Type Ia Supernovae: Explosions and Progenitors

Wolfgang Eitel Kerzendorf

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University

Research School of Astronomy & Astrophysics

August 2011

Disclaimer

I hereby declare that the work in this thesis is that of the candidate alone, except where indicated below or in the text of the thesis.

Chapter 2:

The candidate was not involved in the acquisition of Subaru data for Tycho-G. The theoretical calculations for the expected rotation were carried out by Philipp Podsiadlowski The surface gravity was measured by Anna Frebel.

Chapter 3:

The candidate was not involved in the acquisition of Keck data for the donor star candidates. The effective temperature, surface gravity and metallicity measurements were conducted by David Yong (except Tycho-B). The analysis of the Tycho-B HIRES spectrum was partly performed by Simon Jeffery. All other parameters and the LRIS spectrum were analyzed by the candidate.

Chapter 4:

All work (including data acquisition) was performed by the candidate, except rotation which was measured by John Laird (but confirmed by the candidate).

Chapter 5:

The spectrum synthesis code was written by Paolo Mazzali and his group. All other work was performed by the candidate.

U. Kerendaf

Wolfgang E. Kerzendorf 15th November 2011

Acknowledgments

First and foremost I'd like to thank my supervisor Brian Schmidt. He struck a balance between academic independence and supervision that allowed me to explore a lot of different fields of astronomy, but also focused me on the thesis when necessary. Brian did not only guide me professionally but also personally making him a true 'Doktor Vater' (literally 'doctor father' german name for a PhD supervisor). Thank you for five exciting, interesting and wonderful years here at Mt. Stromlo and to many more years of fruitful collaboration and friendship in astronomy or otherwise.

I have to thank Rainer Wehrse (who unfortunatley passed away) without whom I would have never been able to start my PhD at Mt. Stromlo.

My supervisory panel consisted of Mike Bessell, Frank Briggs, Bruno Leibundgut and Reynald Payne. I thank Mike Bessell for many hours of chats about photometry and stellar spectroscopy. He has been a very patient teacher even in times when my questions were not posed all to well. I thank Frank Briggs for encouraging me to fearlessly ask questions about any subject in the many cosmlogy lunches that I was ignorant about. I thank both Bruno Leibundgut and Reynald Payne for being my external advisors.

At Mt. Stromlo there have been many people who made my stay fun, engaging and exciting. I will unfortunately only be able to name a few of them. In the academic ranks, Harvey Butcher has certainly contributed to my pleasant stay at Mt. Stromlo and I'd like to thank him for that. Not only through his financial support, but also through his advice on the DALEK project. He suggested that nonlinear optimisation is a very active field and that my problem is not unique (which I had assumed). I have to thank Ken Freeman for his help in particular with the use of Fourier transforms to analyse spectra. Peter Wood has always been very helpful when concerning questions of stellar evolution and I thank him for his patience. In the same spirit I thank Amanda Karakas who has taught me a lot stellar evolution and has tolerated the music and language next doors. Stuart Sim has been of invaluable help in the the recent months, educating me about supernova radiative transfer and supernova theory as well as many chats over tea or coffee - thank you. I have to thank Chris Onken for his unbreakable cheerful spirit throughout many projects that we have done together. David Yong has been very patiently teaching me stellar abundance analysis - thank you. I thank all the students at Mt. Stromlo for their friendship and support over the last few years. Especially I'd like to thank Brad Tucker for his catering services for many Mt. Stromlo events. Out of the Mt. Stromlo crowd I have to thank, last but not least, my office mate Simon Murphy for his four years of a fun-filled and enjoyable PhD experience as well as his zealous love for Python that we both share.

Finally I have to thank the Computer Section. All of them have been very helpful, but I have to thank especially Kim and Bill for their computer support as well as witty remarks.

I have to thank all of my collaborators for their help and comments and especially Philipp Podsiadlowski for his valuable insights in binary star evolution and his patience in teaching me. In addition I have to thank my collaborator James Montgomery for helping me with all things about Genetic algorithms. I have to thank the MPA Supernova group for their hospitality and companionship during my stays with them. Specifically I'd like to thank Stephan Hachinger my collaborator, who has helped me master the spectrum synthesis code and patient in teaching me about the theory underlying that code. I'd like to thank Thomas Magill for designing such a wonderful cover. His artistic skill also made the film 'Starcatchers' a success.

Outside the astronomy community I have to thank all the people that contributed to the wonderful NUMPY, SCIPY and MATPLOTLIB computing environment. I have to especially thank the support I have received from mailinglists of these products and the IRC Python chat room.

I have to thank all of my friends and family that have accompanied on this journey and helped when things seemed dire.

Last but not least I have to thank my parents Gertraud and Werner. Their unwaivering support, love and companionship have made it possible for me to reach this goal in life.

Abstract

Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as 'Dark Energy'.

Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia).

White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to $1.38 M_{\odot}$ (called the Chandrasekhar Mass). Most stars however leave white dwarfs with $0.6 M_{\odot}$ and no star leaves a remnant as heavy as $1.38 M_{\odot}$, which suggests that they somehow need to acquire mass if they are to explode as SN Ia. Currently there are two major scenarios for this mass acquisition. In the favoured single degenerate scenario the white dwarf accretes matter from a companion star which is much younger in its evolutionary state. The less favoured double degenerate scenario sees the merger of two white dwarfs (with a total combined mass of more than $1.38 M_{\odot}$).

This thesis has tried to answer the question about the mass acquisition in two ways. First the single degenerate scenario predicts a surviving companion post-explosion. We undertook an observational campaign to find this companion in two ancient supernovae (SN 1572 and SN 1006). Secondly, we have extended an existing code to extract the elemental and energy yields of SNe Ia spectra by automating spectra fitting to specific SNe Ia. This type of analysis, in turn, help diagnose to which of the two major progenitor scenarios is right.

Understanding the progenitors of SN Ia has wide ranging applications. Not only would we better be able to calibrate SNe Ia for use as distance probes, but we could also dramatically improve our understanding of the chemical history of the universe, which SNe Ia play a seminal role in.

Contents

1	Intr	oductio	on	1
	1.1	Ancie	nt Supernovae	1
	1.2	Mode	rn Supernova Observations and Surveys	6
	1.3	Obser	vational Properties of Supernovae	9
		1.3.1	Supernova classification	9
		1.3.2	Supernova rates	12
		1.3.3	Light Curves	15
		1.3.4	Spectra	16
			Type Ia supernova spectra	16
			Pre-Maximum Phase	17
			Maximum Phase	18
			Post-Maximum phase	18
			Nebular Phase	19
			Type II Supernova Spectra	19
		1.3.5	X-Ray & Radio observations	20
		1.3.6	Supernova Cosmology	21
		1.3.7	Post-explosion observations of Supernovae	23
	1.4	Core-	Collapse Supernova Theory	25
		1.4.1	Evolution of Massive Stars	25
		1.4.2	Core collapse	26
		1.4.3	Pair Instability Supernova	27
		1.4.4	Type II Supernovae	27
		1.4.5	Type Ib/c Supernovae	28

	1.5	Therm	nonuclear Supernova Theory	28
		1.5.1	Progenitors of Type Ia Supernovae	28
			Single Degenerate Scenario	28
			Donor Stars	29
			Double Degenerate Scenario	31
		1.5.2	Evolution and Explosion of Type Ia Supernovae	32
			White Dwarfs	32
			Pre-Supernova Evolution	33
			Explosion mechanisms	33
		1.5.3	Constrains for different progenitor scenarios	37
	1.6	Thesis	motivation	38
2	Sub	aru Hi	gh-Resolution Spectroscopy of Tycho-G	41
	2.1	Introd	luction	41
	2.2	Obser	vational Characteristics of the Tycho Remnant and Star-G	43
	2.3	Rapid	Rotation: A Key Signature in Type Ia (SN Ia) Donor Stars	45
	2.4	Subar	u Observations	46
	2.5	Analy	rsis and Results	47
		2.5.1	Rotational measurement	47
		2.5.2	Radial velocity	49
		2.5.3	Astrometry	49
	2.6	Discus	ssion	52
		2.6.1	A Background interloper?	52
		2.6.2	Tycho-G as the Donor Star to the Tycho SN \ldots	54
	2.7	Outlo	ok and Future Observations	55
3	Tycł	10's Six	(57
	3.1	Introd	luction	57
	3.2	Obser	vations and Data Reduction	59
	3.3	Analy	′sis	60
		3.3.1	Astrometry	60
		3.3.2	Radial Velocity	61
		3.3.3	Rotational Velocity	62
		3.3.4	Stellar parameters	64
		3.3.5	Distances	68
	3.4	Discus	ssion	72
	3.5	Concl	usion	74

4	Prog	genitor search in SN 1006	77
	4.1	Introduction	77
	4.2	Observations and Data Reduction	78
		4.2.1 Photometric Observations	78
		4.2.2 Spectroscopic Observations	79
	4.3	Analysis	82
		4.3.1 Radial Velocity	82
		4.3.2 Rotational Velocity	83
		4.3.3 Stellar Parameters	84
	4.4	Conclusions	86
5	Aut	omatic fitting of Type Ia Supernova spectra	89
	5.1	Introduction	89
	5.2	The MLMC Code	90
		5.2.1 Radiative Transfer	90
		5.2.2 Monte Carlo Radiative Transfer	93
	5.3	Manually fitting a Type Ia supernova	94
	5.4	Brief Introduction to Genetic Algorithms	101
	5.5	Genetic Algorithms fit Type Ia Supernovae: The Dalek Code	102
	5.6	Conclusion	110
6	Con	clusions and Future Work	111
	6.1	Single or Double Degenerate?	112
	6.2	The curious case of Kepler	114
	6.3	Divide et impera	115
	6.4	The Dalek Code	115
	6.5	Trouble in Paradise	116
G	lossa	ry	117
Bi	bliog	raphy	121
Aj	ppen	dix A Linear interpolation in N Dimensions	139
	A.1	Delauney triangulation	140
	A.2	Convex Hull	141
	A.3	Barycentric coordinates system	143
	A.4	Triangle Finding and Interpolation	143
	A.5	Conclusion	144

Append	ices
--------	------

Append	lix B Genetic Algorithms	145		
B.1	Introduction	145		
B.2	Genetic Algorithms	146		
B.3	Convergence in Genetic Algorithms	152		
B.4	Genetic Algorithm Theory	153		
B.5	A Simple Example	153		
B.6	Conclusion	154		
Annon	liv C SNI 1006 Data	155		
лрреш	Appendix C 51 1000 Data 15			

139

List of Figures

1.1	Chaco canyon petroglyphs	3
1.2	Star chart of SN 1572 by Tycho Brahe	4
1.3	Light curve of SN 1604	5
1.4	HST image of SN 1994D	7
1.5	Classification scheme by Turatto (2003)	9
1.6	Spectral comparison from Turatto (2003)	10
1.7	Fraction of different SN Ia classes	11
1.8	Fraction of different SN II classes	12
1.9	Light curve templates from Li et al. (2011)	13
1.10	Supernova rate versus galaxy morphology	14
1.11	Light curves of SN 2002bo (data from Benetti et al., 2004)	15
1.12	Pre-Maximum spectrum of SN 2003du	17
1.13	Maximum light spectrum of SN 2003du	18
1.14	SN 2003du 17 days past maximum light. The contribution of IGE is still rising (Figure kindly provided by M. Tanaka; Tanaka et al., 2011)	19
1.15	Nebular phase spectrum of SN 2003du	20
1.16	Shell Burning of a massive star before SN II	26
1.17	Expected escape velocities for donor stars	30
1.18	Expected rotational velocities of donor stars	31
1.19	Delayed detonation simulation from Röpke & Bruckschen (2008) \ldots	35
1.20	Helium shell ignition leading to sub Chandrasekhar Mass detonation $\ . \ .$	36
2.1	SN 1572 overview of candidate stars	44
2.2	Expected rotation for Tycho-G	45

2.3	Rotation of Tycho-G from HDS spectrum	48
2.4	Proper motion measurements for stars in SN 1572 from plates and HST images	51
2.5	Radial velocity of Tycho-G compared with the Besançon Model \ldots	53
3.1	Proper motion measurement of stars in SN 1572 using only HST images $\ .$	62
3.2	Radial velocity of all candidate stars in SN 1572 with the Besançon Model	63
3.3	Rotation measurement for all candidate stars in SN 1572	64
3.4	Comparison of nickel and iron abundance measurement of stars in SN 1572	66
3.5	Fit of low resolution spectrum of Tycho-B	67
3.6	Distance, extinction and mass measurements in SN 1572	69
3.7	Comparison between PPMXL catalog and the Besançon Model	74
4.1	Colour-colour plot of all candidates in SN 1006 to check photometry \ldots	79
4.2	Overview of candidates and remnantin SN 1006	81
4.3	Close-up of the candidates in SN 1006	82
4.4	Radial velocity of all candidates in SN 1006 compared with Besançon Model	83
4.5	Comparison of rotation and surface gravity of SN 1006 candidates	87
4.6	Background UV sources probing the remnant	88
5.1	Spectrum on SN 2002bo with MLMC fit	95
5.2	Effect of luminosity on MLMC fit	96
5.3	Effect of photospheric velocity on MLMC fit	97
5.4	Effect of iron group elements on MLMC fit	98
5.5	Best-Fit of SN 2002bo with MLMC including line identification	99
5.6	Flow chart overview over the process of a GA	102
5.7	Estimated initial guess for photospheric velocity against days after explosion	104
5.8	Evolution of fitness over the generations	107
5.9	Evolution of both luminosity and photospheric velocity over generations .	107
5.10	Results of optimisations with Genetic Algorithms 1	109
6.1	Close-up of the inner region of SN 1572 with candidates 1	113
6.2	VLA contours of Kepler's remnant (SN1604) overlayed on a 2MASS image	114
A.1	Delauney Triangulation of 20 points in two dimensions	140
A.2	Change from a 'illegal' triangulation to a Delauney Triangulation	141
A.3	Stereogram of the projection of the convex hull in three dimensions	141
A.4	Determination of a convex hull in two dimensions.	142

A.5	The triangle and its barycenter marked by the intersection of lines	143
B.1	Time line of milestones in numerical optimisation	145
B.2	Roulette Wheel Selection	150
B.3	Rank Selection with subsequent Roulette Wheel Selection	151
B.4	Single-point and multi-point crossover	152
C.1	Fit of SN 1006 candidate spectra	162

List of Tables

2.1	Proper motions of stars within 45" of the Tycho SNR center	50
3.1	Observations of Stars	59
3.2	Proper motion of Candidates	61
3.3	Radial velocities	63
3.4	Measured EWs from the Keck HIRES spectra	70
3.5	Stellar Parameters	71
3.6	Tycho-B abundances	71
3.7	Distances, Ages and Masses of candidate stars	71
4.1	Flames Observations of SN1006 program stars	80
4.2	SN 1006 candidates ($V < 17.5$) stellar parameters $\ldots \ldots \ldots \ldots \ldots$	85
5.1	Parameters for best fit	100
C.1	SN 1006 optical photometry (Candidates with $V < 17.5$ marked with gray)	155
C.2	SN 1006 infrared photometry (Candidates with $V < 17.5$ marked in gray) .	158
C.3	SN 1006 candidate kinematics with statistical errors	160