSTEMS 

INTRODUCTION 

OF CORE 

The first section of this chapter (Core Rotation) aims to characterise core reduction 

on the South Molle Island Quarry. In doing this I will examine the extent and nature 

of core rotation including the number of platforms and the sequence in which they 

are used. I also examine flake scar morphology throughout the sequence of core 

rotation, in addition to platform angle and frequency of flake removal. 

Characterising these latter three aspects of core reduction will benefit the study in 

two ways: firstly, they will help to characterise changes in the reductive process as 

core rotation proceeds; thus certain inferences are enabled regarding rationale for the 

nature of the rotational sequence. Secondly it assists in the characterisation of the 

cores at the point of their discard. The second half of this chapter (Raw Material 

Availability) examines the availability of raw material on the South Molle Island 

Quarry by examining the viability of cores that remain on the quarry. This is 

achieved through a closer look at the interrelationship between core rotation and 

flake scar morphology. 

Core rotation is measured by the number and positioning of platforms upon the core. 

Multiple platforms in combination with flake scar frequency indicates greater core 

reduction (see below). Platform angle and flake scar morphology are indicative of 

the continued viability of the fracture plane orientated to a given platform. When 

the extent of rotation and the viability of fracture planes is assessed, statements 

regarding future viability of the core are enabled. It is this analytical approach 
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which allows me to assess the raw material availability on the South Molle Island 

Quarry, at the time of cessation of use. 

As noted in the previous chapter, knappers tended to select raw material that existed 

in a cubic form, over that in tabular form, the likely reason for which is that they 

provide a greater number of viable fracture planes from which to generate large 

flakes. Supporting this, is the clear evidence of core rotation on most cores. Eight 

platform positions were identified on the sample of cores analysed for this project. 

The platform positions were identified according to the position of the flake scars' 

point of origin, not the direction of the fracture plane. Therefore, a given platform 

position may produce flakes along multiple fracture planes (for example, Figure 6.1) 

Figure 6.1 One platform generating multiple fracture planes 

For the sake of consistency, each platform position is orientated to the first platform 

used. An adjacent proximal platform is on the adjacent face of the core to the first 

platform, at the proximal end (Figure 6.2a); an opposite proximal platform is on the 

opposite face of the core to the first platform, at the proximal end (Figure 6.2b ). 
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First platform 

a b 

Figure 6.2 a and b. Adjacent and opposite proximal platform positions 

An adjacent distal platform is on the adjacent face of the core to the first platform, at 

the distal end (Figure 6.3a); an opposite distal platform is on the opposite face of the 

core to the first platform, at the distal end (Figure 6.3b ). 

a b 

Figure 6.3 a and b. Adjacent and opposite distal platform positions 

An adjacent left lateral platform is on the adjacent face of the core to the first platform, 

on the left lateral side (Figure 6.4a); an opposite left lateral platform is on the opposite 

face of the core to the first platform, on the left lateral side (Figure 6.4b ). 

110 



a b 

Figure 6.4 a and b. Adjacent and opposite left lateral platform positions 

An adjacent right lateral platform is on the adjacent face of the core to the first 

platform, on the right lateral side (Figure 6.5a); an opposite right lateral platform is on 

the opposite face of the core to the first platform, on the right lateral side (Figure 6.5b ). 

a 

Figure 6.5 a and b. Adjacent and opposite right lateral platform positions 

It is important to note here that the patterns outlined below are the result of 

observations made on the observable reduction characteristics of cores. While in 

many cases the 'first platforms' utilised are not actually the first in the entire 

sequence (as these are no longer visible due to subsequent flake removal), however 

they are the first utilised in the observable sequence. Thus the observations made 

regarding sequence and order remain valid. 
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CORE ROTATION 

Seventy eight percent of cores analysed had multiple platforms. Of those, cores 

with two platforms counted for 51 percent, cores with 3 platforms counted for 32%, 

those with 4 platforms counted for 11 %, those with 5 counted for 4%, those with 6 

platforms counted for 1.5% and those with 7 platforms counted for 1 % (Figure 6.6). 
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Figure 6.6 Cores with multiple platforms 

Analysis of platforms took place in the order in which they were used; first through to 

last. Upon analysis, a pattern emerged which indicated that knappers had a definite 

preference for rotating the core along the adjacent face when selecting their second 

platform. Adjacent platform positions accounted for 68% of all second platforms 

selected. 

However, the further the cores were rotated (with a greater number of platforms being 

utilised), the more the knappers elected to move from the adjacent platform positions, 

to the opposite platform positions. For example, those cores with six platforms 

exhibited the reverse trend to those with only two , with 87% of sixth platforms being 

located on opposite platform positions. It is clear that as the cores became more 

112 



extensively used, the knappers would rotate the cores along the adjacent (and closest) 

face initially, and then move to the opposite face when the adjacent platform positions 

were exhausted (Figure 6.7; Table 6.1). 

Table 6.1 Platform positions relative to degree of core rotation 

Second platform 

Third platform 

Fourth platform 

Fifth platform 

Sixth platform 

Seventh platform 
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Platform Number 

Adjacent face 

68% 

49% 

55% 

39% 

13% 

NA 

4.00 

Opposite face 

31% 

51% 

45% 

61% 

87% 

NA 

5.00 

• Adjacent Positions 

111 Opposite Positions 
6.00 

Figure 6.7 Platform positions relative to degree of core rotation 

Size of Flakes Removed 

An examination of the data from a sample of 2,286 complete flake scars with 

recorded length and width, demonstrates that as the core was rotated from the fourth 
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to the fifth platform, and from the fifth to the sixth platform (in 61 % and 87% of 

cases respectively, this meant rotating the core onto the opposite face, see Table 

6.7), both the flake scar mean length and width increase marginally. Mean length 

and width of flakes detached from platform 4 was 44.8mm and 47.4mm 

respectively. This increased to 51.8mm and 50.6mm respectively from platform 5, 

and further to 55.0mm and 52.5mm respectively from platform 6 (Figure 6.8; Table 

6.2). Although not statistically significant when analysed with a t-test, this overall 

increase of 10.2mm in mean length and 5. lmm in mean width could support the idea 

knappers were benefiting by rotating the core from the adjacent to the opposite face, 

because in doing so, they were able to detach flakes of greater size. Additionally, it 

can be demonstrated that cores with a higher number of platforms yielded a greater 

number of flakes overall (Figure 6.9). 

Table 6.2 Comearison of flake scar lenGth and width on eiatforms in the rotational seguence 
Flake scar Platform Platform Platform Platform Platform Platform Platform 

one Two three four five six seven 
Mean 55.7±27.2 47.4±30.8 46.6±29.9 44.8±34.3 51.8±40.l 55.0±27.2 52.6±33.4 
length N=1068 N=676 N=318 N=l51 N=47 N=26 N=28 
(mm) 
Mean 51.7±30.1 48.3±28.l 44.7±26.9 47.4±28.7 50.5±38.4 52.5±32.3 60.9±52.3 
width N=666 N=421 N=212 N=94 N=36 N=21 N=20 
(mm) 

T=-1.694, d.f.=40, p=0.098 (comparison of mean length of flake scars between platform 4 and 
6) 
T=-0.667, d.f.=27, p=0.506 (comparison of mean width of flake scars between platform 4 and 6) 
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Figure 6.9 Number of platforms and average number of flake scars, per core 
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Platform Angle and Frequency of Flake Removal 

In a sample of 1,007 platforms, and 5,426 flake scars, the average number of flake 

scars preserved on each platform in the sequence was minimally varied from 2.5 

(first platform) to 1.3 (sixth platform) (Table 6.3). There is a relationship between 

where the platform is located in the rotational sequence, the average platform angle 

and the average number of flake scars removed from each sequential platform. The 

further along the platform is in the rotation sequence, the higher the average angle, 

and the fewer average number of flake scars originate from it. 

Table 6.3 Average platform angles and number of flake scars removed 
Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform 6 

Mean number 2.5±1.9 2.1±1.5 1.9±1.3 2.4±2.0 1.4±0.5 1.3±0.7 
of flakes 
Mean 
platform 
an le 

83±14.3 83±12.8 86±15.3 86±18.9 89±19.6 96±28.6 

As we are looking at platform angles at the time of discard, this indicates the point 

at which knappers were willing to cease work on a platform. It appears that in an 

effort to further reduce the cores, knappers were more willing to continue working 

platforms with higher angles, as core rotation progressed. As the earlier discussion 

of flake length and core rotation illustrates, this practice aided the knappers in the 

removal not only of a greater number of flakes overall, but also of longer flakes after 

the core was rotated to the fourth platform. 
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Summary 

Several general statements can be made regarding the nature of core reduction on the 

South Molle Island Quarry: 1) core rotation was practiced extensively, with 78% of 

cores analysed worked from multiple platforms; 2) there was a general preference 

for utilising the adjacent face of the core for the location of the second and third 

platforms; this preference shifted to the opposite face for the fifth and sixth 

platforms. The following changes to the reduction process indicate that people were 

rotating cores to achieve maximum flake removal: 1) there was an overall increase 

of 10.2mm in mean length and 5.lmm in mean width as knapper rotated the cores 

from the adjacent to the opposite face; 2) there was an exponential increase in the 

number of flakes detached from cores on which a greater number of platforms were 

utilised; and 4) there was an apparent willingness of the knapper to work with stone 

that became progressively untenable in terms of platform angles, as core rotation 

increased. Whether the cores were exhausted at the point of discard, and thus the 

implied availability of raw material across the quarry, is explored in the following 

section. 

RAW MATERIAL AVAILABILITY 

It has been suggested that knappers were selecting raw material for reduction, based 

on metrical dimensions that significantly exceeded those of the extant, unworked 

raw material on the SMIQ, and whose relative cubic proportions offered the benefit 

of being able to detach large flakes off a greater number of fracture planes (see 

chapter 5). This section aims to explore the question of continued availability of 

raw material that fits these requirements, firstly by way of examining the sample of 
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unworked nodules, and secondly by examining the potential of cores already 

worked, for further reduction. 

Unworked Nodules 

Within the sample of unworked nodules, which forms the quota of available 

(unworked) raw material, there are no cases which equal or exceed the length or 

projected mean width and thickness of material selected for reduction (Figure 6.10). 

Thus, on the basis of this sample it could be argued that raw material availability is 

limited to that which was deemed undesirable on the basis of size and potential for 

detaching an implied 'adequate' number of large flakes. 

0 
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Figure 6.10 Comparison of means including outliers and extremes. 
UN = Unworked Nodule; SN = Selected Nodule 
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Cores 

As is illustrated in Table 6.3, mean platform angles range from 83° to 96°. While 

the former is not particularly high, an unobstructed fracture plane would still be 

required in order to detach flakes that equal the length of the plane. Step and hinge 

terminations on the fracture plane, resulting from previous flaking attempts, have the 

potential to interrupt the progress of the force of a blow as it travels through the 

core. When the presence of step and hinge terminations become so prevalent as to 

prevent any flakes being detached, then the core can be considered 'exhausted'; that 

is, the core's potential for producing flakes is severely limited. Three factors 

(discussed below) suggest that the sample of cores from the SMIQ were near to 

exhaustion, or exhausted. 

Firstly, as a means to measuring the viability of existing cores on the SMIQ, the 

relative proportions of termination types per platform were quantified. The high 

proportion of hinge and step terminations suggest that a significant number of 

fracture planes were no longer viable: as Table 6.4 demonstrates, when the data are 

broken down according to platform number, hinge and step terminations combined 

make up between 57% and 65% of terminations. As a subtotal of all terminations 

recorded, regardless of platform number, they make up 60.2% (Table 6.6). A 

definite increase in the proportion of step terminations is also observable, the further 

the core is rotated (Table 6.6). This is suggestive of platforms becoming 

increasingly unusable as rotation progressed. Factors to do with individual core and 

platform morphology could be responsible for this, which is illustrative of the 

sequence of platform preference being based on a perceived idea of which platforms 

were likely to be most profitable. 
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When we look at the proportion of hinge and step terminations according to 

platform number, where the platform is the last platform used, the pattern is similar, 

with hinge and step terminations combined, making up between 50 and 69 percent 

of termination recorded on all last platforms used (Table 6.5). The percentage of 

hinge and step terminations, as a total percentage taken from all last platforms used, 

regardless of platform number is 57.2 percent. 

Table 6.4 Termination types according to platform number. 
Plat angle Feather Hinge Step Outrepasse 

# % # % # % # % 
Plats 1 83±14.3 402 39.2 367 35.8 248 24.2 8 0.8 
Plats 2 83±12.8 256 38.4 232 34.8 172 25.8 6 0.9 
Plats 3 86±15.3 136 43 100 31.6 80 25.3 0 0 
Plats 4 86±18.9 50 34 54 36.7 42 28.6 1 0.7 
Plats 5 89±19.6 18 38.3 11 23.4 18 38.3 0 0 
Plats 6 96±28.6 13 50 1 3.8 12 46.1 0 0 
Plats 7 Na 7 25 8 28.6 13 46.4 0 0 

Table 6.5 Termination types according to platform number, where platform number= the last 
1,?latform used. 

Plat angle Feather Hinge Ste)! Outre)!asse 
# % # % # % # % 

Plat 1 83 105 43 80 33 56 23 4 2 
Plat 2 82 132 41 104 32 85 26 2 1 
Plat3 84 65 46 40 28 36 26 0 0 
Plat4 82 13 32 17 42 10 25 0 0 
Plats 97 4 31 6 46 3 23 0 0 
Plat 6 112 3 50 1 17 2 33 0 0 
Plat 7 Na Na Na na na Na na na na 
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Table 6.6 Breakdown of termination data for all Elatforms, in all core classes 
N Cores with hinges Cores with steps Cores with hinge 

(N, %) (N, %) and step 
terminations (N, % ) 

Single Platform 91 25 (27) 11 (12) 25 (27) 

Cores 
Cores with2 169 

Platforms 
1st platform 85 (50) 55 (32) 32 (19) 
2nd platform 81 (48) 61 (36) 31 (18) 

both platforms 49 (29) 20 (12) 8 (7) 
Cores with3 106 

Platforms 
1st platform 57 (54) 26 (24) 15 (14) 
2nd platform 50 (47) 27 (26) 13 (12) 
3rd platform 38 (36) 32 (30) 12 (12) 

All platforms 9 (8) 4 (4) 1 (1) 
Cores with 4 36 

Platforms 
1st platform 17 (47) 12 (33) 5 (14) 

2nd platform 18 (50) 7 (19) 3 (8) 
3rd platform 20 (55) 12 (33) 5 (14) 
4th platform 15 (42) 11 (30) 4 (11) 

All platforms 4 (11) 0 (0) 0 (0) 
Cores with 5 13 

platforms 
1st platform 5 (38) 3 (23) 2 (15) 
2nd platform 8 (61) 1 (8) 1 (8) 
3rd platform 5 (38) 4 (31) 1 (8) 
4th platform 7 (54) 4 (31) 1 (8) 
5th platform 6 (46) 2 (15) 0 (0) 

All platforms 1 (8) 0 (0) 0 (0) 
Cores with 6 5 

Platforms 
1st platform 2 (40) 0 (0) 0 (0) 
2nd platform 0 (0) 2 (40) 0 (0) 
3rd platform 1 (20) 2 (40) 0 (0) 
4th platform 2 (40) 4 (80) 1 (20) 
5th platform 1 (20) 0 (0) 0 (0) 
6th platform 1 (20) 1 (20) 1 (20) 

All £latforms 0 (0) 0 (0) 0 (0) 

Secondly, I documented the percentage of all platforms (N=l,007) which generated 

multiple flake scars with either hinge or step terminations. While this is not directly 

analogous with an exhausted platform, it does suggest an impediment to the further 
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production of flakes of similar size, from the same fracture plane; and in 

combination with the points outlined below, it does suggest that such terminations 

were indeed a contributing factor. From a population of 1,007 platforms analysed 

for this study (on 423) cores, a sample of 797 or 79% of platforms had one or more 

flake scars terminating in either a hinge or a step (471 or 46.8% had multiple scars 

terminating in a hinge or a step). Of these, 484 or 48.1 % of platforms had one or 

more flake scars terminating in a hinge (284 or 28.2% had multiple scars terminating 

in a hinge) and 313 or 31.1 % of platforms had one or more flake scars terminating 

in a step (196 or 19.5% had multiple scars terminating in a step). 

These data can also be looked at another way: broken down according to the 

number of platforms per core, I documented the percentage of cores that had 

fracture planes which were 'interrupted' by either hinge or step terminations. The 

purpose of this was to gain an understanding of the relative percentages as they 

related to degrees of core rotation. As Table 6.7 demonstrates, there is a direct 

coefficient between cores with a greater degree of rotation, and a higher percentage 

of multiple fracture planes 'interrupted' by hinge or step terminations. For example, 

61 % of cores with three platforms had multiple fracture planes interrupted by step or 

hinge terminations. This suggests that knappers were rotating the core as a result of 

the interruption of fracture planes. Thus, fracture planes with flake scars terminated 

by hinges or steps could be considered exhausted, as evidenced by the continued 

rotation of these cores. 
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Table 6. 7 Relationship between cores by number of platforms and cores with multiple 
platforms interrupted by hinge or step terminations 

Single Platform Cores (N=91) 
Two Platforms (N=l69) 

Three Platforms (N= 106) 
Four Platforms (N=30) 
Five Platforms (N=13) 
Six Platforms (N=5) 

Seven Platforms (N=3) 

Cores with multiple platforms terminated 
by hinge or step terminations 

# % 
31 34 
81 48 
65 61 
30 83 
13 100 
3 60 
3 100 

Thirdly, an examination of metrical measurements according to termination type 

(Figure 6.11 ), demonstrates that blows to the core which result in step or hinge 

terminations tended to produce shorter flakes than those terminating in a feather. 

Thus, these flake scars not only interrupt the fracture planes, but disable the further 

production of large, elongated flakes from those fracture planes. These metrics are 

consistent between all platforms within core classes (cores with 2 platforms, cores 

with 3 platforms etc) (See Table 6.8 for a breakdown of these data according to last 

platform used). Thus, the relatively high proportion of step and hinge terminations 

across all platforms, regardless of their place in the rotational sequence, is associated 

with the production of flakes less than 60mm in length, which prohibits the further 

production of flakes larger than 60mm long. 
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Terrirakn T'yp:l 

Figure 6.11 Relationship between Mean length and termination type 

Table 6.8 Breakdown of termination/metrical data for all and last platforms in all core classes 
Number of #scars with Mean (N) & Std. Mean Width (N) & Std. 
platforms any recorded 

termination 
Lengthmm Dev. mm Dev. 

One 539 
Feather 186 78 (105) 38 67 (62) 35 
Hinge 238 55 (76)31 48 (54) 23 
Step 105 30 (56) 21 35 (47) 22 

Outrepasse 10 116 (3) 47 llO (2) 73 

Two 
All platforms 1296 

Feather 463 59 (298) 33 50 (187) 27 
Hinge 522 55 (249) 32 56 (156)31 
Step 303 28 (195) 19 33 (127) 18 

Outrepasse 8 105 (4) 36 83 (1) -
2"'1 Platform 335 

Feather 130 57 (127) 32 51 (74) 28 
Hinge 109 51 (107) 32 54 (67) 31 
Step 95 27 (95) 17 33 (61) 18 

Outrepasse 1 122 (1) 122 (0) -

Three 
All platforms 1012 

Feather 364 60 (249) 34 48 (186) 28 
Hinge 440 50 (211) 27 51 (137) 26 
Step 202 27 (122) 17 37 (94) 20 

Outrepasse 6 88 (3) 19 97 (1) -
3rd platform 165 

Feather 81 56 (80) 32 46 (61) 28 

124 



Table 6.8 Breakdown of termination/metrical data for all and last platforms in all core classes 
cont. 

Hinge 45 45 (44) 24 46 (28) 22 
Step 39 29 (38) 19 39 (28) 24 

Outrepasse 0 (0) - (0) -

Four 
All Platforms 367 

Feather 122 57 (89) 32 48 (52) 28 
Hinge 161 43 (109) 27 41 (68) 25 
Step 80 27 (57) 15 40 (42) 20 

Outrepasse 4 65 (3) 22 33 (1) -
4'h platform 60 

Feather 23 61 (23) 41 48 (15) 27 
Hinge 24 31 (23) 20 35 (14) 23 
Step 12 21 (12) 11 35 (6) 11 

Outrepasse 1 79 (1) - (0) -

Five 
All platforms 149 

Feather 58 57 (43) 39 51 (33) 24 
Hinge 63 50 (39) 32 48 (29) 29 
Step 28 33 (21) 30 40 (12) 25 

Outrepasse 0 (0) - (0) -
5th platform 16 

Feather 6 61 (6) 63 31 (4) 14 
Hinge 7 55 (7) 52 55 (5) 47 
Step 3 23 (3) 10 27 (2) 6 

Outrepasse 0 (0) - (0) -

Six 
All platforms 72 

Feather 34 50 (31) 25 38 (23) 24 
Hinge 19 53 (12) 34 61 (6) 15 
Step 19 32 (18) 22 32 (14) 13 

Outrepasse 0 (0) - (0) -
rfh platform 8 

Feather 5 36 (5) 18 26 (5) 11 
Hinge 1 17 (1) - (0) -
Step 2 57 (2) 40 (1) -

Outrepasse 0 (0) - (0) -

SUMMARY 

Based on the above data, I present the following model for raw material availability 

on the South Molle Island Quarry. In combination, data relating to the sample of 

unworked nodules, and the sample of cores on SMIQ, suggest that at the time the 

quarry ceased to be used, unworked raw material was not available in the form and 

quantity it was when the sample of cores studied was selected for reduction. 
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Furthermore, the majority of cores that remained on the South Molle Island Quarry 

were not generally viable for future reduction. This is based on several factors 

which are summarised in point form below. 

The size of the cores selected for reduction significantly exceeded that the 

existing unworked material. 

There is a high proportion of step and hinge terminations, which interrupt the 

production of flakes along any given fracture plane: these were documented in 

the following ways: 

- as a percentage of terminations, on a per-platform basis according to where 

it (the platform) was in the rotational sequence; 

- as a percentage of terminations on a per-platform basis when the platform 

is the final platform used in the rotational sequence; 

- the percentage of all platforms which had multiple negative flake scars with 

either hinge or step terminations were also documented; 

- the percentage of cores in each rotational class (one platform, two 

platforms, three platforms etc) that had platforms which were interrupted by 

either hinge or step terminations; 

An examination of metrical measurements according to termination type 

revealed that negative flake scars terminating in either a hinge or a step did not, 

on average, produce flakes longer than 60mm in length. The significance of this 

final point will be illustrated in the following chapter when I examine the 

patterns ofretouch occurring on the SMIQ. 
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HAMMERSTONES IN THE REDUCTION PROCESS 

As an essential component of the toolkit in the process of core reduction and artefact 

manufacture, hammerstones are frequently neglected in otherwise comprehensive 

technological characterisations of quarry and reduction sites. Hammerstones are a 

very visible aspect of the South Molle Island Quarry and a study of them was 

devised in order to determine which material was selected for hammerstone use, 

how the hammerstones were used in the process of reduction, and their place in the 

reduction sequence determined by overall metrics (size being an indication of their 

utility). A sample of 304 hammerstones was analysed for this study. 

Hammerstone Damage 

Hammerstone 'damage', not inclusive of impact pitting was assessed using two 

variables; that of 'split' and 'fragment'. A hammerstone was considered split, if it 

was damaged to the extent of loss amounting to between one quarter and one half 

(contiguous) of the surface area (Figure 6.12 a and b). A hammerstone fragment was 

identified ifthe piece was less than a 'half round'; that is if its radius was less than 

half of its original diameter (Figure 6.12c ). 
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A B 

Figure 6.12 Illustration of a broken hammerstone (A), a split hammerstone (B) and a 
hammerstone fragment (C). 

Hammerstone Material 

c 

Raw material type was recorded for 301 out of the 304 hammerstones (Table 6.9). 

The prevalent material was classified as a 'rough' ignimbrite which accounted for 52 

percent of all hammerstones. The other prevalent material was a 'smooth' 

ignimbrite. Both materials were naturally rounded beach cobbles, the origin of 

which was presumably a portion of South Molle Island shoreline, the closest point to 

the quarry being approximately 1 OOm to the north. The third raw material type was 

the siliceous volcanic tuff itself. This raw material type accounted for 6 of the total 

hammerstone sample. As this material is highly brittle and fractures easily, it was 

not a suitable material for heavy use and thus was not selected frequently. 
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Table 6.9 Hammerstone raw material types and mean weight (gm) on unbroken specimens 
Material Count Percent Mean Weight 

Smooth 
Rough 

Smooth (tuft) 
Total 

Hammerstone Use 

136 
159 
6 

301 

45 
52 
2 

99 

gm(StDev) 
420 (423) 
872 (633) 
472 (276) 

Hammerstone use was analysed using three variables: 'pitted one end', 'pitted both 

ends' and 'pitted margin'. The assumption here, is that hammerstones with multiple 

worked ends (margins included) had a heavier use-life than those worked on single 

ends only. The term 'heavier use-life' is used to indicate prolonged use (indicated 

by hammerstone rotation). These variables were examined (in combination with 

each other, and in isolation) in relationship to material type and weight, with a view 

to making statements regarding raw material selection for particular types of 

reduction activity. 

Of the total sample, a population of 68 hammerstones (22%) exhibit pitting on one 

end, 48 (16%) exhibit pitting on both ends, 35 (11 %) exhibit pitting on one end and 

the margin, while 89 (29%) exhibit pitting on both ends and the margin. These four 

use categories are explored below, and some very interesting trends are illuminated. 

(When I introduce the weight and dimensions of hammerstones into the discussion, I 

draw on data for unbroken specimens only.) 

Pitted on One End 

In total, there are 20 unbroken hammerstones (17% of 118 in total) which are pitted 

on one end only. When mean weights are compared between material types for this 
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use-class, there is no significant difference between the smooth and the rough 

ignimbrite (Table 6.10). As the rough ignimbrite tends to be, on average, heavier 

than the smooth, this similarity is noteworthy. If limited working on the 

hammerstone (indicated by pitting on one end only) is indicative of either work of a 

short duration, or work that takes place late in the reduction sequence (for example 

retouch), then it is reasonable to conclude that the knappers did not select robust 

hammerstones for such work. 

Table 6.10 Mean weight of unbroken hammerstones1 according to extent of use and material. 
Use One End Both Ends One End + Margin Both End + Margin 

% 17% 17% 7% 34% 

Material Material Material Material 

1 2 3 1 2 3 1 2 3 1 2 3 

N 17 3 4 15 1 4 4 11 26 3 
Mean 240 283 248 799 226 242 799 545 993 554 
weight 
St Dev 142 73 128 869 88 516 525 488 272 
Mean 79 90 71 96 100 76 123 91 106 95 
length 
St Dev 17 19 15 25 9 38 26 22 12 
Mean 52 54 54 81 46 55 75 66 92 81 
width 
St Dev 12 7 10 26 13 18 19 16 5 
Mean 38 35 38 60 34 38 53 49 68 56 
thick 

St Dev 10 8 11 21 8 8 16 13 21 
Material l=smooth ignimbrite; 2=rough ignimbrite; 3=tuff 

Pitted on Both Ends 

There are 20 (17%) unbroken hammerstones in this use-class also. However, unlike 

those worked on one end only, this sample of hammerstones shows a significant 

weight disparity between raw material types which can not be accounted for by the 

dimensions (Table 6.10). Mean weight of hammerstones made on rough ignimbrite 

within this use-class is 3.22 times heavier than those of smooth ignimbrite. This is 
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suggestive of rough ignimbrite being selected in preference to smooth (as evidenced 

by the frequencies of each - 75% and 20% respectively) for hammerstones that 

undergo a heavier use-life. 

Pitted on One End + the Margin 

This use class is composed of 8 specimens only and the weight disparity between 

rough and smooth ignimbrite is almost identical to that of the previous use-class. 

Unlike the previous use-class however, there is a 47mm difference between mean 

lengths of rough and smooth ignimbrite, which could explain the weight disparity. 

Because of the particularly small sample, and the degree of variance between raw 

material mean lengths, I am not modeling any preference for raw material within 

this use class, based on weight. 

Pitted on Both Ends + the Margin 

Comprised of 40 unbroken specimens, this use-class forms the largest in the sample 

of hammerstones (34%). There are two interesting observations to be made about 

the hammerstones in this class: firstly, that the weight disparity between smooth and 

rough ignimbrite is to be found here, as in the other two classes; this remains 

constant. Secondly, that the sample of smooth ignimbrite hammerstones in this class 

are heavier than those in the other use-classes (Table 6.10). This second point is 

particularly suggestive of knappers selecting heavier hammerstones for work that 

involves prolonged use. 
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Summary 

Four use-classes were identified among the sample of hammerstones from the 

SMIQ: pitted on one end, pitted on both ends, pitted on one end and the margin, 

pitted on both ends and the margin. These classes represent a progressively heavier 

use-life in the form of prolonged use, as evidenced by harnmerstone rotation. A 

clear connection exists between hammerstone rotation and the selection of larger, 

heavier cobbles for this type of prolonged use. This selection of heavier cobbles is 

largely restricted to the use of rough ignimbrite, except for the use-class which 

represents the most prolonged use - that of pitted on both ends + the margin, when 

heavier cobbles of smooth ignimbrite are also selected. 
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CHAPTER 7 RETOUCHED ARTEFACT 
PRODUCTION ON THE SOUTH MOLLE ISLAND 
QUARRY 

In the previous two chapters I examined the nature of raw material on the South 

Molle Island quarry, including the form in which it occurred, the morphology of the 

unworked material, and I examined which cores were being selected for reduction. 

In combination with an examination of how the cores were being reduced, I was able 

to make certain predictions about raw material availability. The focus of this chapter 

is to investigate the next stage of reduction; that is, retouch of flakes. 

A CHARACTERISATION OF RETOUCH ON THE SOUTH MOLLE 
ISLAND QUARRY 

As outlined in Chapter 3, a systematic survey for retouched flakes was undertaken 

with the aim of characterising the range of retouch on the South Molle Island Quarry. 

The sample of retouched artefacts contained two preliminarily identified classes: 

backed (N=329) (see Figure 7.1) and non-backed (N=117) artefacts. The aim of the 

analysis contained in this section is to comprehensively characterise the retouch 

technology occurring on the quarry. This is achieved through both metric and non-

metric tests which determine both variability and extent of retouch. The tests will 

determine retouch direction, retouch location, percentage of length retouched, extent 

of retouching and size of retouched artefacts. 
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Figure 7 .1 Backed artefacts from the south Molle Island Quarry 

Retouch Direction 

The aim of the category retouch direction is to determine from which side of a flake 

the retouch originates. Thus, the concept of retouch direction relies on the 

satisfactory identification of the dorsal and the ventral surfaces of a flake. During 

analysis, two directional categories were identified in order to determine retouch 

direction: bi-directional and unidirectional. Bidirectional denotes that the retouch 

originates from both the ventral and the dorsal surf ace of the flake, while 

unidirectional denotes the origin of the retouch as being either the ventral or the 

dorsal surface. In order to refine the nature of the data gathered, the two categories 

were further broken down into the subsets of: unidirectional from dorsal surface only 

and unidirectional from ventral surface only). Table 7.1 illustrates a polarity 

between backed artefacts and non-backed artefacts in terms of retouch direction, with 

the majority of backed artefacts exhibiting bi-directional retouch, while the opposite 
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is true of non-backed artefacts. The differences in the proportion of bi-directional 

retouch between categories also prove significant (X2= 100.771; P=<.0005). This result 

is of particular note and will be discussed in more detail below. 

Table 7.1 Direction of retouch on all retouched artefacts. 
Bi-directional Unidirectional 

Backed Artefacts (N=l46) 90 (62%) 

Other Retouch (N=63) 17 (27%) 

From dorsal only 
12 (8%) 

From dorsal only 
22 (35%) 

53 (36%) 

46 (73%) 

From ventral only 
41 (28%) 

From ventral only 
21 (33%) 

*Note: a small portion of retouch was categorised as 'indeterminate' in regards to direction. 

Retouch Location 

The location of retouch was recorded as right, left, proximal or distal margins, 

oriented according to the ventral surface. Adjacent margins are defined as distinct 

from one another according to the orientation of the retouch to its opposite margin 

(right being opposite to left, and proximal being opposite to distal). For example, if a 

line extending out perpendicular to the proximal margin locates retouch on the 

opposite margin, then that retouch is said to be located on the distal end. If a line 

extending out perpendicular to the left margin also encounters the retouch, then it 

would be classed as occupying two margins: distal and right. 

Generally, the majority of retouched flakes were retouched on one margin only (this 

is in keeping with the generally low curvature index for backed artefacts - see 

below). However, of note is the fact that non-backed artefacts exhibit significantly 

higher rates of retouch on multiple margins than do backed artefacts (Chi Square= 

100.771; P=<.0005). This is suggestive of a sub-grouping exhibiting generalised 

retouch on a range of margins, and not exclusively devoted to early-stage backing of 
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a single margin (Table 7.2). However, the retouching of multiple margins could 

instead suggest that this group represents the reworking of backed artefacts. If this 

were the case, we might expect to see similar if not lower mean weights for such a 

'reworked' (non-backed) sample. In fact, the opposite is observed (Table 7.3). A t-

test indicates that non-backed artefacts are significantly heavier than backed artefacts 

(Table 7 .3). 

Table 7.2 number of margins retouched. 

Backed (N=l46) 
Non-backed 
(N=63) 

I Retouched 2 Retouched 
Margin 

103 (71 %) 
35 (56%) 

Margins 
17 (12%) 
15 (24%) 

3 Retouched 
Margins 
2 (1%) 

7 (11 %) 

4 Retouched Missing 
Margins Data 

24 (16%) 
1(1.5%) 5(8%) 

Table 7.3 average weight of artefacts, according to number of margins retouched 
I Retouched 2 Retouched 3 Retouched 4 Retouched 

Margin Margins Margins Margins 
Backed Mean Weight 160g 214g 136g 
(N=l46) 
Non-backed Mean 724g Ill lg 1527g 3259g 
Weight (N=63) 
t-test p=.001 p=.004 p=.006 

Percentage of Maximum Length Retouched 

For the purposes of this analysis, maximum retouch length is defined as the length of 

the longest section of retouch, measured from two extreme points of impact. Table 

7.4 illustrates that on average, the percentage of the maximum length retouched on 

backed artefacts is 20% greater than that of non-backed artefacts (t-test, p = <.0005). 

Standard deviation is also 8.2% less than for non-backed artefacts, and the 

interquartile range of the backed group occupies the top fifth of the non-backed 

('other retouched') range (Figure 7.2). Essentially, this indicates that in many 

instances backed artefacts are retouched along most, if not all, of the margin selected 
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for retouching and when compared to the non-backed category, they are retouched 

along greater proportions of their margin lengths overall. Although there does exist a 

degree of overlap within the top of the range of the 'non-backed' category that is 

equivalent to the range within the backed artefact category (discussed below) (Figure 

7.2). 

Table 7.4: Mean percentage of length retouched on backed and non backed artefacts. 
T=S.318, d.f.=80, p=<.001 

Backed 
Non-backed 

N 

146 
59 

100 

Mean percent of maximum length retouched 
(mm) 

106 

Other Retouch 

89.55 
70 

301 

Backing 

Figure 7 .2 Percentage of maximum length retouched. 

Std. Dev. 

17.7 
25.9 

137 



Extent of Retouching 

In order to determine extent of retouching, three tests were conducted on the South 

Molle Island Quarry sample: Kuhn's Reduction Index (Kuhn 1992), the Edge 

Curvature Index (Hiscock and Attenbrow 2002), and the measurement of retouch 

edge angle as an indicator of retouch intensity (e.g. Clarkson in press; Dibble 1995; 

Hiscock 1982) (Table 7.5). The use of the Kuhn Index as a tool for measuring 

reduction intensity has been discussed extensively by Clarkson and Hiscock (in 

press). Essentially the test provides a relative measure of reduction by establishing a 

ratio of retouch height to flake thickness. This is measured on a scale of 0 (no 

reduction) to 1 (complete reduction). The edge curvature index is determined by 

dividing the depth of retouch by the retouch span (Hiscock and Attenbrow (in press). 

A negative value indicates a concave edge, while a value of >0 indicates a convex 

edge. A higher positive value represents a greater convex edge. 

Table 7.5 Kuhn's reduction index, curvature index and retouched edge angle 
N Backed Non-backed T test 

Kuhn Reduction Index 
(mean, std. dev.) 
Curvature Index (mean, 
std. dev.) 
Retouched Edge Angle 
(mean, std. dev.) 

Artefacts 
232 0.97±0.07 

233 0.17±0.08 

372 87.5±11.2 

Artefacts 
0.96±0.06 

0.2±0.09 

71.7±17.4 

T=l.652, 
d.f.=451, p=0.099 

T=3.803, 
d.f.=457, p=<.001 

T=l4.727, 
d.f.=633, 
=<.001999 
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0 

Std. Dev = 29.16 

Mean= 82.2 

N = 84.00 
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Backed Artefacts - Percussion Length (mm) 

Std. D9v = 38.32 
tv'ean = 106.8 

N=46.00 

40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 
50.0 70.0 90.0 110.0 130.0 150.0 170.0 190.0 

Non-backed Artefacts - Percussion Length (mm) 

Figure 7 .3 Percussion length of retouched artefacts, illustrating a bimodal pattern within the 

sample of non-backed artefacts 
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Two observations can be made from Table 7.5. Firstly, according to the Kuhn 

reduction index and the curvature index, the majority of implements in the sample 

are reduced to a uniform extent and exhibit no significant differences in shape 

between backed and non-backed categories. Secondly, there is a highly significant 

difference (t-test, p=.000) in retouched edge angle between the two retouch 

categories, with non-backed artefacts recording lower retouched edges than the 

remainder of the sample, while maintaining a near-maximum Kuhn reduction index. 

Size of Retouched Artefacts 

The majority (83.5%) of backed artefacts show a unimodal distribution for 

percussion length of between 50mm and 105mm, and centred on around 70mm 

(Figure 7.3). The non-backed artefacts on the other hand show a bi-modal 

distribution. The lower mode overlaps almost exactly with that of backed artefacts, 

but the upper mode (37% of non-backed specimens) indicates the existence of a 

group of much larger artefacts with a percussion length centred on around l 60mm. 

These larger non-backed artefacts are also more often retouched on multiple margins 

(59%). Thus, while both backed and non-backed artefacts are common up to around 

11 Omm, only non-backed artefacts retouched on multiple margins are common above 

this size. 

Edge Angle and Scar Size 

Both the Kuhn Reduction Index and the Curvature Index results indicate that the 

sample of retouched artefacts has been reduced to a reasonably uniform extent (refer 

to Table 7.5). Yet despite the fact that both groups show extensive retouching, there 
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is a significant difference in the mean retouched edge angle of each group, with non

backed artefacts showing much lower edge angles than backed artefacts. 

We might typically expect edge angles either to increase as unifacial reduction 

increases and step terminations build up, as found by Clarkson (in press), or to 

increase and then decrease as these areas of steeply retouched edge are removed by 

deep blows, as found by Hiscock and Attenbrow (in press). Which of these models 

best explains the differences in edge angles noted between the backed and non

backed implements found at the SMIQ might be investigated by considering the size 

of retouch flake scars themselves. Very large and invasive flake scars could 

conceivably succeed in producing very high Kuhn index values while also 

maintaining edges at fairly low angles. Figure 7.4 demonstrates that this in fact 

seems to be the case, and that a greater range and mean length of retouch scars is 

found for the non-backed category than for backed artefacts. The conclusion that can 

be drawn from this test is that some artefacts received relatively short, steep-edged 

retouch, while others had long flakes removed from their margins that did not overly 

increase edge angle. 
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Figure 7.4 Mean length of retouch scars. 

Discussion: The Nature of SMIQ Reduction Strategies 

Together, the results of the tests presented here suggest that two quite distinctive 

reduction processes were in operation at the SMIQ in the past. The first focussed on 

the production of backed artefacts ranging in size up to around l lOmm in length, that 

were steeply and bi-directionally retouched along a single margin. The second 

strategy was focussed on the production of flakes from numerous margins of large 

flakes (i.e. greater than l lOmm in length). While the size distinction seems important 

in separating these two reduction processes, the overlap between backed artefact and 

the lower mode in non-backed artefact length is still to be explained. It is suggested 

here that the smaller mode may represent early-stage backed artefacts that had not 

yet progressed from single margin unidirectional retouching to the single margin bi-

directional flaking that defines backing. 
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For example, in backing an edge it might be expected that the length of the edge 

might be unifacially flaked in its entirety before turning the artefact over and 

working it from the other side, giving it is bidirectional form. Thus, the higher rate of 

unidirectional retouch on smaller (i.e. <11 Omm), unimarginal, non-backed artefacts 

could indicate that many of these represent an early stage in the backing process. 

This smaller group is also characterised by a corresponding percentage of length 

retouched which falls within the range for backed artefacts (Figure 7.4). 

In contrast, the differences in retouch location provide an indication that the larger 

grouping of artefacts within the non-backed category (i.e. > 11 Omm) can be 

distinguished from both backed artefacts and early-stage backed artefacts. Artefacts 

within this group have multiple margins retouched - suggestive of a more generalised 

flaking around the perimeter of the flake. This sub-group also exhibits large flake 

scars and low edge angles indicative of a very different reduction strategy. I propose 

that this subgroup of non-backed retouched artefacts was used to produce flakes from 

their margins of comparable size to those produced from cores. To support this 

assertion, two further lines of evidence can be presented. Firstly, retouch scars found 

on the larger non-backed artefact group average 53.5mm in length, compared with an 

average of 21.4mm for those found on the smaller non-backed artefact group, and for 

the sample of backed artefacts longer than 120mm (t-test, p=.000). Secondly, the 

mean length for flake scars measured on a sample of 424 cores from the SMIQ, is 

50. lmm. Thus the length of flake scars on the large non-backed artefact group 

compares very favourably with that of cores. There is therefore strong evidence to 
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support the existence of two very different strategies of flake retouch having been 

practised at the SMIQ. 

BACKED ARTEFACT REDUCTION 

The purpose of this section is to characterise several variables linked to the 

manufacture process of backed artefacts on the SMIQ, with a view to the 

identification of similar variables within assemblages of flaking debris both on the 

quarry and within the stratified rockshelter assemblages in the Whitsunday region. 

The general aim of this exercise is to 1) determine whether the flaking debris on the 

quarry can be linked to the production of backed artefacts; this will lead onto the 

second aim of the exercise (Chapter 8) which is to 2) identify and date the production 

of backed artefacts in the surrounding area by dint of the rockshelter assemblages. 

The selection of variables to use as comparative measures between implied backing 

debris and debris excavated on the quarry and in the stratified rockshelters, involved 

a process of determining variable differentiation between the two artefact classes 

(backed and non-backed). This process allowed me to firmly differentiate material 

resulting from the production of backed artefacts from that of the production of non

backed, retouched artefacts. Variables selected were length of retouch scar - being 

directly analogous with flake length, and angle of retouch - being indicative of the 

platform angle on the retouched flake. These variables were measured on the SMIQ 

sample ofretouched artefacts (Table 7.6). 
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Table 7.6 Descriptive statistics for backed and non-backed artefacts 
Retouch angle (dorsal) Significance t-test P=<.001 
Retouch scar length Significance t-test P=<.001 

Backed artefacts 
Average retouch angle (ventral 

surface) 
Average length retouch scar (mm) 

87.5 
St.Dev. 11.2 

10.3 
St. Dev. 3.7 

Non-backed artefacts 
71.4 

St Dev. 17.4 
18.6 

St. Dev. 13.9 

Table 7 .6 demonstrates that length of retouch scars and retouch angle vary 

significantly between retouched artefact classes. Because the debris produced from 

the backing process is easily distinguished using these two variables, it is reasonable 

to use these variables when attempting to characterise debris excavated on the SMIQ 

and the stratified rockshelter sites, as being the result of the backing process, or some 

other form of artefact retouch/reduction. 

Squares Nl and Sl: Characterising the Debris 

Squares Nl and Sl were selected for excavation because they contained clear 

indications of backed artefact manufacture (Square S 1 contained 6 backed artefacts 

while Nl contained 5 backed artefacts on the surface layer) (Figure 7.5). Upon 

initial assessment, both the small size of the surrounding flaking debris and the 

presence of hammerstones, indicated that the debris surrounding these backed 

artefacts was linked with their manufacture. The aim of the following analysis is to 

test whether this could indeed be the case by comparing the attributes of percussion 

length and platform angle on the dorsal surface with the analogous attributes on the 

sample of retouched artefacts (as discussed above, being directly analogous to the 

flake scar length and retouch angle recorded on retouched artefacts). The results of 

this analysis will then be compared to material from several stratified rockshelter 
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sites in the region, in order to clarify the nature of technological activities being 

carried out in these sites (Chapter 8). 

Figure 7.5 Square Sl, before and after excavation 
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The analysed sample from excavated square Nl contained 2,428 artefacts. Of these, 

774 were non-retouched flakes with recorded percussion lengths. The percussion 

length on 445 (57%) of these flakes fell within the range of length observed on 

backed artefact retouch scars (2.3 - 36.8mm). A similar sample was analysed from 

excavated square Sl. The analysed sample contained 2,810 artefacts, 953 of which 

had recorded percussion lengths. Of these 717 (75%) fell within the of flake scar 

length observed on backed artefact retouch (2.3 - 36.8mm). 

Thus I argue that it is reasonable to state that a portion of the assemblages from Nl 

and Sl (18% and 25% respectively) could have been the by-product of backed 

artefact manufacture, based on the comparison of percussion length between backed 

artefact retouch scars and flakes from the quarry assemblages (Nl and Sl). 

This argument can be further substantiated by examining the platform angle of 

artefacts in excavated squares Nl and Sl and determining how closely they reflect 

the retouch angles of backed artefacts. This test is conducted on the assemblage as a 

whole (Table 7. 7 _), and on the portion of the assemblage which fits the size range of 

backing scars (Table 7.8). 

Table 7.7 Platform angles compared (whole assemblage) 
Significance t-test P=<.001 

Mean Plat Angle Nl Mean Plat Angle Sl Retouch Angle Backed Artefacts 
67.4 (St.Dev. 16.3) 66.3 (St.Dev. 14.8) 87.5 (St.Dev. 11.2) 

Table 7.8 Platform angles compared (backing scar size-range) 
Significance t-test P=<.001 

Mean Plat Angle Nl Mean Plat Angle Sl Retouch Angle Backed Artefacts 
N=1090 N=200 

62.7 (St.Dev. 16) 61.5 (St.Dev. 16) 87.5 (St.Dev. 11.2) 
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As Tables 7.7 and 7.8 demonstrate, there is a significant difference between the mean 

platform angles on the excavated squares' assemblages (Nl and Sl) and the retouch 

angles on the backed artefact sample. This is to be expected if the assemblages 

represent all stages of the reduction process, as smaller angles are indicative of 

earlier stages of the backing process of reduction. (As the flake is retouched from 

the margin, the platform angles on the early retouch flakes will mirror the angle of 

the margin. As the retouch proceeds in from the margin toward the centre of the 

flake, and the retouch edge approaches 90 degrees to the ventral surface, the edge 

angle progressively increases - see previous section). 

However, within NI it can also be demonstrated that 81 % (N=333) of flakes with 

recorded platform angles, that are within the size range of backing flake scars, are 

equivalent to the retouch angle range of backed artefacts (53-123°). Similarly, within 

SI 90% of flakes with recorded platform angles (N=672), that are within the size 

range of backing scars, are equivalent to the retouch angle range of backed artefacts. 

Expressed as a percentage of the total assemblage ofNl and SI, flakes with platform 

angles within the range for backed artefact retouch angles and within the range for 

size of backing flake scars comprise 14% and 24% respectively. 

Thus, it can be stated that flakes in large quantities that have the features outlined 

above, indicate that backing has occurred. These features which typify the backing 

process include platform angles which are consistent to those observed on the 

retouched margin of backed artefacts; the other defining feature is length of flake. 

As demonstrated, mean backing scars cluster around lOmm in length with 3.7 

standard deviations. Thus, it would be expected that flakes resulting from the 
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backing process would demonstrate similar trends in regards to length. Implied by 

the process of retouch is that the majority of the assemblage resulting from backing 

should exhibit no cortex (tertiary reduction) on the dorsal surface. 

CONCLUSION 

The systematic survey of the South Molle Island Quarry identified a sample of 443 

retouched artefacts, including 329 backed artefacts. This chapter has attempted to 

utilise technological tests to comprehensively characterise the nature of the retouch 

occurring on the quarry. Analysis of the sample as a whole has identified attributes 

which suggest that quarry production was aimed at the manufacture of backed 

artefacts (including early-stage backed artefacts) and larger retouched flakes that 

appear broadly similar to cores in terms of the size of flakes being removed. 

In regards to the identified manufacturing debris, there are three lines of evidence 

which suggest that a portion of the South Molle Island Quarry artefact assemblage 

could be a by-product of backed artefact manufacture. Firstly, there is the presence 

of backed artefacts and hammerstones in the surface layers of the excavated squares 

Nl and Sl. Secondly, as argued earlier in the chapter, the backing industry on the 

quarry is the only formal and consistent type of retouch. Thirdly there is consistency 

between length and platform angles of flakes and backed artefact retouch scars. The 

following chapter examines the stone artefact assemblages of Nara Inlet 1 and 

Border Island 1 in order to determine whether the assemblages resemble those from 

Nl and S 1, and thus could be identified as the result of a backing technology 

practiced in locations other than the South Molle Island Quarry. 
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CHAPTER 8 SOUTH MOLLE ISLAND QUARRY 
STONE ARTEFACTS IN THE WHITSUNDAY ISLANDS 

This chapter will outline the distribution of stone from the South Molle island Quarry 

throughout space and time, in the Whitsunday Island region. This will be achieved 

by exploring two lines of evidence. One source of evidence is available in the 

general geographic distribution of stone that has been located during field surveys in 

the region. A separate source of information comes from a detailed technological 

characterisation of stone artefacts in two stratified rockshelter sites that span the 

Holocene period. 

REGIONAL DISTRIBUTION OF SOUTH MOLLE ISLAND STONE 

The absence of known alternative sources, in addition to a limited petrographic study 

undertaken by Barker and Schon (1994) suggests that the South Molle Island Quarry 

is the only source of black, siliceous volcanic tuff in the Whitsunday region. On the 

basis of this evidence the following discussion will treat the quarry of South Molle 

Island as the 'epicentre' of distribution. 

Several surveys conducted in the region have revealed the following pattern of stone 

artefact distribution (notably Barker 1992a, 1992b; Barker and Schon 1994; Lamb 

1998). Surface scatters are commonplace on the islands, and on the adjoining 

mainland from Abbot Point 120km to the north of the quarry, to the southern tip of 

Cape Conway 50km to the south (Figure 8.1 ). There is no evidence that the 

distribution of volcanic tuff extends inland beyond the coastal fringe, consistent with 

the inferred source on south Molle Island. Islands on which volcanic tuff has been 

located include (from north to south) Hayman Island, Hook Island, Border Island, 
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Whitsunday Island, North Molle Island, Daydream Island, South Molle Island, Long 

Island, Lindeman Island and South Repulse Island. 
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Figure 8.1 Regional Artefact distribution (from Barker and Schon 1996) 

Analysis of artefacts for this study was conducted on the samples from the South 

Molle Island Quarry (Chapters 5-7) and on two stratified rockshelter sequences from 

Hook Island and Border Island. 
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STRATIFIED STONE ASSEMBLAGES 

Several islands in the study region contain stratified cultural assemblages, a portion 

of which consist of stone artefacts. Hook Island, the sites of Nara Inlet 1, Nara Inlet 

Art Site, and Hook Island Rockshelter 1 all contain volcanic tuff assemblages. On 

Border Island the shelter called Border Island 1 also has volcanic tuff assemblages. 

For the purpose of this thesis and the questions I am asking regarding technological 

change throughout the Holocene (Chapter 3), I determined that the sequences from 

Nara Inlet 1 (Hook Island) and Border Island 1 (Border Island) would be most 

suitable for inclusion in the analysis (Figure 8.2). Nara Inlet 1 has the longest 

Holocene sequence of all sites excavated in the region, with a near-basal date of 

8,990 cal. BP (see below). Border Island 1 yielded the second longest sequence with 

a basal date of 6,990 cal. BP. Both sites are stratigraphically intact (see descriptions 

under each site heading) and contain volcanic tuff throughout. The following 

sections provide site descriptions of each, including a technological analysis of the 

stone component of the stratified cultural assemblage. 
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Figure 8.2 Islands of the study region (from Barker 2004). 

Nara Inlet 1 is situated within Nara Inlet on Hook Island, the second largest of the 

islands within the Cumberland group (Figure 8.2). The inlet is situated in the south 

west of the island and is approximately 5 km long, with steep shores and little or no 

beach, which precludes the presence of flat habitation areas, other than rockshelters 

and a thin coastal fringe which appears at low tide. Dominant vegetation types 

include hoop pine (Araucaria cunninghamii), xanthorrhoea, cycas and pandanas, 

with vine forest throughout. Mangrove habitats are also present today in small 
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quantities, located in Refuge Bay on the eastern side of the inlet, in a small bay on 

the western side, and at the head of the inlet. A 1 Om wide fringing reef surrounds the 

shoreline, parts of which are exposed during low tide. The rockshelter itself is 

located 20m above the high water mark, measures approximately 10mx7m and 

consists of two chambers which face east. The site was excavated in two seasons by 

Barker (2004). Squares G50 and H50 were excavated in 1988 and J50, J51, K50 and 

L50 in 1989 (Figure 8.3). Squares G50 and H50 are located in the west-south-west 

section of the shelter near the back wall, while the other four squares (J50, K50, L50 

and J51) are located due east of G50 and H50 (see Figure 8.3). 
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Figure 8.3 Nara Inlet 1 site map (from Barker 2004) 

Barker (2004:67) identified four main stratigraphic units as follows (see Figure 8.4): 

Stratigraphic Unit 1 (SUI) was approximately lOcm thick and was excavated in five 

spits. The unit consisted of extremely fine, loose, grey sediment, and contained 
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diverse cultural material, including paperbark, nuts, seeds and fibre netting. It also 

showed evidence of post-European material; for example goat droppings were found 

to a depth of 8cm. 

Stratigraphic Unit 2 (SU2) was a red-brown sediment, greasy in texture and more 

compact than SUI. It was excavated by spits 6-31. This unit was characterised by a 

number of lenses of white ash, abundant charcoal and a high density of cultural 

material in the form of shellfish, fish and plant remains. 

Stratigraphic Unit 3 (SU3). This was a brown sediment with less abundant charcoal, 

fewer layers of ash, and a decrease in shellfish remains relative to SU2. The 

lowermost cultural unit, it was excavated by spits 32-45 inclusive, and began at a 

depth of 49cm below the ground surface at its highest point. 

Stratigraphic Unit 4 (SU4) was a green gravel of the same material as the geological 

bedrock. It was excavated by spits 45-52 inclusive, began at 96cm below the ground 

surface at its highest point. This unit was without any cultural material and rested on 

top of bedrock. 
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Figure 8.4 Nara Inlet 1 stratigraphic drawing with dates located (from Barker 2004) 
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Chronology 

Five radiocarbon dates were obtained for Nara Inlet 1 (Table 8.1), all with the 

exception of ANU 11381 on charcoal. Beta 27835 and Beta 31741 are dates on in 

situ charcoal pieces which were plotted three dimensionally and bagged on site. The 

two other dates were on charcoal (Beta 28188 and Beta 31742) which was excavated 

from XU28 and XU35 and extracted from the sieves (Barker 2004:67). The sample 

of shell on which ANU 11381 was obtained was excavated from XU41 and extracted 

from the sieves. "Conventional radiocarbon ages were calibrated using CALIB 

(3.03c) computer program (Stuiver and Reimer 1993). Dates on charcoal samples 

were calibrated using the bi-decal atmospheric calibration curve with no laboratory 

error multiplier. 40 years was subtracted to correct for 14c variations between 

northern and southern hemispheres. Dates on shell were calibrated using the marine 

calibration model with a !J. R value of -5±35 (Stuiver and Braziunas 1993). The 

calibrated ages reported are rounded to the nearest 10 years" (Barker 2004:67). 

Table 8.1 Radiocarbon dates from Nara Inlet 1. 
Square XU Depth (cm) Material 14c Age Lab No. Calibrated Ages 
G50 13 15 Charcoal 550 ±70 Beta-31741 650(520)340 
G50 28 46-49 Charcoal 2090±50 Beta-28188 2130(1990)1880 
H50 35 63-66 Charcoal 3990±60 Beta-31743 4530(4410)4160 
H50 41 78-83 Shell 6700±60 ANU 11381 7320(7190)7040 
G50 45 96 Charcoal 8150±80 Beta-27835 9250(8990)8670 

Beta 27835 is a non-basal date for human occupation. It was obtained at 95cm in the 

eastern section of square H50, from a discrete concentration of charcoal in SU3, just 

above the interface with SU4. This is, however, 14cm above the lowest cultural 

material, which lays at the interface between SU3 (cultural) and SU4 (non-cultural) 

in the southern section of Square H50. Thus, based on an age/depth extrapolation 

(Barker 2004:53) the initial occupation of Nara Inlet 1 occurred at 9,890 cal. BP. 
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The sample ANU 11381 comes from XU41 (SU3) at a depth of 78-83cm. Beta 

317 43 comes from XU3 5 between 66-63cm, the top of which is 14cm below the 

interface of SU3 and SU2. Beta 28188 is from XU28 between 46 and 49cm, the 

bottom of which is 1 Ocm above the interface of SU3 and SU2 in the southern section 

of Square G50. Beta 31741 dates a discrete concentration of charcoal at the top of 

SU2 at 15cm depth. All dates referred to throughout this chapter are calibrated. 

The deposit contained various species of shell fish throughout, including the rock 

platform - dwelling gastropod chiton and numerous bivalve species. Among these 

were Nerita undata, Monodonto labia, Acanthopleura gemmata, Saccrostrea 

cucullata, Trichomia hirsuta, Lunella cinerea, Thais kieneri, Melina ephippium, 

Pinctada fucata, Asaphis deflorata and Gelonia coaxans (Barker 2004:69). The fish 

present were identified as the families scaridae (parrot fish), labridae (tusk fish), 

lethrinidae (emperors and sweetlip), luijanidae (sea perch and mangrove jacks), 

sparidae (snapper, bream and tarwhine), and atherinidae (hardyheads). Crustaceans 

identified were Scylla serrata (mud crab) and Portunus pelagicus (sand crab). Other 

evidence of marine fauna included several teeth of the odontoceti, which is one of the 

smaller toothed whales (Barker 2004:76). 

Terrestrial fauna identified in the assemblage of Nara Inlet 1 included 5 species of 

mammal. These were Petrogale inornata (the unadorned rock wallaby), Trichosurus 

vulpecula (possum), Perameles nasuta (bandicoot) and two species of rodent; 

Melomys cervinipes and Rattus fuscipes coracius. Present too were several species 

of terrestrial reptile; veranidae (goanna), agamidae (lizard) and morelia sp. (python) 

(Barker 2004:79). 
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Barker (2004:81) identified four edible plant species in the deposit of Nara Inlet 1. 

These were Pleiogynuim timorense (Burdekin plum seeds), Bruguiera gymnorhiza 

(orange mangrove flowers), Planchonia careya (cocky apple seeds) and Cycas media 

(cycad husks). There was also remains of the woody stem of Xanthorrhoea (grass 

tree) and sheets of paperbark from Melaleuca (Barker 2004:81). 

Stone artefacts 

When Barker (1991; 2004) excavated Nara Inlet 1, he inferred a pattern whereby 

stone artefact discard rates are higher in the early Holocene, with a significant 

decline in discard beginning at about 4,410 cal. BP. When the sequence of dates for 

the site was refined (Lamb and Barker 2001), it was revealed that artefact numbers 

began to decline earlier than previously thought, after the initial phase of occupation. 

However, as Figure 8.5 illustrates there is in fact, an increase in weight of artefacts 

discarded between the phases 7,190 cal. BP - 8,990 cal. BP and 4,410 cal. BP -

7,190 cal. BP, with a subsequent steep decline which is also reflected in declining 

numbers of artefacts. Deposition of stone artefacts increases both in terms of weight 

and numbers per 1,000 years in the in the final 500 years of occupation. 
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Figure 8.5 Rates of discard per one thousand years at Nara Inlet 1 
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The only two types of artefacts contained in Nara Inlet 1 are flakes and flaked pieces. 

The ratio of flakes to flaked pieces is similar throughout the temporal sequence 

(Table 8.2) with flakes dominating flaked pieces consistently. Flakes range from 

72% to 86% of the assemblage when examined by dated phase, while flaked pieces 

range from 14% to 28% of the assemblage. 

Figure 8.6 Range of platform angles in Nara Inlet 1 

Table 8.2 Artefact types in Nara Inlet 1 
Phase % Flakes % Flaked 

(N) Pieces (N) 

0-520 cal. BP 80 (12) 20 (3) 

520 - 1,990 cal. BP 86 (12) 14 (2) 

1,990- 4410 cal. BP 79 (42) 21 (11) 

4,410- 7,190 cal. BP 72 (88) 28 (35) 

7 ,190 - 8,990 cal. BP 76 (72) 24 (23) 
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The stone artefacts in Nara Inlet 1 are small throughout the occupational sequence. 

Table 8.3 lists descriptive statistics for flakes. The mean length of artefacts remains 

within the 7.1 - 9.7mm range. Mean widths are between 6.8 - ll.2mm with the 

exception of the final phase (0-520 cal. BP) when the mean increases to 24.lmm. 

This increase in mean width corresponds with a higher mean weight for the phase 0-

520 cal. BP of 0.9gm. Otherwise weight remains in the range of 0.7 - 0.2gm. Mean 

thickness ranges from 1.4 to 2.0 mm. Mean platform angles throughout the temporal 

sequence are reasonably acute, ranging from 59° to 64° (Table 8.3) (Figure 8.6). It is 

important to note that while the mean platform angles are thus, 100% of flakes in 

Nara Inlet 1 with recorded platform angles occupy the range of retouch edge angles 

on backed artefacts. This comprises 28% of the total stone artefact assemblage in 

Nara Inlet 1. 

Table 8.3 Dimension and weight of complete flakes in Nara Inlet 1 
Phase Mean Mean Mean Mean Weight Mean Platform 

Length Width Thickness (St Dev) Angle (St Dev) 
(St Dev) (St Dev) (St Dev) 

0-520 cal. BP 9.7 ±(7.2) 24.l ±(11.6) 2.1 ±(2.0) 0.9 ±1.6) 59 ±18) 
520 - 1,990 cal. BP 9.5 ± (-) 9.6 ±5.4) 1.4 ±0.9) 0.2 ±0.3) 64 ±19) 
1,990- 4410 cal. BP 7.1 ±3.8 6.8 ±6.1 1.4 ±0.9 0.2 ±0.6 64 ±9.6 
4,410 - 7,190 cal. BP 9.3 ±6.4 11.2 ±8.4 2.0 ±1.7 0.7 ±1.9 62±11 
7 ,190 - 8,990 cal. BP 9.3 ±5.7 9.0 ±7.6 1.6 ±1.3 0.5±1.2 61 ±10 

The presence of one primary reduction flake in the assemblage dated from 520 cal. 

BP to 1,990 cal. BP is enough to imply that stone was transported from the quarry to 

Nara Inlet 1 in relatively early stages of reduction, at least early enough to still have 

cortex present. The same can be said of the primary flake in the assemblage dated 

from 4,410 cal. BP to 7,190 cal. BP. This phase of occupation also has the highest 

percentage of secondary reduction flakes (flakes with partial cortex on the dorsal 
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surface) making up 18.4% of the assemblage (Table 8.4), as well as the highest 

weight of deposited stone artefacts (refer to Figure 8.5). These two factors could be 

related, considering that flakes detached during initial stages of reduction also tend to 

be the heaviest (Table 8.5). Overall, however, the stone artefact assemblage in Nara 

Inlet 1 is clearly dominated by tertiary flakes in all 4 phases. 

Table 8.4 Relative proportions of reduction stage in Nara Inlet 1 
Phase 

0-520 cal. BP 
520 - 1,990 cal. BP 
1,990 - 4410 cal. BP 
4,410 - 7,190 cal. BP 
7 ,190 - 8,990 cal. BP 

Primary 
reduction 

% (N) 

7 (1) 

1 (1) 

Secondary 
reduction 

% (N) 

7 (1) 
4 (2) 

19 (23) 
9 (8) 

Table 8.5 Weight according to stage of reduction 

Primary reduction 
Secondary reduction 
Tertiary reduction 

Mean weight 
0.58 
0.90 
0.44 

Tertiary 
reduction 

% (N) 
100 (15) 
86 (12) 
96(51) 
80 (96) 
91 (86) 

St. Dev. 
.13 
1.5 
1.4 

N 
2 

34 
258 

Fisher Exact analysis determines a probability value of <.001 for the comparison of mean 
weights between tertiary and secondary reduction artefacts. 

Termination types are predominantly feather, followed in relative frequency by hinge 

and step terminations in all dated phases (Table 8.6). The most notable variation in 

the pattern in is the phase dated from 520-1,990 cal. BP when flakes terminating in 

feather and hinge terminations are of roughly equal proportions. Sample size is a 

likely issue here, and the variation will not be explored further. 

161 



Table 8.6 Relative proportions of termination type in Nara Inlet 1 
Phase Feather Hinge Step Outrepasse 

0-520 cal. BP 
520 - 1,990 cal. BP 
1,990 - 4410 cal. BP 
4,410 - 7,190 cal. BP 
7,190- 8,990 cal. BP 

Border Island 1 

% (N) % (N) % (N) % (N) 
90(9) 10(1) 
50 (5) 40 (4) 
73 (27) 24 (9) 
66 (45) 20 (14) 
63 (40) 27 (17) 

10 (1) 
3 (1) 
12 (8) 
10 (6) 

2 (1) 

Border Island 1 is located in Cateran Bay on Border Island, some 4km to the east of 

Whitsunday Island (refer to Figure 8.2). The island topography consists of a steeply 

rising, rocky mass, with little soil and high precipitous cliffs. Vegetation on the 

island is dominated by low vine forest, scrub including acacias, Tristania conferta, 

Casuarina littoralis, and Xanthorrhoea, with some open forest consisting of 

Eucalyptus alba and E. tereticornis in the north eastern part of Cataran Bay. 

Cataran Bay has a precipitous coastline of approximately 2km in length, with several 

small beaches and the shoreline is surrounded by a fringing reef. 

The Border Island 1 rockshelter is located 30m above the high water mark. It is 18m 

across the entrance, divided into two smaller entrances by a rocky pillar of 5m and 

7m across (Figure 8.7). There is a distance of 17m from the drip line to the furthest 

extent of the back wall and the total floor area is approximately 25m2, however 

cultural deposit only covers 12m2• An alphanumeric grid was constructed over the 

site and two 50x50cm pits were excavated (C6 & D6). Of these, only D6 has been 

analysed. The pits were located at the southern end of the shelter, in the area of 

highest cultural deposit. Unfortunately no site plan exists for Border Island 1, as it 
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was lost over the side of the boat in a accident of human error; there was no 

opportunity to repeat the drawing (Barker 2004: 106). 

Figure 8.7 Border Island 1 Rockshelter 
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Stratigraphy 

The two excavated pits contained six SUs as follows (see Figure 8.8): 

Stratigraphic Unit 1 (SUJ), is the top unit. It is comprised of a loose, gray powdery 

matrix (10YR32) with large amounts of cultural material. With a maximum 

thickness of 6.2cm, this unit extends to a depth of 9.5cm below the highest point in 

Square D6, incorporating Spit 1 and 2. 

Stratigraphic Unit 2 (SU2), is a uniform compact, brown matrix (1 OYR82) with ashy 

mottling and charcoal throughout. This unit which has a maximum thickness of 9cm, 

incorporates Spit 3. This layer extends to 12cm below the ground surface. 

Stratigraphic Unit 3 (SU3), includes two sub-units, SU3A and SU3B. SU3A is a 

loose, brown and compact gray ashy matrix (10YR33), with evidence of intensive 

burning in the form of calcined bone. SU3B is a discrete, highly compacted shell 

lens in Square D6, 21cm wide and 2.5cm thick, which rests immediately on top of 

SU4. SU3, which incorporates Spit 4, has a maximum thickness of 5cm in Square 

D6 extending to a maximum depth of 16cm below the surface. 

Stratigraphic Unit 4 (SU4), is a uniform brown greasy matrix (10YR82) interspersed 

with charcoal pieces. It consists of two sub-units, 4A and 4B. SU4A extends 

through the entire excavated area, while SU4B is located in Square D6 only. "The 

difference between the two sub-units is a slight change in colour, almost 

imperceptible in section but apparent during excavation" (Barker 2004: 107). This 

unit, within Spit 5, has a maximum thickness of 7cm in Square D6 and a total 

maximum depth of 20cm below the ground surface. 

Stratigraphic Unit 5 (SU5), is gray/brown (10YR41) and fairly compact with 

intermittent greasy black sediment. It consists of five sub-units, termed 5A-5E. 5A 

extends across the entire excavation and makes up the bulk of the unit. SU5B and 
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SC occur in Squares C6 and D6 respectively and are differentiated from SUSA by 

their darker colour. However, they grade into SUSA with no clear boundary between 

them. SUSD and SUSE are discrete shell lenses in Square C6 and D6 respectively. 

SUS is the thickest unit in the sequence, incorporating Spits 6 to 10. It measures 

16cm thick and extends to a maximum of 36cm below the ground surface in the 

northern part of D6, and 30cm below ground surface in the southern section. 

Stratigraphic Unit 6 (SU6), the lowermost unit, is completely uniform in texture and 

colour (10YR42). It consists of a loose, light gray matrix lacking any charcoal or 

ash. It has a maximum thickness of 12.Scm, incorporating Spits 11to14 and extends 

down to a maximum depth of 40.9cm below the ground surface, resting on bedrock. 

cm C6 EAST . DSEAST SU 

0..------------------------------------------~....., 

1-0 

40 VI 
6#0+-90 Beta 56976 

bed~k so.L.------------------------
~charcoalfashy lay~r []shell 

Figure 8.8 Border Island stratigraphic drawing with dates located (from Barker 2004) 

Chronology 

Three radiocarbon dates were obtained from Border Island 1 (Table 8.7). All dates 

were obtained on shell which was isolated during sorting and analysis. The selected 

shells were large. Thus the risk of dating fragments which could have fallen into the 

excavation undetected was minimized. The excavation extended for 14 Spits, 
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reaching a maximum depth of 40.9cm. A near-basal date of 6,900 cal BP (Beta 

S6976) was obtained from XU13. 

Wk 3326 was obtained from the top of Spit 11, 3cm below the stratigraphic change 

from SU6 to SUS. This dated a major drop in discard rates of cultural materials after 

Spit 11 (Barker 2004: 108). 

Discard rates increased sharply after XU8 (Barker 2004: 108). This increase was 

dated on a sample collected S cm above the boundary between SUS and 6 (3,080 cal 

BP Beta 61168). 

8 cm of deposit separates Spit 14 at 6,900 cal. BP and Spit 11 at 6,620 cal. BP. Thus 

a period of some 280 years has a mean sedimentation rate of 2.8 cm/I 00 years. 

Therefore SU6 between Spit 14 and 11, represents a brief period of early occupation, 

known as Phase 1. It is possible that the relatively high cultural discard rates during 

this phase reflect a single event. 

There are 8 cm of sediment between Spit 11 near the top of SU6 (6,620 cal. BP) and 

Spit 8 near the bottom ·of SUS (3,080 cal. BP). This represents 3,S40 years during 

which time there is a decline in the rate of sediment deposition to 0.23 cm/I 00 years 

from the previous 2.8 cm/100 years. Spits 10 and 9, which incorporate this period, 

are thus "an intermediate period representing either a hiatus in occupation or merely 

ephemeral visitation" (Barker 2004: 108). 
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The increase in cultural deposition from Spit 8 to the top of the site constitutes Phase 

2, beginning at 3,080 cal. BP. 

Stuiver and Reimer 1993. 
Table 8. 7 Radiocarbon dates from Border Island 

Lab number SU XU Depth C 14 BP cal BP 

Beta 61168 5 8 21-23 3260±110 3360(3080)2770 

WK3326 6 11 32-34 6170±50 67 40( 6620)6450 

Beta56976 6 13 39-41 6440±90 7150(6900)6700 

Shellfish are abundant in the cultural deposit of Border Island 1. Species include the 

rock platform - dwelling gastropod chiton and numerous bivalve species. Among 

these were Nerita undata, Nerita lineata, Monodontio labia, Acanthopleura 

gemmata, Saccrostrea cucullata, Trichomia hirsuta, Lunella cinerea, Thais kieneri, 

Melina ephippium and Pinctada fucata (Barker 2004: 110). Six species of fish were 

also present: lethrinidae (emperors and sweetlip), labridae (wrasses and tusk fish), 

sillaginidae (whiting), atherinidae (hardyheads) and one unidentified species (Barker 

2004: 112). Crustaceans were present, however their remains were fragmented to 

such an extent that they remain unidentifiable. Marine turtle was present throughout 

the deposit of Border Island 1, in every Spit except Spit 4, in SU3. Evidence for 

terrestrial fauna included a vertebra of a small unidentified snake and a single 

dentary element of a lizard (agamidae). No plant remains were found with the 

exception of charcoal (Barker 2004: 113). 

Stone Artefacts 

Deposition of stone artefacts in Border Island 1 decreases significantly between 

phase one (6,900 - 6,620 cal. BP) and phase two (6,620- 3,080 cal. BP) (Figure 
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8.9). This is in keeping with the overall decline of cultural deposition during this 

phase (Barker 2004: 108). However, stone artefact deposition continues to decline in 

the third phase of occupation (3,080 - present) (Figure 8.9), unlike the remaining 

component of the cultural assemblage, which undergoes a significant increase 

(Barker 2004: 108). Stone artefacts are the only aspect of the cultural assemblage 

that decreases during this time (Barker 2004: 108-109), a fact which Barker (2004) 

attributes to the changing economy, increasing marine specialisation and the 

corresponding change in the toolkit. 

Numbers per 1000 ',fS 

0 200 400 600 800 0 

Ill.eight (gm) per 1000 ~s 

100 200 300 

0-3080BP 0-3080BP 

308(}662() BP 3080-6620 BP 

6620-6900 BP 6620-6900 BP 

Figure 8.9 Rates of discard per one thousand years at Nara Inlet 1 

The Border Island 1 stone artefact assemblage consists of flakes, flaked pieces, a tip 

of a backed artefact and a single core. There is also an incidental, non-cultural 

component consisting of potlids. Table 8.8 clearly demonstrates that in all phases of 

occupation, flakes dominate the assemblage, albeit in declining proportions in the 

final phase of reduction. The relatively high proportions of flaked pieces is likely 

due to the nature of the raw material. Being a highly siliceous volcanic tuff, the 

material is very brittle. This causes a high rate of shatter (personal observation) 

which produces artefacts without the diagnostic traits of flakes. 
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Table 8.8 Artefact t~ees in Border Island 1 
Phase % Flakes % Flaked Pieces % Cores (N) % Backed % Potlids 

(N) (N) Artefacts (N) 
(N) 

0 - 3,080 cal. BP 55 (16) 45 (13) 
3,080 - 6,620 cal. BP 70(118) 27 (45) 0.5 (1) 2.5 (5) 
6,620 - 6,900 cal. BP 69 (135) 29 (57) 1 (1) 2 (2) 

Artefacts in the two earlier phases of occupation of Border Island are of consistently 

small dimensions, with length, width and thickness clustering around 1 lmm, 9mm 

and 2mm respectively (Table 8.9). Of note, is that flakes in the final phase of 

occupation tend to be wider and shorter than those in other occupational phases 

(Figure 8.10). However, due to the small sample size, little significance can be 

attached to this trend. 

Mean platform angles come in under 70° for all phases (Table 8.9). As with Nara 

Inlet 1, 100% of flakes with recorded platform angles occupy the range of retouched 

edge angles on backed artefacts. This comprises 35% of the entire stone artefact 

assemblage for Border Island 1. 

Table 8.9 Descrietive statistics for length, width, thickness, weight and elatform angle 
Phase MeanLength Mean Width Mean Mean Weight Mean 

mm mm Thickness gm Platform 
St. Dev. St. Dev. (N) mm St. Dev. (N) Angle 

(N) St. Dev. (N) St. Dev. (N) 
0 - 3,080 cal. BP 7.2 ±4.0 (6) 11.0 ±5.5 (6) 1.4 ±0.8 (9) 0.4 ±0.5 (30) 57 ±13.1 (7) 
3,080 - 6,620 cal. BP 11.0 ±6.1 (74) 9.4 ±3.9 (60) 2.1 ±1.6 (79) 0.6 ±1.6 (173) 66.6 ±12.2 

(63) 
6,620 - 6,900 cal. BP 11.2 ±6.9 (71) 9.4 ±3.7 (54) 2.1 ±1.9 (72) 0.5 ±1.l (198) 69 ±13.4 (73) 
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Figure 8.10 Percussion length and width for Border Island 1 

The stone assemblage in Border Island 1 overwhelmingly consists of small flakes 

that are at the tertiary stage of reduction (Table 8.11). This is consistent in all three 

phases of occupation. As with Nara Inlet 1, there is a single primary reduction flake 

and small proportions of secondary flakes (Table 8.10). This indicates that people 

were transporting stone to the island that had been minimally reduced as evidence by 

the presence of cortex. Feather terminations dominate in the two early phases, while 

hinge terminations prevail in the final phase. In fact, sample size is an issue in 

regards to this pattern. Flakes terminating in feather and hinge terminations are 

actually of roughly equal proportions (N = 4 and 6 respectively). However, owing to 

the small sample size of artefacts in this final phase, I am prevented from drawing 

any conclusions regarding this trend. 

170 



Table 8.10 Relative proportions of termination type in Border Island 1 
Phase Feather Hinge % (N) Step % (N) Outrepasse % 

% (N) (N) 
0 - 3,080 cal. BP 
3,080 - 6,620 cal. BP 
6,620 - 6,900 cal. BP 

40 (4) 60 (6) 
63 (57) 23 (21) 
55(60) 15(17) 

14 (12) 
27 (29) 

Table 8.11 Relative proportions of reduction stage in Border Island 1 
Phase Primary Secondary Tertiary 

0 - 3,080 cal. BP 
3,080 - 6,620 cal. BP 
6,620 - 6,900 cal. BP 

DISCUSSION 

reduction% reduction reduction 
(N) % (N) % (N) 

3.0 (1) 97.0 (29) 
0.5 (1) 3.5 (6) 96.0 (160) 

5.0 (10) 95.0 (184) 

3 (3) 

There are several general observations to be made regarding the trends observed 

through time in each site discussed above. Artefact dimensions in both sites remain 

consistent to within several millimetres through time, with the exception of an 

increased mean width in the upper phase of Nara Inlet 1. In this instance however, 

the population from which this mean is taken consists of three specimens, and thus 

can not be treated as a significant variation. Platform angles remain consistent 

through time, with the exception of a decline in the upper phase of both sites. Stage 

of reduction is consistent through time, revealing no significant patterns of change in 

the technological elements represented in the assemblage. Thus the following 

reduction models outlined below can be applied to each site as a whole, across all 

phases of occupation except where noted. In the following discussion I will evaluate 

four alternative scenarios capable of explaining the origin of Nara Inlet 1 and Border 

Island 1 stone artefact assemblages. 
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Model 1: Working of unretouched flakes. 

This model is the transport of unretouched flakes from the quarry to these island 

sites. Following that transport, the unretouched flakes were then retouched into 

backed artefacts in the rockshelter sites. Consequently the assemblage could contain 

flakes removed during the backing process and resemble the assemblage identified as 

a by-product of backed artefact manufacture on the South Molle Island Quarry (see 

chapter 7). 

For this model of manufacturing behaviour in Nara Inlet 1 and Border Island 1 to be 

applicable, we would expect to see an assemblage of flakes in each, that are of 

similar length to the retouch scars on the backed artefacts from the South Molle 

island Quarry (described in chapter 7). Furthermore, not only would we predict 

length would be the same as the backed scars, but platform angles should be 

comparable with the retouch angle on the backed edge of backed artefacts. 

Descriptive statistics for these lengths and angles are presented in Table 8.12. 

Table 8.12 Descriptive stats for length and angle on backed artefacts and stratified assemblages 

Backed 
artefacts 

Nara Inlet 1 

Border 
Island 1 

Mean length & St. Mean ventral and dorsal 
Dev. (N) angle & St. Dev. (N) 

10.3 ±17 .3 (292) 82 ±11.1 (292) 

8.9 ±5.7 (120) 
10.9 ±6.4 (151) 

87 ±11.2 (227) 
59.7 ±15.2 (86) 
67.5 ±13.1 (143) 

T=-0.527, d.f.=409, p=0.598 (comparison of mean length between flakes in Border Island and 
flake scars on backed artefacts) 
T=l.23, d.f.=397, p=0.219 (comparison of mean length between flakes in Nara Inlet 1 and flake 
scars on backed artefacts) 
T=12.648, d.f.=112, p=<.001 (comparison of mean platform angle on flakes in Border Island 1 
the mean retouched edge angle on backed artefacts) 

While there is no significant difference between length of backed scars and length of 

flakes from the rockshelter sites, mean platform angles on flakes in Nara Inlet 1 and 
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Border Island 1 are significantly less than the retouch edge on backed artefacts. 

However, as noted in Chapter 7 when looking at the Nl and S 1 quarry assemblages, 

this is consistent with backed artefact manufacture, when all stages of production, 

from the flake blank to final retouch are carried out. The backing process is typically 

initiated on a lateral margin, the mean edge angle of which is around 45°. Thus, the 

first retouch flakes would be of particularly low platform angles and these would 

increase as retouch proceeded toward the thickest part of the flake, to finally reflect 

angles similar to the backed edge. However, because the initial retouch flakes are 

represented in the mean platform angles, and not simply the final retouch flakes, this 

mean is dragged lower than the mean for retouched edge angles. 

Thus, the assemblages in Nara Inlet 1 and Border Island 1 could indeed be 

representative of the backing process. This is with the proviso, as indicated by the 

low mean platform angels, that reduction in the sites was inclusive of all retouch 

from the flake-blank stage, to the final retouch that produced the steep backed edge. 

Model 2: Backed artefact rejuvenation. This model is one in which backed 

artefacts were being transported away from the South Molle Island Quarry, but were 

rejuvenated by repairing the backed edge when specimens snapped so that the 

backed form was maintained. 

The most common form of backed artefact breakage pattern is the transverse snap, as 

evidenced by the sample of implements analysed from the South Molle Island 

Quarry where 56% of backed artefacts analysed were snapped in this manner. Thus, 

in these instances reworking would involve re-backing the proximal or distal end (or 
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both) on the fresh surface created by the snap, depending on which piece was 

discarded. Transverse snapping typically occurs perpendicular to the original 

fracture plane, as this is the shortest distance between the two surfaces. Thus, the re

backing process would result in an assemblage of mostly small, tertiary flakes with 

platform angles consistently close to 90°. 

Flakes from Nara Inlet 1 and Border Island 1 are of a size to fit this model, however 

the platform angles of those flakes are significantly lower than would be produced by 

retouching a backed edge. Rather, these angles represent flaking from edges that 

have lower angles than the backed edges. Therefore, this model can not be applied 

with confidence to the stone assemblages from Nara Inlet 1 and Border Island 1. 

Model 3: Recycling artefacts (backed or non-backed). This model is that flakes, 

backed or non-backed, were being transported away from the South Molle Island 

Quarry and were being retouched in different ways in order to produce flakes. The 

result was the conversion of artefacts (backed or non-backed) into non-backed 

artefacts as flaked were removed from non-backed edges. 

If people were reworking backed artefacts, they would probably do so most 

frequently from the chord or lateral margin, as this edge would have the most acute 

angle on the artefact (the retouched edges being on average 87.5°). If the reworking 

was occurring on other non-backed flakes, then it is likely that the edges chosen for 

reworking would be those with the lowest edge angle, that is the lateral margins. As 

the chord of a backed artefact is usually the lateral margin, there is no need for the 
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purpose of this test to differentiate between the two likely specimen types being 

reworked. 

If retouch from the cord or lateral margin of a backed artefact or flake was occurring 

in Nara Inlet 1 and Border Island 1, the assemblages would be dominated by tertiary 

flakes, with mean platform angles that are less than those of the backed edge and 

more than the chord or edge angle. The reasoning for this is that once the initial 

flakes were struck off the edge, the subsequent platform angles would immediately 

be higher. This would reflect in a mean that was higher than the chord or edge angle. 

Table 8.13 demonstrates that this is indeed the composition of the Nara Inlet 1 and 

Border Island 1 stone artefact assemblages, with the mean platform angles clustering 

between the mean cord angle and the mean angle of the retouched edge on the 

backed artefacts. 

Table 8.13 Mean angles on backed artefacts and stratified assemblages 
Backed artefact chord Nara Inlet 1 Border Island 1 Backed artefact 
angle platform angles Platform angles Retouch angle 

ventral J and 
dorsal 

46.0 ±10.0 (320) 59.8 ±15.2 (86) 67.5 ±13.0 (143) 82 ±11.1 (292) 
87 ±11.2 (227) 

T=-7.969, d.f.=105, p=<.001 (comparison between backed cord angle and Nara Inlet 1 Platform 
angles 
T=-11.45, d.f.=246, p=<.001 (comparison between Border Island mean platform angles and 
mean retouch angle on backed artefacts) 

175 



* 

0 

E 10 

E -..c 
gi 
..Q? 

0 
6 
"(jj 

~ 
~ 
(]) 
a.. -10 . 

f\ara Inlet 1 Border lsand 1 

Figure 8.11 Box plots of flake percussion length for Nara Inlet 1 and Border Island 1 

The factor that throws this model into some question is that of flake size in Nara Inlet 

1 and Border Island 1. If flakes (backed or otherwise) were being reworked in the 

sites, we would expect to see a range of sizes represented. However, in Nara Inlet 1 

and Border Island 1 respectively, 96% and 98% of flakes are under 25mm in length 

(Figure 8.11). One factor that could account for this uniform size of flakes is if the 

larger flakes were transported and used off-site. This being the case, the attribute of 

flake length is a less useful test of this model, and I am inclined to rely largely on the 

attribute of platform angle. Given the above discussion regarding platform angles 

and their relationship to chord and edge angles, I feel that there is some merit to this 

model as an explanation for the nature of the stone artefact assemblages in Nara Inlet 

1 and Border Island 1, although Model 1 appears to fit the data most closely. 
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CONCLUSION 

Three models for stone artefact production and discard in Nara Inlet 1 and Border 

Island 1 were presented in this chapter. These models covered three broad 

conceptual areas: that of production, rejuvenation and recycling occurring in situ. 

Examining attributes of flake/retouch scar length and edge/platform angle, I was able 

to conclude that two of the three models fit the available data. These were models 

one and three; production of backed artefacts and recycling of artefacts (backed or 

non-backed) in Nara Inlet 1 and Border Island 1. The following chapter integrates 

aspects of data presented here, particularly that of artefact discard through time, as a 

means to modelling quarry use throughout the Holocene. 
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CHAPTER 9 USE OF THE SOUTH MOLLE ISLAND 
QUARRY THROUGH TIME 

Several models for the use of the South Molle Quarry through time are examined in 

this chapter. These models are built on the evidence already presented from the 

quarry itself, and the two stratified rockshelter sites Nara Inlet 1 and Border Island 1. 

These data are interpreted within a framework of palaeoenvironmental data for the 

region. Firstly I will summarise several aspects of these data, including the 

palaeoenvironmental material and observations from the South Molle Island Quarry 

and the stratified sequences. Then I will systematically describe each model in 

chronological order and evaluate its strengths and weaknesses in relation to the 

available data. At the end of the chapter I will discuss and compare the models and 

conclude which scenario(s) best explain the patterns observed. 

PALAEOENVIRONMENT 

The history of quarry exploitation can be understood within the context of the 

changing environment within the region. At the time of initial Nara Inlet 1 's initial 

occupation at 10,000 years ago, sea levels were approximately 20m below today's 

levels. North, Mid and South Molle Islands were part of a single landmass, already 

separated from the mainland. Hook 'Island' was still part of the mainland, albeit 

situated on a peninsula which was bordered by what is now Whitsunday Passage to 

the west, and the open water to the east. Between 9,000 and 7,000 years ago, the 

peninsula would have been cut off from the mainland due to rising sea levels and by 

7,000 years stabilisation of the sea levels had occurred (Barker 2004). This synthesis 

of sea level rise is supported by palynological studies in the study region (Genever et 

al 2003) which suggest that by 7 ,000 years ago, a tropical environment was 
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established, and thus current climatic characteristics were in place. Thus we can say 

that at the time of Border Island 1 's initial occupation at 7,000 years ago, the sea 

levels had stabilised and the island geography and climate resembled that of the 

present. 

The result of sea level rise was that at 10,000 years ago the South Molle Island 

Quarry was located on an island, some 2km from the mainland. Border Island 1 was 

separated from the mainland and as yet, unoccupied as far as we know. Nara Inlet 1 

was part of a peninsula, attached to the mainland some 55km to the south. Hence at 

that time the distance required to travel over land from Nara Inlet 1 to the South 

Molle Island Quarry at this time was at least 1 OOkm. The shortest single journey by 

sea would have been approximately 12km, and the shortest combination land/sea 

journey would have been 12km and 5km respectively. 

DISCARD RATES THROUGH TIME 

Initial occupation of Nara Inlet 1 was marked by higher discard rates of stone 

artefacts than any other period of occupation, at the rate of 53 artefacts/1,000 years 

during the period of 8,990 cal. BP to 7,190 cal. BP. Border Island 1 also 

demonstrated its highest discard rates during the first phase of occupation, at 721 

artefacts/1,000 years. Rates of artefact discard declined significantly in both sites 

(see chapter 8) during the Holocene. This trend continued until the present in Border 

Island, despite increased discard rates of other cultural material. However, rates of 

discard in Nara Inlet 1 rose again in the final phase of occupation, from 9.5 

artefacts/1,000 years (1,990 - 520 cal. BP) to 29 artefacts/1000 years (520 cal. BP -

present). 
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Technology in the Rockshelters 

The stone artefact assemblages from Nara Inlet 1 and Border Island 1 appear fairly 

homogenous through time. They are both dominated by small tertiary artefacts, with 

flakes prevalent in all phases of occupation. These factors in combination with data 

regarding platform angle and flake dimensions suggest that the assemblages in Nara 

Inlet 1 and Border Island 1 are either largely the product of backed artefact 

manufacture, or reworking implements/flakes. By implication, this activity also 

reflects the nature of activity occurring on the quarry, which takes the form of 

reduction of cores to produce flakes which are transported away from the quarry. In 

the following analysis, I equate increased or decreased rates of discard per 1,000 

years with increased or decreased quarry use. Because I have eliminated any 

significant technological change which could account for differing rates of discard 

(chapter 8), I am confident that I can make this association. 

TECHNOLOGY ON THE QUARRY 

There is a range of technological activities occurring on the South Molle Island 

Quarry. These include raw material extraction, core reduction and flake retouching, 

plus associated activities such as the use of hammerstones in the manufacturing 

process. Previous chapters (chapters 5-7) have documented raw material properties 

and raw material procurement, core reduction systems and artefact production. 

There are several summary comments regarding technological systems on the quarry 

that it would be pertinent to make. 

Firstly, it appears as though raw material availability on the South Molle Island 

Quarry was in decline throughout the Holocene. This conclusion was drawn as a 
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result of a companson between extant, unworked raw material and previously 

worked cores on the quarry. Secondly, backed artefact implement production 

occurred on the quarry, and this form of retouch is the only identifiable, systematic 

form of retouch practiced. 

WEATHERING PATTERNS AND RELATIVE CHRONOLOGY 

I suggest that weathering patterns on the quarry imply a relative chronology for use. 

There are three identified weathering states: not weathered (recent past), moderately 

weathered (mid-past) and heavily weathered (distant past). It is important to note 

here that I am not assuming that the rockshelter sites are as old as the quarry, because 

they came into use with the rising sea levels and it is possible that the quarry may 

already have been in use at that point. It is entirely feasible that the quarry was also 

being used prior to the arrival of the sea, when the now drowned landscapes were 

once expansive, open plains and river flats. 

We can use the degree of weathering on stone artefacts to establish likely 

chronological links between assemblages at the South Molle Island Quarry and at 

those in the rockshelters. The rockshelter assemblages have few artefacts with 

weathering at any temporal phase (14% in Border Island 1 and 11 % in Nara Inlet 1), 

possibly due to the extreme alkaline nature of the sediment (Barker 2004). The 

quarry is a completely different microclimate, being exposed to the elements. 

Because weathering on the quarry must, by virtue of the increased exposure, happen 

at a faster rate than in the rockshelters, the non weathered material on the quarry is 

likely to be of a more recent origin than the non weathered material in the rockshelter 

sites. Therefore, it could be argued that the non weathered material in the sites must 
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at least equal the moderately weathered material on the quarry in terms of age. I can 

refine the temporal association further by looking at abundance. The most abundant 

period of artefact deposition in the rockshelter sites is in the early Holocene. The 

most abundant weathering pattern on the quarry is that of moderately weathered 

(66% of artefacts in the fracture-type squares [N=1003] and 73% of flake scars 

analysed on cores [N=5271] exhibited a colour change). By applying an association 

based on common measures of abundance, I suggest the portion of the quarry that is 

moderately weathered may be of the same antiquity as the period of high artefact 

discard in the rockshelter sites. 

MODELS OF QUARRY USE 

The models discussed in this section outline the case for differential use of the quarry 

throughout the Holocene. Because there are no datable assemblages on the quarry 

itself, periods of quarry use are inferred from the abundance and nature of stone in 

the two stratified rockshelter sequences, as described above. Differential quarry use 

is associated with varying rates of stone artefact discard in these sites throughout the 

Holocene. The nature of this association is explored below under several 

chronological headings. 

Use of the SMI Quarry From 9,000-7,000 Years Ago 

Quarry use from 9,000 - 7,000 years ago is implied by deposition of SMIQ stone 

artefacts in Nara Inlet 1 between the dates of 8,990 cal. BP and 7,190 cal. BP. At 

this time, deposition rates of stone artefacts were 53 artefacts/1000 years, the highest 

in any phase of occupation at the site. As I have argued above, cores were being 

reduced on the quarry, and material taken from the quarry to Nara Inlet 1 where it 

was used in the manufacture of backed artefacts. This is evident from the nature of 
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the stone artefact assemblage in Nara Inlet 1, which predominantly consists of small, 

tertiary flakes with platform angles indicative of the range of retouch from initial 

retouch to final backing (Chapter 8). 

Use of the SMI Quarry From 7,000 Years Ago to 520 Years Ago 

At 7,000 years ago Border Island 1 was occupied for the first time. As with Nara 

Inlet 1, the initial phase of occupation (6,900 - 6620 cal. BP) demonstrated the 

highest rate of stone artefact deposition at 721 artefacts/1000 years. The stone 

artefact assemblage in Border Island 1 resembles that of Nara Inlet 1 in that I have 

been able to argue it was the product of backed artefact manufacture. 

Quarry use can be inferred from the nature of the Border Island 1 assemblage in a 

similar way as was enabled by data from Nara Inlet 1. That is, cores were being 

reduced on the quarry, and unretouched flakes taken from the quarry to Border Island 

1, where the flakes were used largely in the manufacture of backed artefacts. On the 

basis of discarded quantities of artefacts I argue that there was a greater amount of 

material removed, and by implication, an increase in activity on the quarry between 

the end of the first phase of Nara Inlet 1 occupation and the end of the first phase of 

Border Island 1 (in all, from 7,190 years ago to 6,620 years ago) (Table 9.1). 

Table 9.1 Discard rates in initial phases of occupation for Nara Inlet 1 and Border Island 1 
Artefacts/1000 Weight /1000 

Nara Inlet 1 
8,990- 7,190 
Border Island 1 
6,900 - 6,620 

years years (gm) 
53 27 

721 368 
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The possibility that the higher rates of deposition in Border Island 1 represent a 

phase of decreased or static quarry use, and rather procurement by scavenging is 

explored below through an examination of weathering patterns on both stratified 

assemblages. Tables 9.2 and 9.3 clearly show that in both sites the dominant pattern 

of weathering on dorsal surf aces is that of 'no patination', which represents an 

absence of weathering in all phases. Thus it can be concluded that relatively little 

time elapsed between procurement of the material and the reworking of the material 

within the sites. Scavenging behav~our at this time is therefore considered unlikely. 

Table 9.2 Dorsal weathering patterns in Nara Inlet 1 
Nara Inlet 1 No patination Colour change 

8,990- 7,190 cal. BP 
7,190- 4,410 cal. BP 
4,410 - 1,990 cal. BP 
1,990 - 520 cal. BP 
520 cal. BP to present 

% (N) % (N) 

94 (83) 
95 (40) 
100 (12) 
100 (12) 

4.(4) 
5 (2) 
0 (0) 
0 (0) 

Table 9.3 Dorsal weathering patterns in Border Island 1 
Border Island 1 

6,990 - 6,620 cal. BP 
6,620 - 3,080 cal. BP 
3,080 cal. BP to 
present 

No patination 
% (N) 

95 (128) 
98 (114) 
100 (17) 

Colour change 
% (N) 
4 (5) 

1.5 (3) 
0 (0) 

Colour + texture 
change% (N) 

1 (1) 
0 (0) 
0 (0) 
0 (0) 

Colour + texture 
change% (N) 

1 (1) 
0.5 (1) 
0 (0) 

Stone artefact discard rates after 6,620 cal. BP in Border Island 1, reflect those of 

Nara Inlet 1 (Tables 9.4 and 9.5). It should be noted that these discard rates are 

calculated from a similar area for each rockshelter (i.e. 50 x 50 cm square) While 

dated phases overlap, the pattern is similar: thus from 7,190 - 4,410 cal. BP in Nara 

Inlet 1 stone artefact discard is 45 artefacts/1,000 years; in Border Island 1 from 
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6,620 - 3,080 cal. BP discard is 50 artefacts/1000 years. Discard in Nara Inlet 1 is 

9.5 artefacts/1000 years from 1,990 - 520 cal. BP; and 9 artefacts/1,000 years in 

Border Island 1 from 3,080 cal. BP to the present. 

Table 9.4 Discard rates in all phases of occupation for Nara Inlet 1 
Nara Inlet 1 Artefacts/ Weight/1000 

1000 years years (gm) 
8,990- 7,190 cal. BP 53 27 

7,190- 4,410 cal. BP 
4,410 - 1,990 cal. BP 
1,990- 520 cal. BP 
520 cal. BP - present** 

45 
23 
9.5 
29 

32* 
4 
2 

27 
* increased mean weight in this phase due to a 17 gm extreme outlier 
** this phase is discussed in the following section 

Table 9.5 Discard rates in all phases of occupation for Border Island 1 
Border Island 1 

6,900 - 6,620 cal. BP 
6,620 - 3,080 cal. BP 
3,080 cal. BP - present 

Artefacts/ 
1000 years 

721 
50 
9 

Weight/1000 
years (gm) 

368 
31 
3.5 

Declining stone artefact discard throughout the Holocene is indicative of a decline in 

manufacturing behaviour in Nara Inlet 1 and Border Island 1. This could suggest 

that fewer flakes were being removed from the South Molle Island Quarry, and thus 

an indication of decreasing activity at the quarry. Alternatively, declining artefact 

discard in the stratified sites indicates that people were simply changing their 

patterns of visitation to Nara Inlet 1 and Border Island 1, and along with other 

economic activities, were reducing and using the stone elsewhere in the region. 

Apart from a very ephemeral presence in the sequence of two late Holocene stratified 

rockshelter sites (Nara Inlet Art Site and Hill Inlet Rockshelter 1 [Barker 2004]), the 

only stone artefacts that have been recorded in the region including the mainland (see 
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chapter 8) have been surface scatters of varying density (Barker and Schon 1994; 

Lamb 1998). Thus, it is not possible on the basis of this evidence to apply a temporal 

framework to patterns of artefact discard in the region, nor to infer altered visitation 

patterns in Nara Inlet 1 and Border Island 1. 

However, when Barker (2004) conducted his study of the Whitsunday region's 

prehistory he found that in both Nara Inlet 1 and Border Island 1, cultural material 

other than stone artefacts increased significantly in the late Holocene. The pattern of 

increased deposition was consistent throughout the Holocene in Nara Inlet 1, but was 

particularly marked after 1,990 cal. BP (Barker 2004:69-85). The pattern of cultural 

discard in Border Island 1 is somewhat different in the early Holocene, as there is a 

decline in all materials between 6,900 cal. BP and 3,080 cal. BP. After 3,080 cal. BP 

however cultural materials such as shell, fish bone, turtle bone and charcoal rose by 

several hundred percent (Barker 2004:108-114), reflecting the late Holocene patterns 

in Nara Inlet 1. It is therefore difficult to argue in light of the increased suite of 

cultural materials, that declining stone represents a decline in rockshelter visitation. 

In light of this, I interpret the declining discard of stone artefacts at this time to 

indicate a reduction in the amount of material being removed from the quarry. 

Whether or not it represents declining quarry use will be explored below. 

It is feasible that while the amount of material removed from the quarry was reduced 

after 7,000 years ago, quarrying behaviour did not decrease. Rather, it is possible 

that people shifted the typical location of their implement production away from the 

rockshelter sites and to the quarry itself. Such a shift would involve a reduction in 
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the rate of artefacts manufactured in the rockshelter sites and an increase in the 

proportion of specimens backed on the quarry. 

As I outlined in chapter 7, a sample of 323 backed artefacts from the SMIQ were 

analysed. The timing of their manufacture is the key to exploring the possibility of a 

shift in manufacturing behaviour to the quarry. As there are no datable assemblages 

on the SMIQ, this line of enquiry relies on the relative chronology that the 

weathering patterns illuminate. At this stage, the relative chronology is speculative 

and thus neither the possibility that quarrying behaviour decreased, or that the focus 

of manufacture shifted to the quarry can be excluded. 

Of the sample of backed artefacts for which weathering data was recorded (94), 87% 

exhibited moderate weathering (colour change only) while 13% exhibited no 

weathering at all. According to the hypothesized relative chronology for quarry use, 

this places the manufacture of these backed artefacts as contemporary with the 

material in the rockshelter sites (see previous section: Weathering Patterns and 

Relative Chronology). If the 10% of artefacts that exhibit no weathering are equated 

with a recent phase of activity, and I have argued they should be, then I can infer that 

the manufacture of backed artefacts with moderate weathering must fall some time 

between a recent phase of use, and the earliest use of the quarry. 

It is possible that the manufacture of backed artefacts on the quarry represents a 

period of time during which people shifted the focus of their technological behaviour 

away from the rockshelter sites, to the quarry. At this time, they would have 

engaged in all phases of manufacture on the quarry, rather than simply the initial 
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extraction and reduction of cores. If this phase of technological behaviour is linked 

with the period of declining stone artefact discard in Nara Inlet 1 and Border Island 

1, it could be argued that after 7,000 BP stone artefacts continued to be an important 

economic resource, and that people continued to extract and manufacture flakes on 

the quarry, and extending this process to the manufacture of backed artefacts. 

Use of the SMI Quarry From 520 Years Ago to the Present 

While data from Border Island 1 suggest that stone artefact deposition continued to 

decline steadily throughout the late Holocene despite an increase in other cultural 

materials, Nara Inlet 1 demonstrates an increased rate of deposition in the final phase 

of occupation, beginning at 520 cal. BP. This calculated increase however, is to be 

treated with caution for two reasons: firstly, the sample from which this rate of 

deposition is calculated is quite small (N=l5) and is contained in only 15cm of 

deposit. Secondly, this pattern is reflected in Nara Inlet 1 but not in Border Island 1. 

If I treat the pattern as real and not a product of sampling error, then I can present the 

following model for quarry use after 520 cal. BP. 

An increase in stone artefact deposition in the late Holocene implies an increase in 

the amount of material to be removed from the SMIQ. People were removing large, 

tertiary flakes which were further reduced in Nara Inlet 1 and Border Island 1 in the 

manufacture of backed artefacts. Whether this late Holocene phase also represents 

an increase in activity on the quarry is a matter for further discussion. 

Firstly, two factors lead me to conclude that the stone artefact assemblage in Nara 

Inlet 1 is in fact representative of quarry activity. The absence of weathering on 
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material in the upper phase of Nara Inlet 1 suggests that people were not scavenging 

material (refer to Table 9.2). Further, there is a portion of the quarry assemblage that 

exhibits no weathering. A previous discussion on relative weathering chronologies 

identifies this portion of the assemblage as the latest in the sequence of quarry use. 

The existence of historical accounts of quarry use supports the association between 

this latest phase of use with the contact period (Barker 2004) which belongs to the 

phase bounded by the date of 520 cal. BP. An examination of relative proportions of 

weathering patterns on the quarry should throw some light on whether the late 

Holocene increase in stone artefact deposition rates in Nara Inlet 1 indicates an 

increase in quarry activity. 

As stated earlier, the two comprehensive samples of weathering data were taken from 

a population of 5271 flake scars on cores and 1003 artefacts in the fracture-type 

sample squares. Of these populations, 9% (N=522) of flake scars on cores and 20% 

(N=l98) of artefacts in sample squares are display no weathering characteristics. 

Thus, acknowledging that the relative chronology for quarry use is speculative at this 

stage, I propose that a greater amount of activity was occurring on the quarry prior to 

this late phase of activity, and by implication quarry activity actually declined in the 

period represented by the post-520 cal. BP stone artefact assemblage in Nara Inlet 1. 

SYNTHESIS 

Between 9,000 years ago and 7,000 years ago quarry activity is indicated by the 

presence of stone artefact discard in Nara Inlet 1. The discard rates per 1000 years 

during this phase are low (although relatively in the context of the site), but none the 
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less demonstrate that material was being procured from the quarry and removed for 

further work in Nara Inlet. 

Discard rates between the initial phases of Nara Inlet 1 and Border Island 1 rise 

steeply. At this time, when Border Island 1 is occupied for the first time, people 

appear to be working the stone in similar ways to Nara Inlet 1, but in much higher 

quantities, thus indicating an increase in material removed and by implication, an 

increase in quarry activity. 

After approximately 6,620 cal. BP discard rates in Border Island 1 decline, to reflect 

a similar pattern in Nara Inlet 1, which had begun after 7,190 cal. BP. It is clear that 

there is a reduction in the amount of material being removed from the quarry - a 

trend which began in the early-mid Holocene. Associated with this is a contraction 

of backed artefact manufacturing activity in Nara Inlet 1 and Border Island 1, which, 

I have argued, becomes focused on the quarry. There is definite evidence of backed 

artefacts being manufactured on the quarry (Chapter 7), and the relative weathering 

chronology observed for this sample of backed artefacts is not inconsistent with this 

argument. Alternatively, if the relative chronology for the quarry is too speculative, 

it may the case that the declining stone artefact discard in Nara Inlet 1 and Border 

Island 1 simply represents a decline in the amount of material removed from the 

quarry, and by implication, a decline in associated quarry activities such as 

procurement and initial reduction of stone. 

The period post 520 cal. BP in Nara Inlet 1 is characterised by an increase in stone 

artefact discard. The increase is, however, represented by a relatively small sample 

190 



of 15 stone artefacts and thus should be treated with caution. If however the integrity 

of this increase is accepted, then it could be argued that there was a very late 

Holocene increase (post 520 cal. BP) in the amount of material removed from the 

quarry and by implication an increase in associated procurement and reduction 

activity. 
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CHAPTER 10 MODELLING STONE ARTEFACT USE IN 
THE WHITSUNDAY REGION 

INTRODUCTION 

The previous chapter (Chapter 9) outlined the models for use of the South Molle 

Island Quarry through time. Patterns of use were inferred by an examination of the 

stone artefact assemblages from two stratified rockshelter sites: Nara Inlet 1 on Hook 

Island, and Border Island 1 on Border Island. The island topography changed 

considerably throughout the period of use, with rising sea levels playing a major role 

in local environmental change (see Chapter 4), although previous modelling of 

Whitsunday prehistory has posited that environmental change had little effect on 

peoples' use of the region and its resources (Barker 1995, 1996, 2004). The 

following chapter assesses the applicability of various models for late Holocene 

change to the Whitsunday stone artefact record. 

MODELLING HOLOCENE USE OF THE SMIQ 

During the earliest phase of Nara Inlet 1 's occupation (beginning at 8,990 cal. BP), 

Hook Island was part of the mainland. At the same time however, South Molle 

Island was an island, some 2km from the mainland at its closest point. Between what 

was Hook Island and South Molle Island there was approximately 12km of water. 

This is in contrast to a lOOkm journey over land to reach the adjacent mainland and 

then a 2km journey over water to South Molle Island (Figure 10.1 ). Whichever route 

was selected to access the raw material on South Molle Island, it is safe to conclude 

that at 9,000 BP the people occupying Nara Inlet 1 possessed watercraft. This is 

posited by Barker (2004:150-152) who argues that the people who occupied Nara 
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Inlet 1 had followed the coastline as it rose, and while they exploited the terrestrial 

environment, were pre-adapted to a marine environment. Therefore, the method of 

accessing South Molle Island by water probably posed little difficulty. 
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Figure 10.1 Map showing overland journey from Hook Island To mainland adjacent to South 
Molle Island 
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It has been argued (Chapter 8) that the stone artefact discard in both Nara Inlet 1 and 

Border Island 1 is largely a product of backed artefact manufacture. By implication, 

at 9,000 BP people were accessing the South Molle Island Quarry for raw material 

procurement, and removing stone away and onto the islands. The rate of stone 

artefact discard in the early phase of Border Island 1 occupation ( 6,900 cal. BP and 

6,620 cal. BP) is significantly higher than in the early phase of Nara Inlet 1 (8,990 -

7, 190 cal. BP). Thus at this time in Border Island 1, people were working more 

stone than they were in the previous 2,000 years in Nara Inlet 1. By implication, a 

greater number of backed artefacts were produced during the initial phase of 

occupation in Border Island 1, than in the early phase of Nara Inlet 1. After the early 

phase in each site, stone artefact discard, and by implication backed artefact 

manufacture, proceeds to decline throughout the Holocene. This chapter poses the 

question of why backed artefact manufacture was more intense in the early 

Holocene. 

Risk in a Changing Landscape 

In the explanation of technological change, the theory of risk mitigation as the 

catalyst for change has gained ground in recent archaeological literature. The 

concept underpinning risk theory is that of the cost of various provisioning strategies 

is weighed against the various risks associated with the possible disruption of the 

foraging strategies employed in an economic system. Certain technological 

strategies are therefore employed which minimise both the provisioning cost and the 

risk factors associated with procuring resources. In terms of the stone toolkit, it is 

proposed that technologies are adopted which emphasise ease of procurement and 
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manufacture, thus reducing the failure probability (Hiscock in press:2), and that these 

technologies are emphasised within the economic system. 

The dominant risk-response model for Australian stone artefacts in the Holocene was 

proposed by Hiscock (1994, 2002 and in press) who argued that the proliferation of 

backed artefacts constituted an adjustment by people to increasing uncertainty of 

resource distribution that meant resources were less easily predicted or 'mapped'. 

However, because regional differences in "the nature and onset of risks and costs 

will be reflected in local differences in the nature and timing of change in 

technological strategies" it is unlikely that there will be a single, uniform 

technological trend evident across the entire Australian continent (Hiscock in 

press:l 7). 

The Whitsunday region offers a perfect opportunity to explore the regionality ofrisk

response strategies. As I argue in Chapter 8, the evidence from the rockshelter sites 

suggests that the busiest period of quarry and manufacturing activity occurs in the 

early Holocene between approximately 9,000 BP and 6,620 cal. BP. It is during this 

time that two significant events occurred: the land mass that was the Whitsunday 

'Islands' separated from the mainland, and Border Island was occupied for the first 

time. These events were part of an extreme geomorphic modification that took place 

in the early Holocene, and constituted not only landscape change, but also 

precipitated the colonisation of new landscapes (see Hiscock 1994, 2002 and in 

press). I argue that these two events constituted sufficient 'risk' in terms of access to 

the stone material, that during this time, people were using the pre existing backing 

technology more frequently in the Whitsundays. 
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It should be noted here that while I am arguing that the particular technological 

strategy under investigation here was adopted and utilised as a response to perceived 

instability, I am not crediting the selectionist model of change. I support the idea that 

the initial 'appearance' of cultural traits should be investigated as non-random 

responses to a situation ("non-random forces" [Fitzhugh 2001: 127]), rather than as a 

random and undirected entity. Fitzhugh (2001:126) states: 

Darwinian mechanisms may in fact justify the traditional "mother of 

invention" model, but only if we are willing to consider the role of behaviour 

as a mediator [my italics] between environmental opportunities and 

constraints (the social and physical selective environment) and technological 

production". 

Thus, the notion of a cultural trait being selected and propagated because it gives the 

user an 'advantage' is acceptable, but only if it is acknowledged that the trait was 

developed according to non-random bias (Fitzhugh 2001:127). It is in this context 

that I view the manufacture of backed artefacts in the Whitsunday Islands; as one 

response which optimised peoples' use of stone, to mitigate unpredictability of 

resources. 

Risk responses on islands without stone 

Although the period between 8,990 cal. BP and 7, 190 cal. BP constitutes the most 

intensive period of artefact discard in Nara Inlet 1, there is a steady decline in discard 

from 8,990 cal. BP until 520 cal. BP. A similar pattern can be observed in Border 

Island 1. From initial occupation at 6,900 cal. BP, there is a decline in artefact 

discard until the present. The difference between the two sites lay in the fact that the 

amount of stone discard in Border Island upon initial occupation is so much greater 
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than in Nara Inlet 1 in the early period of occupation (721 artefacts/1000 years 

compared to 53 artefacts/1000 years respectively). 

I argue that the difference in discard between the two sites reflects a relatively more 

intensive backing activity in Border Island 1. This, I argue, is related to two factors 

which constitute an increased risk for the Border Island context: firstly, the distance 

to the source of raw material is far greater for people when they are inhabiting and 

exploiting Border Island 1 than when they are inhabiting Nara Inlet 1; secondly, at 

the time of initial occupation of Border Island 1, the Whitsunday Islands had recently 

separated from the mainland. Thus, during a period of fundamental bio-geographic 

change, a true regional island habitat/environment was established. Therefore, the 

occupation of Border Island 1 signified the habitation of an entirely new 

environmental niche. This, according to proponents of the risk models, constitutes 

sufficient risk to see the manufacture of high numbers of backed artefacts (Hiscock 

1994, 2002 and in press), as their organisational properties reduce potential risk in 

foraging contexts. This trend is represented in the stone artefact assemblage of 

Border Island 1 between 6,900 cal. BP and 6,620 cal. BP. 

Organisational properties such as reliability can be inferred of the backed artefact 

toolkit in the Whitsunday region. As Hiscock (in press) reminds us, backed artefacts 

vary in size and morphology across the eastern portion of the continent. The backed 

artefacts from the study region are typically large and asymmetric (Chapter 7). 

Bleed (1986:839) points out that among the characteristics that constitutes reliability 

are "strengthening and increasing the size of the components of the system". The 

backed edge on the artefacts manufactured in the Whitsunday region is typically as 
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thick as the flake's maximum thickness, providing a robust exterior surface of 

maximum surface area to either haft or hold by hand. Another aspect of the 

Whitsunday backed artefacts which emphasises optimal organisational properties is 

their potential for extended use. Extended or prolonged use reduces the frequency 

with which the raw material needs to be resupplied, and thus reduces the 

procurement costs (Hiscock in press). Prolonged use can take several forms, all of 

which could be applicable in this context; extended flaking, extended use, and 

resharpening. 

While debris associated with backed artefact manufacture is to be found in Nara Inlet 

1, the rate of discard is far less than in Border Island 1. Therefore, there is no 

evidence that backed artefacts were produced at the rate they were in Border Island 

1, either at initial occupation, or even subsequently when the islands became 

separated from the mainland, as is seen at Border Island 1. I argue that this reflects 

the lower risk experienced by people in their utilisation of Nara Inlet 1 compared to 

the context of the first inhabitation of Border Island. The reasons for the different 

levels of risk in the two areas can be summarised as follows. First of all, when Hook 

Island became an island by 8,000 BP, people had already had at least 1,000 years of 

experience with procuring stone from South Molle Island, which involved water 

travel. Secondly, Nara Inlet 1 was only approximately 12km to 20km from South 

Molle Island, compared with a 40km to 70km journey from Border Island to South 

Molle Island, depending on the precise timing of the separation of the intervening 

landmass which made up Hook and Whitsunday Island (Figure 10.1 ). Thus, access 

to the raw material on South Molle Island constituted less risk for people when they 

were at Nara Inlet 1. 
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Evidence for the manufacture of backed artefacts in each rockshelter site declines 

throughout the Holocene. This happens markedly in Border Island 1 after 6,620 cal. 

BP and steadily in Nara Inlet 1 from 7,190 cal. BP. Barker (2004) attributes this 

decline to peoples' increasing marine specialisation which included of a technology 

made from marine products (shell, turtle shell, bone and so on) rather than stone. 

This, Barker (1996, 2004) argues was part of a social and demographic restructuring 

of territory and settlement patterns, culminating in a bounded, specialised and 

culturally distinct island population. 

While I support Barker's (1996, 2004) hypothesis about the nature of the social and 

demographic changes that occurred in the late Holocene, I argue that declining stone 

artefact discard began prior to these social and demographic changes, and thus 

marked a transformation of a different nature. Hiscock (2002) argues that the 

proliferation of backed artefacts throughout southeastern portions of the continent 

was in direct correlation with declining effective precipitation (constituting 

environmental variability) and the colonisation, by some peoples, of new landscapes 

and habitats. I develop this model to suggest that the most prolific backed artefact 

production in the Whitsunday Islands corresponded with a time of greatest 

environmental variability in the form of sea level rises and the creation and 

habitation of an island habitat. How my model differs from Hiscock's (1994, 2002) 

is that both the timing of the effective environmental change and the period of 

prolific backed artefact manufacture occurs several thousand year earlier, in the early 

Holocene. I suggest that the nature and timing of this change is particularly unique 

to the off-shore island habitats and will explore this in greater detail in the next 

chapter (Chapter 11). 
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The period of declining stone artefact discard and by inference backed artefact 

production in the rockshelters, begins in the early-mid Holocene and extends into the 

mid and late Holocene. While this is also a period of decreasing precipitation, which 

in some contexts constitutes environmental variability, I argue that it in fact 

represents relatively greater environmental stability than previously; as it is at this 

time, sometime around 6,500 BP, that sea levels stabilised. Regardless of variability 

in temperature and effective precipitation, I would argue that in this island context 

sea level stability represents environmental stability to a degree, particularly in light 

of the palynological evidence for the region (Chapter 4). Hiscock (2002) invokes a 

reduced degree of risk as an explanation for the mid-late Holocene pattern of 

declining backed artefact production in other geographical contexts. I am reluctant 

to rely solely on this as an explanation for declining backed artefact productivity in 

the Whitsundays. Simply because the selective pressure of risk relating to 

environmental variability is removed or reduced, does not necessarily constitute the 

reduction in this technological trend. Rather, I argue that by this time, the 

technology would have been embedded in many different systems, not just that of 

enviro-economics. 'ifhus its extrication from society is more complex than a simple 

reversal of the trend which ensured its entrenchment. 

I propose that the reduction in backed artefact manufacture in the rockshelter sites 

had its roots in two causal factors that can be determined from the archaeological 

record. First, there is the reduction in manufacturing behaviour began at 6,620 cal. 

BP in Border Island and 7, 190 cal. BP in Nara Inlet 1. This is just on the cusp of the 

period that is generally associated with the stabilisation of sea levels. This would 

have constituted a relatively stable and predictable situation with respect to access to 
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the raw material source on South Molle Island, and in terms of the flux and change of 

other shore based resources. Also, at this stage, there had been several hundred years 

worth of habitation of a true off-shore island environment: 810 years in Nara Inlet 1 

and 3 80 years in Border Island 1. Thus, the period that constituted the habitation of a 

new environment (Hiscock 1994, 2002) had possibly passed and people were moving 

across a landscape with which they had considerable history. 

The continuing decline in rates of stone artefact discard throughout the mid-late 

Holocene in the rockshelter sites can also be associated with the concept of culturally 

bounded, marine specialisation proposed by Barker (2004). Barker (2004:150) 

argues for a pre-3,000 BP period that was characterised by ephemeral coastal and 

island occupation by a people whose diet consisted largely of littoral marine fauna, 

with a significant terrestrial based diet. Barker (2004: 150) characterises this picture 

as 

"indicative of reasonably small and mobile groups whose settlement and 

subsistence patterns reflect 'classic' models of Australian coastal foragers 

who utilised a substantial coastal hinterland area but pursued a largely shore

based marine subsistence strategy". 

The period post 3,000 BP sees a range of changes to settlement, subsistence and 

economy (Barker 2004:147). These changes include greater emphasis on open sea 

biota such as large marine mammals and turtle, a "change in technology reflective of 

the increased importance of the marine resource base", an increase in discard of 

organic cultural materials and an expansion of island habitation (Barker 2004:147). 
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It is argued by Barker (2004) that the diminishing use of stone reflects the increasing 

emphasis on marine oriented technologies which are made from marine resources. 

I hypothesise that the use of stone does not necessarily decrease, and particularly not 

because of an increasing reliance on marine resources. The early phase of Border 

Island 1 occupation contains the highest densities of both stone artefact discard and 

turtle bone. I think that the link between the two is a manifestation of the methods 

required to butcher these large marine animals. Dismembering and de-fleshing a 

creature the size of a turtle or dugong would require not only an implement of 

considerable size and robusticity, but also one that was reliable and easily reshaped 

should it snap. Backed artefacts are such an implement type (Hiscock 2002). Thus, 

despite the declining discard in the rockshelter sites, I do not subscribe to the notion 

that increasing marine specialisation equates decreasing utilisation of stone artefacts. 

I am inclined to agree with Barker (2004) however, that the cultural system marked 

by the post 3,000 BP changes was characterised by a certain boundedness in which 

territories "became more clearly defined and access to resource areas controlled or 

restricted" (Barker 2004:150). This pattern is observed across late Holocene 

Australia, particularly in well resourced, coastal or hinterland regions (David 1994; 

Lourandos 1983, 1985; McNiven 1999). The quarry on South Molle Island may well 

have constituted a very critical and important resource that was controlled in such a 

manner, throughout the mid-late Holocene. If the quarry did become controlled in 

such a manner, there may well have been specialists, or at least a designated 

knapper(s) responsible for the production and distribution of backed artefacts to 

people occupying other sites in the region. 
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If this was indeed the case, the declining rates of artefact discard in the rockshelters 

in the mid-late Holocene could be explained in the following manner: the more 

culturally bounded system that Barker (2004) documents for the mid-late Holocene 

was responsible for the continually declining rates of stone artefacts discarded in the 

rockshelter sites. This is due to the raw material source on South Molle Island being 

part of the culturally bounded system that controlled and restricted the quarry 

resource. That is, the backed artefact reduction process was undertaken on the 

quarry itself, possibly by specialised knappers, and the backed artefacts were 

distributed from the quarry rather than being produced in many varying locales. 

The Role of the South Molle Island Quarry 

Evidence from Border Island 1 and Nara Inlet 1 demonstrates that the South Molle 

Island Quarry has been used from 9,000 years ago to the archaeological present. The 

patterning of that use, across both space and time will be modelled here. There are 

several technological systems at work on the quarry. Raw material extraction is 

evident in several forms: the removal and working of nodules from the substrata and 

working the large bedrock-type outcrops. Analysis ofretouched forms on the quarry 

indicated that retouch activity was directed at the production of backed artefacts as 

the only systematically produced implement form. Retouch also occurred on flakes, 

which in terms of material removed, resembled the sample of cores. Thus entire 

reduction sequences (processes) were carried out on the SMIQ, from initial 

extraction of raw material to final stages of retouch. 

An analysis of cores and unworked nodules on the South Molle Island Quarry 

indicated that at the time of contact, raw material availability was declining. I draw 
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this conclusion from two main lines of evidence: firstly, the remaining unworked 

nodules were not of the size and shape of the majority of the cores on the quarry. 

While the cores tended to be fairly cubic and 'blocky' in nature, the unworked 

nodules were more tabular in form, which limited the number of potential fracture 

planes. Secondly, an examination of fracture planes on cores revealed that there was 

a consistent pattern of 'interruption' caused by step and hinge terminations. This 

being the case, the potential for further removal of flakes is severely limited. These 

two factors in combination lead me to conclude that the raw material source on South 

Molle Island was under stress. 

The early phases of occupation at Nara Inlet 1 and Border Island 1 indicate that stone 

was being procured and removed from the quarry, although not in large quantities. 

The near complete absence of cortex on artefacts in both sites indicates that most of 

the reduction was occurring on the quarry, including preparation of the flake-blank. I 

argue above that the declining rates of stone artefact discard in Nara Inlet 1 and 

Border Island 1 represent a period of decreasing backed artefact manufacture in 

regional locations away from the quarry. This is attributed to two factors. Firstly an 

increasing awareness and familiarity with the island habitat (reduced risk) in the 

early Holocene which is represented by the period after 7,190 cal. BP in Nara Inlet 1 

and after 6,620 cal. BP in Border Island 1. This trend continues through to the late 

Holocene when the socio-demographic changes are picked up in the archaeological 

record. At this time, I argue, other factors contribute to the absence of stone in the 

sites. Noteworthy among them is the increasing control and restriction placed on 

resources as part of the increasing boundedness documented by Barker (2004) for the 

reg10n. 

204 



During this time, I argue that the procurement, initial reduction, and late stages of 

reduction that contribute to the process of backed artefact manufacture were all being 

carried out on the South Molle Island Quarry, rather than occurring in other locations 

throughout the region. Stone artefact discard declining in the rockshelter sites, 

combined with the observed retouch patterns occurring on the quarry (Chapter 7), 

and other socio-demographic restructuring within the region, constitutes all the 

hallmarks of specialised knappers or possibly 'caretakers' maintaining control of a 

resource where procurement is indirect and restricted ( eg. Fladmark 1884). 
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CHAPTER 11 THE SMIQ AND IMPLICATIONS FOR 
HOLOCENE CHANGE IN COASTAL AND ISLAND SYSTEMS 

This research has added to the mounting evidence that the antiquity of backed 

artefacts and the timing of high production rates of backed artefact manufacture 

varies around Australia. In the Whitsunday Islands backed artefact production has 

been shown to be present from the start of the Holocene and to have been a key 

technological element in the early Holocene. A new understanding of backing 

technologies in Australia can be developed in light of this recognition of regional 

variation. In this chapter I present a model for Holocene technological change in the 

Whitsunday region, and a discussion of the implications for wider coastal and island 

technological systems throughout the Holocene. 

I offer the following model for changing technological patterns in the Whitsunday 

Islands. In the early Holocene, the evidence from the rockshelter sites Nara Inlet 1 

and Border Island 1 shows that between approximately 9,000 BP and 6,500 BP 

people were obtaining relatively large quantities of stone from South Molle Island 

and transporting it to various locations within the region including, importantly, 

rockshelter sites. The evidence from the stratified sites indicates that part of the 

technology at this time included the production of backed artefacts. This is 

interpreted here as comprising part of a strategy to reduce perceived risk at this time, 

related to the colonisation of a previously unexploited island landscape. For 

example, greater discard density in Border Island 1 in the early Holocene may reflect 

greater foraging risk owing to such factors as distance of the island from the source 

of stone. The further from the source people move, the less predictable is the 
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provisioning of raw material, particularly in a newly exploited island landscape. 

However, unlike traditional distance-decay models, where distance from source 

correspond with lower discard and smaller artefacts, this particular situation may 

reflect peoples' increased requirements for reliable, maintainable implements. Thus, 

the manufacture of a greater number of backed artefacts in Border Island 1 accounts 

for the higher discard densities. 

Stone artefact manufacture in the rockshelters declined steadily in Nara Inlet 1 from 

7,190 cal. BP and markedly in Border Island 1 from 6,620 cal. BP. A possible 

explanation for this is that by this time people had a history of living in this habitat, 

and while it is difficult to be definitive about what constitutes a 'new' habitat, it is 

likely that perceived risk in that sense was reduced at this time. This, could be 

partially responsible for the decreased rate of stone artefact discard in Nara Inlet 1 

and Border Island I in the early-mid Holocene. However, because the technology is 

embedded in various cultural systems, particularly after many generations of 

prolonged use, there could be a combination of factors at work which acted either in 

an overlapping fashion or in sequence to maintain this trend. 

To elaborate on this, it has been argued (Barker 2004) that people in the region 

became culturally bounded and marine specialised after 3,000 BP. However, people 

were hunting turtle off Border Island as early as 6,900 cal. BP, which suggests that 

the process of specialisation could have been more prolonged and was initiated 

earlier than previously acknowledged (Barker 2004). If the process of marine 

specialisation is to be seen as intrinsically linked to other socio-cultural changes as 

Barker (2004) argues, then it is possible that the reduced rate of discard in the early-
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mid Holocene could also represent the early stages of the socio-demographic shift 

that Barker (2004) has identified in the late Holocene (this will be discussed in more 

detail below). 

The pattern of declining stone artefact discard persists throughout the late Holocene. 

Owing to the likely importance of stone implements for butchering large marine 

mammals and reptiles, I am reluctant to subscribe to Barker's (2004) argument that 

stone became less important during the late Holocene. However, the notion of 

restricted and controlled resource access commonly associated with the late 

Holocene process of demographic change, supports the idea that the focus of stone 

artefact manufacture shifted onto the quarry. Because I have argued that the 

beginnings of this change occurred in the early-mid Holocene in the form of early 

marine specialisation, it is reasonable to suggest that other changes such as controlled 

resource access might also begin earlier than previously thought. Thus, the declining 

stone artefact discard in the early to mid Holocene be represent this earlier social and 

demographic change, which is usually attributed to the mid-late Holocene. In this 

context, the quarry would have become the epicentre of manufacturing and 

distribution of implements throughout the region. 

The highest discard rates of stone artefacts in the rockshelter sites Nara Inlet 1 and 

Border Island 1 occurred between 8,990-7, 190 cal. BP and 6,900-6,620 cal. BP 

respectively. An examination of the debris from backed artefact manufacture on 

SMIQ and attributes indicative of the backing process on the backed artefact sample 

from the quarry (Chapter 8), has demonstrated a strong correlation between the 

debris in the rockshelter sites and the process of backing. Thus, I feel it can 
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reasonably be concluded that the most intensive period of backed artefact 

manufacture in Nara Inlet 1 and Border Island 1 occurred during the early to mid 

Holocene as indicated by the dates above. This pattern contrasts with that outlined 

by Hiscock (2002), in which he concluded that backed artefact proliferation on 

mainland Australia tended to be greatest between 4,500 BP and 3,500 BP (Hiscock 

2002; Mulvaney 1975). It is proposed here that this should be seen as evidence 

relating to the pattern found in southeastern Australia and not directly applicable to 

the situation on the tropical Queensland coast. 

While evidence for backed artefact technology is now evident from the early 

Holocene, its proliferation in mainland southeastern Australia has been largely 

associated with a period of environmental variability in the mid-late Holocene 

(Hiscock 2002). Research refining the patterns and effects of the El Nifio Southern 

Oscillation (ENSO) event has determined that much of the Holocene was affected by 

this pattern of variability (Shulmeister and Lees 1995) which was expressed as low 

effective precipitation rates particularly between 5,000 BP and 4,000 BP. We can 

now understand the argument Hiscock (2002) made that this period of environmental 

variability corresponds with the proliferation of backed artefact manufacture and 

discard observed for mainland southeastern Australia. However, this temporal trend 

of backed artefact proliferation contrasts significantly with that observed in the 

Whitsunday region, which I have argued saw intensive backed artefact manufacture 

between 9,000 and 6,500 BP. I want to explore the possible causes for the earlier 

proliferation of backed artefacts in the Whitsunday Islands in light of the unique 

island habitat and environmental characteristics. 
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When compared with the mainland region at the same time (early to mid Holocene), 

I suggest that there are factors at work in the Whitsunday Islands that constitute a 

unique set of circumstances and that these circumstances were integral to early 

technological change in the form of backed artefact proliferation. We know that 

environmental variability throughout the Holocene brought about increasingly moist 

and warmer conditions on the south east coast of Australia until the mid late 

Holocene. This had a range of effects on the biogeography of eastern Australia. 

Among these effects was the formation of off-shore islands, as a result of rising sea 

levels. This constitutes the formation of completely new landscapes, as in the case of 

the Whitsunday Islands. On-shore, topography however, remains essentially the 

same despite a range of effects enacted on the flora and fauna, caused by warmer 

temperatures and increasing Effective Precipitation levels. 

The proposed proliferation of backed artefacts on the Whitsunday off-shore islands, 

appears to be in contrast to the pattern on the mainland. I propose that it is the 

creation of a new landscape (the formation of islands) that constituted foraging risk 

in the Whitsunday region, rather than generalised climatic variability such as would 

have been experienced in mainland coastal regions in the early to mid Holocene. 

The fact that there are relatively fewer backed artefacts documented on the adjacent 

mainland during this time tends to support this argument. 

Conclusion and Future Directions 

It has been argued extensively in the Australian and international literature that 

curative technologies such as backing are particularly favoured in environments 

which constitute foraging risk. For the most part, the proliferation of this kind of 
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technology in eastern Australia occurs in the mid-late Holocene and is frequently 

associated with other changes to the settlement subsistence system, which continued 

throughout the late Holocene. As I have hypothesized in this research, there appears 

to be a connection in Border Island 1 between backing technologies and turtle 

procurement, particularly between 7,000 and 6,500 BP. It has been proposed by 

Barker (2004) that the procurement of large marine reptiles and mammals, is part of 

a process of marine specialisation in the region. I suggest that the evidence for turtle 

exploitation in Border Island 1 signals the beginning of early marine specialisation in 

the Whitsunday region. 

As sea level reconstruction data suggest, the sea levels had either not quite, or had 

just recently stabilised at this time. This suggests that for the Whitsunday region, 

there did not appear to be a 'lag effect' between stabilisation and the beginnings of 

marine specialisation, as proposed by Beaton (1985) to explain the delay between 

stabilisation and manne specialisation m coastal areas continent-wide. 

Accompanying these early signs of specialisation are signs that backed artefacts were 

being manufactured and used in higher densities than in any other time during the 

Holocene. I have argued here that the manufacture and use of these implements is a 

strategy related to the mitigation of foraging risk, which was brought about through 

the colonisation of new landscapes. It is also apparent that the Whitsunday region is 

unique in its timing of this particular risk mitigation strategy. 

This study highlights the fact that risk, risk mitigation strategies, environment and 

social factors are all local conditions. The implication of this observation is that pan

continental models are losing their relevance as these local conditions are highlighted 
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and incorporated into regional models of change. Thus, I feel that researchers need 

to systematically change the scale of their enquires in future, in order to further 

differentiate among the unique regional conditions that shape change in Holocene 

Australia. 
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