
Performance Models for Electronic

Structure Methods on Modern

Computer Architectures

Joseph Antony

A thesis submitted for the degree of

Doctor of Philosophy at

The Australian National University

May 2009

© Joseph Antony

Typeset in Times by TEX and LATEX 2ε .

Except where otherwise indicated, this thesis is my own original work.

Joseph Antony

29 May 2009

Acknowledgements

I am indebted to my supervisor Alistair Rendell for his encouragement and support all through-

out my candidature. My thanks also goes to Peter Strazdins and Andrey Bliznyuk, my co-

supervisors. A warm thanks goes out to Ben Evans and the NCI National Facility team both as

a PhD candidate and as a staff member. I’d like to take this opportunity to thank Mike Frisch

and team Gaussian in Wallingford CT for not only sponsoring the ARC linkage grant that led

to this thesis, but for all their help, advise and encouragement over the years.

I’ve been enriched by my interactions with past and present students, staff at ANU Computer

Science; I’d like to especially thank:

Rui Yang, Pete Perrapong Janes, Jin Wong, Warren Armstrong, Jie Cai, V. Ganesh, Josh

Milthorpe, Yang Xi, Arrin Daley. A special mention and thanks goes to Andrew Over and

Bill Clarke. Bill had informed me about the state-of-the-art in full machine simulation, C++

run-time intricacies and Roman-era archaeological digs in Syria. Discussions with Andrew

often revolved around SG1 and the UltraSPARC IIICu while Armin van Buuren was in ‘A

State of Trance’. Joint work with Pete Janes enabled the development of the LPM model in

Chapter 3, often sketched out on Saturdays after Pete’s fishing trips from Lake Burley Griffin.

Rui Yang deserves an special mention for all his help throughout my thesis years, both as a

joint collaborator (Chapter 5) and for his feedback and input often over coffee in his office.

A big vote of thanks goes to:

SGI (Todd Churchwood, Anthony David, Roberto Gomperts);

IBM (Hugh Blemmings, James Kelly);

IBM academic program (for access to compilers and BLAS libraries);

Apple ADC (Tess Collins);

ANU DCS (Pascal Vuylsteker, Steve Blackburne, Eric McCreath, Bob Edwards, James Fel-

lows, Steve Hanley, Hugh Fisher, Robin Garner, Chris Johnson, Henry Gardner);

ANUSF (Jason Ozolins, Rika Kobayashi, Robert Davy, Jonathan McCabe, David Singleton,

Judy Jenkinson, Margaret Kahn, Robin Humble, Bob Gingold);

ANU DoI (Allan Williams, Markus Buuchorn, Andrew Wellington, Doug Moncur);

Cray Australia (Lindsay Hood);

Stuart Watson and Richard Walker.

v

On a personal note: a special thanks to ‘F & M Inc.’

This work was made possible as a result of funding from the Australian Research Council

in conjunction with Gaussian Inc. and Sun Microsystems Inc. under ARC Linkage Grant

LP0347178.

Abstract

Electronic structure codes are computationally intensive scientific applications used to probe

and elucidate chemical processes at an atomic level. Maximizing the performance of these

applications on any given hardware platform is vital in order to facilitate larger and more ac-

curate computations. An important part of this endeavor is the development of protocols for

measuring performance, and models to describe that performance as a function of system ar-

chitecture. This thesis makes contributions in both areas, with a focus on shared memory

parallel computer architectures and the Gaussian electronic structure code.

Shared memory parallel computer systems are increasingly important as hardware man-

ufacturers are unable to extract performance improvements by increasing clock frequencies.

Instead the emphasis is on using multi-core processors to provide higher performance. These

processor chips generally have complex cache hierarchies, and may be coupled together in

multi-socket systems which exhibit highly non-uniform memory access (NUMA) characteris-

tics. This work seeks to understand how cache characteristics and memory/thread placement

affects the performance of electronic structure codes, and to develop performance models that

can be used to describe and predict code performance by accounting for these effects.

A protocol for performing memory and thread placement experiments on NUMA systems

is presented and its implementation under both the Solaris and Linux operating systems is

discussed. A placement distribution model is proposed and subsequently used to guide both

memory/thread placement experiments and as an aid in the analysis of results obtained from

experiments.

In order to describe single threaded performance as a function of cache blocking a sim-

ple linear performance model is investigated for use when computing the electron repulsion

integrals that lie at the heart of virtually all electronic structure methods. A parametric cache

variation study is performed. This is achieved by combining parameters obtained for the linear

performance model on existing hardware, with instruction and cache miss counts obtained by

simulation, and predictions are made of performance as a function of cache architecture.

Extension of the linear performance model to describe multi-threaded performance on

vii

viii

complex NUMA architectures is discussed and investigated experimentally. Use of dynamic

page migration to improve locality is also considered.

Finally the use of large scale electronic structure calculations is demonstrated in a series

of calculations aiming to study the charge distribution for a single positive ion solvated within

a shell of water molecules of increasing size.

Contents

Acknowledgements v

Abstract vii

List of Papers xv

List of Presentations xvii

1 Introduction 1

1.1 Original Contributions . 1

1.2 Organization of Thesis . 2

2 Background 5

2.1 Microprocessors, Caches, Interconnects . 5

2.1.1 On-Chip Parallelism . 6

2.1.1.1 Data Level Parallelism . 6

2.1.1.2 Instruction Level Parallelism 7

2.1.1.3 Thread Level Parallelism 8

2.1.2 Cache Memory Structure . 8

2.1.2.1 Capturing Locality . 9

2.1.3 Primary Cache Characteristics . 10

2.1.3.1 Cache Associativity . 10

2.1.3.2 Types of Caches . 11

2.1.3.3 Cache Replacement Policies 11

2.1.3.4 Cache misses and Cacheline eviction 12

2.1.4 Cache Coherency and Memory Consistency in Multiprocessor Systems 13

2.1.4.1 Cache Coherency Protocols 13

2.1.5 Memory Structures . 15

2.1.6 Hardware Performance Counters . 16

2.1.7 Microprocessors Used in This Thesis 17

2.2 Performance Evaluation . 19

2.2.1 Performance Measurement using Software Assisted Profiling 19

ix

x Contents

2.2.2 Performance Measurement using On-Chip Counters 20

2.2.3 Performance Modelling using Analytic Techniques 20

2.2.4 Performance modelling using Simulation 21

2.2.5 Dynamic Binary Translation and the Callgrind/Valgrind tool 22

2.3 Electronic Structure Methods . 23

2.3.1 Hartree-Fock approximation . 25

2.3.2 Atomic Basis Functions . 27

2.3.3 Two-Electron Integral Evaluation . 30

2.3.3.1 The McMurchie-Davidson scheme for ERIs 31

2.3.3.2 The PRISM algorithm . 32

2.3.4 Density Functional Theory . 34

2.3.4.1 Kohn-Sham Equations . 36

2.3.4.2 Comparison of DFT and HF 37

3 Thread and Memory Placement on Non-Uniform Memory Access Systems 41

3.1 Introduction . 41

3.2 Thread and Memory Placement . 42

3.2.1 Solaris NUMA Support . 43

3.2.2 Linux NUMA Support . 44

3.2.3 Placement verification in Solaris and Linux 45

3.3 Experimental platforms . 46

3.3.1 Software Environment . 46

3.4 Basic Latency and Memory Bandwidth Characterization 47

3.4.1 Latency Characterisation . 47

3.4.2 Bandwidth Characterisation . 47

3.5 A Placement Distribution Model . 49

3.5.1 Stream Experiments . 52

3.5.2 BLAS experiments . 54

3.6 Related Work . 55

3.7 Conclusions . 55

4 Use of the LPM for ERI Evaluation 57

4.1 Introduction . 57

4.2 ERI Evaluation: the PRISM algorithm . 59

4.2.1 Two-Electron Repulsion Integrals . 59

4.2.2 PRISM and Cache Blocking . 62

4.2.3 Shell-Quartets for the Water molecule 64

4.3 Methodology . 66

Contents xi

4.3.1 Microprocessors and Compilers . 66

4.3.2 Hardware Performance Counters . 67

4.3.3 Functional Cache Simulation . 67

4.3.4 Data Collection and Analysis . 68

4.3.5 Molecular Systems and Benchmarks 68

4.4 PRISM and Cache Blocking . 69

4.4.1 SCF Execution Time as a Function of System Size and Basis Set for

an SCF Cycle . 70

4.4.2 Effect of Cache Blocking on Cycle, Instruction Counts and Cache Misses 71

4.4.3 Effect of Cache Blocking on ERI Batching 72

4.4.4 Cache Blocking as a Function of Quartet Type 74

4.4.5 Cache Blocking as a Function of Benchmark Systems and Architecture 79

4.4.6 Summary: PRISM and Cache Blocking 84

4.5 A Linear Performance Model . 84

4.5.1 Stability of PPCoeffs on the Opteron 85

4.5.2 Accuracy of the LPM for the AMD848 Opteron 86

4.5.3 Stability of PPCoeffs Across Different Hardware Architectures 87

4.5.4 LPM Summary . 91

4.6 LPM and Functional Simulation . 93

4.6.1 Callgrind Validation . 94

4.6.2 A Parametric Cache Variation Study of PRISM’s performance 97

4.6.2.1 Effect of Variation of Opteron Cache Associativity 98

4.6.2.2 Effect of Variation of Opteron Cache Linesize 98

4.6.2.3 Effect of Variation of the Total Data Cache Size for the Opteron 99

4.6.2.4 Breakdown of Cache Misses for the Variation of Linesize

and Total Size . 100

4.6.2.5 Break-down Summary . 102

4.6.3 Variation of L1, L2 Linesize and Total Size for Three Hardware Archi-

tectures . 102

4.6.4 Summary: Functional Cache Simulation and the LPM 107

4.7 Related Work . 108

4.8 Summary, Conclusions and Future Work . 110

4.8.1 Future Work . 111

5 Study of Thread and Memory Placement Effects in Gaussian 113

5.1 Introduction . 113

5.2 Performance Characteristics of the X4600 M2 114

xii Contents

5.2.1 Hardware Platform . 114

5.2.1.1 Coherent HyperTransport 115

5.2.1.2 Topology . 116

5.2.2 Latency and Bandwidth Characteristics of the X4600 M2 116

5.3 Software environment, Benchmark systems, Gaussian modifications 118

5.3.1 Software Environment . 118

5.3.2 Page Placement and Migration . 119

5.3.3 Test Molecular Systems . 119

5.3.4 Memory Allocation in Gaussian . 120

5.3.5 Modifications to Gaussian . 121

5.4 Effects of Thread and Memory Placement in Gaussian 121

5.4.1 Thread, Memory and Cache Effects for Serial Gaussian 122

5.4.2 Contention Classes for the X4600 . 123

5.4.3 Parallel HF Performance in Gaussian 125

5.4.4 Summary . 129

5.5 Extending the LPM to Account for NUMA Effects 129

5.5.1 Extending the LPM to incorporate NUMA effects 129

5.5.1.1 Obtaining Cache misses by NUMA Domain 130

5.5.1.2 The NUMA Extended LPM 131

5.5.2 Single Threaded Placement Experiments 133

5.5.3 Multi-Threaded, Single-Core Placement Experiments 135

5.5.3.1 Two Threads, Single Core Thread Assignment 136

5.5.3.2 Four and Eight Threads, Single Core Thread Assignment . . 137

5.5.4 Multi-Threaded, Dual-Core Placement Experiments 139

5.5.4.1 Four and Eight Threads, Dual Core Assignment 140

5.5.5 Accounting for Dual-Core contention 140

5.5.6 Summary: NUMA and Multi-threaded Extended LPM 142

5.6 Use of Page Migration to Affect Data Locality 142

5.6.1 Data Placement Strategies . 143

5.6.2 Speedup Plots for Valinomycin and C60 145

5.7 Related and Previous Work . 147

5.8 Conclusions and Future Work . 151

6 Comparative Study of DFT Charges 153

6.1 Introduction . 153

6.2 Background . 155

6.2.1 Mulliken Population Analysis . 156

Contents xiii

6.2.2 Natural Population Analysis . 156

6.2.2.1 First-order reduced density matrix 157

6.2.2.2 Natural Atomic Orbitals and NPA 157

6.2.3 The Radial Distribution Function . 158

6.3 Experimental Details . 160

6.3.1 Test Molecular Systems . 160

6.3.2 Software and Methodology . 160

6.4 MPA and NPA Charges on K+ . 161

6.5 Relative Charge on Potassium . 162

6.6 Charges Binned with Respect to the RDF . 163

6.6.1 Breakdown of RDF Charges By Solvation Shell 167

6.7 Density Plots for Charges . 169

6.8 Charge on K+ as a Function of Different Basis Sets 170

6.9 Previous Work . 173

6.10 Conclusions . 174

7 Conclusions and Future Work 177

7.1 Summary of Contributions . 177

7.2 Discussion . 178

7.3 Future Work . 179

A Appendix 181

A.1 PAPI native hardware performance counter events 181

A.2 lmbench Plots . 183

A.2.1 AMD Opteron 848 . 183

A.2.2 AMD Athlon64 . 185

A.2.3 Intel NetBurst P4 . 186

A.2.4 Intel NetBurst EM64T . 187

A.2.5 Intel Pentium M . 188

A.2.6 IBM G5/PPC970Fx . 189

A.2.7 Sun UltraSPARC IIICu . 190

A.3 Water Clusters Used in this Thesis . 192

A.4 Python code used for generating the pair-wise RDF 196

Bibliography 199

Index 225

xiv Contents

List of Papers

1. J. ANTONY, M. J. FRISCH, AND A. P. RENDELL

Modelling the Performance of Gaussian Chemistry Code on x86 Architectures

Proceedings of HPSC, 6 – 10 March 2006, Hanoi, Vietnam

http://www.springer.com/math/cse/book/978-3-540-79408-0

2. J. ANTONY, P. P. JANES, AND A. P. RENDELL

Exploring Thread and Memory Placement on NUMA Architectures:

Solaris and Linux, UltraSPARC/FirePlane and Opteron/HyperTransport

Proceedings of IEEE HiPC 2006, 18 – 21 December 2006, Bangalore, India

http://dx.doi.org/10.1007/11945918_35

3. R. YANG, J. ANTONY, P. P. JANES, AND A. P. RENDELL

Memory and Thread Placement Effects as a Function of Cache Usage:

A Study of the Gaussian Chemistry Code on the SunFire X4600 M2

Proceedings of IEEE I-SPAN 2008, 7 – 9 May 2008, Sydney, Australia

http://doi.ieeecomputersociety.org/10.1109/I-SPAN.2008.13

4. A. P. RENDELL, J. ANTONY, W. ARMSTRONG, P. P. JANES, AND R. YANG

Building Fast, Reliable, and Adaptive Software for Computational science

Proceedings of SciDAC 2008, 13 – 17 July 2008, Seattle, Washington, USA

http://stacks.iop.org/1742-6596/125/012015

5. R. YANG, J. ANTONY, AND A. P. RENDELL

A Simple Performance Model for Multithreaded Applications

Executing on Non-Uniform Memory Access Computers

Proceedings of IEEE HPCC 2009, 25 – 27 June 2009, Seoul, Korea

http://dx.doi.org/10.1109/HPCC.2009.39

6. R. YANG, J. ANTONY, AND A. P. RENDELL

Effective Use of Dynamic Page Migration on NUMA Platforms

Proceedings of IEEE I-SPAN 2009, 14 – 16 December 2009, Kaohsiung, Taiwan

http://doi.ieeecomputersociety.org/10.1109/I-SPAN.2009.127

xv

List of Presentations

1. Linear Scaling Algorithms and OpenMP

October 2003, Student Forum, APAC Conference, Gold Coast, Australia

2. Development of Efficient Multi-Threaded Applications for Modern Shared Memory Ar-

chitectures

February 2005, Seminar, Department of Computer Science, ANU, Canberra, Australia

3. Performance modelling of cache blocking on integral evaluation in Gaussian

August 2005, Seminar, Gaussian Inc., Wallingford, CT, U.S.A

4. Some aspects of Gaussian’s performance on the Intel Itanium Platform

August 2005, Seminar, Intel Compiler Group, Santa Clara, CA, U.S.A

5. Performance Modelling of Scientific Applications on HPC Platforms

October 2005, Student Forum, APAC Conference, Gold Coast, Australia

6. Gaussian Performance Modelling and NUMA Thread & Memory Placement

4 March 2006, Seminar, Sun Asia Pacific Science and Technology Center, Singapore

7. Modelling the Performance of the Gaussian Computational Chemistry Code on the x86

Architecture

6 – 10 March 2006, International Conference on High Performance Scientific Comput-

ing, Hanoi, Vietnam

8. An update on: Gaussian Performance Modelling

7 June 2006, Seminar, Department of Computer Science, ANU, Canberra, Australia

9. Exploring Thread and Memory Placement on NUMA Architectures

18 – 21 December 2006, IEEE International Conference on High Performance Comput-

ing, Bangalore, India

10. NUMALink, HyperTransport and Gaussian

8 April 2008, Seminar, ANU Supercomputer Facility, ANU, Canberra, Australia

11. Effective Use Of Dynamic Page Migration on NUMA Platforms

14 – 16 December 2009, IEEE I-SPAN Conference, Kaohsiung, Taiwan, R.O.C.

xvii

List of Tables

2.1 Processor characteristics of clock rate, cache sizes and measured latencies for

L1 DCache, L2 cache and main memory latencies for the microprocessors used

in this thesis. 18

2.2 Classification of performance evaluation techniques 19

3.1 Main Memory latencies (Cycles) from lmbench. The pointer chasing bench-

mark from lmbench is used to determine memory latencies. Results were

obtained for the Opteron and V1280 platforms by pinning a thread on a given

node and placing memory on different nodes. 48

3.2 Stream benchmarks . 48

3.3 Serial Stream bandwidths (GB/s) for the Opteron and V1280 systems. A

single thread was pinned to a given node and had its memory placed on differ-

ent nodes. Best and Worst refer to thread and memory placements which are

expected to give the best and worst possible performance (See text for details). 48

3.4 Parallel Stream bandwidths (GB/s). Threads were pinned to various nodes

and had its memory placed locally (“Best”) or remotely (“worst”). Four threads

were run concurrently for the Opteron while twelve threads were run concur-

rently for the V1280 system. 49

3.5 Copy and Scale (GB/s) Stream benchmark results for the placement distribu-

tion model. Contention classes denote the ranges of link contention for all the

nodes in the system. %Fr gives the frequency of occurrence of a given class

in percent. The standard deviation (σ) for Copy, Scale are for twenty random

samples from each contention class. Each thread and memory configuration

was run ten times. 52

3.6 BLAS Stream Triad, Level 2 BLAS, Level 3 BLAS (GigaFlops) results for

the placement distribution model. Results are averages for twenty random gen-

erated configurations per contention class. Each configuration was run twenty

times. Tr = Triad; B2 = BLAS Level 2; B3 = BLAS Level 3. 54

4.1 Decomposition of 6-31G* basis functions on a Water molecule 61

xix

4.2 The number of shell-quartets, batches and total ERIs generated per LTot for a

water molecule using the 6-31G* basis set. MDC is a compile time value of

32Kw. The Total # of ERI column corresponds to the number of integrals that

are available at the Fock matrix formation stage. 65

4.3 Characteristics of microprocessors used in this study 66

4.4 Test molecular systems . 68

4.5 Execution times of two test systems for one SCF cycle on the AMD848 Op-

teron, using the HF method . 69

4.6 Execution characteristics for PRISM with the k300a-04 water-cluster system

using HF/6-31G* on a 2.2Ghz AMD848 Opteron. 71

4.7 Variation in the number of batches with varying blocking factors for the k300a-

04 system using a 6-31G* basis set with the HF method. Data obtained from

one SCF cycle. 72

4.8 Cycle count per LTot for k300a-04 using HF/6-31G* on a 2.2Ghz AMD848

Opteron . 73

4.9 Optimal cache blocking factor observed for the five test systems, across six

processor platforms . 81

4.10 Timing differences for a 32Kw blocking factor versus a 64Kw blocking factor,

expressed as a percentage. 82

4.11 Measured PPCoeffs for the AMD848 Opteron using the LPM using the HF

method . 85

4.12 Cycle count fitting errors for the LPM on the Opteron, when β is ignored, for

the HF method . 86

4.13 Measured LPM PPCoeffs, CPI and L2 latency characteristics across processors

and test systems for the HF method . 88

4.14 Measured LPM PPCoeffs, CPI and L2 Latency characteristics across proces-

sors and test systems for the B3LYP method. 90

4.15 Self-fitting errors for the HF and B3LYP methods using the LPM 91

4.16 Percentage average error (%AE) for Transferability and for using Averaged

PPCoeffs . 92

4.17 Valgrind/Callgrind hardware cache configuration 97

4.18 Effect of variation in cache associativity of the L1ICache, L1DCache and

L2Unified caches, on the LPM predicted cycle counts for an AMD Opteron

like cache hierarchy and using k300a-04 with a 6-31G* basis set. All other

cache parameters are held constant as given in Table 4.17. Cycle counts are

x1010. 98

4.19 Effect of variation in cache linesize for the L1 ICache, DCache and L2 unified

caches, on the LPM predicted cycle counts for an AMD Opteron like cache

hierarchy and using k300a-04 with a 6-31G* basis set. All other cache param-

eters are held constant as given in Table 4.17. Cycle counts are x1010. 99

4.20 Variation of L1, L2 cache size for the Opteron using k300a-04/6-31G* 99

4.21 Variation of L1 and L2 Linesizes and L2 Total size for the AMD Opteron,

using k300a-04/6-31G* . 101

5.1 Latency and Bandwidths for specific memory and thread placement on the

SunFire X4600 M2, using lmbench and the Stream Triad benchmark. Pro-

gressively darker shades of grey are used to indicate accesses that are in the

same NUMA level. 117

5.2 Summary of Table 5.1 categorized by NUMA level. Units for ‘Average La-

tency’ is in Cycles; ‘Average Bandwidth’ is GB/sec. Standard deviations (σ)

for both are also given. 117

5.3 Highest and lowest Stream bandwidths (GB/s) for a single thread on the Sun-

Fire X4600 M2 . 118

5.4 Elapsed time (sec.) for a sequential Gaussian SCF process on a 18-Crown-

6 Ether molecule using HF/6-31G*. Timings for the 64Kw and 128Kw (in

brackets) cache blocking factors are presented as a function of memory and

thread placement on the SunFire X4600 M2. Progressively darker shades of

grey are used to indicate similar NUMA levels. 122

5.5 Summary of Table 5.4 categorized by NUMA level. Units for ‘Average La-

tency’ is in Seconds. Standard deviations (σ) is also given. 124

5.6 Analysis of thread and memory placement distributions by contention class,

using the PDM for the SunFire X4600 M2 . 124

5.7 Elapsed time for the first three SCF iterations, as a function of memory and

thread placement for a parallel Gaussian calculation on the Valinomycin molecule

using HF/3-21G. 126

5.8 Measured and modelled results in seconds for single-thread calculations for

Exp 1 – 4 obtained for first SCF cycle, on the SunFire X4600 M2 system. . . . 134

5.9 The average Speedup Sn and its standard deviation (σ) for n-thread calcula-

tions with ideal local access to both Density and Fock matrices/blocks. 136

5.10 Modelling error in percent for 2-thread calculations performed at each NUMA

level using fn, for single core thread assignment 137

5.11 Modelling error in percent for 2 thread calculations using fn and dual-core

thread assignment . 139

5.12 Average modelling error in percent for dual-core and single core thread assign-

ment. Sn is used for single core cases and fDCn is used in dual-core cases. 140

5.13 Three data placement schemes for the Fock and Density Matrices 143

6.1 Mulliken Charges (au) obtained using HF and the B3LYP DFT functional on

a K+ ion positioned at two locations (Point B, Point C). The 6-31G* basis set

was used for both methods. Reproduced from Table 5 in [28]. 154

6.2 Charge on K+ for the k300c-08 system using eight basis sets for the HF, BLYP

and B3LYP methods. Charge on K+ for the k300c-12 system using 6-31G*

and def2-TZVP are also given. 172

A.1 PAPI native hardware performance counter events 182

A.2 AMD Opteron 848 . 184

A.3 Athlon64 . 185

A.4 NetBurst - P4 . 186

A.5 NetBurst - EM64T . 187

A.6 Pentium M . 188

A.7 G5 . 189

A.8 UltraSPARC IIICu . 191

A.9 k300a Water Clusters; 6-31G* basis set . 192

A.10 k300b Water Clusters; 6-31G* basis set . 193

A.11 k300c Water Clusters; 6-31G* basis set . 194

A.12 k345a Water Clusters; 6-31G* basis set . 195

List of Figures

2.1 The von Neumann Architecture . 6

2.2 The Memory Hierarchy Architecture. Adapted from [32]. 9

2.3 The MOESI Protocol states and transition conditions. If, for a given cacheline,

a processor experiences a cache-miss a probe message is sent to other caches

to obtain the required cacheline. From [5]. 14

2.4 UMA and NUMA organization of shared memory systems [131] 16

2.5 A molecular coordinate system where i, j denote electrons and A, B denote

atoms. From [271]. 24

2.6 Activity diagram for the SCF procedure and computational complexity for key

steps. 28

2.7 The McMurchie-Davidson ERI scheme. From [229]. 31

2.8 The MD-PRISM ERI scheme. From [229], [92] 33

3.1 (a) Schematic diagram of the V1280 UltraSPARC platform and (b) Celestica

Opteron platform . 46

4.1 Per LTot breakdown of cycle counts and total cache misses (L1 and L2) for the

k300a-04 water cluster system using a 6-31G* basis set and the HF method on

an AMD848 Opteron system. 76

4.2 Per LTot breakdown of cycle counts and total cache misses (L1 and L2) for the

k300a-08 water cluster system using a 6-31G* basis set and the HF method on

an AMD848 Opteron system. 78

4.3 FLOP count per LTot for the k300a-04 and k300a-04 water cluster systems

using the HF method on a 2.2Ghz AMD848 Opteron processor 80

4.4 Plots for instruction counts obtained from simulation and hardware perfor-

mance counters for k300a-04/6-31G*. Simulation results were obtained using

Valgrind/Callgrind. 93

4.5 Plots for total L1 Misses obtained from simulation and hardware performance

counters for k300a-04/6-31G*. Simulation results were obtained using Val-

grind/Callgrind. 95

xxiii

xxiv LIST OF FIGURES

4.6 Plots for total L2 Misses obtained from simulation and hardware performance

counters for k300a-04/6-31G*. Simulation results were obtained using Val-

grind/Callgrind. 95

4.7 Plots for Cycle counts obtained from simulation and hardware performance

counters for k300a-04/6-31G*. Simulation results were obtained using Val-

grind/Callgrind. 96

4.8 Valgrind/Callgrind cycle count results for varying L1 linesize (Bytes) for k300a-

04/6-31G*. 104

4.9 Valgrind/Callgrind cycle count results for varying L2 linesize (Bytes) for k300a-

04/6-31G*. The magnitude of contour line values is x1010 105

4.10 Valgrind/Callgrind cycle count results for varying L2 size (MB) for k300a-

04/6-31G*. 106

5.1 Architecture of the Opteron 800 series processor [56] 115

5.2 Architecture of the SunFire X4600 M2 . 116

5.3 Memory allocation in Gaussian and subsequent use of the Density and Fock

matrices . 120

5.4 Speedup results for unmodified Gaussian 03 code compared to sets 1 – 4 for

two cache blocking factors (64Kw, 128Kw). Times obtained are for the first

three SCF cycles for using Valinomycin, the HF method and a 3-21G basis

set. Note speedups for both cases are relative to different timings, with 64Kw

being faster than 128Kw. 128

5.5 Modelling error for 4, 8 thread calculations at each NUMA level correspond-

ing to: (a) PRISM from Exp 1; (b) PRISMC from Exp 2; (c) CALDFT from

Exp 2; (d) PRISM from Exp 3; (e) PRISMC from Exp 4 and (f) CALDFT

from Exp 4 . 138

5.6 Modelling Error for 4, 8 thread calculations using fn at each NUMA level: (a)

PRISM from Exp 1; (b) PRISMC from Exp 2; (c) CALDFT from Exp 2; (d)

PRISM from Exp 3; (e) PRISMC from Exp 4 and (f) CALDFT from Exp 4 . . 141

5.7 Node Mappings used for the Density and Fock matrices 144

5.8 Speedup plot for Valinomycin using a 6-311G* basis set and HF, BLYP, B3LYP

methods. 146

5.9 Speedup plot for C60 using a cc-PVTZ basis set for the HF, BLYP, B3LYP

methods. 148

6.1 Schematic illustration of the KcsA potassium ion channel showing the location

of Point B and C. Taken from [28]. 155

LIST OF FIGURES xxv

6.2 Radial distribution function determined from a 100 ps molecular dynamics

simulation of liquid argon at a temperature of 100 Kelvin and a density of

1.396 g/cm3. Taken from [156]. 159

6.3 Charge on K+ for the k300c system . 161

6.4 Variation of relative charge as a function of distance from K+ for the k300c-12

system. 164

6.5 RDF and MPA, NPA Charges for k300c-12 obtained for the HF, BLYP and

B3LYP methods. Binning width is 0.5 Å . 166

6.6 MPA and NPA charges per RDF shell for all 12 Å systems, using a 6-31G*

basis set. 168

6.7 Spherical integration of k300c-12 electron density obtained using a 6-31G*

basis set for the HF, BLYP and B3LYP methods. 170

xxvi LIST OF FIGURES

List of Abbreviations

CGTO Contracted GTO

DCache Data Cache

DFT Density Functional Theory

DLP Data Level Parallelism

ERI Electron Repulsion Integrals

FIFO First-In First-Out

FMM Fast Multipole Method

GTO Gaussian Type Orbital

HF Hartree-Fock

HWPC Hardware Performance Counters

ICache Instruction Cache

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

K.E. Kinetic Energy

LRU Least Recently Used

MD McMurchie-Davidson

MO Molecular Orbital

MPA Mulliken Population Analysis

NPA Natural Population Analysis

NUMA Non-Uniform Memory Access

PDM Placement Distribution Model

PGTO Primitive GTO

RDF Radial Distribution Function

SCF Self-Consistent Field

TLB Translation-Lookaside Buffer

TLP Thread Level Parallelism

UMA Uniforma Memory Access

xxvii

xxviii List of Abbreviations

Chapter 1

Introduction

Obtaining good performance from scientific applications which execute on parallel, shared

memory, multi-core systems is a non-trivial exercise in multivariate optimization arising from

the complexities of on-chip memory hierarchies, influence of architectural techniques designed

to boost on-chip performance and inherent latencies imposed by underlying hardware intercon-

nect. Further, the commoditization of NUMA architectures coupled with multi-core proces-

sors have now enabled end-users access to systems with high core counts and large shared

memory systems, previously accessible only at dedicated supercomputing facilities. The

confluence of multi-core chip architectures and NUMA interconnect technologies exacerbate

the already complex task of single threaded performance tuning. Thus, the development of

NUMA performance analysis methodologies and allied performance models which can predict

application performance as a function of system architecture is timely.

Electronic structure codes are computationally intensive scientific applications routinely

used by chemists, biologists, physicists and others for the ab-initio (i.e. first-principles) study

of matter at the atomic level. In this work we use the Gaussian electronic structure code [89],

which is currently one of the most widely used shared-memory parallel electronic structure

codes. We focus on its implementation on current commodity, multi-core, NUMA hardware

platforms. Often the execution times, for these codes, may take in the order of weeks on

a single processor system. Moreover, grand challenge problems in the computational chem-

istry area requires the development of linear scaling algorithms that map efficiently onto the

underlying parallel hardware. In both cases it is important that the underlying code performs

efficiently on the processor architecture being used.

1.1 Original Contributions

This thesis makes the following original contributions –

• Performance characterization of commodity NUMA hardware platforms using latency

(lmbench), bandwidth (Stream) and BLAS kernels (Level 1, 2, 3) as a function of thread

1

2 Introduction

and memory placement.

• Performance characterisation of the PRISM Electron Repulsion Integral (ERI) evalua-

tion algorithm used in the Gaussian electronic structure code in terms of platform inde-

pendent and dependent components.

• Use of a linear performance model for ERI evaluation. Validation of this model across

four microprocessor architectures and seven individual microprocessors.

• Use of the linear performance model with functional cache simulation to predict the

performance of the PRISM ERI algorithm as a function of cache configuration.

• Identification of key cache parameters which influences the performance of ERI evalua-

tion on cache based architectures. Characterisation of the cache miss components which

limit PRISM’s performance and proposals to improve performance.

• The extension of the single-threaded LPM to account for NUMA and thread, memory

placement. The extension is validated and used to assess the performance of parallel

Gaussian.

• An assessment of the use of dynamic page migration and node interleaving to improve

data locality and reduce contention in the Gaussian code.

• Characterisation and analysis of the atomic charges obtained from density functional

methods for a solvated potassium ion in a large water complex.

• Demonstration of the basis set sensitivity if atomic charges are computed using density

functional wavefunctions.

1.2 Organization of Thesis

The structure of the thesis is as follows: Chapter 2 is background material relevant to the chap-

ters that follow. It presents an overview of microprocessors and interconnects; performance

evaluation and electronic structure methods. Chapter 3 focuses on thread and memory place-

ment techniques on Non-Uniform Memory Access Systems (NUMA) and presents a placement

distribution model (PDM) to aid performance characterisation of NUMA architectures. Chap-

ter 4 introduces a simple linear performance model (LPM) to describe the cost of computation

for electron repulsion integrals. It outlines the PRISM ERI algorithm, evaluates the use of the

LPM for ERI evaluation and combines use of the LPM with functional cache simulation in

order to predict performance on non-existent cache architectures. Chapter 5 uses the PDM and

the LPM to model the effects of thread and memory placement, cache effects on the Gaussian

§1.2 Organization of Thesis 3

code. It also extends the LPM to account for multi-core and NUMA systems and considers the

use of dynamic page migration and node interleaving within the Gaussian code. Chapter 6 is

an applications chapter which examines chemical charges obtained from a set of water cluster

complexes. Chapter 7 concludes the thesis and presents directions for future work.

4 Introduction

Chapter 2

Background

Modern microprocessors are complex marvels of silicon engineering. In 2009 the most com-

plex processor contains two billion transistors [257], operates at 4Ghz [60, 155] and incorpo-

rates large on-chip caches [233]. These microprocessors can execute on the order of several

billion instructions in one second [163], they employ multiple levels of cache memory and

a host of micro-architectural techniques to ensure the processor does not stall. In turn this

complexity makes the analysis and modelling of application performance very difficult.

This thesis aims to construct performance models for electronic structure codes. In this

Chapter a review of microprocessors technologies, and performance evaluation techniques are

given. The chapter then introduces the electronic structure methods used in this thesis namely

the Hartree-Fock method and Density Functional theory methods.

2.1 Microprocessors, Caches, Interconnects

This section reviews microprocessor concepts – the CPU, cache memory, multiprocessor sys-

tems and hardware performance counters. For in-depth discussions of computer organization

and architecture, Hennessy and Patterson’s texts [113, 209] are recommended.

A microprocessor is the physical embodiment of a Turing machine [283] which has the

features of a Central Processing Unit (CPU) on an integrated circuit. The CPU operates on

instructions defined by an Instruction Set Architecture (ISA). It works in a loop where in-

structions and data undergo the following four steps: fetch, decode, execute, retire/write-back.

Instructions are fetched from main memory then decoded, leading to data operands of the

instruction being fetched. Once the required data operands are on-chip, the instruction is ex-

ecuted by the CPU and the instruction is retired i.e. the resulting data from the execution is

stored back into main-memory. If data and instructions are both stored in main memory, the

system is referred to as being a von Neumann architecture [42]. Whereas if data and instruc-

tions are stored separately from each other, it is referred to as a Harvard architecture [219].

The von Neumann architecture (Figure 2.1) imposes a separation between the CPU and

5

6 Background

Control Unit

Arithmetic
Logic
Unit

Accumulator

Central Processing Unit (CPU)

Memory

Instructions Data

Figure 2.1: The von Neumann Architecture

memory i.e. data needs to be explicitly moved from main memory into the on-chip registers

for use. This leads to the von Neumann bottleneck where the limiting factor becomes how fast

data can be moved to and from memory. This limitation led to the use of interposing cache

memory [107] between main memory and the CPU. In effect, caches help circumvent the von

Neumann bottleneck as the vast majority of memory and instructions have locality [66] both in

space and time. This locality means a given working set could reside in fast cache memory and

thus mitigating the time taken to fetch data from main memory. The use of cache is also one

of the means of shielding the CPU from what is termed the “memory wall” [181], where the

rate of increase in microprocessor speed/innovation outstrips improvements made in Dynamic

Random Access Memory (DRAM) technology. This leads to DRAM speeds impacting CPU

performance as the faster CPU (operating on the order of Ghz) is stalled waiting for memory

requests to be satisfied from the slower DRAM (operating in the order of hundreds of MHz). In

addition to employing caches, processors also use a host of other micro-architectural features

to extract instruction and data parallelism as well as exploiting thread-level parallelism. All

these concepts, which are critical to the efficient operation of a modern microprocessor are

briefly outlined in the following sections.

2.1.1 On-Chip Parallelism

In order to increase performance modern microprocessors extract parallelism from the instruc-

tion stream using a range of techniques which can be classified as, Data Level Parallelism

(DLP) , Instruction Level Parallelism (ILP) and Thread Level Parallelism (TLP).

2.1.1.1 Data Level Parallelism

Data level parallelism [114] aims to extract parallelism from the data quantities being operated

on by have a single operation manipulate a set of data items in parallel. Single-Instruction,

Multiple Data (SIMD) operations are an example of this. Microprocessors are able to operate

§2.1 Microprocessors, Caches, Interconnects 7

on data items in parallel using extensions to their ISA and two examples are Intel’s SSE [259]

for the x86 ISA and IBM’s AltiVec [193] for the PowerPC ISA.

2.1.1.2 Instruction Level Parallelism

Instruction Level Parallelism (ILP) are a host of techniques which attempt to increase the

number of instructions that can be in flight at any given time so as to increase the utilization of

on-chip hardware resources. Instructions can either be retired ‘in-order’ or ‘out-of-order’ and

most processors use the former. These techniques include:

Super scalar execution Multiple execution units execute instructions in parallel, subject to

data dependencies [313]. Multiple instructions are decoded and sent to a dispatcher,

which queues instructions and releases groups of instructions for execution once it has

determined there are no data dependencies in the instructions being dispatched to on-

chip execution units. This in effect allows a microprocessor to execute more than one

instruction per cycle.

Instruction Pipelining Instruction pipelining divides the processing of an instruction into

multiple independent stages [222]. Once a task completes its initial step, it gets fed

into the next stage of the pipeline. This process allows multiple instructions to be over-

lapped.

Out-of-order Execution Out-of-order execution [251] is a technique which allows a pro-

cessor to continue executing instructions without data dependencies, out-of-order from

their original program order. This in turn allows the processor to: (a) permit better use of

multiple functional units i.e. increasing throughput; and (b) avoiding expensive stalls.

The processor fetches instructions, dispatches these to an instruction queue. Instruc-

tions are ready for issue once their inputs are ready. At this point, instructions which do

not have dependencies can be issued out-of-order with respect to the instruction stream.

Once instructions have been issued, their results are retired.

Branch prediction and Speculative execution The execution of a branch in a pipelined mi-

croprocessor leads to a pipeline bubble, as the branch requires new instructions to be

fetched by the instruction stage. To avoid a pipeline bubble, the microprocessor exe-

cutes one of the paths of a branch, based on branch prediction [180, 314] information

without prior knowledge of the outcome of the branch, this is known as speculative

execution [151, 269]. If the branch was guessed correctly, there is no delay in the in-

struction fetch stage. If it was incorrect, the pipeline needs to be flushed and the branch

re-executed. By using branch prediction, the number of instructions available for sched-

8 Background

uling by the dispatcher increase and allows for useful work to be carried out prior to the

branch being resolved.

2.1.1.3 Thread Level Parallelism

Thread Level Parallelism (TLP) techniques refer to the use of multiple threads of execution to

better facilitate on-chip resource utilization. One TLP approach is to have a microprocessor

execute a set of multiple threads and when any one thread experiences a long latency event

like a stall when data is retrieved from main memory, the microprocessor performs a context

switch to another thread which is ready to execute [149, 202].

HyperThreading [150, 173] is a special case of TLP implemented per core in a micropro-

cessor. A processor’s on-chip hardware resources which stores architectural state (i.e. the

current program counter and set of registers) is divided amongst two or more threads of exe-

cution. Execution resources (e.g. Floating Point Units) are not divided amongst the threads.

When an executing thread experiences a stall, the processor core switches to executing the

other thread.

The UltraSPARC T1 Niagara [149] chip uses a different strategy to exploit TLP. The T1

has eight cores each of which can support eight threads of execution, allowing for a total of

64 threads per CPU. Each core acts as a barrel processor which selects instructions to execute

amongst the eight threads it has assigned to it. If a thread experiences a stall event it is made

unavailable for execution which the stall is resolved, execution continues using instructions

from other threads.

2.1.2 Cache Memory Structure

Cache memory [107, 250] is fast, intermediate memory interposed between the microproces-

sor and main memory. Caches are designed to be faster than the backing storage it fronts

which leads to a higher cost per bit. There is no functional difference between a CPU directly

accessing memory and going via a cache. This requires the cache to implement some form

of consistency model to ensure that the results obtained are identical without the presence of

cache memory. Cache consistency is discussed in detail in Section 2.1.4.

The working set is defined as the subset of pages from main memory that is mapped into

cache for use by the application executing on the microprocessor. A given cache needs to

be large enough to encompass the working set of both instructions and data being used by an

application, whereby there is an increased likelihood of both the CPU’s reads and writes being

satisfied from cache.

Figure 2.2 represents the memory hierarchy of most general purpose microprocessors.

Main memory is composed of banks of DRAM (Dynamic Random Access Memory) [59],

§2.1 Microprocessors, Caches, Interconnects 9

Virtual Memory

swap file
(on disk)

Main Memory

Memory
Page

L2 Cache. . . .

L1 Cache. . . .

F
a
s
t
D
a
ta

P
a
th

. . . .

Registers

CPU

TLB
Phys Virt

System Bus

C
P
U
 D
ie

L2 Cache Line

L1 Cache Line

O
n
-C
h
ip

B
u
s

Branch

Prediction

Super Scalar

Issue

Out of Order

Execution

Cache

Coherency

Figure 2.2: The Memory Hierarchy Architecture. Adapted from [32].

which take on the order of 300 CPU cycles to read. All loads and stores issued by the CPU

transit via the cache. Caches are part of a storage hierarchy for CPUs, as seen in Figure 2.2.

Here, it can be seen that caches are organized in tiers i.e. L2 (Level 2) cache and L1 (Level

1) cache. Pages in main memory (pages are typically 4K or 8K in size and main memory is

in the order of Gigabytes of DRAM) are mapped onto locations within the highest level of

cache (in this case L2), which can range from 1MB to 30MB [183, 257]. Data from L2 then

gets mapped into L1 (typically on the order of 32Kb to 64Kb), which then get forwarded into

registers on the CPU for execution. This spread of cache structures is done to speed-up access

to data, exploit locality and importantly to optimize most of the on-chip memory as caches

occupy up to half of the surface area in a CPU die.

2.1.2.1 Capturing Locality

Caches are beneficial if access to program data exhibits ”locality” [66]. Three different types

of locality are often defined [131],

Temporal Locality Temporal locality refers frequent use of the same data elements and the

accesses are close together in time e.g. a sub-block of an array that is operated on in

10 Background

each iteration of a loop.

Spatial Locality Spatial locality refers to detecting and responding to streams of data and/or

instructions which are spatially close in memory to each other, e.g. linear data stored in

an array being operated on within a loop nest.

Algorithmic Locality Algorithmic locality [131] is more subtle. It occurs when an algo-

rithm repeatedly executes specific code or repeatedly accesses specific data blocks and

these blocks are distributed widely throughout main memory. While the overall result

is program behavior which is predictable, its repeatability cannot be detected by on-

chip locality detection mechanisms 1. It is often difficult to detect using current cache

controlling hardware which usually relies on detecting regular strided access patterns.

Also, increasing the size of on-chip caches by a factor of two or more does not lend to

capturing algorithmic locality, as the code and data blocks involved often exceeds the

capacity of the on-chip cache. Some examples of applications which perform repeated

operations on large datasets are computer graphics applications, computer simulators

and quantum chemistry applications. In order to exploit this type of locality compiler

and user-level intervention is needed, usually by carefully placed pre-fetch instructions.

Pre-fetch instructions are those which request the memory subsystem to initiate a fetch

of cachelines prior to their use. If timed correctly, it can result in algorithms that can

tolerate long latencies.

2.1.3 Primary Cache Characteristics

As mentioned caches store copies of data from a higher level of the memory hierarchy. This

data is arranged in cachelines or blocks representing consecutive main memory addresses. The

defining features of any cache organization are [32, 107],

Cache size Cache capacity is the maximum usable capacity of the cache.

Line size Line size is the smallest unit of data transferred either between caches or into a

cache.

Associativity As cache memories are two orders of magnitude smaller than main memory,

mapping schemes are used to map main memory locations into cache. Cache associa-

tivity refers to the various options a replacement scheme has for locating a cacheline in

the cache. This is further detailed below.

1On-chip logic detects strides in data or instruction streams and initiates prefetching as per the nature

of the stride [61].

§2.1 Microprocessors, Caches, Interconnects 11

2.1.3.1 Cache Associativity

As mentioned above cache associativity refers to the various options a replacement scheme

has in replacing cachelines in cache with lines from main memory. These can be broadly

categorized under the following three headings, Direct mapped: A Direct mapped cache is

one where a main memory address maps to only one cacheline within the cache. This implies

multiple locations in main memory can map onto the same cacheline.

Fully associative: A Fully associative cache is one where a main memory address can map

onto any cacheline within the cache. When an address is requested from the cache, there is a

directory look-up operation to find the required line. Thus a fully associative cache behaves

as a hardware database [131] i.e. a cacheline can be placed at any cacheline storage location.

Searching the cache for a given cacheline requires checking each cacheline being stored in

cache. As in the case of the direct mapped caches, cache lines from memory can get mapped

onto the same location, but conflicts are much less likely.

Set associative: Set associate caches behave as fully associative caches with the modi-

fication that a cacheline can reside in one of a fixed set of cacheline locations. A set of bits

from a cacheline’s address are used to index a cache directory, and for each address there are

N sub-caches into which the cacheline could potentially reside. Thus a 4-way set associative

cache can place a cacheline in one of 4 different locations in cache.

2.1.3.2 Types of Caches

On modern microprocessors there three independent caches – Instruction cache (ICache), the

Data cache (DCache) and the Translation-Lookaside Buffer (TLB) cache. Separate L1

ICache and L1 DCaches is reminiscent of the Harvard architecture, where instructions to be

fed to the CPU core are store in the L1 ICache and data in the L1 DCache. The L1 ICache is

read-only, whereas the L1 DCache is read-write. The L2 cache is a unified cache which stores

both data and instructions. Its function is similar to memory in the von Neumann architecture.

The TLB cache is used in caching translations between real and virtual addresses; this is used

to speed up translations of mappings between memory locations referenced in a program versus

its actual physical location.

2.1.3.3 Cache Replacement Policies

Caches implement some form of replacement policy to determine where newly fetched data

from memory will reside in cache. Some of these policies are Least Recently Used (LRU),

First-In First-Out (FIFO) and Random replacement [107]. LRU has the advantage that the

most frequently used data will remain in cache; however it is more complex to implement than

12 Background

Random replacement as the cache’s associativity increases. FIFO caches are often used in

embedded and resource constrained microprocessors [249].

2.1.3.4 Cache misses and Cacheline eviction

If a cacheline is required but is not present in the cache, a cache miss is said to occur. Two

types of cache misses are usually identified and occur when cachelines need to be read or

written to i.e read misses and write misses respectively. On a read miss, the L1 and L2 caches

are searched for the cacheline. A cache hit results if it is found, else the cache miss is then

forwarded to the memory sub-system to fetch the required cacheline. On a write-miss the

cache has two options depending on its implementation, either it allocates a cacheline (write

allocate) or it by-passes the cache and goes to main-memory (no write allocate). Usually write

back caches implement a write allocate for write-misses and write through caches will be no

write allocate. Cache misses can be classified [72, 133] as

Cold misses Cold misses or compulsory misses occur the first time data is referenced by the

CPU and needs to be fetched from main memory.

Capacity misses Capacity misses occur due to the limited size of the cache i.e. data being

referenced by the CPU exceeds the capacity of the cache resulting in lines being evicted

from cache.

Conflict misses Conflict misses occur when references are made to cachelines which map

onto the same set (i.e. in set-associative caches) and causes cachelines already resident

in the cache to be evicted. If the evicted line is re-referenced within some short period

of time, it constitutes a conflict miss.

The use and re-use of cachelines is driven by load and store instructions issued and executed by

the CPU. This leads to cachelines being selected for eviction from cache based on the eviction

policy e.g. LRU. Once a cacheline has been selected for eviction, it needs to be migrated

from cache into main memory. Two policies are used to determine how this migration occurs

to main memory, either a write-through or a write-back policy. Once data is moved from

registers into the L1 data cache, a write-through policy will push the cacheline back into main

memory, whereas a write-back policy will commit the cacheline into L1 or L2 and only evicts

the line from cache if there is a new cacheline to be brought into the cache. L1 DCaches are

designed to be inclusive or exclusive of the L2 cache, where an inclusive L1 DCache will have

cache lines that can also exist in the L2. An exclusive L1 DCache will not have cache lines

which are resident in the L2 cache.

§2.1 Microprocessors, Caches, Interconnects 13

2.1.4 Cache Coherency and Memory Consistency in Multiproces-

sor Systems

Shared-memory processing environments are created by using groups of microprocessors which

are able to access global shared memory via some interconnect. A key driving factor in the

evolution of shared-memory multiprocessors was the observation that multiple levels of cache

reduced the memory bandwidth requirements of each processor [99], allowing for multiple

processors to use the same memory bus [113]. Introduction of caches into multiprocessor

systems introduces two problems namely, (a) how does a processor know when a cacheline of

interest to that processor is being used by another processor and (b) what a processor can infer

about operations of a remote processor by observing the ordering of data reads and writes of

the remote processor to main memory.

Problem (a) is addressed by a cache coherency scheme and problem (b) relates to the

particular memory consistency model which has been implemented.

Cache coherency is defined by Jacob [131] “In the presence of a cache, reads and writes

behave (to a first order) no differently that if the cache were not present”. As a cache is

interposed between a CPU and memory it needs to ensure the processors’ view of memory is

consistent with respect to data being cached i.e. data written to in a cache is guaranteed to be

committed to memory and thus visible to all other processors. To enforce cache consistency, a

cache coherency policy is defined which ensures that there is one globally unique, well-defined

value associated with any given memory location.

A memory consistency model for a shared-memory multiprocessing system, ”is a formal

specification of how the memory system will appear to the programmer” [6]. The mem-

ory consistency model determines how a store operation in one thread of execution is made

visible to the load operation of another thread, as well as implications about other load and

store operations in both threads. All modern microprocessors implement some variation of

a relaxed consistency model which allows for reads and writes to complete out-of-order, but

also provides synchronization primitives to enforce ordering between multiple threads of ex-

ecution [113]. This involves the use of hardware memory control and atomicity preserving

operations such as: fence on the x86 ISA, sync on the POWER ISA, and membar on the

SPARC ISA.

2.1.4.1 Cache Coherency Protocols

A cache coherency protocol enables for the physical implementation of cache consistency.

Consistency needs to be maintained with the backing store as well as with other clients in

a multi-processor setup. In single processor environments the write-back and write-through

policies ensure the cache is consistent with its backing store, but in a multi-processor setup a

14 Background

Figure 2.3: The MOESI Protocol states and transition conditions. If, for a given cacheline,

a processor experiences a cache-miss a probe message is sent to other caches to obtain the

required cacheline. From [5].

hardware coherence mechanism must be used. The MESI [124] and MOESI protocols are two

examples of widely used coherency mechanisms. The MOESI protocol [270] is of interest

in this thesis as it is implemented by two of the platforms used in this thesis, for which more

details are presented in Section 2.1.7. Every cacheline is tagged using state bits to represent

its most current state as part of the coherency protocol, in effect the coherency protocol is a per

cacheline state-machine allowing the processor to implement cache consistency.

The MOESI protocol, shown in Figure 2.3, has the following states: Modified, Owned,

Exclusive, Shared and Invalid –

Invalid Cachelines marked as invalid do not hold valid copies of data. All cacheline entries

in the cache start off in the invalid state. Cachelines can also enter an invalid state once

invalidated i.e. it transitions from one of the other states. Valid data for a cacheline

resides either in main memory or in another processor’s cache.

Exclusive A cacheline in the exclusive state is exclusive to that particular cache i.e. it is the

most current copy of the cacheline and is not in any other cache. Read misses, if serviced

from memory cause cache lines to be marked as Exclusive as these cachelines are newly

fetched directly from memory.

Modified A cacheline transitions into the a Modified state from Exclusive if the processor’s

§2.1 Microprocessors, Caches, Interconnects 15

made modifications to that line i.e. if the cache gets a write hit. Future write hits will set

the cache line in the Modified state. If the cacheline needs to be evicted, it is transitioned

from the Modified state into Invalid.

Shared A Shared cacheline is one which has not been modified and is in cache, but could

exist in another processor’s cache. A read-miss on a Modified cacheline will lead to

a transition into the Shared state. A read-miss response from another cache will also

cause the cacheline state to transition to Shared.

Owned A Modified cacheline can transition to the Owned state when the cache forwards the

cacheline to another requesting cache, thus by-passing the backing store. The Owned

state allows for a cacheline to be replicated to other caches (which hold it in the Shared

state). The cache that owns the cacheline is permitted to modify Owned lines only.

2.1.5 Memory Structures

There are two broad classifications for cache coherent multiprocessor systems – UMA and

NUMA. Uniform memory access (UMA) and Non-Uniform Memory Access (NUMA) are

two techniques used to create shared memory systems. In this thesis both types of shared

memory systems are used.

UMA refers to a shared memory system where each processor can access main mem-

ory with the same fixed latency. UMA machines are also referred to as Symmetric Multi-

Processors (SMP). UMA systems (Figure 2.4 (a)) either use a bus based [217] or cross-bar [13]

to connect the processors. In bus based systems cache coherency is implemented by having

individual processors monitor or snoop the bus [102]. This allows processors to make state

transitions for its cachelines in accordance with the hardware coherency protocol as shown in

Figure 2.3. Bus based approaches [159] are inherently unscalable as coherency traffic limits

the number of shared processors that can effectively use the shared bus.

In NUMA systems the time taken to access main memory is non-uniform i.e. cache misses

for data that is not local to a processor have higher latencies than those which are in remote

memory (Figure 2.4 (b)). While coherency traffic in a NUMA system can also be implemented

by using a broadcast across a shared bus, it can be also be implemented using a more scalable

directory based approach [58]. In directory based approaches there is an in-memory directory

(implemented as a bitmap) representing cachelines and at which processor these are being

cached in. Although this can be implemented as one central directory, it can quickly become

a bottleneck and thus most modern directory based cc-NUMA2 (e.g. the SGI Altix [166,234])

use a distributed directory approach. Here each processor is responsible for maintaining the

2Cache Coherent NUMA

16 Background

CPU 0 CPU 1 CPU n. . .

Main Memory

CPU 0 CPU 1 CPU n. . .

Memory Memory Memory

(a) UMA (b) NUMA

Figure 2.4: UMA and NUMA organization of shared memory systems [131]

coherency state of its local memory. If a processor requires a cacheline and it is not to be

found in its local caches or memory, the processor (or its proxy3) directly contacts the foreign

processor which manages the memory in which the required cacheline resides. Writes to

the cacheline by a remote processor are forwarded to the owning processor, which in turn

sends invalidation messages to other processors that might be having copies of the cacheline.

This decentralization of the cache directory results in less overhead compared to a centralized

directory.

2.1.6 Hardware Performance Counters

As evident from preceding sections modern microprocessors are extremely complex systems.

To aid both end-users and engineers in understanding the performance of applications execut-

ing on these systems all modern microprocessors have a set of dedicated on-chip and off-chip

registers for performance monitoring [3,125,126,128,187,267]. These registers, which are re-

ferred to as hardware performance counters (HWPC), are initialized to record a pre-defined set

of hardware performance events [79,255]. Performance events, like Cycle counts and total L1

data cache misses, are sometimes counter specific and often some events cannot be measured

in conjunction with others [199]. This arises from decisions made at the design stage of the

microprocessor in order to (a) reduce the overhead of implementing the performance counter

infrastructure in silicon and (b) conserving the on-chip transistor budget for other features.

On configuring the on-chip counters the microprocessor increments the HWPC(s) for the

specific set of event(s) of interest. All microprocessors support delivery of signals either to an

operating system handler or user space handler in the event any register overflows. Hardware

counters can measure performance events for code which is either in user-space, in the kernel

or both. Performance counters can be used to either obtain absolute event counts [79] or

sample for events based on overflow of the underlying counter or to generate an interrupt if

there has been a fixed number of events that have occurred [39].

3In the SGI Altix system this is the SHUB [166]

§2.1 Microprocessors, Caches, Interconnects 17

Often hardware performance counters are exposed via libraries to shield end users from the

complexity of managing the processes by which HWPCs need to be initialized and accessed.

This process is often different between processors from the same vendor. PAPI [37] is cross

platform performance counter library which exposes a uniform API and runs across multiple

microprocessor types (Intel, AMD and PowerPC). PAPI also supports hardware performance

counter event multiplexing [7,69]. This uses an event sampling approach to enable more events

to be counted than there are available hardware registers. Events counted using multiplexing

will therefore have some statistical uncertainty associated with them. Within discrete periods

of time a set of events are monitored, recorded, the counters are reset for the next set of events

and the process continues. Care must be taken as this process can introduce errors if the short

code segments are being measured or a large number of events are sought [19, 176].

2.1.7 Microprocessors Used in This Thesis

Table 2.1, lists processor and cache characteristics for the microprocessors used in this the-

sis. The memory latencies given in the table were measured quantities, using the lmbench

pointer chasing benchmark [184]. Five different processors were chosen the Intel Pentium

M, P4; AMD Opteron; IBM G5/PPC970Fx; and the Sun UltraSPARC IIICu (USIIICu). All

processors use out-of-order execution except the USIIICu, which is an in-order processor. The

processors have a range of clock frequencies ranging from 900Mhz to 3Ghz. All processors

are superscalar: the x86 processors can issue 3 instructions per clock cycle, whereas the G5

and USIIICu can issue 4 instructions per cycle.

The Intel x86 processors and the G5 system have a UMA architecture and use a north-

bridge [217] chipset to link memory and processors. The AMD Opteron system has a NUMA

architecture that also uses coherent HyperTransport [56,218,282]. The USIIICu is used in the

Sun V1280 [266], a twelve processor system and it uses the FirePlane protocol [50] to create a

shared memory system. The V1280 exhibits slight NUMA characteristics.

The microprocessors had a varying number of on-chip performance counters (2 to 18).

The sizes and organization of their cache hierarchies were also different. Measured lmbench

latencies for L1, L2 and main memory latencies show an expected factor of 10 difference

between the various levels of the memory hierarchy. In the Appendix, Table A.1 lists the

PAPI native hardware performance counter events used in this thesis. In Section A.2 of the

Appendix, Tables A.2.1 – A.2.7 present lmbench plots for linear and random pointer chasing

for all the processors.

18 Background

P
en

tiu
m

M
In

tel
P

4
A

M
D

O
p

tero
n

G
5

/P
P

C
9

7
0

F
x

U
ltraS

p
arc

IIIC
u

C
lo

ck
R

ate
(G

h
z)

1
.4

3
.0

2
.2

2
.0

0
.9

O
p

s.
p

er
C

y
cle

(C
y

)
3

3
3

4
†

4

M
em

o
ry

S
u

b
sy

stem
N

tB
r

N
tB

r
cH

T
U

3
H

F
ireP

lan
e

P
erf.

C
o

u
n

ters
(N

o
.)

2
1

8
4

8
2

L
1

D
C

ach
e

S
ize

(K
B

)
3

2
1

6
6

4
3

2
6

4

A
sso

ciativ
ity

(W
ay

s)
8

8
2

2
4

L
in

e
size

(B
y

tes)
6

4
6

4
6

4
1

2
8

3
2

C
ach

e
P

o
licies

L
R

U
,

W
B

P
-L

R
U

L
R

U
,

W
B

,
W

A
L

R
U

,
N

W
A

,
W

T
P

-L
R

U
,

N
W

A

L
2

U
n

ifi
ed

S
ize

(M
B

)
1

1
1

0
.5

8

A
sso

ciativ
ity

(W
ay

s)
8

8
1

6
8

2

L
in

e
size

(B
y

tes)
6

4
6

4
6

4
1

2
8

6
4

R
elatio

n
to

L
1

In
clu

siv
e

In
clu

siv
e

E
x

clu
siv

e
In

clu
siv

e
E

x
clu

siv
e

C
ach

e
P

o
licies

L
R

U
P

-L
R

U
P

-L
R

U
L

R
U

A
M

,
P

-L
R

U

l
m
b
e
n
c
h

L
aten

cies
fo

r

L
1

D
C

ach
e

L
aten

cy
(C

y
)

3
4

3
3

3

L
2

U
n

ifi
ed

L
aten

cy
(C

y
)

1
0

2
8

2
0

1
6

1
6

M
ain

M
em

o
ry

L
aten

cy
(C

y,�
)

2
0

1
2

8
5

2
6

0
–

3
0

0
3

3
0

3
6

0
–

3
8

0

†
=
4
o
p
s
+
1
b
ra
n
ch

N
tB
r
=
N
o
rth

b
rid

g
e,
H
T
=
H
yp
erT

ra
n
sp
o
rt,

U
3
H
=
A
p
p
le’s

N
tB
r
U
3
H
b
u
s

L
R
U
=
L
ea
st
R
ecen

tly
U
sed

,
P
-L
R
U
=
P
seu

d
o
-L
R
U
,

W
B
=
W
rite

B
a
ck,

W
A
=
A
llo

ca
te
o
n
W
rite,

N
W
A
=
N
o
a
llo

ca
te
o
n
W
rite,

A
M

=
A
llo

ca
te
o
n
M
iss

T
a
b
le
2
.1
:

P
ro

cesso
r

ch
aracteristics

o
f

clo
ck

rate,
cach

e
sizes

an
d

m
easu

red
laten

cies
fo

r
L

1
D

C
ach

e,
L

2
cach

e
an

d
m

ain
m

em
o
ry

laten
cies

fo
r

th
e

m
icro

p
ro

cesso
rs

u
sed

in
th

is
th

esis.

§2.2 Performance Evaluation 19

2.2 Performance Evaluation

John [199] classifies performance evaluation into two major categories; performance measure-

ment and performance modelling. Performance measurement is the use of hardware or soft-

ware techniques which allow for measurement of either time taken to completion for a given

task or event counts of interest within some period of time. Performance modelling refers to the

creation and validation of a model which accounts for observations made from performance

measurement of a given system. A modified version of a table presented in [199] detailing

various performance evaluation options is given in Table 2.2. The various sub-sections of this

table are expanded below. Following this is a brief introduction to dynamic binary translation

(DBT) is presented prior to an introduction to the Valgrind DBT tool.

Performance Measurement
Software assisted profiling

On-chip hardware performance counters

Performance Modelling

Analytic Modelling

Parametric models

Probabilistic models

Queuing theory

Neural net, Markov models

Simulation

Statistical, Monte-Carlo simulation

Trace driven

Execution driven

Full system simulation

Table 2.2: Classification of performance evaluation techniques

2.2.1 Performance Measurement using Software Assisted Profil-

ing

The gprof [101] profiling tool is an example of a software assisted profiling tool. One of

its features is the ability to generate an execution profile which can be used to attribute an ap-

plications’ execution time on a per subroutine basis. This is often achieved using a sampling

approach, wherein at specific time intervals an application’s program counter is sampled for

the lifetime of the application. Intel’s VTune [127] tool, Sun’s Performance Analyzer [268]

and the Tau [244] performance tuning and analysis tools can also be used for profiling appli-

cations. Both VTune and Tau can either use interrupt based sampling or can use hardware

performance counters to sample events of interest and attribute these to sections of executed

code. The OProfile [160] tool also uses a sampling approach to allow both user and kernel

space profiling of an application under Linux. It can apportion execution time either based on

walltime or performance counter events corresponding to code segments that ran. DTrace [45]

20 Background

for Solaris and systemtap for Linux [214] are two OS instrumentation tools which allow for

the creation of arbitrary user programs which can be used to instrument running production

systems. Both consume OS specific probes which are exposed via kernel and application inter-

faces, to instrument a running OS i.e it is possible to trace an application running in user-space

and its subsequent interactions all the way down to the kernel. JIFL [201], is a just-in-time

fine-grained dynamic instrumentation framework for the Intel x86 architecture. Unlike DTrace

and systemtap, which inserts trap instructions, JIFL is able to patch in jump instructions into

a running OS’ code image thus allowing for finer instrumentation. By using an API, it is pos-

sible to profile system execution time in both user and kernel space with minimal overhead.

PinOS [40], extends the Pin [165] instrumentation framework to allow whole-system instru-

mentation. This is achieved by using vitalization provided by the Xen [21] hypervisor. The

application and OS of interest is run within a Xen DomU 4. PinOS can then either attach to

the running instance of the OS and effectively instruments the DomU using Pin’s instrumen-

tation API. Also, these tools have been used in identifying and modelling cache performance

problems [170, 171].

2.2.2 Performance Measurement using On-Chip Counters

As discussed in Section 2.1.6 HWPCs can be used to measure performance events of interest.

Access to hardware performance counters can either be via compiler instrumentation, use of

tools described above or it can be inserted directly into areas of user code of interest, either

by using APIs from tools like Dyninst [118] and Pin [165] or manually patching in calls via

libraries like PAPI [37]. The advantage of using tools like Dyninst and Pin is that source code

for the original binary is not required as these tools can operate on binaries. Platform specific

definitions for performance counters used in this thesis are given in Appendix A, Table A.1.

2.2.3 Performance Modelling using Analytic Techniques

Analytic modelling is usually employed for large computer systems i.e. aggregate models of

the microprocessor, memory and interconnect. It attempts to build a system specific mathemat-

ical model and is high level, often using characteristics of input event distributions. Computer

systems are aggregations of hardware and software resources and a set of tasks or jobs com-

pete for these resources [199]. Analytic models attempt to weight various system parameters

and present empirical equations of system performance. This results in formulations which

are based on probabilistic models [53, 122, 195, 241, 253], statistical models [145], non-linear

4Xen acts as a hypervisor effectively virtualizing underlying hardware. The DomU (guest/user do-

main) are OS instances that run atop the hypervisor and are controlled from the Dom0 (controller/host

domain).

§2.2 Performance Evaluation 21

regression models [141], stochastic models [120], queuing theory [67], Markov models [254]

and neural-net models [129]. Explicit parametrisation of scientific codes based on inputs are

also another type of analytical model [175]. Analytic models have quick turn around times

and can model very large systems [241]. Yet the models are dependent of underlying simpli-

fications of the real system and depend on input parameters which characterize the processor,

interconnect and workloads being studied. An example of analytic modelling is a performance

model for a Particle Transport Code (PTC) given in Mattis and Kerbyson [175]. The PTC’s in-

put is parametrized along with platform specific parameters like communication latencies and

cache specific parameters. The model is validated and allows for quick performance estimates

on future computing platforms.

2.2.4 Performance modelling using Simulation

Simulation techniques use either a software model, which abstracts underlying hardware or

employs statistical techniques to simulate components or subsystems of interest. The hardware

platform being studied is abstracted and modelled in software. It have now become the de-

facto means of performance evaluation in computer architecture studies [248]. Simulators are

constructed to be functional or timing accurate simulators. A functional simulator can simulate

the functionality of target hardware i.e. runtime register values of a simulated application can

be retrieved from simulated registers. To create a timing accurate simulation, the simulation

needs to model both functionality and per cycle latencies of processor events.

Statistical, Monte-Carlo Simulation

Statistical simulation [24, 75] and Monte-Carlo [256] simulation, collect a series of microar-

chitecture specific and microarchitecture-independent characteristics. This collected profile is

then used as input for simulating a trace-driven statistical simulator.

Trace Driven and Execution Driven Simulation

Simulations can either be trace or execution driven. Trace driven simulation [285] uses a trace

as its input. The trace can be address values, instruction streams or processor state. The trace

itself is obtained prior to executing the simulation. This trace is then used as input either

for functional or timing accurate simulation [295]. A draw-back of trace driven simulation

is that traces are specific to a particular instance of a running application and cannot model

non-deterministic and timing dependent effects [97]. Execution driven simulators interpret in-

structions from a binary source to perform its simulation rather than using a pre-obtained trace

input. Dynamic binary translation is often used in implementing execution driven simulators,

22 Background

where the input binary is read-in and used to progress the simulation.

Over [204] classifies simulation tools by their level of detail – component-level, user-level

and full machine simulation. Each of these levels of detail are implemented using techniques

give under the Simulation heading of Table 2.2.

Component-level simulation is used when a particular sub-system of interest needs to be

modelled i.e. branch predication, out-of-order retirement. This is done when the be-

havior of the component in isolated is required, rather than its incorporation in a larger

framework i.e. branch prediction within a microprocessor.

User-level simulation aims to model the microarchitecture of a target processor and its exe-

cution pipelines. Typically these simulators are unable to simulate the effect of OS and

I/O interactions as BIOS and other hardware sub-systems required for system boot have

not been modelled. RSIM [121, 208], SimpleScalar [18, 41] are examples of this type

of simulation. These execute user-level workloads and assume I/O subsystems do not

impact overall performance of the simulation.

Full-machine simulation , on the other hand, models hardware in sufficient detail to permit

simulations of entire operating systems, I/O subsystems and network interface cards.

SimICS [168], SimOS [230, 231] and M5 [27] are examples of such simulators.

2.2.5 Dynamic Binary Translation and the Callgrind/Valgrind tool

Dynamic binary translation is a technique used for performance modelling simulation. Dy-

namic binary translation (DBT) uses basic blocks 5 from an input binary, which is annotated

and re-compiled to the target hosts’ instruction set. Typically a cache simulation model is fed

these basic blocks in order to obtain cache specific information e.g. the total number of L1, L2

cache misses. In this thesis, the Valgrind [190,192] dynamic binary translation [44] framework

is used in conjunction with the Callgrind [140, 191, 274, 296, 297] functional cache simulation

tool. The Valgrind dynamic binary instrumentation framework provides basic blocks to the

Callgrind tool which in turn performs dynamic, execution driven cache simulation Valgrind, is

a program supervision framework which permits the writing of tools or plug-ins which super-

vise the execution of an underlying executable. In this work version 3.2.1 of Valgrind and the

Callgrind tool. Cache parameters for the L1 Instruction, L1 Data and L2 Unified cache sizes

are specified prior to running an executable via Valgrind entirely in user-space. An executable

and its command-line options are passed onto Valgrind which in turn sets up an environment

for callgrind to perform the cache simulation.

5A basis block is a distinct section of object code which has one entry point, one exit point and does

not contain any jump instructions within it [14, 302].

§2.3 Electronic Structure Methods 23

Valgrind decodes a native executable and converts the native ISA’s op-codes into a plat-

form independent representation called VEX. This representation or instruction stream is then

fed into the Callgrind tool which in turn performs its cache simulation using these VEX basic

blocks. On completing its cache simulation, Callgrind hands the basic block back to Val-

grind. At this point Valgrind becomes a just-in-time compiler and outputs native machine code

from the basic block. It is this very process which allows Valgrind/Callgrind to supervise the

program’s execution and monitor all of the user-space instruction stream of an executable.

The cache simulation allows for the recording of more events than is possible using on-chip

performance counters. Hardware designers are firstly, limited by the amount of on-chip silicon

that can be devoted to performance monitoring constructs and need to ensure its operation

does not in any way impede the execution speed of the processor. Simulation takes longer to

run (Valgrind simulations can experience a 10x slowdown), but is able to record and annotate

events which cannot be obtained using on-chip performance counters alone.

2.3 Electronic Structure Methods

This section gives an overview of electronic structure methods used in this thesis. It includes

background material relating to Schrödinger’s wave equation, the Hartree-Fock method, chem-

ical basis sets, two-electron integral evaluation and Density Functional Theory.

Computational quantum chemistry encompasses a body of theory called electronic struc-

ture theory which has been developing over the course of the last century [77, 210]. Central to

it is the Schrödinger wave-equation, bHψ = Eψ (2.1)

Quantum mechanics postulates that for any system there exists a wavefunction ψ that fully

describes the system under consideration. In Equation 2.1 bH is the operator applied to ψ

yielding the scalar E , multiplied by ψ [55]. In this case the operator bH is the Hamiltonian

operator and E is the system’s energy. In the context of quantum chemistry the Hamiltonian

operator bH includes terms for the kinetic energies of the electrons and nuclei and the coulombic

interactions between them.

A two atom system is illustrated in Figure 2.5. In this Figure a right handed coordinate

system with the origin at O has atom A and B at a distance RA and RB from the origin, and

two electrons i, j at a distance ri and r j from the origin. The distance between the two nuclei

is RAB whereas the distance between the electrons is ri j. In this system there are interactions

between nuclei, between electrons and between electrons and nuclei. The Hamiltonian for a

24 Background

Figure 2.5: A molecular coordinate system where i, j denote electrons and A, B denote atoms.

From [271].

generalized system of M point nuclei and N point electrons is given by,bH =�1

2

N

∑
i=1

∇2
i � M

∑
A=1

1

2MA

∇2
A� N

∑
i=1

M

∑
A=1

ZA

riA
+ M

∑
A=1

M

∑
B>A

ZAZB

RAB+ N

∑
i=1

N

∑
j>i

1

ri j

(2.2)

where MA is the ratio of mass of nucleus A to that of the mass of an electron, ZA is the atomic

number of nucleus A, ∇2
i and ∇2

A are the Laplacian for the ith electron and the Ath nucleus.

The first two terms are associated with the kinetic energy (K.E.) of the electrons and nuclei

respectively; the third term represents coulombic attraction between the electrons and nuclei;

the fourth term represents coulombic repulsion between nuclei and the fifth term represents

coulombic repulsion between electrons.

Schrödinger’s wave-equation only has closed-form solutions for relatively trivial systems,

and in general can only be solved using various numerical or approximate methods. A central

simplification is the Born-Oppenheimer approximation. This comes about from the observa-

tion that nuclei are much heavier than electrons (1800 times heavier) so electronic relaxation

is near instantaneous and electrons can be considered to move in a field of fixed or clamped

nuclei. This gives rise to the electronic Hamiltonian which describes the motion of electrons

§2.3 Electronic Structure Methods 25

in a field of fixed nuclei, bHelec =�1

2

N

∑
i=1

∇2
i � N

∑
i=1

M

∑
A=1

ZA

riA
+ N

∑
i=1

N

∑
j>i

1

ri j
(2.3)

Solution to the electronic Schrödinger equation for different nuclear coordinates gives rise to

the concept of a potential energy surface [83], where minimums on the surface indicate stable

nuclear geometries. Thus, the electronic energy of the system depends parametrically on

nuclei locations and explicitly on electron locations,

Eelec = Eelec(RA)
Etotal = Eelec+ M

∑
A=1

M

∑
B>A

ZAZB

RAB

(2.4)

and the total electronic energy includes the constant of nuclear repulsion. Taken together both

Equations 2.3 and 2.4 represents the electronic structure problem. In subsequent discussions

we will consider the electronic energy only and hence not use the total and elec subscripts.

Even with the Born-Oppenheimer approximation, it is only possible to solve the Schrödinger

equation for trivial systems and its formulation requires further simplification.

2.3.1 Hartree-Fock approximation

The Hartree-Fock (HF) approximation is a simplification of Schrödinger’s equation where the

wavefunction is constructed as an anti-symmetric product of one-electron functions or Molec-

ular Orbitals (MOs) φ ,

ψ = jφ1(x1)φ2(x2) : : : φN(xN)j (2.5)

Here each MO φi describes the motion of one electron in the system. The MOs are expanded

in terms of N basis functions χ

φi = N

∑
µ=1

cµ i χµ (2.6)

where, cµ i are molecular orbital coefficients. The challenge for HF theory is to determine

the set of orbitals φ which gives the best approximation to the exact wavefunction, ψexact .

This is achieved using the Variational Principle which states that an approximate wavefunction

has an energy greater than or equal to the exact energy [271] i.e. the energy of the exact

wavefunction is a lower bound to energies obtained from approximate wavefunctions. This

renders the problem to one where the set of coefficients which minimizes the energy of the

approximate wavefunction needs to be determined. By using a trial wavefunction, the energy

26 Background

is evaluated for a set of MOs which are guessed initially and then these MOs are systematically

varied until the evaluated energy does not change. Thus the Variational Principle permits the

construction of a trial wavefunction and affords the means to test its quality. The HF method

is the simplest trial wavefunction that can be created which is a single determinant where N

orbitals are occupied by N electrons; Equation 2.5. The variational optimization of the HF

wavefunction gives rise to the canonical Hartree-Fock equations,

N

∑
ν=1

(Fµν � εi Sµν) cν i = 0 µ = 1;2; : : : ;N: (2.7)

which can be represented in its matrix form as,

F C = S C ε (2.8)

where, F is called the Fock matrix;C is a matrix of the molecular orbital expansion coefficients;

S is the overlap matrix representing the overlap between basis functions and ε is a diagonal

matrix where εi is the orbital energy of each MO χi.

In essence, Equation 2.8, allows one to determine the N MO basis functions by solving the

secular equation,����������� F11�E1S11 F12�E2S12 : : : F1N�ENS1N

F21�E1S21 F22�E2S22 : : : F2N�ENS2N

...
...

. . .
...

FN1�E1SN1 FN2�E2SN2 : : : FNN�ENSNN

����������� = 0 (2.9)

to obtain solutions E j.

Equation 2.8 for the Fock matrix F , represents the interaction of an average field of elec-

trons acting on each MO. For a closed shell system this is given by,

Fµν =�φµ

�����1

2
∇2

����φν

�� nuclei

∑
k

Zk

�
φµ

���� 1

rk

����φν

�+ N
2

∑
a

∑
λ

∑
σ

CλaCσa

�
2(φµ φν jφσ φλ)� (φµ φλ jφσ φν)�= Hcore

µν +∑
λ

∑
σ

Pλσ

�(φµ φν jφσ φλ)� 1

2
(φµ φλ jφσ φν)�= Hcore

µν +∑
λ

∑
σ

Pλσ

�
Jλσ � 1

2
Kλσ

�= Hcore
µν +Gµν

(2.10)

§2.3 Electronic Structure Methods 27

where, Hcore
µν is referred as the core Hamiltonian matrix that combines K.E. and nuclear attrac-

tion terms, Gµν is the two-electron integral contribution to Fock matrix, P is called the Density

matrix and is defined over the MOs coefficients,

Pλσ = occupied

∑
i=1

cλ icσ i (2.11)

and the four index quantities (φµ φν jφλ φσ) represent electron-repulsion integrals (ERI) [92,

229, 272]. The ERI integrals are further categorized depending on the order of subscripts,

although the form of the basic integral is the same; (φµ φν jφσ φλ) are categorized as coulomb

integrals (J) and (φµ φλ jφσ φµ) are exchange integrals (K). Coulomb integrals arise from the

classical repulsion between electron distributions, whereas exchange integrals arise from non-

classical interactions between electron distributions. The HF equations are solved iteratively

in a self-consistent field (SCF). Figure 2.6 presents key steps in the SCF. Once a molecular

system has been specified by its nuclear coordinates, number of electrons, atomic numbers and

a basis set, the overlap matrix S and core Hamiltonian Hcore
µν are computed. The density matrix

P is guessed. This then leads to the iterative steps of the SCF . To form the Fock matrix F ,

the two-electron integrals are computed. Fock formation is a O(N4) process since there are N4

two-electron integrals. After formation, the Fock matrix is diagonalized to obtain coefficients

C and energies ε . A new density matrix is formed using the obtained C and a convergence

criterion is evaluated e.g. if the new density matrix differs from the old density matrix, subject

to a cut-off, the solution has converged, else the new density matrix is used to form a new

Fock matrix. If the solution converges other quantities of interest can be evaluated e.g. dipole

moments and charge distribution amongst the atoms in a molecular system. SCF convergence

problems do arise and some of the most commonly used techniques are extrapolation of the

Fock matrix, damping of the density matrix, level shifting of MOs, the use of direct inversion

of iterative subspace (DIIS) [55, 83].

2.3.2 Atomic Basis Functions

MOs are constructed using a linear combination of basis functions for which the coefficients

are obtained using the SCF procedure. These basis functions (χ) are generally located at

the various atomic nuclei, and represented as the product of a radial function and an angular

function [112,271]. The preferred radial function is a Gaussian (Gnl) and the preferred angular

function is a spherical harmonic (Ylm),

χα = GnlYlm (2.12)

28 Background

Figure 2.6: Activity diagram for the SCF procedure and computational complexity for key

steps.

§2.3 Electronic Structure Methods 29

The subscripts n, l and m are referred to as the principal, angular and magnetic quantum num-

bers respectively reflecting their role in atomic orbital calculations [169]. The Spherical har-

monic is given as,

Ylm(θ ;ϕ) = q
2l+1
4π

(l�m)!(l+m)! Pm
l (cosθ)eimϕ (2.13)

where Pm
l is a Legendre polynomial (l � 0 and jmj � l). When considering spherical harmonic

functions of rank l � 1, all the orders of spherical harmonic functions within that rank i.e.8m :�l � 0�+l are treated together. For example, when considering a basis function with a

spherical harmonic of rank l = 3, all of its 7 components (i.e m :�3� 0� 3) are also included

as basis functions. All functions for a given value of l are referred to as a shell. Shells with l =

0,1,2,: : : are referred to as s, p, d, f, g shells respectively.

The Gaussian Gnl , in Equation 2.12 is located at coordinates A = (Ax;Ay;Az) with an

angular momentum a = (ax;ay;az) and an exponent α ,

Gnl(α ;A)� GPGTO
nl (α ;A) = (x�Ax)ax(y�Ay)ay(z�Az)az e�α jr�Aj2 (2.14)

Gnl is referred to as a primitive Gaussian-type orbital (PGTO). A set of primitive basis func-

tions which share the same center A, exponent α and angular quantum number l is called a

primitive shell e.g. the set of p functions on a nuclei px; py; pz is a primitive p shell.

PGTOs are usually combined in a fixed linear combination to create a contracted Gaussian

function (CGTOs). GTOs have a r2 exponential term which causes them to decay rapidly

and this does not mimic the central cusp which is observed for electron distribution around an

atom [271]. In order to get the correct behaviour a set of GTOs are multiplied by contraction

coefficients to produce the requisite cusp-like behaviour at the nuclear center [246],

φCGTO
κ (A) = L

∑
p=1

dpκ G
p
nl (αpκ ;A) (2.15)

where L is the length of the contraction, dpκ is a contraction coefficient and αpκ is the exponent

on each constituent PGTO. A set of CGTOs with the same center and set of angular momentum

exponents is called a contracted shell. CGTOs are the de-facto basis function of choice in most

electronic structure calculations as multi-center Gaussian integrals that arise from their use in

Equation 2.7 can be efficiently evaluated. It is this reason that has led to the widespread use of

Gaussians as to represent basis sets.

Over the years, chemists have defined libraries of basis sets which: yield chemically ac-

curate energies, are cost effective computationally, and transferable so that a given description

would be useful in different chemical bonding scenarios. Some examples of commonly used

basis sets are 6-31G*, aug-cc-pCVTZ, def2-TZVP and so on [65, 80, 81, 111, 237, 277]. To

summarize, a basis function is characterized by (a) its location, (b) its degree of contraction

30 Background

and (c) the rank of its angular components.

2.3.3 Two-Electron Integral Evaluation

Evaluation and processing of the two-electrons dominate the HF method. A Simple ERI for

four primitive s functions6 i.e. (ssjss) is,

IERI � Z Z
e�α jr1�Aj2 e�β jr1�Bj2 1

r1� r2
e�γ jr1�Cj2 e�δ jr1�Dj2 (2.16)

where A;B;C;D are centers of the four functions; α ;β ;γ ;δ their exponents. Using the Gaus-

sian product rule [33, 34, 271] the four center problem can be combined into a two center

problem,

IERI =GABGCD

Z Z
e�ζ jr1�Pj2 1

r1� r2
e�η jr2�Qj2 (2.17)

where

GAB = exp[�αβ
α+β jA�Bj2℄ GCD = exp[�γδ

γ+δ jC�Dj2℄
P = αA+βB

α+β Q = γC+δD
γ+δ

ζ = α +β η = γ +δ

(2.18)

The final ERI expression for an s function is,

IERI = GABGCD

2π
5
2

ζη(ζ +η) 1
2

Fm(T) (2.19)

where FEE
0 (T) is the incomplete Gamma function,

Fm(T) = Z 1

0
e�Tu2

du (2.20)

Boys [33] showed how higher angular momentum functions can be obtained from lower ones

by partial differentiation with respect a given coordinate. Functions with higher angular mo-

mentum values are computed using a set of recursive relations which successively build up

angular momentum from primitive s functions. There are several schemes for evaluating

ERIs [73, 109, 112, 161, 197, 198, 229, 272]. In this thesis the McMurchie-Davidson scheme

is of interest and is outlined in the following sub-section.

6An s function arises when a given orbital has l = 0

§2.3 Electronic Structure Methods 31

Figure 2.7: The McMurchie-Davidson ERI scheme. From [229].

2.3.3.1 The McMurchie-Davidson scheme for ERIs

McMurchie and Davidson (MD) computes ERIs based on Hermite Gaussians [182, 308].

Hermite Gaussians offer a compact means of representing one and two electron integrals. Us-

ing Boys’ observation [34] on partial differentiation w.r.t. a center, MD derived recurrence-

/recursion relations using Hermite Gaussians to allow calculation of ERIs for CGTOs. Refer-

ring back to Equation 2.10, pairs of basis functions (φµ φλ j and jφν φσ) are grouped together

when computing the Fock matrix. This grouping referred to as a shell-pair.

The MD ERI evaluation procedure is shown in Figure 2.7. The process begins through the

evaluation of a quantity labelled as [0℄m, which is related to Fm(T). The [0℄m quantities are

formed using Fm(T) (i.e. Step (a) in Figure 2.7),[0℄m = DADBDCDDGABGCD

s
2π5(ζη)3

(2ϑ2)m+ 1
2 Fm(T) (2.21)

where DA;DB;DC;DD are contraction coefficients of the Gaussians; m is determined by the

sum of the angular momentums of the constituent basis functions; ϑ =q ζη
ζ+η

; and 0�m� L.[0℄m are single scalar values.

32 Background

The first step in the MD process constructs the [r℄(m) vector from the [0℄m scalar quantity.

MD showed that [r℄� [r℄(0) can be generated using a two-term recurrence relation (RR) (Step

(b)), [r℄(m) = Ri[r�1i℄(m+1)� (ri�1)[r�2i℄(m+1) (2.22)

where i is the Cartesian axis direction; 1i and 2i represents a unit vector with a value of 1

or 2 in direction i. As Equation 2.22 is a recursive relation which shows that any given [r℄0

integral can be assembled from an elementary set of [0℄m integrals i.e. any given [r℄(m) can be

generated using lower angular momentum terms in upto three different ways, each of which

has different number of terms and as a results differing costs in accessing data operands from

memory. Finding the most optimal path from the elementary [0℄m to [r℄m involves a tree search

procedure, which for L� 5 is non-trivial and for L� 8 is unsolved [135].

Transferring angular momentum from [r℄ to [pjq℄ proceeds by using the following relation

to shift angular momentum from one [r℄ to two centers p and q ([pjq℄� [00pjq00℄),[pjq℄ = (�1)q[p+q℄ (2.23)

where p and q are products of functions a;b and c;d respectively. Here p and q are Hermite

functions [92].

Step (d) proceed by converting a Hermite Gaussian into two Cartesian Gaussians by using

the following RR, which shifts angular momentum from the one Hermite q onto a Cartesian

Gaussian c,jq cd℄ =Qij(c�1i)d(q�1i)℄+ (Qi�Ci)j(c�1i)dq℄+ (2η)�1j(c�1i)d(q+1i)℄ (2.24)

where the angular momentum is shifted from Hermite q onto c;d.

Step (e) involves carrying out a contraction step amongst the jcd℄ integrals (denoted by the

change from square brackets to round brackets) where , the constituent GTOs that make up a

CGTO are combined. [pjcd) = KA

∑
i=1

KB

∑
j=1

[pjcid j℄ (2.25)

Steps (f) and (g) are carried out using similar transfer and contraction relations to Equations

2.24, 2.25. As a pedagogical exercise, a basic MD integral evaluation algorithm and SCF code

was developed in C++ and parallelized using OpenMP.

2.3.3.2 The PRISM algorithm

The efficacy of an ERI algorithm is dependent on when PGTOs are combined to form fully

contracted CGTOs. Algorithms like MD choose to carry out integral contraction i.e. the

§2.3 Electronic Structure Methods 33

Figure 2.8: The MD-PRISM ERI scheme. From [229], [92]

contraction step, (abjcd), is the last to be performed. Gill et al. [95] realized that the efficiency

of various integrals algorithms is tied not only to the nature of the integrals being computed,

but also to when the contraction steps are performed. In recognition of this, they created

the PRISM algorithm which dynamically chooses when contractions are performed. Figure

2.7, is the front face of MD PRISM. There are at most three transformation (T) steps and two

contraction (C) steps to generate a given (abjcd) shell-quartet. The MD algorithm corresponds

to the T1T4C5T8C8 path in PRISM. PRISM further recognizes that shell-quartets that have

identical angular momentum types and contraction lengths can be treated together. This allows

for vectorization of these shell-quartets into batches on vector machines or these batches are

further cache-blocked for operation on cache based architectures.

PRISM’s mode of operation is as follows – Once the shell-pair data is collected, integral

screening is performed to reduce the total number of significant shell-pairs that need to be

considered. The list of remaining shell-pairs are sorted and pairing of shell pairs is done. At

this stage, there is batching of similar shell-quartets of the same type to increase sharing of

intermediate quantities. After this step, the [0℄m integrals are computed. Each of the transfor-

mation steps involves the use of driver routines which take pre-compute solutions to the tree

search problem (i.e. the best way of computing an integral intelligently without resorting to

34 Background

recursion) and execute a series of operations array locations in order to generate the required

integral [92].

We note that the implementation of PRISM, in the Gaussian code, has additional paths

which correspond to the generalisation of the Obara-Saika (OS) integral algorithm [197, 198],

in addition to MD-PRISM. Reference [92] casts OS recurrence relations into a form similar to

MD-PRISM. These OS paths are subsequently used by PRISM for certain contracted integral

as its implementation yields lower run-times.

2.3.4 Density Functional Theory

Density Functional Theory (DFT), is an alternate approach to solving Schrödinger’s wave-

equation using the density of the system rather than a wavefunction. DFT is very commonly

used as it is able to give chemical accuracy, while having similar costs to HF theory. It has

its origins in the Hohnberg-Kohn existence theorem which states there exists a one-to-one

mapping between the ground state electronic energy of a molecular system and its observed

electron density ρ(r),
ρ(r) = Z

ψ2(r) (2.26)

As it is an existence theorem, there was no prescription given for the construction of the func-

tional that computes the electronic energy.

In the first of two crucial steps, Hohnberg and Kohn showed electronic density follows

a variational principle [116]. To achieve this we assume there exists a well-behaved system

which integrates to the actual number of electrons. The system’s electron density will deter-

mine a candidate Hamiltonian and wavefunction. From the variational principle for MOs, it

can be shown that the energy for the system being considered is always greater than or equal

to the ground state energy E0 ,Z
ψcandidate(r) bHcandidate ψcandidate(r)dr = Ecandidate � E0 (2.27)

The second step, is the Kohn-Sham (KS) SCF method, which creates a framework to allow

systematic improvement of the electronic energy as a function of density for a given functional.

The KS SCF procedure, first assumes there exists a fictitious system of non-interacting elec-

trons which has the same overall electronic density as the real system of interest. The energy

functional, is created so as to divide up energy into the following components,

ETotal [ρ(r)℄ = ET [ρ(r)℄+EV [ρ(r)℄+EJ[ρ(r)℄+fEX [ρ(r)℄+EC[ρ(r)℄g (2.28)

where, ET is the K.E. of the non-interacting electrons, EV is the coulomb energy from electron-

nuclei interaction, EJ is the coulomb energy of electron-electron repulsion, EX is the exchange

§2.3 Electronic Structure Methods 35

energy and EC is correlation energy. In Equation 2.28, the ET +EV +EJ terms represent the

classical energy of ρ(r). Whereas, the EX and EC terms represent the remaining energy terms

i.e. EX is the exchange energy arising from the antisymmetry of ψ and EC is the correlation

energy arising from the motions of individual electrons. The main thrust of research work into

functionals, over the last 50 years, has been in the creation of accurate functionals for ET , EX

and EC. Subsequent sections sketch out sub-components of the BLYP and B3LYP functionals,

following the presentation given in [93], as these are used in experimental studies later in the

thesis. The Hartree K.E. functional is given by,

EH28
T =�1

2

n

∑
i

Z
ψi(r)∇2ψi(r)dr (2.29)

this is used by HF theory as seen in Equation 2.8. Equation 2.29 was modified by Fock, in

1930, to account for the anti-symmetric nature of the wavefunction and the Fermi correlation

or exchange term,

EF30
X =�1

2

n

∑
i

n

∑
j

Z Z
ψi(r1)ψ j(r2)jr1� r2j dr1dr2 (2.30)

The original reference system in DFT [147] was chosen to the Jellium, an idealized system of

N positive electrons which are uniformly distributed in a box of volume V so as to have a net

neutral charge. Dirac showed the exchange energy for Jellium was,

ED30
X =�3

2

�
3

4π

� 1
3
Z

ρ4=3(r)dr (2.31)

This functional was in error by 10% in comparison to energies predicted by F30 (Eqn. 2.30).

To address this, Becke [22] in 1998 created an effective functional using D30 and a semi-

empirical fitting parameter b = 0:0042, which was determined using F30 exchange energies

for the first six Nobel atom gases [2],

EB88
X = ED30

X �b

Z
ρ4=3(r) x2

1 + 6 b x2 sinh�1 x
dr (2.32)

In 1988 Lee, Parr and Yang [157] abandoned Jellium as a reference system and used the

isolated Helium atom instead. This led to the LYP correlation functional which is combined

with Becke’s exchange functional and refined to BLYP,

EBLYP = EH28
T +EV +EJ+EB88

X +ELYP
C (2.33)

The B3LYP functional which is based on EBLYP but includes HF exchange and thus is referred

36 Background

to as a hybrid-functional, uses F30 in the Kohn-Sham SCF procedure,

EB3LYP = EH28
T +EV +EJ+(1� c1)ED30

X +(c1)EF30
X+(c2)EB88

X +(1� c3)EVWN
C +(c3)ELYP

C

(2.34)

where coefficients c1;c2;c3 are obtained from fitting experimental data and EVWN
C is a corre-

lation functional developed by Vosko, Wilk and Nusair [292]. B3LYP is routinely used func-

tional by quantum chemists owing to its lower runtime cost, and the ability to yield chemically

meaningful results [137].

2.3.4.1 Kohn-Sham Equations

The Kohn-Sham (KS) equations for DFT allow for a variational approach [116] to obtaining

electronic energies using a given systems electron density. The KS equations are given as,

f̂KSϕi = εi ϕi (2.35)

where, f̂KS is the KS Fock operator; ϕi are KS orbitals and εi is a diagonal matrix of orbital

energies. The KS Fock operator is defined as,

f̂KS =�1

2
∇2� nuclei

∑
k

Zkjr� rkj +Z
ρ(r0)jr� r

0 jdr0 +VXC (2.36)

where, the first two terms denote the kinetic energy and nuclear attraction; the second last term

refers electron-electron coulomb terms and the last VXC is a functional derivative of EXC w.r.t

density i.e. VXC = δEXC

δρ . If the KS orbitals ϕ are expanded using a set of N basis functions φ ,

ϕi = L

∑
µ=1

cµ iφµ (2.37)

in effect, this renders the problem similar to the HF method (Section 2.3.1). Thus the KS

matrix equations [147] are,

FKSC = S C ε (2.38)

§2.3 Electronic Structure Methods 37

where, FKS is the KS Fock matrix; S is the overlap matrix; C is the matrix of MO coefficients

and ε is a matrix of MO energies. Here, FKS is defined as,

FKS = Hcore+Z Z
φµ(r)1

ρ(r2)
r12

φν(r1)dr1r2+Z
φν(r1) VXC(r1) φν(r1)dr1= Hcore+ Jµν +VXC

µν

(2.39)

where, ρ(r) = N

∑
i

jϕi(r)j2 is the density; Jµν is the coulomb term and V XC
µν is the exchange-

correlation term.

2.3.4.2 Evaluation of the Coulomb and Exchange Terms

DFT handles both the coulomb and XC terms differently to HF. In HF, the coulomb terms are

evaluated as four two-center electron repulsion integrals (ERI). These ERI are required in HF

for both coulomb energy and for evaluation the exchange energy. In contrast, in DFT, these

are de-coupled by the use of approximate functionals. Coulomb terms in DFT are handled by

re-writing Jµν as,

Jµν = Z Z
φµ(r1)φnu(r1) ρ(r2)

r12
dr1dr2 (2.40)

Furthermore if the density ρ(r2) is expanded in terms of an auxiliary basis set ω such that,

ρ(r)� ρ̃(r) = K

∑
κ

cκωκ (r) (2.41)

This expansion reduces the computational cost of evaluating J from O(N4) to O(N2K) [147],

where N is the number of AO functions. Standard ERI techniques are then used to evaluate the

associated three center integrals.

HF theory has exchange integrals but does not include electron correlation. In DFT both

the exchange and correlation terms are given by,Z
φν(r1) VXC(r1) φν(r1)dr1 (2.42)

is evaluated entirely using numerical quadrature. Standard meshes have been defined for DFT

calculations [94], which are then used to evaluate VXC at each point on the grid. The following

38 Background

discretization is used in evaluating the exchange and correlation terms,

V XC
µν � Ṽ XC

µν = P

∑
p

φµ(rp) VXC(rp) φν(rp)Wp (2.43)

which approximates VXC into a series of P terms. Each term is then computed as a product

of numerical values of φµ(r), φν(r) for the exchange-correlation potential VXC at each point r

on the grid. These are then multiplied by weights Wp. We note that equations 2.42 and 2.43

represent a simplification of DFT known as the local density approximation (LDA) [93, 147],

whereas the BLYP and B3LYP functionals are gradient corrected functionals i.e.

these functionals include terms that are dependent on the gradient of the system’s electron

density and are referred to as generalized gradient approximation (GGA) [212] functionals.

Consequently the equations for the GGA involve additional terms requiring basis function

derivatives.

Most DFT codes use the prescription given by Becke [22], where the volume occupied by

all the atoms are divided into separate, but overlapping regions using Voronoi polyhedra. This

is done so that the sum of individual integrals gives the total integral being sought,

V XC
µν = ∑

A

Z
FA(r)dr (2.44)

where the functional FA is evaluated for all atom fragments volumes. Each of the individual

integrals are then computed using spherical polar quadrature [2],

V XC
µν = Z ∞

0

Z π

0

Z 2π

0
FA(r;θ ;φ) r2 sinθ dr dθ dφ�∑

rad

∑
ang

wradwangFA(ri)� P

∑
p

wrad
p

Q

∑
q

wang
q FA(rp;θq;φq) (2.45)

where, there are P radial and Q angular points, corresponding to radial and angular weights

wrad, wang. The integration grid for each atom is obtained as a direct product grid of both

the radial and angular quadrature grids; radial quadrature is done on a sphere using Lebedev

grids [2, 147], whereas angular quadrature can be done using various prescriptions, of which

the Gaussian quantum chemistry code uses the Euler-MacLaurin scheme [275, 304].

To conclude this section on DFT, there are no analytic expressions for DFT functionals

rather numerical quadrature over three dimensional grids is used to obtain the electronic energy

§2.3 Electronic Structure Methods 39

of the system under consideration,

E � Ngrid

∑
i=1

wi f (ρ(ri);x(ri)) (2.46)

where f (ρ(ri);x(ri)) is a density functional and wi are weights used for numerical quadrature.

40 Background

Chapter 3

Thread and Memory Placement on

Non-Uniform Memory Access Systems

3.1 Introduction

Creation of scalable shared memory multiprocessor systems has essentially been made possible

by cache-coherent Non-Uniform Memory Access (cc-NUMA) hardware [154, 159]. This ap-

proach uses a basic building block comprising one or more processors with local memory and

an interlinking cache coherent interconnect [58]. Unlike Uniform Memory Access (UMA)

systems which are composed of processors with identical cache and memory latency charac-

teristics, NUMA systems exhibit asymmetric memory latency and possibly asymmetric band-

widths between its building blocks. On such platforms the operating system should consider

physical processor and memory locations when allocating resources (i.e. memory allocation

and CPU scheduling) to processes [291]. To accommodate these characteristics, operating

systems, such as Solaris and Linux, have been extended to be “NUMA-aware” and to provide

application programmer interfaces that allow the user to perform specific thread and memory

placement. Pthreads [64] and OpenMP [49, 228] are two widely used programming models

that target shared memory parallel computers. Both, however, were developed for UMA plat-

forms and make no assumptions about the physical location of memory or where a thread is

executing. Although there has been debate about the merit of adding NUMA extensions to

these programming models [48, 57, 194], there has been no officially accepted extensions to

A portion of work reported in this Chapter was carried out in collaboration with Pete Peerapong

Janes (Department of Computer Science, ANU). Material from this chapter first appeared in: Pro-

ceedings of HiPC 2006, EXPLORING THREAD AND MEMORY PLACEMENT ON NUMA ARCHITEC-

TURES: SOLARIS AND LINUX, ULTRASPARC/FIREPLANE AND OPTERON/HYPERTRANSPORT,

http://dx.doi.org/10.1007/11945918_35

41

42 Thread and Memory Placement on Non-Uniform Memory Access Systems

either Pthreads or OpenMP to support this. Though we do not explicity consider the use of

codes that use the Message Passing Interface (MPI)1, the work presented here is of use to such

codes as the MPI API does not expose locality of execution and memory to applications that

use it, and hence MPI code performance at a per node level is subject to the OS’ memory and

thread placement decisions.

The aims of this chapter are two fold: first, to develop a framework in terms of tools and

protocols to facilitate memory and thread placement experiments on NUMA systems; second,

to propose and test a placement distribution model (PDM) which attempts to classify observed

performance.

In the context of the thread and memory placement framework, the following are discussed

with reference to both the Solaris and Linux operating systems,

(a) the specifics of how a user-space thread can be bound to a specific processor;

(b) how to affect the allocation of memory onto specific memory banks2;

(c) verification that the thread is running on a specific processor and memory has been allo-

cated at the requested location.

The PDM is a means of classifying observed performance results, from experiments that

use specific thread and memory placement. It uses directed graphs representing processor,

memory and processor interconnect layout to categorize results into groups of “contention

classes”. Contention classes denotes the degree of contention over interconnect links which

exist between processor nodes. Using the tools and protocols framework and the PDM, perfor-

mance characteristics of two contemporary NUMA architectures – the UltraSPARC [267] us-

ing the FirePlane interconnect [50] and the Opteron [146] using HyperTransport [56,218,282]

- are explored through a series of latency, bandwidth and basic linear algebra (BLAS) experi-

ments.

The Chapter is structured into the following sections – thread, memory placement and

its verification on Solaris and Linux is discussed in Section 3.2. The experimental hardware

and software platforms used are described in section 3.3, while Section 3.4 outlines the basic

latency and bandwidth experiments. Section 3.5 outlines and evaluates the Placement Distri-

bution Model using Stream benchmark [177, 178] and BLAS [10]. The Chapter concludes

with Section 3.6 covering related work and section 3.7 presenting conclusions.

1MPI is the de-facto API standard used to encode message passing parallel applications.
2A memory bank is a set of DIMMs, which are accessible to a processor. Specifically, the interest

here is to allocate memory in specific memory locations which are local to a given thread of execution.

§3.2 Thread and Memory Placement 43

3.2 Thread and Memory Placement

Conceptually, both Solaris and Linux are similar in their approach to abstracting underlying

groupings of processors and memory based on latency. Yet, the mechanics of using the two

NUMA APIs are quite different. Below we provide a brief review of Solaris thread and mem-

ory placement APIs, before contrasting this with the Linux NUMA support. We then consider

placement verification for both Solaris and Linux.

3.2.1 Solaris NUMA Support

Solaris represents processor and memory resources as locality groups [138, 179]. A local-

ity group (lgrp) is a hierarchical DAG (Directed Acyclic Graph) representing processor-like

and memory-like devices, which are separated from each other by some access-latency upper

bound. A node in this graph contains at least one processor and its associated local memory.

All the lgrps in the system are enumerated with respect to the root node of the DAG, which

is called the root lgrp. The root lgrp is special, in that it contains all other lgrps, i.e all the

memory and processors in the system. lgrps are used by Solaris to make scheduling, load

balancing and memory bandwidth optimisation decisions on a per page basis. Two modes of

memory placement are available apart from the default first-touch policy, these are next-touch3

and random4. The former is the default for thread private data, while the latter is useful for

shared memory regions accessed by multiple threads as it can reduce contention. A collection

of APIs for user applications wanting to use lgrp information or provide memory manage-

ment hints to the operating system is available through liblgrp [262]. Memory placement

is achieved using madvise(), which provides advice to the kernel’s virtual memory man-

ager. The meminfo() call provides virtual to physical memory mapping information. We

also note that memory management hints are acted upon by Solaris subject to resources and

system load at runtime. Threads have three levels of binding or affinity – strong, weak or none

which are set or obtained using lgrp affinity set() or lgrp affinity get() re-

spectively. The operating system will try to avoid moving threads with strong affinity to other

lgrps, while those with weak affinity will be moved for load balancing purposes. Threads

with an affinity of none will automatically be assigned a home lgrp by the operating system.

Solaris’ memory placement is determined firstly by the allocation policy and then with respect

to threads accessing it. Thus there is no direct API for allocating memory to a specific lgrp,

rather a first touch memory policy must be in place and then memory allocated by a thread that

is bound to that specific lgrp. Within an lgrp it is possible to bind a specific thread to a

3The next thread which touches a specific block of memory will possibly have access to it locally

i.e. if remote memory is accessed it will possibly be migrated.
4Memory is placed randomly amongst the lgrps.

44 Thread and Memory Placement on Non-Uniform Memory Access Systems

specific processor by using the processor bind() system call.

3.2.2 Linux NUMA Support

NUMA scheduling and memory management became part of the mainstream Linux kernel as

of version 2.6. Linux uses NUMA distances (i.e. number of hops from either CPUs or mem-

ory) obtained from the ACPI’s (Advanced Configuration and Power Interface) SLIT (System

Locality Information Table). Using this, it assigns NUMA policies in its scheduling and mem-

ory management subsystems. Memory is managed per NUMA node using pools of pages

which are again per node [54]. Within the kernel, each NUMA node has a swapper thread,

which is responsible for memory allocation on that node.

Memory management policies include strict5 allocation to a node, round-robin6 , and non-

strict preferred binding to a node (meaning that allocation is to be preferred on the specified

node, but should fall back to a default policy if this proves to be impossible).

In contrast, Solaris specifies policies via madvise() for shared and thread local data i.e

its API is descriptive in informing the kernel about possible access patterns by threads and as

a result may migrate pages 7.

The default Linux NUMA policy is to map pages on to the physical node which faulted

them in, and in many cases maximises data locality. A number of system calls are also avail-

able to implement different NUMA policies. These system calls modify scheduling (struct

task struct) and virtual memory (struct vm area struct) related variables struc-

tures within the kernel. Example system calls include mbind(), which sets the NUMA

policy for a specific memory area; set mempolicy(), which sets the NUMA policy for a

specific process; and sched setaffinity(), which sets a process’ CPU affinity. Several

arguments for these system calls are supplied in the form of bit masks, and macros, which

makes them relatively difficult to use.

For the application programmer a more attractive alternative is provided by the libnuma

API. Alternatively, numactl is a command line utility that allows the user to control the

NUMA policy and CPU placement of a entire executable (and can also be used to display

NUMA related hardware configuration and status). Within libnuma, useful functions

include the numa run on node() call to bind the calling process to a given node and

numa alloc

onnode() to allocate memory on a specific node. Similar calls are also available to allo-

5Memory allocation is to occur at a given node. It will fail if there is not enough memory.
6Memory is dispersed equally amongst the nodes.
7Refer to manpages for madvice(3C) and lgrp affinity set(3LGRP). Solaris uses this

information to make placement decisions but may not act on this subject to system load and memory

pressure at the time the request was made

§3.2 Thread and Memory Placement 45

cate interleaved memory, or memory local to the caller’s CPU. In contrast to Solaris’ memory

allocation procedure, numa alloc calls result in modifications to variables within the pro-

cess’ struct vm area struct in the Linux kernel. Thus, the physical location of the

CPU/core that performs the memory allocation is irrelevant i.e. any given thread can allocate

memory to memory banks that are not local to it. The libnuma API can also be used to

obtain the current NUMA policy and CPU affinity. To identify NUMA related characteristics

libnuma accesses entries in /proc and /sys/devices. This makes applications using

libnuma more portable those that use the lower level system calls directly.

3.2.3 Placement verification in Solaris and Linux

Solaris provides a variety of tools8 to monitor process and thread lgroup mappings – lgrp

info, pmadvise, plgrp and pmap on the Opteron and V1280 systems. The lgrpinfo

tool displays the lgroup hierarchy for a given machine. The pmadvise tool can be used to

apply memory advice to a running process. The plgrp tool can observe and affect a running

thread’s lgroup, it can also diagrammatically represent the system affinities for the underlying

hardware platform. The pmap tool permits display of lgroups and physical memory mapping

for all virtual address associated with a running process.

On Linux, libnuma provides a means for controlling memory and process placement on

Linux systems, it does not provide a means for determining where a given area of memory

is physically located. A kernel patch that attempts to addresses this issue is provided by Per

Ekman [211]. The patched kernel creates per-PID /proc entries that include, among other

things, information about which node a process is running on, and a breakdown of the locations

of each virtual memory region belonging to that process. While we found that this package was

generally sufficient as a verification tool it involved having to check quickly the /proc entries

while the program was running. We also found that under some circumstance the modified

kernel failed to free memory after a process had terminated. Based on the work of Ekman [211]

we designed an alternative kernel patch that provides a system call and user level function to

return the memory locations for each page in a given virtual memory range. This utility proved

considerably more convenient as it could be called from within a running application. Recent

Linux kernels have better NUMA visibility allowing user-space access to both NUMA specific

allocation information [286], obviating the need for the patch. There is also the ability to find

out where individual pages reside and if required affect their migration 9.

8http://opensolaris.org/os/community/performance/numa/

observability
9Man page for migrate pages()

46 Thread and Memory Placement on Non-Uniform Memory Access Systems
M

E
M

0

M
E

M

2
0

NODE
2

NODE

MEM
1

1
NODE

0

NODE

2

NODE

1

NODE

M
E

M

2

3

NODE

M
E

M

3

0

M
E

M
M

E
M

1

(a) (b)

Figure 3.1: (a) Schematic diagram of the V1280 UltraSPARC platform and (b) Celestica

Opteron platform

3.3 Experimental platforms

Two NUMA platforms were used in this work: a twelve processor Sun UltraSPARC V1280

[266] and a four processor AMD848 Opteron system based on the Celestica A8448 [47] moth-

erboard. Schematic illustrations of the V1280 is given in Figure 3.1 (a) and the Opteron

system is given in Figure 3.1 (b). The V1280 has twelve USIIICu CPUs clocked at 900Mhz,

whereas the A8448 has four AMD848 processors clocked at 2.2Ghz.

The V1280 has, as a result of its topology, two NUMA domains10. The first NUMA

domain arises from fixed latencies experienced by CPUs in a given node accessing memory

local to it. The second NUMA domain denotes CPU accesses to memory which is not local to

it. Another way of describing this is that any CPU in the V1280 experiences one hop to local

memory or two hops to non-local memory.

There are three NUMA domains for the A8448; the first domain, is to memory which is

local to a node (i.e. Node 0 accessing MEM 0, which is one hop away); the second domain

is to memory which is two hops away (i.e. Node 0 accessing MEM 1 or MEM 2); the third

domain is to memory which is more than one hop away (i.e. Node 0 accessing MEM3, which

is three hops away).

3.3.1 Software Environment

While Solaris 10 was used on the V1280 system, the Opteron platform was configured to boot

either Solaris 10 or OpenSuSE 10.

The Sun Studio 11 compilers [263] were used on Solaris platforms, while version 6.0 of the

10For clarity, a NUMA domain designates those CPUs which when grouped together, exhibit uniform

latencies in accessing a set or sets of memory banks

§3.4 Basic Latency and Memory Bandwidth Characterization 47

Portland Group [276] compilers were used under Linux11. Flags for the highest optimisation

levels were used on both compilers.

To obtain accurate performance data, the PAPI library [37] was used to access hardware

performance counters under Linux, while the libcpc [261] infrastructure was used under

Solaris.

Numeric libraries used under Linux are the ACML (version 3.0) from AMD [185], ATLAS

(version 3.6) [299] and GOTO BLAS [100] (version 1.00), while Sunperf (Sun Studio 11) [264]

was used under Solaris.

3.4 Basic Latency and Memory Bandwidth Character-

ization

This section discusses observed memory latency, serial memory bandwidth and parallel mem-

ory bandwidth for the two NUMA platforms.

3.4.1 Latency Characterisation

To determine the memory latency characteristics of the two platforms the lmbench [184]

memory latency benchmark was modified to accept memory and thread placement parameters.

Latencies to get data from level-one cache (L1) on the Opteron and UltraSPARC were mea-

sured as 3 and 2 cycles respectively, while accessing level-two cache (L2) took 20 cycles on

both platforms. The latencies recorded for a thread bound to a particular node accessing mem-

ory at a specific location are given in Table 3.1. From these, the NUMA ratio12 of the Opteron

system is found to be 1.11 for one hop and 1.53 for two hops from any given processor, while

on the V1280 there is only one NUMA level with a ratio of 1.2.

3.4.2 Bandwidth Characterisation

To determine the memory bandwidth characteristics of the two platforms the Stream bench-

mark (cf. Table 3.4.1) was modified to accept memory and thread placement parameters. This

benchmark performs four different vector operations, corresponding to vector copy, scale, add,

and triad. On the Opteron there are four nodes and four physically distinct memory locations,

while on the UltraSPARC there are three nodes and three memory banks. For a single thread

one would expect that the “best” possible Stream performance would be obtained when a

11At the time when the experiments were performed, Sun Studio compilers for Linux were available

as an alpha release and hence we decided to use the Gaussian recommeded PGI compilers instead.
12NUMA ratio = RemoteLatency

LocalLatency

48 Thread and Memory Placement on Non-Uniform Memory Access Systems

Table 3.1: Main Memory latencies (Cycles) from lmbench. The pointer chasing benchmark

from lmbench is used to determine memory latencies. Results were obtained for the Opteron

and V1280 platforms by pinning a thread on a given node and placing memory on different

nodes.
Memory Location

Thread Opteron V1280

Location 0 1 2 3 0 1 2

0 225 250 250 345 220 265 265

1 250 225 345 250 265 220 265

2 250 345 225 250 265 265 220

3 345 250 250 225 – – –

Table 3.2: Stream benchmarks

Copy C(:) = A(:)
Scale B(:) = s�C(:)
Add C(:) = A(:)+B(:)
Triad A(:) = B(:)+ s�C(:)

thread is accessing vectors that are stored entirely in local memory. Conversely the “worst”

possible performance would correspond to a thread accessing data stored in memory located

as far away as possible. Results for these two scenarios are given in Table 3.3. For the Op-

teron system running Solaris we find performance differences between best and worst memory

placement vary from a factor of 1.4 to 1.6. For Linux on the same platform we find a some-

what larger variation with factors between 1.09 to 2.35. On the V1280 system the effect is

considerably less indicating relatively mild NUMA characteristics. (We note that the superior

performance of the copy operation on the Opteron using Linux reflects the use of specialised

instructions by the PGI compiler to perform the memory moves).

Table 3.3: Serial Stream bandwidths (GB/s) for the Opteron and V1280 systems. A single

thread was pinned to a given node and had its memory placed on different nodes. Best and

Worst refer to thread and memory placements which are expected to give the best and worst

possible performance (See text for details).

Opteron V1280

Solaris Linux Solaris

Test Best Worst Best Worst Best Worst

Copy 2.17 1.99 4.68 3.14 0.72 0.71

Scale 2.50 1.58 2.35 1.47 0.79 0.74

Add 2.75 1.17 2.55 1.54 0.83 0.81

Triad 2.24 1.51 2.44 1.52 0.85 0.79

§3.5 A Placement Distribution Model 49

Table 3.4: Parallel Stream bandwidths (GB/s). Threads were pinned to various nodes and

had its memory placed locally (“Best”) or remotely (“worst”). Four threads were run concur-

rently for the Opteron while twelve threads were run concurrently for the V1280 system.

Opteron V1280

Solaris Linux Solaris

Test Best Worst Best Worst Best Worst

Copy 8.98 2.53 16.55 4.22 4.89 3.56

Scale 9.98 2.67 9.60 2.67 4.91 3.46

Add 10.85 2.85 10.33 2.94 5.22 3.57

Triad 9.17 2.68 9.87 2.96 5.14 3.71

A threaded version of the Stream benchmark was run using all available processors and

for all possible thread and memory placements on both the Opteron and V1280 systems. Re-

sults for this are presented in Table 3.4, in terms of “Best” and “Worst” results. It was found

that the worst case scenario on the Opteron corresponds to all of a given node’s data being

allocated the maximum number of hops away from it i.e. all of node 1’s data resides on node

3. Not surprisingly on both the Opteron and V1280 system the difference between good and

bad memory placement has increased significantly over that observed for the serial benchmark.

3.5 A Placement Distribution Model

In the above we considered “best” and “worst” case scenarios for the various Stream bench-

marks. In the general case, on the Opteron system, each vector or data quantity used in a

Stream benchmark could be located in the memory associated with any one of the four avail-

able nodes. For the parallel add and triad benchmarks, on the Opteron system, this means

that there are a total of 416 possible thread/memory combinations13 while 48 � 4! copy and

scale benchmarks are possible (add and triad use 3 data quantities while copy and scale use

2 data quantities). Evaluating the performance characteristics of each of these cases quickly

becomes impossible for large NUMA systems. Hence, it would be useful to develop a model

that can categorize different thread, memory placements and subsequently be used as a set/pool

of configurations to sample from.

With this aim, a Placement Distribution Model (PDM) was developed that attempts to

categorize the occurrence and type of possible thread and memory placements. The inputs

to the model are a directed graph of the NUMA system, which describes its processor and

The PDM was co-developed with Pete Peerapong Janes (Department of Computer Science, ANU)
13A given data quantity could reside in 4 possible memory locations and each thread could run on 4

possible processors i.e. there are a total of 43 experiments for one thread and three data quantities. For

all the 4 threads in the system there are 43 �4�43�3�43�2�43�1 = 412 �4! possible combinations.

50 Thread and Memory Placement on Non-Uniform Memory Access Systems

memory layout, and the data quantities used per thread. Thus, Figures 3.1 (a) and (b) can be re-

interpreted as graphs, where links entering and exiting nodes are arcs. Traffic associated with

each link is modeled as weights along the links between nodes. To simplify cache coherent

interactions for the NUMA system, we assume that nodes will route cache traffic to their

local on-chip memory controller or if the data quantity of interest is not local to the node, the

request is forwarded by the memory controller along the most direct path. This model is a

simplification of the coherent HyperTransport (cHT) protocol [56, 218] where cHT’s Request,

Probe, Response message sequence is replaced by a discrete message to the home node owing

the data quantity (instead of the cache line), via links between the nodes. The modelling does

not account for coherency traffic which is broadcast amongst various nodes, rather link and

node contention are accounted for.

An algorithm to enumerate the number of thread and memory configurations, as well as

categorizing them into contention classes is presented in Algorithm 1. Inputs to the PDM areN , the set of all processor nodes; M , the set of all memory nodes; L, the set of all links between

both memory and processor nodes; T, the set of all data quantities in use by the threads. From

this, the set E , is formed which denotes all possible thread and memory placements for data

movement. A graph G , represents processors and memory layout of the NUMA platform. The

set D denotes a given data quantity which resides in a particular memory node, and the set of

inputs (i.e. processor and memory and data quantities are represented by the set I). These

inputs are used to traverse over all possible thread and memory placement configurations for

each data quantity. A traversal implies data quantities are moved over a link and this entails

a cost W (l) per link l. Each traversal contributes to a cumulative entry in the cost matrix C.

Three procedures are defined in Algorithm 1 namely OptPath, FlowSize and ComputeDistri-

bution. Procedure OptPath returns the optimal path i.e a set of ordered pairs of <x;y> between

two end points <n;m> while procedure FlowSize computes a cost associated with moving data

quantities contained in set Q over links contained in set P and procedure ComputeDistribution

uses a set of data quantities as used per thread for all threads in set Q 0 and computes the cost

for these data quantities for an ordered set of inputs I.
A state machine was coded to perform walks along the links of graph G , for all possible

thread and memory placements given a specific processor/memory topology and data quanti-

ties. These walks model link traffic moving from a source node to a target node, traffic moving

from a node to its local memory and traffic moving from one memory bank to another. In

the event that there are two paths to the required destination of equal length, the traffic is split

equally along each path. This assumption is made as a simplification to avoid complex speci-

fication of the underlying coherency protocol. For example, if a placement dictates that Node

1 will be continuously accessing memory from Node 0, we increment variables belonging to

each connector along the route to record the quantity of the data movement. This results in

§3.5 A Placement Distribution Model 51

Algorithm 1 Algorithm for the Placement Distribution Model

1: N fnode1; node2; : : : ; nodeig The set of all processor nodes

2: M fmem1;mem2; : : : ;mem jg The set of memory nodes

3: L f link1; link2; : : : ; linkkg The set of all links between nodes

4: T f data1; data2; : : : ; datalg The set of data quantities

5: E N x M Cartesian product denoting data movement

6: G <E ;L> Graph G representing memory and processor layout

7: D f<x;y> jx 2 T; y 2 M g A data quantity x resides in memory location y

8: I E x D Set of inputs for thread, memory placement

9: I � f<e; f> je=<n;m>2 E ; f =<x;y>2 D g
10: W (l) j l 2 L Weight matrix W

11: C(x;y) Cost matrix C

Require: <n;m>2 E
12: procedure OPTPATH(<n;m>) Optimal path from n to m where n;m 2 E
13: Use appropriate alogrithm or heuristic

14: return f<x;y> jx;y 2 Lg to get path between <n;m>
15: end procedure

Require: x 2 D 8x 2 Q
Require: <x;y>2 L 8 <x;y>2 P
16: procedure FLOWSIZE(Q ;P) Compute cost of moving data items across link P
17: cost 0

18: for all (link 2 P) do

19: for all (qty 2 Q) do

20: cost cost + j qty j �W (link)
21: end for

22: end for

23: return cost

24: end procedure

25: procedure COMPUTEDISTRIBUTION

26: Q 0 fx j x 2 D g Set of data quantities of interest

27: for all (i 2 I) do Loop over input I(i�<e; f>)
28: links OptPath(e) where e 2 i Get the optimal path for a given e

29: for all ((j links) ^ (f 2 i)) do Loop over links and use f 2<e; f>
30: C(i; j) = C(i; j)+FlowSize(Q 0 ; j)
31: end for

32: end for

33: end procedure

52 Thread and Memory Placement on Non-Uniform Memory Access Systems

Table 3.5: Copy and Scale (GB/s) Stream benchmark results for the placement distribution

model. Contention classes denote the ranges of link contention for all the nodes in the system.

%Fr gives the frequency of occurrence of a given class in percent. The standard deviation (σ)

for Copy, Scale are for twenty random samples from each contention class. Each thread and

memory configuration was run ten times.

Contention Solaris Linux

Class %Fr Copy σ Scale σ Copy σ Scale σ

Opteron

2-3 2.6 5.7 0.6 6.0 0.9 7.4 1.1 5.6 0.5

3-4 51.9 5.0 0.6 5.1 0.8 6.7 1.1 4.7 0.6

4-5 34.6 4.5 0.4 4.8 0.5 6.4 0.4 4.2 0.5

5-6 9.2 3.9 0.3 4.6 0.3 5.5 0.6 3.6 0.4

6-7 1.5 3.3 0.2 3.4 0.3 4.4 0.3 3.0 0.4

7-8 0.1 3.0 0.6 3.0 0.6 3.3 0.9 2.7 0.6

V1280

08-12 10.3 4.0 0.4 4.0 0.4

12-16 59.7 3.8 0.4 3.9 0.4

16-20 24.8 3.7 0.5 3.8 0.3

20-24 5.0 3.6 0.8 3.6 0.8

a tuple holding values for link contention and node contention. Using the PDM, for a given

processor and memory layout, we can obtain costs for thread and memory placement which

are distributed in ranges which we term as link contention classes. Here link contention classes

specifically refers to tuples of contention classes pertaining to links between processors. The

range of any given tuple gives the degree of contention upon links which originate from a

given node. By enumerating all possible thread and memory placements and grouping these

into contention classes, performance experiments can be run by sampling potential placements

from a given contention class. Hence, given a particular NUMA topology, the PDM is able to

create contention class classifications for various thread and memory placements.

3.5.1 Stream Experiments

Table 3.5 characterises the copy and scale Stream benchmarks according to the maximum

level of contention on any given link. This table shows, for example, that on the Opteron

system 51.9% of all possible memory placement configurations have link contentions greater

than or equal to 3 but less than 4, while 0.1% have a link contention of between 7 and 8. The

ranges 3 – 4 and 7 – 8 are the link contention classes. For the V1280, 59.7% of all possible

memory placement configurations have link contention between 12 and 16, whereas 5.0% of

configurations have link contention between 20 and 24.

§3.5 A Placement Distribution Model 53

To test the PDM’s usefulness, for each contention class obtained from the PDM, twenty

random configurations were generated i.e. thread and memory placement for all threads and

data quantities which yields a link contention that lies in the range of all observed link con-

tention classes in Table 3.5. These placement configurations are subsequently used to perform

Copy and Scale Stream measurements. All experiments were run ten times for each of the

twenty random configurations.

On the Opteron, Stream Copy results have a standard deviation (σ) between 0.2 to 0.6

GB/sec (for Solaris) i.e. 0.6% to 10% variation. The results are between 0.3 to 1.1GB/sec (for

Linux) i.e. 7% to 15% variation. For Stream Scale, the results have a standard deviation

between 0.3 to 0.9 GB/sec (for Solaris) and from 0.4 to 0.6 GB/sec (for Linux); i.e. 9% to

15% (Solaris) and 11% to 13% (Linux). Stream Copy results for the V1280 have a standard

deviation between 0.4 to 0.8 GB/sec (11% to 22% variation) and the Scale results have a

standard deviation between 0.3 to 0.8 GB/sec (10% to 22% variation).

The results also show, that on the Opteron system given random vector placement the

probability of landing in a 3 – 4 link contention class is the highest, and within this class one

would expect to see a performance degradation of about 20% from the optimal result. Whereas

on the V1280 the effect is much less. We also note that the link contention range for the V1280

is much greater, than that of the Opteron system, as there are a greater number of links between

processor and memory nodes.

The PDM’s contention classes indicate that thread and memory configurations for the low-

est contention class gives better results than those of a larger contention class. For the Opteron,

the largest standard deviations are observed for the 2 – 3, 3 – 4 and 7 –8 contention classes.

For 2 – 3 and 3 – 4, these are 12% (Copy), 15% (Scale) for Solaris and 16% (Copy), 12%

(Scale) for Linux. For 7 – 8, the standard deviations are 20% (Copy, Scale) for Solaris and

27% (Copy) and 22% (Scale). On the V1280, the largest standard deviation is observed for

the 20 – 24 contention class and this equates to a 22% deviation.

The larger standard deviations arise as the PDM does not completely model the coherency

transactions for either the Opteron or V1280 systems.

Overall, by using the standard deviation obtained for each contention class, the PDM is

able to capture the nature of each contention class. For the lowest contention class, the standard

deviations for the Opteron are between 12% to 15% on Solaris and 12% to 16% on Linux.

While on the V1280 it is 10%. These results shows the PDM gives reasonable results and can

be used to classify observed thread and memory placement performance experiments, without

resorting to running experiments involving all possible thread and memory placements.

54 Thread and Memory Placement on Non-Uniform Memory Access Systems

Table 3.6: BLAS Stream Triad, Level 2 BLAS, Level 3 BLAS (GigaFlops) results for the

placement distribution model. Results are averages for twenty random generated configura-

tions per contention class. Each configuration was run twenty times. Tr = Triad; B2 = BLAS

Level 2; B3 = BLAS Level 3.

Contention Solaris Linux

Class %Fr Tr σ B2 σ B3 σ Tr σ B2 σ B3 σ

Opteron

3 – 4 1.9 0.5 0.03 1.6 0.3 15.3 0.1 0.5 0.04 1.5 0.3 15.6 0.1

4 – 5 38.1 0.4 0.04 1.4 0.1 15.2 0.1 0.4 0.05 1.4 0.3 15.6 0.1

5 – 6 38.2 0.4 0.05 1.5 0.1 15.2 0.1 0.4 0.04 1.4 0.3 15.6 0.1

6 – 7 16.0 0.4 0.03 1.4 0.2 15.2 0.1 0.4 0.04 1.3 0.3 15.6 0.1

7 – 8 5.0 0.3 0.02 1.3 0.3 15.2 0.1 0.3 0.05 1.3 0.3 15.6 0.1

8 – 12 3.4 0.3 0.02 1.1 0.3 14.9 0.1 0.3 0.05 0.8 0.3 15.6 0.1

V1280

12 – 16 8.3 0.4 0.05 1.0 0.1 17.4 0.7

16 – 20 48.3 0.3 0.05 1.0 0.1 15.8 3.2

20 – 24 30.7 0.3 0.05 1.0 0.1 16.2 2.9

24 – 28 10.2 0.3 0.05 1.0 0.1 17.4 0.7

28 – 40 2.3 0.3 0.05 1.0 0.1 17.5 0.6

3.5.2 BLAS experiments

Using the memory placement framework developed above, experiments were conducted for

level 2 (DGEMV – matrix vector) and level 3 (DGEMM – matrix multiply) BLAS opera-

tions. Results obtained for square matrices of dimension 1600 using ACML on the Opteron and

sunperf on the V1280 are given in Table 3.6. In addition we also include results obtained

from the triad Stream benchmark as these are representative of level 1 BLAS operations.

The contention class distributions for Triad, Level 2 BLAS (B2) and Level 3 BLAS (B3)

vary from those given in Table 3.5, as there are three data quantities involved. There is a 38%

chance for both the 4 – 5 and 5 – 6 contention classes on the Opteron and a 48.3% chance on

the V1280.

The largest standard deviations on the Opteron are 12% (Triad/Solaris), 18% (L2 BLAS/-

Solaris), 0.6% (L3 BLAS/Solaris), 16% (Triad/Linux), 37% (L2 BLAS/Linux), 0.6% (L3

BLAS/ Linux). For the V1280 these are 17% (Triad/Solaris), 10% (L2 BLAS/Solaris) and

20% (L3 BLAS/Solaris).

The results show greatest NUMA effects on the Opteron system, where, as expected the

variation is largest for triad, less for Level 2 BLAS and almost constant for Level 3 BLAS.

This reflects the fact that a well written DGEMM will spend most of its time working on data

that is resident in the level 2 cache, but this is not possible for Level 1 or Level 2 BLAS where

data must be streamed from memory to processor.

§3.6 Related Work 55

3.6 Related Work

Brecht [35] evaluates the importance of placement decisions on NUMA machines with dif-

ferent NUMA ratios. It was found that application placement which mirrored hardware was

beneficial to application performance and its importance increased with the NUMA ratio.

Robertson and Rendell [226] quantify the effects of memory bandwidth and latency on

the SGI Origin 3000 using lmbench and Stream. Using a 2D heat diffusion application,

they stress the importance of good thread and memory placement and show that relying on the

operating system for thread and memory placement is not always optimal.

Tikir and Hollingsworth [279] use link counters and a bus analyzer, on the SunFire 6800

system to effect transparent page migration, without modification to the operating system or

application code. They are able to improve execution time of benchmarked applications by

16%. This is achieved by using a combination of hardware counters, runtime instrumentation

and madvise().

Tao et al. [134] describe an application tuning framework for NUMA architectures by

using hardware monitoring tools capable of capturing inter-node coherency traffic. This in

turn can be visualized offline to study the impact of specific memory placement on application

performance.

Prestor and Davis [284] develop a device driver on the SGI Origin 2000 allowing user-level

access to various hardware performance counters on the Origin’s ASICs. A memory profiling

tool which uses this driver allows for periodic profiling of both memory and coherency perfor-

mance events. They are able to derive various performance metrics for a parallel application

and show how various code modifications affect the performance of a parallel FFT kernel.

Löf and Holmgren [164] use the madvise() call and larger page sizes to reduce the

execution time of a commercial PDE solver on a SunFire 15000. It is shown that the overhead

associated with memory affinity changes could be fully attributed to the invalidation of DTLB

entries.

SGI provides two user level data placement and verification tools – dplace, dlook [239].

The dplace tool allows a user to specify specific thread placement for the life of an application

while dlook permits verification of placement. Both tools are available under SGI systems

only.

3.7 Conclusions

The support for thread binding and memory placement provided by Solaris and Linux has

been outlined and contrasted. For Linux, the kernel was modified in order to provide a user

API that could be used to verify binding and determine physical memory placement from a user

56 Thread and Memory Placement on Non-Uniform Memory Access Systems

supplied virtual address. Using the various thread and memory placement APIs, a framework

was outlined for performing NUMA performance experiments.

Detailed measurements of the latency, bandwidth and BLAS performance characteristics

of two different hardware platforms were undertaken. These showed the Opteron system to be

”more NUMA” than the Sun V1280 system, despite the fact that it had only 4 processors. To

assist with the analysis of performance data, a simple placement distribution model for both

platforms was outlined. The PDM uses directed graphs to represent processor, memory and

interconnect layout.

It was found that if multiple level 1 or level 2 BLAS operations are run in parallel on the

Opteron system performance differences of up to a factor of two were observed depending on

memory and thread placement. For level 3 BLAS, differences are much smaller as there is

much better re-use of data from level 2 cache.

The use of the PDM and subsequent experiments show that memory placement is impor-

tant in achieving good performance on NUMA platforms. The PDM categorizes performance

results in terms of contention classes and for the lowest contention class, is able to do so

with standard deviations for Stream Copy and Scale between 12% to 15% (Opteron/Solaris),

12% to 16% (Opteron/Linux), 10% (V1280/Solaris). The PDM results for Stream Triad, L2

BLAS and L3 BLAS indicate that a cache blocked computations are affected less by memory

and thread placement than Triad and L2 BLAS, which require data to be streamed from mem-

ory into the processor. The PDM errors ranged from 0.6% to 18% for Solaris/Opteron, 0.6%

to 37% for Linux/Opteron and 10% to 20% for the Solaris/V1280.

It would be beneficial for an application to be able to discover, at runtime, the processor

and memory topology, and subsequently be able to use this information within the application

to effect thread and memory placement, which is specific to its needs.

Results obtained in this Chapter should the importance of both thread and memory place-

ment. Both the Solaris and Linux operating systems utilize NUMA specific information to

affect thread scheduling and memory management decisions. It would be beneficial for a user

space application to be able to discover, at runtime, both the processor and memory topology

and subsequently use this information to effect thread and memory placement.

Chapter 4

Use of a Simple Linear Performance

Model for Electron Repulsion Integral

Evaluation

4.1 Introduction

All modern microprocessors utilize a cache memory hierarchy to ameliorate latencies asso-

ciated with accessing main memory. In recognition of this much effort has been devoted

to designing algorithms that carefully orchestrate computation in synchrony with data move-

ment [91, 100, 153, 306, 307]. Almost always these algorithms involve a variety of trade-offs,

such as the size of a cache blocking factor, or whether to recompute an intermediate quan-

tity on the fly or pay the penalty of storing and retrieving the data from some distant memory

location. In this respect developing models that can be used to describe performance at vari-

ous levels in the cache hierarchy as algorithmic or system hardware parameters are changed is

important [78, 290].

As discussed in Chapter 2, traditional cache performance models are either analytical or

simulation based. Analytic models parametrize various aspects of the system to give an empiri-

cal performance estimate, while simulation based techniques predict performance based on the

sequence of executable instructions. Simulation based techniques can be functional or cycle

accurate, using inputs that are either execution driven (i.e. generated by interpreting instruc-

Material from this Chapter was published in: (a) Proceedings of HPSC Vietnam 2006, MOD-

ELLING THE PERFORMANCE OF GAUSSIAN CHEMISTRY CODE ON X86 ARCHITECTURES, in Mod-

eling, Simulation and Optimization of Complex Processes, Editor: Hans Georg Bock. Springer

2008, (b) BUILDING FAST, RELIABLE, AND ADAPTIVE SOFTWARE FOR COMPUTATIONAL SCI-

ENCE, Journal of Physics: Conference Series, 2008 http://stacks.iop.org/1742-6596/

125/012015.

57

58 Use of the LPM for ERI Evaluation

tions from the binary being simulated) or trace driven (i.e. the streams of loads and stores for

the simulation are intercepted and saved to disk for offline use). Cache behaviour is then sim-

ulated by supplying the instruction sequences to the cache simulator which in turn models the

cache hierarchy. Although trace and execution driven methods are 100 to 1000 times slower

than execution on native hardware, they capture dynamic aspects of code execution which oc-

cur at run-time (i.e. side-effects arising from interactions between the application, operating

system and hardware), that analytical cache models are unable to capture.

In this Chapter the utility of a simple Linear Performance Model (LPM) is investigated

to determine if it can provide sufficiently accurate predictive information (that can be used

to guide algorithmic decisions or model the effects of cache blocking changes) for quantum

chemistry calculations. In this model [191] the overall performance is given as a simple linear

combination of instructions issued and cache misses,

Cycles = α � (ICount)+β � (L1Misses)+ γ � (L2Misses) (4.1)

where ICount is the instruction count, L1Misses the total number of Level 1 cache misses, L2Misses

the total number of Level 2 cache misses, and coefficients α ;β ;γ are penalty factors. The value

of α reflects the ability of the code to exploit the underlying super-scalar architecture, β is the

average cost of an L1 cache miss, and γ is the average cost of an L2 cache miss. We will refer

to the coefficients α , β and γ as the Processor and Platform specific Coefficients (PPCoeffs).

The LPM differs from other cache performance models in that it ignores the intricacies

of program execution and assumes platform and processor specific factors that influence ap-

plication performance can be averaged out and captured by the values of the PPCoeffs. For

a candidate algorithm PPCoeffs could be obtained by running the code on similar processor

family revisions which have different cache sizes or by varying a given fundamental cache

blocking factor within the algorithm. Either method will yield different instruction, L1 and L2

cache miss counts allowing the PPCoeffs to be obtained using a least squares fit of the observed

counts to Equation 4.1.

The aims of this chapter are three fold – (i) to study the effects of cache blocking on the

PRISM electron repulsion integral (ERI) algorithm within the Gaussian code; (ii) to assess the

ability of the LPM to describe the execution time of quantum chemistry calculations that use

PRISM across a variety of hardware platforms; (iii) to combine parameters obtained for the

LPM on existing hardware with functional cache simulation to predict the effect of architec-

tural changes on the total runtime.

The structure and layout of this chapter is as follows. Section 4.2, gives an overview of

ERI evaluation and in particular focuses on the PRISM algorithm and its use of cache blocking.

Section 4.3 covers methodology, software and hardware platforms and benchmark systems

§4.2 ERI Evaluation: the PRISM algorithm 59

used in this chapter. Sections 4.4, 4.5 and 4.6 consider aims (i), (ii) and (iii) respectively. A

review of related work is given in Section 4.7, while Section 4.8 concludes the chapter.

4.2 ERI Evaluation: the PRISM algorithm

4.2.1 Two-Electron Repulsion Integrals

As detailed in Chapter 2 the evaluation of two-electron repulsion integrals (ERIs) lies at the

core of nearly all calculations performed using the Gaussian code. A two electron integral(φµ φν jφλ φσ) is given by,(φµφν jφλ φσ) = ZZ
χµ(r1)χν(r1) 1jr1� r2j χλ (r2)χσ (r2) dr1 dr2 (4.2)

where r1 and r2 are the coordinates for two electrons (e1 and e2); χµ , χν and χλ , χσ are pairs of

basis functions used to represent e1 and e2. ERIs describe the various interactions between and

among the electrons and nuclei in the system being studied. Since many electronic structure

methods are iterative, and the number of integrals too numerous to store in memory, they

are usually re-computed several times during the course of a typical calculation [132]. For this

reason algorithms that compute electronic structure integrals fast and on-demand are extremely

important to the computational chemistry community.

Gaussian uses an efficient implementation of the PRISM algorithm [85, 95, 96, 136] to

compute ERIs. For clarity, the following terms are re-referenced from Chapter 2,

• GTO Gaussian type orbital. Ref: Eqn 2.12.

• PGTO Primitive GTO: Gnl(α ;A). Ref: Eqn 2.14.

• CGTO Contracted GTO: φCGTO
κ (A). Ref: Eqn 2.15.

• Primitive/Contracted Shell For a given PGTO or CGTO, a shell contains all func-

tions of that PGTO or CGTO that have the same total angular momentum.

• Shell-pair A pair of shells.

• Shell-quartet All ERIs that are defined by four shells.

The PRISM ERI algorithm tailors the evaluation of ERIs according to the shell-quartet

type being computed; essentially it dynamically chooses the most optimal way to compute and

contract the constituent PGTOs [92]. PRISM computes ERIs in batches, where a batch is a set

of shell-quartets having the same four angular momentum values as well as the same degree of

contraction for each of the two shell-pairs in the quartet.

60 Use of the LPM for ERI Evaluation

Using the example from Gill [92], the formation of batches from (ssjss) quartets starts

with all four s functions having a contraction length of one. When this has been computed,

the batch of (ssjss) quartets for which the first function on the left has a contraction length of

2 and all others are singly contracted is computed. This process continues until all possible

contractions for (ssjss) integrals complete, wherein the set of (psjss) integrals are considered

for evaluation and so on.

ERI evaluation using GTOs requires the use of recursive relationships that build up the

target angular momentum using ERI values of lower angular momentum [34, 243]. This

process inherently leads to intermediates and other quantities that are shared amongst the

ERIs [106, 161]. Similar shell quartets are often evaluated using the same ERI evaluation

algorithm. The use of batching within PRISM aids the reuse of shared intermediate quantities

but more importantly it is able to use the same evaluation logic across a batch of integrals in

the form of vector operations that facilitate pipelining of memory requests and floating-point

operations. The size of these batches can rapidly become very large as the same basis set

is generally applied to all atoms of the same type within the system being studied, e.g. all

oxygen atoms in a large water cluster system will have the same basis set. Computing in-

tegrals in batches leads to large inner-loop lengths in PRISM, as numerous integrals of the

same type are evaluated. While this gives rise to good on-chip pipelining of operations and ex-

poses opportunities to exploit Instruction Level Parallelism (ILP), the number and size of data

quantities required to compute a given batch can exceed the total amount of available on-chip

cache memory, resulting in expensive cache misses and poor performance. To address this the

implementation of PRISM in Gaussian, imposes cache blocking of these data quantities. This

ensures data references are serviced from the on-chip cache, but at the cost of recomputing

some shared intermediate data quantities.

To illustrate the composition of functions χ used in ERI evaluation, Table 4.1 presents a

detailed break-down of basis functions on each atom of a water molecule, for a 6-31G* basis

set. The table has three columns which are ‘Atomic Center’, ‘Atomic Orbital’ and ‘Gaussian

Functions’ respectively. The first column gives the atom and its Cartesian coordinates; the

second describes the name of the atomic orbital and the number of GTOs associated with it;

and the third column gives the composition of the GTOs that make up the atomic orbital.

For clarity Equations 2.14 and 2.15 from Chapter 2 are reproduced,

Gnl(α ;A)� GPGTO
nl (α ;A) = (x�Ax)ax(y�Ay)ay(z�Az)az e�α jr�Aj2
φCGTO

κ (A) = L

∑
p=1

dpκ G
p
nl (αpκ ;A) (4.3)

In the above expressions, a PGTO is described by its exponent α and its center A, whereas

§4.2 ERI Evaluation: the PRISM algorithm 61

Table 4.1: Decomposition of 6-31G* basis functions on a Water molecule

Atomic Center Atomic Orbital Gaussian Functions

Atom X Y Z
Shell Function Exponent Coefficient (dpκ)

Type Number (α) S P D

O 0.00 0.22 0.00 S 1

0.55D+04 0.18D-02 0.00 0.00

0.83D+03 0.14D-01 0.00 0.00

0.19D+03 0.69D-01 0.00 0.00

0.53D+02 0.23D+00 0.00 0.00

0.17D+02 0.47D+00 0.00 0.00

0.58D+01 0.36D+00 0.00 0.00

SP 2–5

0.16D+02 -0.11D+00 0.71D-01 0.00

0.36D+01 -0.15D+00 0.34D+00 0.00

0.10D+01 0.11D+01 0.73D+00 0.00

SP 6–9

0.27D+00 0.10D+01 0.10D+01 0.00

D 10–15

0.80D+00 0.00D+00 0.00 0.10D+01

H 1.43 -0.89 0.00 S 16

0.19D+02 0.33D-01 0.00 0.00

0.28D+01 0.24D+00 0.00 0.00

0.64D+00 0.81D+00 0.00 0.00

S 17
0.16D+00 0.10D+01 0.00 0.00

H -1.43 -0.89 0.00 S 18

0.19D+02 0.33D-01 0.00 0.00

0.28D+01 0.24D+00 0.00 0.00

0.64D+00 0.81D+00 0.00 0.00

S 19

0.16D+00 0.10D+01 0.00 0.00

a CGTO is described by its center A, its contraction length ‘L’, the contraction coefficients

‘dpκ ’ and the constituent PGTO exponents. The ‘Exponent’ column in Table 4.1 corresponds

to individual values of ‘α’ for each PGTO (cf. Equation 4.3) and the ‘Coefficient’ column

corresponds to dpκ for the CGTO.

The oxygen atom in Table 4.1 is located at Cartesian coordinates (0.00, 0.22, 0.00). It has

a total of 15 functions defined at this center. There are 6 PGTOs that are contracted together to

describe the inner ‘core’ orbital (Table 4.1 – Function Number: 1, Shell Type: S). The outer

‘valence’ orbitals are described by two groups of functions: a CGTO containing a linear com-

bination of 3 PGTOs (Function Numbers: 2-5) and a single uncontracted PGTO (Functions:

6-9). In the previous two cases the functions are of type SP, which is defined as a combination

of both an s function and three p functions where the exponents are the same but the contraction

coefficients can be different. SP functions are used as its combined treatment is computation-

62 Use of the LPM for ERI Evaluation

ally advantageous for ERI computation. The last function is a D function (Function Numbers:

10-15, Shell Type: D) that is termed a polarization function. The use of polarized functions

affords flexibility in describing electron density, during the SCF optimization, as it effectively

allows molecular orbitals to be more asymmetric about a given nuclear center.

The ‘s’ functions are spherically symmetric around their centers [169], ‘p’ functions are

axially symmetric about the x, y or z axis and are labelled ‘px’, ‘py’ and ‘pz’ accordingly.

Higher order angular momentum functions have other symmetry properties, such as ‘d’ func-

tions which have 6 Cartesian symmetries – ‘dxy’, ‘dyz’, ‘dxz’, ‘dx2 ’, ‘dy2 ’ and ‘dz2’. Due to these

symmetry components, the SP function has a total of 4 entries in Table 4.1 while the D function

has 6 entries.

The 6-31G* basis set [110, 205] is referred to as a split-valence basis set, reflecting the

fact one CGTO is used to describe core electrons while pairs of CGTOs are used for valence

electrons. Furthermore the core CGTO comprises of 6 PGTOs, while the one of the two

valence CGTOs has 3 PGTOs. The second valence CGTO is a singly contracted PGTO. This

composition is reflected in the 6-31G name. The asterisk in 6-31G* denotes the presence of

polarization functions.

Having considered an example of basis set composition, the next section looks at the

PRISM algorithm for evaluating ERIs and its use of cache blocking.

4.2.2 PRISM and Cache Blocking

Algorithm 2 is an outline of the PRISM ERI algorithm. The algorithm begins by generating

a shell-pair list for the entire molecular system and classifying these as being significant or

negligible [85]. If two shells are so far apart that their overlap is negligible, it is discarded1 .

The shell-pair list is then sorted by the angular momentum of each CGTO. This sorted list is

then subjected to a screening test [108,112,206] which culls more shell-pairs by only accepting

those which make a significant contribution to the Fock matrix. A cache blocking factor, MDC,

which will be used later in the ERI evaluation is then set to some value. This defaults to a value

that corresponds to half the size of the highest level of cache, but can be varied as a runtime

parameter. This sets the stage for the actual ERI evaluation to begin.

PRISM is implemented as a six-fold loop, these are labeled 1
 to 6
 in Algorithm 2. In the

following description, a shell-quartet (χµ χν jχλ χσ) is denoted by its subscripts (µν jλσ). The

first loop is over the range ‘0 to LTot’, where the value of this loop index reflects the sum of the

angular momentums of the four functions that will be involved in a given integral quartet. Thus

LTot is determined by the highest angular momentum function used in the basis set, which for

1GTOs basis decay exponentially. Gill [92] notes that most shell-pairs in a system are negligible and

as a result, when system size increases the number of significant shell-pairs grows linearly. This leads

to a quadratic growth in the number of significant shell-quartets.

§4.2 ERI Evaluation: the PRISM algorithm 63

Algorithm 2 An outline of the PRISM algorithm

i.e. charge interactions between

Generate significant shell-pair list for molecular system basis functions χµ(r1)χν(r1)
sort shell-pairs by angular momentum type

Sort shell-pair list and cull those and then by degree of contraction L

which are not significant for each component function

MDC Cache blocking size

LoopOver 1
 all types of (µ ν jλ σ) i.e. LTot do

Compute base quantities for recursion

Create driver for loop 1

LoopOver 2
 Total Angular Momentum type for (µ ν j do

Create driver for loop 2

LoopOver 3
 Total Angular Momentum type for jλ σ) do

Create driver for loop 3

LoopOver 4
 Contraction types for (µ ν j do

LoopOver 5
 Contraction types for jλ σ) do Begin new quartet

Determine memory optimal path for

evaluating this particular (µν jλσ)
NPerS4 Words per Quartet required

to store this particular (µν jλσ)
NLe f t Available working memory in words

MaxCom NLe f t
NPerS4

if (MaxCom > MDC) then

Reduce MaxCom to hold as many NPerS4 that

can be held in a cache of size MDC

end if

iCount 0

LoopOver 6
 all batches of type (µν jλσ) do

Screen shell-pair for possible inclusion

if (iCount �MaxCom) then

Add shell-quartet to current cache block

iCount iCount + 1

else

Compute (µν jλσ) ERI for cache blocked batch

Incorporate contributions into Fock matrix

end if

end LoopOver 6

end LoopOver 5

end LoopOver 4

end LoopOver 3

end LoopOver 2

end LoopOver 1

64 Use of the LPM for ERI Evaluation

the water molecule given in Table 4.1 is the d function on the oxygen atom, giving an LTot

value of 8 that will be associated with the (ddjdd) quartet. Within the first loop, shell-pair

data is used to compute base quantities which will be used to build recursively the required

integral. The PRISM implementation in Gaussian achieves this recursive build through the

use of drivers [92]. A driver is a simple table driven description of how the requisite ERI is

to be constructed and corresponds to one of the paths in the PRISM shown in Figure 2.7. In

the case of Loop 1
 the driver corresponds to Equation 2.21, and is constructed while paying

attention to minimising both FLOP and MOP costs [85].

The next two loops i.e. LoopOver 2
 and LoopOver 3
 represent the total angular mo-

ment for the (µν j and jλσ) sides of the ERI. Another two sets of drivers are created that

correspond to Equations 2.22 and 2.24.

Loops 4
 and 5
 iterate over the degrees of contraction for the (µν j and jλσ) parts of

the ERI. This completes the definition of an ERI quartet. At this stage PRISM determines

a memory optimal [85] path for constructing this quartet type and drivers are created that

correspond to Equations 2.24 and 2.25. The number of memory words required to store the

quartet (NPerS4) is determined. The amount of working memory available to PRISM is set to

NLeft.

A quantity called MaxCom is then defined as the number of shell-quartets that can fit into

the free working memory available to Gaussian, this is MaxCom NLeft
NPerS4 . To ensure cache

residency of data quantities, the value of MaxCom may then be reduced so that only as many

NPerS4 quartets as can be held in a cache of size MDC will be computed at one time. We also

note that currently in Gaussian the value of MDC is determined at compile time. This value is

choosen so as to both minimize pipeline stalls and ensure data quantites are cache blocked.

Loop 6
, which is the inner loop, now iterates over quartets of the current shell type. A

batch of quartets of size (MaxCom * NPerS4), which is small enough to be cache resident, is

defined for evaluation. Additional screening of the shell-pairs is performed, and the batch of

ERIs is computed. After evaluation the ERIs are multiplied with the density matrix to give

contributions to the Fock matrix (cf. Equation 2.8). The process continues, with Loop 6

iterating until all quartets of the current shell type have been evaluated.

4.2.3 Shell-Quartets for the Water molecule

Having discussed the PRISM algorithm, Table 4.2 presents the number of quartets, batches

and integrals generated per LTot for the water molecule and 6-31G* basis set given in Table

4.1. It should be noted that the Total # of ERI column corresponds to the number of integrals

that make it all the way to the Fock matrix formation stage i.e the stage where computed ERIs

§4.2 ERI Evaluation: the PRISM algorithm 65

Table 4.2: The number of shell-quartets, batches and total ERIs generated per LTot for a water

molecule using the 6-31G* basis set. MDC is a compile time value of 32Kw. The Total #

of ERI column corresponds to the number of integrals that are available at the Fock matrix

formation stage.

H2O, 6-31G*

LTot # of Quartets # of Batches Total # of ERI Avg. ERIs per Quartet

0 120 28 120 1

1 150 28 442 3

2 175 52 1237 7

3 110 38 1976 18

4 71 36 2390 34

5 26 16 1552 60

6 11 9 1084 99

7 2 2 120 60

8 1 1 336 336

are incorporated into the Fock matrix2. As noted previously, the maximum angular quantum

number for the three atoms in the water molecule is 2 (for a ‘d’ function), hence the largest

value of LTot is 8. Finally, the average ‘ERI per Quartet’ column is derived from the ‘Total #

of ERI’ and ‘# of Quartets’ columns.

For LTot = 0, there are 120 significant shell-quartets from which 28 batches were formed

and this results in 120 unique ERIs being computed. As the value of LTot increases, there is a

steady increase in the number of quartets (upto 175 for LTot = 2), and a corresponding increase

in the number of batches generated. The ‘Total # of ERI per LTot’ increases from a minimum

of 120 upto a maximum of 2390 then reduces to 336. The largest number of integrals occurs

for LTot = 4, which represents all integrals of the type – (d d j s s), (p p j p p), (d p j p s), (d s j
d s), (d s j p p).

The number of average ‘ERIs per Quartet’ increases with LTot. This, plus the fact that

higher angular momentum integrals are composed of lower angular momentum ones, means

that more FLOPs are usually needed to construct higher angular momentum quartets3 than

smaller ones.

The number of quartets and total number of ERIs per LTot are determined by the system

under study and the nature of the basis set being used, while the number of batches is a function

of the size of MDC. The variation of batches with respect to MDC will be covered in a later

section.

2These results were obtained by running Gaussian with the nosymm and nofmm options.
3The FLOP count will also depend on the degree of contraction

66 Use of the LPM for ERI Evaluation

Table 4.3: Characteristics of microprocessors used in this study

Micro-
Processor Ghz

L1 L2 Peak
IPC�

Architecture Size Size FPCˆ

AMD64 Opteron AMD848 2.2 64Kb 1MB 2 3

AMD64 Athlon64 X2 4200+ 2.2 64Kb 512Kb 2 3

NetBurst Pentium 4 3.0 16Kb 1MB 2 3

NetBurst Pentium 4 EM64T 3.0 16Kb 2MB 2 3

P6 Intel Pentium M 1.4 32Kb 1MB 2 3

PowerPC G5 (PPC970Fx) 1.8 32Kb 512Kb 4 4

PowerPC G5-XServe (PPC970Fx) 2.0 32Kb 512Kb 4 4

ˆ Floating-point Instructions per Cycle (FPC) * Theoretical Instructions Per Cycle (IPC)

Summary: PRISM and ERI Evaluation

The PRISM ERI algorithm generates shell-pair information for the molecular system under

study. From these a set of basic quantities are computed, which are then used to recursively

build up angular momentum upto the required target angular momentum of the shell-quartet

being computed. The process of recursively building angular momentum is encapsulated as

drivers, which are table driven. Once drivers have been constructed, integrals are computed

in batches. PRISM determines a memory optimal path for computing the ERIs for a given

shell-quartet.

4.3 Methodology

This section discusses the various hardware and software resources, the functional cache sim-

ulator, molecular benchmark systems and methodology used in this chapter.

4.3.1 Microprocessors and Compilers

Four distinct microprocessor families: AMD64 [146], NetBurst [87], P6 [245] and PowerPC

[16, 247] were used as part of this study. Table 4.3 lists the clock speed, Level one (L1) and

Level two (L2) cache sizes, peak floating-point performance and the maximum instructions per

cycle. Clock speeds for the processors vary from 1.4Ghz to 3.0Ghz. The NetBurst processors

have a 16Kb L1 instruction4 cache and a 16Kb L1 write-through data cache. While the AMD

processors, the P6 and PowerPC processors use a 64Kb L1 instruction cache and a 64Kb

write-back data cache. Both the AMD and Intel processors have the same peak Floating-

point Instructions per Cycle (FPC) and theoretical Instructions Per Cycle (IPC) of 2 and 3

4Strictly speaking these are trace caches [87].

§4.3 Methodology 67

respectively. For studies involving PowerPC, two different hardware platforms were used – an

Apple G5 server [15] and an Apple G5 rack-mounted XServe [16]. The PowerPC processors

can issue 4 instructions per cycle and have a peak FPC of 4.

On the AMD64 and Intel platforms the PGI Fortran and C compilers (version 6.1-1) were

used, while on the PowerPC IBM’s xlf and xlc compilers (version 10.01) were used.

4.3.2 Hardware Performance Counters

Hardware performance counter values were read by inserting instrumentation code into G03

source and recompiling (version G03D01 [86] was used). The instrumentation code in Gaus-

sian also allowed internal program state to be captured, while an external shared library was

written to abstract away tasks involved with reading of performance counters. This exter-

nal library uses the PAPI cross-platform hardware performance counter infrastructure [37] to

specify native processor events. On platforms which did not have the capability of recording

a specific set of multiple events (ref. Appendix A.1), PAPI’s hardware counter overflow and

counter multiplexing features were used. PAPI version 3.2.1 was used in conjunction with

Mikael Peterson’s perfctrs [186] Linux kernel patch (version 2.6.19) on a Linux 2.6.11.4 ker-

nel with the SuSE 9.2 distribution across all hardware platforms. The native processor events

which were used for obtaining instruction counts, total L1 and L2 cache misses are described

in Table A.1 of the Appendix.

4.3.3 Functional Cache Simulation

Functional cache simulation was performed using the Callgrind simulator [140, 191, 274, 296,

297] along with the Valgrind [190, 192] dynamic binary translation tool. Callgrind’s cache

simulation implements a write-allocate cache and has options for either a write-through or

write-back policy for all data caches. The cache simulation is synchronous, implements two

levels of cache and is inclusive. Read and write references are not distinguished for the

write-through simulation, whereas the write-back simulation implements an L1 write-through

and L2 write-back and distinguishes between read and write references to cachelines. Thus,

simulations for the Opteron and Athlon64 processors were configured using write-back caches;

the Intel processors used write-through. The PowerPC cache configurations were configured

using a write-back simulation.

To facilitate the Callgrind simulation of Gaussian, a shell-script wrapper for the executable

was created which intercepted command-line arguments and then forwarded them to Valgrind/-

Callgrind augmented with the appropriate cache simulation parameters i.e. cache size, asso-

ciativity and linesize for L1 and L2 caches. The experiments used Valgrind version 3.2.2 with

Callgrind.

68 Use of the LPM for ERI Evaluation

Table 4.4: Test molecular systems

No. System name No. of Atoms Basis sets used # Basis # PGTOs

1 k300a-04 34
6-31G* 232 472

6-31++G(3df,3pd) 860 1136

2 k300a-08 241
6-31G* 1543 2956

6-31++G(3df,3pd) 5966 7622

3 test397 168 3-21G 882 1440

4 α - Al2O3
† 10 3-21G* 130 222

† Periodic Boundary Conditions (PBC) calculation

4.3.4 Data Collection and Analysis

Each of the benchmark systems were run five times. The data from these were processed using

a series of Python scripts which subsequently aggregated performance counter data. The least-

squares fit for the LPM was performed using NumPy [63]. Blocking factors ranging from 2

Kw (KiloWords) up to 1024 Kw were used with the PRISM algorithm; where a KiloWord is

equal to 8 Kilobytes.

4.3.5 Molecular Systems and Benchmarks

Four molecular systems were chosen for performance experiments, these are enumerated in

Table 4.4. For each of these systems, both the HF and B3LYP methods were used. Systems

1 and 2, are water cluster complexes that relate to the application study in Chapter 6. The

geometries for these systems were obtained from molecular dynamics (MD) simulations of

a potassium ion surrounded by a cluster of water molecules at 300 Kelvin [28]. System 1

contains all water molecules within a radius of 4 Å from a central potassium ion, of which

there are 11 (ref. Appendix Table A.9). System 2 has a radius of 8 Å and contains 40 water

molecules (ref. Appendix Table A.9) From here on, the two systems are referred to as k300a-

04 for the 4 Å case and k300a-08 for the 8 Å case. The two systems were chosen to test the

effect of increasing the number of molecules. For both systems two basis sets are used, a

moderate 6-31G* set and an extended 6-31++G(3df,3pd) set. Larger basis sets give better

results but lead to longer execution times and greater memory use. System 1 generates 232

basis functions with the 6-31G* basis set and 860 basis functions with the 6-31++G(3df,3pd)

basis set. For System 2 the equivalent number of functions are 1543 and 5966.

Benchmark system 3 is based on the Valinomycin molecule. It is derived from the Gaussian

G03 quality assurance (QA) suite. It has 168 atoms consisting of nitrogen, carbon, oxygen and

hydrogen. It is referred to as test397, reflecting its number in the QA suite. The calculation

uses a 3-21G basis set and gives rise to 882 basis functions. It was chosen as it is a widely used

§4.4 PRISM and Cache Blocking 69

Table 4.5: Execution times of two test systems for one SCF cycle on the AMD848 Opteron,

using the HF method

System Basis set # of Functions Time taken

k300a-04
6-31G* 232 12.57 sec

6-31++G(3df,3pd) 860 21.37 min

k300a-08
6-31G* 1543 19.65 min

6-31++G(3df,3pd) 5966 3.40 days

benchmark.

Benchmark system 4 is based on a Periodic Boundary Conditions (PBC) [148] calculation

and consists of three Aluminum trioxide molecules which form an infinite sheet in the (0001)

orientation [232]. The system has 130 basis functions and was chosen as it exercises a different

path through the Gaussian code.

In summary, a total of four distinct molecular systems were chosen. For the k300a-04 and

k300a-08 systems two different basis sets were used, 6-31G* and 6-31++G(3df,3pd), while for

test397 and α - Al2O3
† the 3-21G and 3-21G* basis sets were used respectively. This gives

rise to the six benchmark systems that will be used in this chapter.

4.4 Investigating the PRISM Integral Evaluation Algo-

rithm and Cache Blocking

In this section the effects of cache blocking on the performance of the PRISM algorithm is

studied. The objectives are to (a) explore the effect of cache blocking in PRISM, on the overall

Cycle and Instruction counts, and total L1 and L2 misses; (b) investigate the effects of cache

blocking on the batch sizes of different quartet types; and determine if cache blocking should

be tailored according to (c) quartet type; or (d) the nature of the molecular system and basis

set.

In what follows we use the k300a-04 system, the HF method, and the Opteron to study

objectives (a) to (c). For objective (c), the larger k300a-08 system is also included, while for

(d) all the benchmark systems are used.

These four objectives are addressed in sub-sections 4.4.1 – 4.4.6. First, however, we con-

sider the overall runtime for one SCF cycle on the AMD platform and how it varies as a

function of system size.

70 Use of the LPM for ERI Evaluation

4.4.1 SCF Execution Time as a Function of System Size and Basis

Set for an SCF Cycle

To explore the effect of increasing the molecular system size and basis set size, Table 4.5

presents execution times for the k300a-04 and k300a-08 systems using two different basis

sets obtained on the AMD848 Opteron platform. Traditional integral evaluation scales as

O(N4). The application of basis function thresholding reduces this to O(N2) for conventional

SCF implementations [112, 132]. This further reduces to O(N) if the Fast Multipole Method

(FMM) [130,258,300] is used. Another effect is the fact that the per unit cost for the evaluation

of basis functions of higher angular momentum is lower as many ERIs are now being computed

as part of each shell quartet.

As a consequence of the above we find that in the case of k300a-04, the use of a larger basis

set results in a 102x increase in runtime rather than the 185x that would be predicted purely

by the O(N4) scaling associated with integral evaluation; this is predominantly due to the more

efficient evaluation of higher angular momentum integrals. Comparing the larger k300a-08

system and the 6-31G* basis set with the k300a-04 system and the same basis, there is a 7

times increase in basis functions, but only a 93x increase in execution time; this is largely due

to screening and use of FMM integral evaluation technology. Contrasting the execution time

for k300a-08 using the 6-31G* basis set with that for k300a-04 using the 6-31++G(3df,3pd)

basis set it is found to be much faster even though it contains many more basis functions;

this indicates that the benefits of better screening and use of FMM in the large system are

significantly greater than the benefits of reduced unit cost per integral associated with the use

of higher angular momentum functions in the larger basis.

A result in Table 4.5 that may appear to be somewhat unexpected is the timing difference

between the use of the 6-31G* and 6-31++G(3df,3pd) basis sets with the k300a-08 system;

where there is an observed 249x difference in timings, but O(N4) scaling would suggest that

this should be a smaller difference of 223x. This indicates that there are some other factors

apart from the number of basis functions that affect the scaling. The problem here is with

the presence of diffuse functions5 in the 6-31++G(3df,3pd) basis set. Specifically, integral

screening of shell pairs and shell quartets is less effective in the presence of diffuse functions

as there are interactions with a large number of other basis functions (i.e these interactions

give rise to shell pairs and quartets that can no longer be screened out for a given overall level

of accuracy). In Gaussian, the default for systems with greater than 80 atoms is to have both

FMM and linear scaling exchange technologies turned on as these significantly speed up the

5The two plus signs in 6-31++G(3df,3pd) indicate the presence of diffuse functions. ‘These are

very shallow Gaussian basis functions, which more accurately represent the “tail” portion of the atomic

orbitals, which are distant from the atomic nuclei’ [303].

§4.4 PRISM and Cache Blocking 71

Table 4.6: Execution characteristics for PRISM with the k300a-04 water-cluster system using

HF/6-31G* on a 2.2Ghz AMD848 Opteron.

Blocking Number of Cycles Instr Count FP Count L1 Misses L2 Misses

(Kw) Batches (x1010) (x1010) (x109) (x108) (x107)

4 226922 3.85 5.38 8.42 3.86 0.16

16 75729 3.00 4.11 8.37 3.91 0.19

32 39347 2.69 2.84 6.21 4.47 0.27

64 20049 2.75 3.18 6.18 5.43 1.39

256 5624 3.58 2.91 6.14 7.50 4.89

1024 2174 4.64 2.84 6.08 8.82 6.51

calculation for systems with and without diffuse functions.

From the table it can be seen that increasing either the basis set or molecular system size

results in increasing execution time. Moreover execution time can quickly become very large

taking days or more to complete a computation on a single processor. For this reason ensuring

that the underlying code performs efficiently on any given processor architecture is extremely

important.

4.4.2 Effect of Cache Blocking on Cycle, Instruction Counts and

Cache Misses

To explore the effect of cache blocking on PRISM’s performance the k300a-04 system using

the HF method and a 6-31G* basis set was run using various cache blocking sizes from 4 –

1024Kw on the AMD848 Opteron. The results are given in Table 4.6, where we also report

the number of batches.

Cache blocking factors are given on the left hand side of Table 4.6. Corresponding to

each blocking factor the associated number of batches generated and hardware event counts

for cycles, instruction executed, FLOP count, L1 and L2 misses are given the table’s columns.

Consider first the effect of cache blocking on the number of batches. Increasing the batch

size from 4 Kw to 1024 Kw results in a large decrease in the number of batches. This behaviour

is to be expected since, as discussed in section 4.2.2, the number of integrals that are processed

per batch (in loop 6
 of Algorithm 2) increases.

Execution time, which is implied by the cycle count, is 3.85 x 1010 cycles for 4Kw, de-

creasing to a minima of 2.69 x 1010 cycles for 32Kw before increasing to 4.6 x 1010 cycles

for 1024Kw. Depending on the blocking factor used, a 40x variation in execution time is

observed.

72 Use of the LPM for ERI Evaluation

Table 4.7: Variation in the number of batches with varying blocking factors for the k300a-04

system using a 6-31G* basis set with the HF method. Data obtained from one SCF cycle.

Total Number of Batches

LTot1 NoQrt2 4 Kw 16 Kw 32 Kw 64 Kw 256 Kw 1024 Kw AsyLim3

0 352176 13190 3727 1894 963 268 100 66

1 708932 38584 10672 5411 2761 770 295 187

2 806845 56118 16245 8313 4248 1224 503 362

3 589046 57697 17251 8849 4528 1300 531 378

4 310929 39138 14386 7378 3770 1068 419 286

5 116550 16696 9152 4874 2451 652 223 112

6 32097 4601 3398 2057 1025 266 82 34

7 5651 809 809 508 271 68 19 5

8 623 89 89 63 32 8 2 1

1) LTot Total Angular Momentum

2) NoQrt Number of Quartets

3) AsyLim Asymptotic Batch Limit

As the blocking factor increases the number of instructions decreases. This arises due to

the following: first, increasing the blocking factor leads to a reduction in the number of batches.

Second, the work required to re-compute shared intermediate quantities amongst shell-quartets

in a batch reduces as the batch size increases. As the work done reduces with increasing batch

size, so does the number of instructions being executed. A similar reduction is also seen for

the FLOP count.

While reducing re-computation by increasing the blocking factor is good, it also gives rise

to an increase in cache misses, since batches now start to overflow cache. This behavior is

evident from the L1 and L2 miss counts, which increase as the blocking factor gets larger.

Also, the L1 misses are an order of magnitude larger than L2 misses, suggesting that PRISM’s

memory access patterns are cache blocked for the L2 cache, and not for the L1 cache.

4.4.3 Effect of Cache Blocking on ERI Batching

The previous sub-section considered the effects of cache blocking on measured cycle counts for

the k300a-04 system with a 6-31G* basis set and the HF method. The total number of batches

generated as a function of cache blocking, was also reported. It was found that increasing the

blocking factor reduced the total number of batches being processed. Thus it is of interest

to examine the effect of cache blocking at a finer level. In Table 4.7 we present a detailed

breakdown of batch size according to the quartet LTot value for blocking factors ranging from

4Kw to 1024Kw. Also included is the asymptotic batch size limit (‘AsyLim’). The ‘AsyLim’

results correspond to the number of batches each LTot would generate if an infinite sized cache

§4.4 PRISM and Cache Blocking 73

Table 4.8: Cycle count per LTot for k300a-04 using HF/6-31G* on a 2.2Ghz AMD848 Opteron

Total Asy. Qrt. Cycle count (x109)

LTot NoQrt Lim PAB. 4 Kw 16 Kw 32 Kw 64 Kw 256 Kw 1024 Kw

0 352176 66 5336 1.01 0.89 0.84 0.98 0.97 1.30

1 708932 187 3791 3.07 2.54 2.36 2.69 3.36 4.02

2 806845 362 2229 5.96 4.66 4.37 4.70 6.37 7.72

3 589046 378 1558 8.51 6.17 5.72 6.21 8.22 10.4

4 310929 286 1087 9.12 6.53 5.70 5.88 7.86 10.4

5 116550 112 1041 6.48 5.24 4.53 4.20 5.52 7.72

6 32097 34 944 3.24 2.92 2.35 2.02 2.67 3.67

7 5651 5 1130 0.95 0.94 0.84 0.67 0.67 1.01

8 623 1 623 0.17 0.17 0.17 0.17 0.17 0.17

Total Cycles (x1010) 3.85 3.00 2.69 2.75 3.58 4.64

% Increase from 32Kw +30.17 +10.56 0.00 +2.32 +24.94 +42.10

Qrt. PAB. – Average number of Quartets per batch, without the use of cache blocking

was used.

Table 4.7 is divided into two sections. The first section gives the total number of quartets

generated for each LTot (in the ‘Total NoQrt’ column). The second section gives the ‘Number

of Batches’ generated as a function of cache blocking and the asymptotic batch size limit for

each LTot. Values for ‘Total NoQrt’ were obtained by setting a counter to 0, at the start of loop

1
 in Algorithm 2. This counter was then incremented by the number of shell quartets that

were eventually chosen by PRISM for computation, within loop 6
. The values for ‘AsyLim’

were obtained by counting the number of times loop 5
 in Algorithm 2 was entered.

From the table it is seen that as the value of LTot increases, the total number of shell-

quartets increases from 352,176 to 806,845 and then drops sharply to 623 for LTot = 8. As

mentioned before, the distribution of shell-quartets results from the underlying construction of

the 6-31G* basis set and the nature of the system under study.

Starting from the 4Kw blocking factor, as the value of LTot increases, the number of

batches rises to a maximum of 57,697 and reduces sharply there after. Increasing the blocking

factor by four to 16Kw results in approximately a 3.3 fold reduction in the number of batches.

This reduction drops to 2.7 fold at LTot = 4, while for LTot � 7 there is no reduction at all.

The latter is a consequence of batching being ignored if the value of ‘NPerS4’, in Algorithm

2, is greater than the available cache size.

From 32Kw to 1024Kw, increasing the blocking factor leads to a proportional reduction in

the number of batches. Surprisingly the use of a 1024Kw blocking factor, which corresponds

to a cache of size 16MB, would still result in batches being cache blocked.

74 Use of the LPM for ERI Evaluation

4.4.4 Cache Blocking as a Function of Quartet Type

In the previous section, it was seen that the effect of cache blocking on the number of batches

generated varied according to LTot value. This raises the question whether the cache blocking

factor should vary according to the quartet type. To address this, we present in Table 4.8 the

cycle count for each LTot as a function of each cache blocking factor.

There are four major columns in Table 4.8 – ‘Total NoQrt’, ‘AsyLim’, ‘Qrt. PAB.’ and

‘Cycle count’. The ‘Total NoQrt’ and ‘AsyLim’ columns are reproduced from Table 4.7 to aid

discussion. The ‘Qrt. PAB.’ column is the average number of quartets per batch, assuming

there is no cache blocking. Values in this column are derived from the previous two columns.

The ‘Cycle count’ row presents measured cycle counts for each LTot as a function of the cache

blocking factor. Minimum cycle counts entries for each LTot have been highlighted in bold

font. At the bottom of the table, the ‘Total Cycles’ column corresponds to the sum of cycle

counts for each blocking factor. The ‘% Increase from 32Kw’ gives the percentage difference

between cycle counts for the 32Kw blocking factor and other blocking factors.

For each value of LTot, there is a corresponding value for the total number of quartets and

the asymptotic batch limit. Trends for these two columns were discussed previously. Values

for the ‘Qrt PAB.’ column decrease from LTot = 0 to 6. After this there is an increase, followed

by a slight decrease for LTot = 8.

The expectation for measured Cycle counts will depend on the number of quartets for a

given LTot, the number of asymptotic batches and the FLOP cost associated with computing

a given quartet. For 4Kw, we see that as LTot increases, the cycle count gradually increases,

peaks for LTot = 4 and reduces. Moving to 16Kw, the cycle count peaks again at LTot = 4.

For 32Kw, the cycle count peaks at LTot = 3 and this trend holds upto 256Kw. For 1024Kw,

shell-quartets with LTot = 3 and 4 take the same amount of time to compute. It was men-

tioned earlier, in section 4.2.3, that higher angular momentum functions cost more in FLOPs

to assemble than those of lower angular momentum. If we consider the variation of the ‘Qrt.

PAB’ column, it is seen that lower angular momentum integrals, though numerous are com-

puted rapidly. As the value of LTot increases, the cost of assembling higher angular momentum

integrals increases and if these are numerous, it would dominate the overall cost. However the

number of these integrals will decrease after some LTot value. This explains the presence of

a peak followed by a decrease of the observed cycle counts. Aggregate cycle counts for each

blocking factor in the ‘Total Cycles’ row, corresponds to the Cycle counts presented in Table

4.6.

Observing the progression of bold values from the top of the table to the bottom, shows

that there are two blocking factors which give the lowest cycle count per LTot. From LTot = 0

to 4 it is the 32Kw blocking factor. Following this there is a switch to the 64Kw factor. This

§4.4 PRISM and Cache Blocking 75

transition indicates that it could be beneficial to switch blocking factors at runtime.

To assess further, the usefulness of switching blocking factors, we expand the scope of

systems examined to include larger system sizes and bigger basis sets. Thus, we include the

k300a-04 system with the larger 6-31++G(3df,3pd) basis set, the k300a-08 system with both

6-31G* and 6-31++G(3df,3pd) basis sets.

To aid presentation of data and facilitate comparison, we now switch to using plots for

cycle count. We also include total L1 and L2 misses per LTot as a function of the cache

blocking factor. These plots are given in Figures 4.1 and 4.2.

Data for the 6-31G* and 6-31++G(3df,3pd) basis sets are given in the first and second

columns respectively. For each column there are three sub-plots which correspond to cycles,

L1 and L2 misses. For each sub-plot the x-axis denotes LTot and the y-axis corresponds to the

units for cycles, L1 and L2 misses.

For the k300a-04 system, cycle counts are reproduced from Table 4.8. As before, as LTot

increases (from 0 to 8) the cycle count initially peaks and then gradually decreases; with a

32Kw blocking factor giving the lowest cycle count. Moving onto L1 misses for k300a-04

using the 6-31G* basis set, the curve has peaks which correspond to the peaks seen for Cycle

counts. In terms of the ordering of misses, the L1 misses for the 32Kw blocking factor is in

between the 16Kw and 64Kw curves. L2 misses are an order of magnitude less than the L1

misses. The L2 misses also peak at the same values of LTot as L1 misses, and ordering of the

miss curves are the same as L1 misses. Unlike L1 misses, there is a large separation between

the 256Kw and 1024Kw cases. This miss behaviour is to be expected. The Opteron has a 1MB

on-chip L2 cache, thus blocking for 256Kw (i.e. a blocking factor which corresponds to a 4MB

L2 data cache) and 1024 Kw (i.e. a blocking which corresponds to a 16MB L2 data cache)

will lead to greatly increased cache misses. A 64 Kw (512Kb) blocking factor is the upper

bound on the Opteron, after which the L2 miss penalty becomes much larger and detrimental

to performance. Further, we also note, that there are cases (e.g. 6-31G*) where the blocking

size which results in the lowest cycle count (32Kw) does not always have the lowest L2 miss

rate (2Kw). This indicates that there are potential processor pipelining issues which need to be

further investigated.

Consider the plots for k300a-04 that use the larger basis set shown in Figure 4.1. For these

plots, the value of LTot now varies from 0 to 12 due to higher angular momentum functions in

the basis set. As LTot increases, the cycle count curves gradually increase and peak at LTot

= 5, 6 and reduces there after. Though cycle counts vary by two orders of magnitude between

6-31G* and 6-31++G(3df,3pd), the curves for cycle count have the same features albeit with

peaks shifted. This shift arises from the use of the larger basis set. Unlike the k300a-04 with

6-31G* basis set, the lowest cycle counts are obtained for a 64Kw blocking factor rather than

32Kw. L1 miss counts for the larger basis set have the same ordering of curves as the 6-31G*

76 Use of the LPM for ERI Evaluation

Figure 4.1: Per LTot breakdown of cycle counts and total cache misses (L1 and L2) for the

k300a-04 water cluster system using a 6-31G* basis set and the HF method on an AMD848

Opteron system.

§4.4 PRISM and Cache Blocking 77

case. L2 misses for the larger basis set have the same ordering as L1 misses except for 32Kw.

Interestingly use of 32Kw with the larger basis set results in L2 misses which are almost

comparable to using a blocking factor that overflows cache. Presumably this pathological

behaviour is due to subtle interplay between the system, basis set and input geometry.

Results for the k300a-08 system using the 6-31G* and 6-31++G(3df,3pd) basis sets, which

are given in Figure 4.2. For k300a-08 using the 6-31G* basis set, trends for cycle counts are

similar to those seen for k300a-04 with 6-31G*. Cycle counts peak at LTot = 3, 2. The lowest

cycle count was obtained for a 32Kw blocking factor. The ordering of miss curves and trends

for L1, L2 misses using 6-31G* are similar to those seen in k300a-04 with 6-31G*.

In the case of the larger basis set for k300a-08, the ordering of cycle count curves are

similar to k300a-08 with the 6-31G* basis set. But, the cycle count peaks occur at LTot = 4,

5. Cycle counts are two orders of magnitude larger than those obtained for 6-31G*. Unlike

the k300a-04 system using the larger basis set, here the 32Kw blocking factor gives the lowest

measured cycle counts per LTot. Ordering of L1 misses are identical across the k300a-04

and k300a-08 systems, while the ordering of L2 misses are almost similar to those for k300a-

08 with the 6-31G* basis set. Unlike k300a-04 and the larger basis set, the use of a 32Kw

blocking factor is not pathological. It is interesting to note that as system and basis set size

have increased, the 256Kw – 1024Kw blocking factors are now well clustered indicating its

higher L1 miss count.

From the plots given in Figures 4.1 and 4.2 there are two observations on blocking factors

which gave the lowest cycle counts: (a) the blocking factor that provided the lowest cycle count

for the value of LTot is the one that gives the largest number of batches; (b) in all the plots there

were at most two blocking factors that gave the lowest cycle counts per LTot (as in Table 4.6),

but one blocking factor always out performed the other in terms of obtaining the lowest cycle

counts. Thus, it would be better to tailor the blocking factor to the entire calculation rather than

to the LTot value.

Figures 4.1 and 4.2 considered cycle count and total L1, L2 miss curves for a set of cache

blocking factors, as a function of LTot. To augment these plots we now consider the FLOPs per

LTot, with a view of using it to measure how well PRISM is able to use floating point hardware

as a function of cache blocking.

From earlier discussions it was noted that FLOP costs increase as a function of the angular

momentum type and contraction length of the underlying basis set. Thus the expectation is

that FLOPs should be greatest for those values of LTot which have the largest cycle count per

LTot. Plots for the variation in floating point performance per LTot i.e. FLOP count per cycle

are shown in Figure 4.3. FLOPs for each system are categorized by the basis set and molecular

system. Hence on the left hand side of the figure, the first plot is for k300a-04 using a 6-31G*

basis set, below which is the k300a-08 system using a 6-31G* basis set. The FLOP count

78 Use of the LPM for ERI Evaluation

Figure 4.2: Per LTot breakdown of cycle counts and total cache misses (L1 and L2) for the

k300a-08 water cluster system using a 6-31G* basis set and the HF method on an AMD848

Opteron system.

§4.4 PRISM and Cache Blocking 79

per cycle is a derived quantity which is indicative of the average rate at which floating point

operations are executed6.

Considering the k300a-04 system with the 6-31G* basis set the FLOPs decrease initially as

LTot increases and then rises to a maximum before decreasing again. There is a slight increase

at LTot = 8, which is to be expected as higher angular momentum quantities require more

FLOPs. For k300a-04 and the 6-31++G(3df,3pd) basis set, there is a drop in the FLOP count

at LTot = 1, followed by an increase to a maximal value and then a trailing decrease. With the

k300a-08 system, the peak FLOPs occurs around LTot = 5 for the 6-31G* basis set. It peaks at

LTot = 4 for the 6-31++G(3df,3pd) basis set.

Cycle counts peak at LTot = 3 for 6-31G* (for both k300a-04 and k300a-08) and for 6-

31++G(3df,3pd) its LTot = 5 (k300a-04) and LTot = 4 (k300a-08). However, as measured

FLOPs peaks do not correlate with these cycle count peaks. Thus, the initial expectation that

FLOPs would peak for peak values of cycle count is not valid. This observation is possibly

the side-effect of the processor being stalled, waiting for appropriate cachelines to be streamed

from the L2 cache, and hence cannot saturate the floating point functional units. Comparing

the overall FLOPs per LTot, between k300a-04 and k300a-08 for both basis sets, it is seen

that the smaller k300a-04 achieves better use of the on-chip floating point units than the larger

k300a-08 system.

To summarize the discussion for this sub-section on the effects of cache blocking as a

function of quartet type, (a) it was seen that there are two blocking factors which yield the

lowest cycle count per LTot for the k300a-04 system using a 6-31G* basis set and the HF

method. By use of an expanded set of systems and basis sets, it was seen that (b) the blocking

factor which gave the lowest cycle counts per LTot depends both on the molecular system and

basis set being used. For all the expanded systems, (c) the use of a single blocking factor

was a better option as execution time would be skewed towards those values of LTot with large

number of batches and larger angular momentum quantum number shell-quartets. Also, (d)

the total FLOPs per cycle for a quartet type was not directly related to those values of LTot

with the largest number of batches. This possibly indicates that PRISM’s use of floating point

hardware is being hampered by excessive L1 cache misses.

4.4.5 Cache Blocking as a Function of Benchmark Systems and

Architecture

In previous sub-sections, we considered the effects of cache blocking on the cycle, instruction

and L1, L2 miss counts. We also considered if it was appropriate to use different blocking

6On the AMD848 Opteron, the hardware performance counter event used is the PAPI native event

FP MULT AND ADD i.e. the sum of events from both the FADD and FMUL pipelines

80 Use of the LPM for ERI Evaluation

Figure 4.3: FLOP count per LTot for the k300a-04 and k300a-04 water cluster systems using

the HF method on a 2.2Ghz AMD848 Opteron processor

factors on a per LTot basis. It was found that while the optimal blocking factor does vary for

different values of LTot, there was not a strong case to do this as the total execution time was

dominated by those values of LTot that gave rise to the largest number of batches. In this

sub-section, we examine the sensitivity of blocking factor to the molecular system, calculation

type and hardware architecture.

In Table 4.9 the blocking factor that gave the lowest execution time is reported for 5 bench-

mark systems, 7 hardware platforms and 2 calculation types. Also given are the default cache

blocking factors. (Results for the k300a-08 system using the 6-31++G(3df,3pd) basis set are

excluded as it required more physical memory than was available on all machines, except for

the AMD848 system).

The table is divided into two sections, corresponding to results for the HF and B3LYP

§4.4 PRISM and Cache Blocking 81

Table 4.9: Optimal cache blocking factor observed for the five test systems, across six proces-

sor platforms

Default

Blocking
k300a-04 k300a-08 test397 α-Al2O3

Size (Kw) A� B† A� 3-21G 3-21G*

H
F

Opteron 64 32 64 32 32 64

Athlon64 32 64 64 64 32 64

EM64T 128 64 64 64 64 64

Pentium 4 64 64 64 64 32 64

Pentium M 64 64 64 64 64 64

G5 32 32 64 32 32 64

G5-XServe 32 32 32 32 32 64

B
3
L

Y
P

Opteron 64 64 64 64 32 64

Athlon64 32 64 64 64 32 64

EM64T 128 64 64 64 64 64

Pentium 4 64 64 64 64 32 64

Pentium M 64 64 64 64 64 64

G5 32 32 64 32 32 64

G5-XServe 32 32 64 32 32 64

A� – 6-31G* basis set B† – 6-31++G(3df,3pd) basis set

methods. The hardware architecture type is given on the left hand side of the table. The

default blocking factor for each hardware architecture is given in the ‘Default Blocking Size’

column. Finally, the blocking factor which gave the lowest cycle counts is given under each

molecular system and basis set columns.

For k300a-04 using the 6-31G* basis set for HF, the optimal blocking factor is 64Kw for

the Opteron and 32Kw for the Athlon64. The 64 Kw blocking factor is the dominant blocking

factor for all Intel processors. While the optimal factor for the PowerPC processors is 32Kw.

Moving to the larger basis set with k300a-04, it is seen that all x86 processors do better with

the 64Kw blocking factor, whereas 32Kw can be better for PowerPC processors. For the larger

k300a-08 system, the trend is similar to the k300a-04 system using 6-31G*. With test397, the

results are a mix of 32Kw and 64Kw blocking factors. For the α - Al2O3 calculation, on

all hardware platforms, a blocking factor of 64Kw gave the lowest cycle counts for HF. If

we now look across all HF calculations, a default blocking factor that always gives the lowest

cycle count is true only for the Pentium M. For the EM64T, a optimal blocking factor of 64Kw

was observed across all benchmarks, though the default blocking factor is a 128Kw.

Considering the B3LYP results, for k300a-04 and the 6-31G* basis set, the 64Kw blocking

factor is preferred on x86 processors and 32Kw on PowerPC. For k300a-04 and the larger basis

82 Use of the LPM for ERI Evaluation

Table 4.10: Timing differences for a 32Kw blocking factor versus a 64Kw blocking factor,

expressed as a percentage.

k300a-04 k300a-08 test397 α-Al2O3 Sum of Preferred

A� B† A� 3-21G 3-21G* Percentages Factor

H
F

Opteron �2:2 +6:0 �0:5 �2:3 +3:4 +4:3 64

Athlon64 +1:2 +5:4 +0:2 �1:8 +3:6 +8:6 64

EM64T +7:5 +10:6 +5:0 +3:8 +6:8 +33:7 64

Pentium 4 +4:6 +8:8 +0:8 �1:2 +5:5 +18:5 64

Pentium M +2:8 +7:8 +2:2 +0:5 +5:4 +18:7 64

G5 �6:0 +2:2 �5:1 �6:4 +0:8 �14:5 32

G5-XServe �7:8 +0:9 �5:3 �7:2 +0:7 �18:6 32

B
3
L

Y
P

Opteron +0:6 +3:1 +0:9 �0:3 +2:5 +6:8 64

Athlon64 +0:5 +5:1 +0:1 �1:2 +3:2 +7:7 64

EM64T +3:6 +10:8 +2:9 +2:4 +5:5 +25:2 64

Pentium 4 +2:0 +7:7 +0:7 �0:6 +4:4 +14:1 64

Pentium M +1:5 +7:2 +1:9 +0:8 +4:2 +15:5 64

G5 �3:0 +2:4 �3:9 �5:0 +1:3 �8:2 32

G5-XServe �4:0 +1:9 �3:8 �6:0 +0:6 �11:5 32

A� – 6-31G* basis set B† – 6-31++G(3df,3pd) basis set

set, it is entirely 64Kw. For k300a-08, all x86 processors performed better with the 64Kw

blocking factor, whereas it was 32Kw for PowerPC. The results for test397 are mixed as in

the HF case and the α - Al2O3 calculation is similar to the HF case in that the 64Kw blocking

factor is preferred.

As Table 4.9 contains a mix of 32Kw and 64Kw factors, it is useful to determine how each

performs relative to the other if only one blocking factor is used for all the benchmark systems.

In order to do this we now consider the relative difference in timing between the two cache

blocking factors across all systems.

Table 4.10 presents the relative difference in times between 32Kw and 64Kw. The first part

of the table corresponds to the HF method and the second to the B3LYP method. The hard-

ware platforms and methods are given on the left hand side. For each platform, the difference

in times between 32Kw and 64Kw blocking factors expressed as a percentage7 is given for

each benchmark system. A positive entry in the table indicates that a 32Kw blocking factor

is preferred, whereas a negative entry indicates that 64Kw is preferred. The cumulative per-

centages for a given hardware platform is given in the ‘Sum of Percentages’ column. Based

on the sum of percentages, a preferred blocking factor is determined in the ‘Preferred Factor’

column.

7i.e. 100*
(32KwTime�64KwTime)

32KwTime

§4.4 PRISM and Cache Blocking 83

For the Opteron it is seen that the k300a-04 system with 6-31G* runs 2.2% faster if a

32Kw blocking factor is used. Whereas, for the k300a-04 system with the larger basis set, it

runs 6% slower with the 32Kw blocking factor than a 64Kw blocking factor. For k300a-08

and 6-31G*, there is a 0.5% increase in time if 32Kw is used. The test397 system runs 2.3%

faster with a 32Kw blocking factor and the α - Al2O3 system runs 3.4% slower with a 32Kw

blocking factor. Overall, the sum of these percentages is +4.3%. This indicates that overall use

of a 32Kw blocking factor results in times that are 4.3% slower compared to a 64Kw blocking

factor, hence the preferred blocking factor for the Opteron, is 64Kw.

If we consider the Athlon64 processor, the absolute difference in timings for individual

benchmarks is similar to those obtained for the Opteron, and a 64Kw blocking factor is also

preferred.

For the EM64T system all benchmarks perform better using a 64Kw blocking factor. It is

interesting to note that the sum of differences shows that the use of a 32Kw blocking factor

leads to a 33% increase in overall execution time.

For the Pentium 4 system, apart from test397, all other benchmarks perform better with

64Kw. Overall an 18.5% increase in execution time results from the use of a 32Kw blocking

factor, thus a 64Kw blocking factor is preferred. It is of interest to compare the difference

in times for the EM64T and Pentium 4 systems, as both use the NetBurst microarchitecture.

There is a 15.2% difference in overall timings between the two processors. This indicates

that the EM64T is more sensitive to the use of an appropriate cache blocking factor, than the

Pentium 4 system.

The Pentium M performs better with a 64Kw blocking factor, across all molecular systems.

Use of a 32Kw blocking factor would result in times that are 18.7% slower.

For the G5 system, use of a 32Kw blocking factor is beneficial except for k300a-08 and

α - Al2O3 systems. Overall, use of a 32Kw blocking factor results in a 14.5% reduction in

runtime. Similar trends are seen for the G5-XServe system, where there is a 18.6% reduction

in runtime when 32Kw is used compared to 64Kw.

Moving to the B3LYP section of the table, the Opteron and Athlon64 processors perform

better with a 64Kw blocking factor, there is a 6.8% and 7.7% increase in runtime if a 32Kw

blocking factor is used. If we compare B3LYP results with HF, there is very slight variation

between the two.

For the EM64T processor, a net 25.2% increase in runtime results for a 32Kw blocking

factor. This increase is not as large as what is seen for HF. The Pentium 4 system has an

overall increase of 14.1% in its runtime for using a 32Kw factor.

The Pentium M shows a 15.5% increase in runtime for the 32Kw blocking factor.

The G5 and G5-XServe have a 8.2% and 11.5% reduction in runtime for the use of a 32Kw

blocking factor.

84 Use of the LPM for ERI Evaluation

To summarize, it would be beneficial to use a 64Kw blocking factor on x86 machines and

a 32Kw blocking factor for PowerPC processors, for the set of benchmarks used here.

4.4.6 Summary: PRISM and Cache Blocking

To conclude this section, the PRISM algorithm limits the number of shell-quartets processed

to cache blocked quantities, this influences the batches processed by the inner loop of PRISM.

An appropriate blocking factor produces an optimal run-time and this is subject to both the

input molecular system and basis set used. The optimal blocking factor is shown to influence

the L2 and L1 miss rates, as its use leads to the lowest cycle count for an ERI class (i.e. all

the integrals for a given LTot) with the most number of integrals. It is better to use one fixed

cache blocking parameter for an entire SCF cycle than to dynamically vary the cache blocking

according to the quartet angular momentum type. For the set of benchmark systems which

were assessed, a 64Kw blocking factor was found to be best for x86 processors, while a 32Kw

blocking factor gave best performance for the PowerPC processors.

4.5 A Linear Performance Model

In the previous section it was shown that the instruction count, cache miss counts and overall

execution time of the Gaussian code varies significantly according to the size of the cache

blocking parameter used by the PRISM ERI evaluation algorithm. This section seeks to exploit

those variations in order to derive the α ;β ; and γ fitting coefficients that are part of the LPM.

To achieve this objective, three issues need to be considered.

The first issue is to assess whether the fit required by the LPM is numerically stable and

whether the PPCoeffs are reasonable given their physical interpretation (average use of the

underlying superscalar architecture and the latency of a cache miss). This issue is addressed

in Section 4.5.1 where the validity of the LPM on the Opteron, for a range of different test

systems is investigated.

Having established the in principle validity of the LPM, the next issue to address is the

accuracy of the LPM and the stability of the fitted parameters with respect to changes in calcu-

lation type. For example, is the LPM accurate enough to be useful, or are the fitting parameters

so highly dependent on the calculation type as to devalue its use? This issue is addressed in

Section 4.5.2.

The final issue is the applicability and accuracy of the LPM across a range of different

hardware architecture types; while the LPM may successfully describe performance on one

hardware architecture type, it is not clear that it will work equally well if the hardware archi-

tecture and calculation type is changed. This issue is addressed in Section 4.5.3, where the

§4.5 A Linear Performance Model 85

Table 4.11: Measured PPCoeffs for the AMD848 Opteron using the LPM using the HF method

PPCoeff
k300a-04 k300a-08 test397 α-Al2O3

A� B† A� 3-21G 3-21G*

α 0.7 0.6 0.7 0.7 0.6

β 5.1 2.0 -0.4 -4.5 4.5

γ 320.3 403.1 411.0 367.4 452.6

Fitting Error 2.4% 0.8% 2.6% 1.8% 0.7%

A� – 6-31G* basis set B† – 6-31++(3df,3pd) basis set

applicability of the LPM is considered for the different hardware systems listed in Table 4.3

and for both the HF and B3LYP methods.

4.5.1 Stability of PPCoeffs on the Opteron

Using the five benchmark molecular systems, hardware performance counter results for cycle

count, L1 and L2 misses and instruction counts were measured on the AMD848 Opteron sys-

tem. PPCoeffs were then obtained for Equation 4.1 by use of a least squares fit. The results

are presented in Table 4.11 where the PPCoeffs (α , β and γ) are presented column-wise for

each system.

The values for α given in Table 4.11 are between 0.6 to 0.7. Values for β range between

-4.5 to 5.1, while values of γ range from 320.3 to 452.6. The fitting errors for cycle count, for

all systems range from 0.7% to 2.6%. This indicates the LPM is able to fit cycle times well.

Even though the PPCoeffs are fitting coefficients it is useful to attribute physical meaning

to these. Thus α can be considered to be the CPI (Cycles per Instruction); β the L1 miss

penalty; γ the L2 miss penalty. Using this interpretation, values of α and γ seem reasonable

and concur with values given for IPC and measured L2 miss latencies as presented in Table

2.1, Chapter 2.

The values of β on the other hand, are negative and in some cases, implying that a cache

miss penalty is beneficial! Clearly negative values for β are ‘unphysical’. Possible strategies

to remedy this include –

(a) use of an averaged value for β obtained over all systems after setting to zero, unphysical

values ;

(b) use the value of β as measured for an L1 miss using the lmbench benchmark;

(c) take 50% of the measured L1 latency from lmbench on the grounds that a real application

code may not experience the worst case latency owing to out-of-order execution and

timely prefetching ;

86 Use of the LPM for ERI Evaluation

Table 4.12: Cycle count fitting errors for the LPM on the Opteron, when β is ignored, for the

HF method

% Fitting Error

S
y
st

em

I II III IV V %AE σ

I 3.0 5.3 3.4 6.1 3.6 4.6 1.3

II 6.4 1.0 4.2 4.6 2.1 4.3 1.8

III 3.5 3.9 2.3 4.4 3.6 3.8 0.4

IV 7.2 5.4 4.0 1.9 3.4 5.0 1.7

V 5.8 1.1 3.7 3.9 1.3 3.6 1.9

Avg. PPCoeffs 4.8 2.2 3.0 3.5 1.9 3.1 1.2

%AE – Percentage Average Error σ – Standard Deviation

No. System Basis set

I k300a-04 6-31G*

II k300a-04 6-31++(3df,3pd)

III k300a-08 6-31G*

IV test397 3-21G

V α-Al2O3 3-21G*

(d) ignore β in the LPM and fit only for α and γ instead.

(e) use Cycles Per Instruction (CPI) from the microprocessor vendor’s literature and measured

L1, L2 miss penalties from lmbench i.e. entirely replacing α , β and γ ;

To address the effectiveness of each of the above options a Percentage Average Error (%AE)

metric was used. The %AE is the average value of cycle count fit errors for the five benchmark

molecular systems expressed as a percentage. The %AE for the five strategies are, (a) 3.0%,

(b) 28%, (c) 12.1%, (d) 3.9% and (e) 14.3%. Standard deviations for the five measurements

range from 0.44% to 1.79%.

Although strategy (a) gives the lowest error, whether β is zero or not is somewhat random.

Hence, we have chosen strategy (d) which removes β from the LPM. If this is done, values of

α and γ are positive and have physical meaning. In comparison to strategy (a), (d) is in error

by an additional 0.9%. Thus in the rest of the chapter, the LPM will be modified to include

only instruction counts and L2 cache misses.

4.5.2 Accuracy of the LPM for the AMD848 Opteron

Table 4.12 contains the fitting errors for the various benchmark systems and the HF method

when using different PPCoeffs on the AMD848 Opteron platform. The various benchmark

systems used to derive the PPCoeffs are listed down the left hand side. These are then used

§4.5 A Linear Performance Model 87

to fit the execution times of the other systems, represented by the different columns. Thus

the diagonal elements, given in bold, represents the self-fit error. Off-diagonal elements cor-

respond to the transferability of PPCoeffs from one system to another. Also, given are the

percentage average errors for each system and its standard deviation. The final row in the

table corresponds to the use of averaged PPCoeffs i.e using the average value of each α and

γ from all benchmarks for the Opteron. Each of these benchmarks are encoded as a Roman

numeral from I to V.

The diagonal elements vary from 1.0% to 3.0%, indicating the LPM is able to give good

self-fits even though β is now ignored. Errors when using the PPCoeffs for system I, with

other test systems range from 3.0% to 6.1% (i.e. for Row I). Whereas, the use of PPCoeffs

from systems II to V to fit the cycle count for system I results in errors ranging from 3.5% to

7.2% (i.e. Column I).

If we consider the transferability of the LPM from a smaller basis set to a larger one, then

in going from I! II results in 5.3% error. Going from a larger basis set to a smaller one i.e II! I, there is a 6.4% error. If molecular system size is increased i.e. I ! III, there is a 3.4%

error and for II! III it is 4.2%. Going from the larger system to a smaller one i.e. III! I or II

the errors are 3.5% and 3.9%. This shows a smaller molecular system with a smaller basis set

gives reasonable results when scaled to the larger system sizes and basis sets considered here.

To estimate the LPM’s overall transferability to other systems, the Percentage Average

Error (%AE) metric is also given in Table 4.12, along with its standard deviation. The %AE

was computed for a given row, excluding the error for the self-fit. The %AE varies from 3.6%

to 4.6% (with a standard deviation of 0.9% to 1.7%). This indicates the LPM is reasonably

transferable across calculations on the Opteron.

For most systems the use of average PPCoeffs give lower errors, compared to off-diagonal

errors. The %AE for using average PPCoeffs is 3.1%, with a standard deviation of 1.2. This

is the lowest measured value among the %AE values.

From the above discussion, it can been seen that the LPM can fit all systems well (1.0%

– 3.0% error). It is reasonably transferable across systems (3.0% – 4.6% error) and the use of

averaged PPCoeffs across a range of systems shows good transferability (%AE of 3.1).

4.5.3 Stability of PPCoeffs Across Different Hardware Architec-

tures

In previous sub-sections the numerical stability, accuracy and transferability of the LPM across

a range of molecular systems was considered. In this sub-section, we consider the stability of

PPCoeffs on different hardware architectures and between the HF and B3LYP methods.

Table 4.13 presents α and γ PPCoeffs obtained across the various processor platforms and

88 Use of the LPM for ERI Evaluation

Table 4.13: Measured LPM PPCoeffs, CPI and L2 latency characteristics across processors

and test systems for the HF method

k300a-04 k300a-08 test397 α-Al2O3
Avg.

Std.

CPI� A� B† A� 3-21G 3-21G* Dev.

α

Opteron 0:33̇ 0.69 0.63 0.68 0.66 0.64 0.66 0.03

Athlon64 0:33̇ 0.68 0.59 0.65 0.64 0.63 0.64 0.03

EM64T 0:33̇ 1.20 1.12 1.28 1.25 1.07 1.18 0.08

P4 0:33̇ 1.16 1.08 1.20 1.18 1.05 1.13 0.06

PM 0:33̇ 0.75 0.67 0.75 0.72 0.67 0.71 0.04

G5 0:25 0.77 0.74 0.74 0.73 0.67 0.73 0.04

G5-XServe 0:25 0.76 0.73 0.74 0.70 0.65 0.71 0.04

L2Lat+
γ

Opteron 300 361 426 390 454 422 411 35.8

Athlon64 238 599 625 459 505 529 543 68.2

EM64T 499 190 199 180 187 182 187 19.0

P4 430 236 227 244 235 181 224 25.2

PM 204 76 81 79 79 89 81 4.9

G5 692 439 415 466 452 463 447 20.8

G5-XServe 614 467 445 459 490 492 474 20.1

A� – 6-31G* basis set B† – 6-31++(3df,3pd) basis set

L2Lat+ – Measured using lmbench CPI� – From vendor literature

benchmark systems. The table is divided into two sections, corresponding to the two PPCoeff

components namely α and γ . The first column in the section for measured α is the theoretical

Cycles per Instruction (CPI) for each processor as obtained from vendor literature. For γ the

first column gives the lmbench measured latency to access the L2 cache (ref. Appendix,

Section A.2). The final two columns ‘Avg.’ and ‘Std. Dev.’ are the average value for α and β

and the standard deviation across each row.

If we consider k300a-04 with a 6-31G* basis set, the values of α , going down the column,

vary from 0.68 to 1.20. There are two distinct groups of values, those which are less than 0.75

and those which are greater than 1.

Using vendor provided numbers, the Opteron upto the Pentium M have the same values of

α . The PowerPC processors have a value of 0.25. If we use the physical definition of α , the

suggestion is that the closer the value of α is to the CPI, the better a given code is at utilizing

on-chip resources. Thus the ordering is Athlon64, Opteron, PM, P4 and EM64T for a CPI

0:33̇.

Values of α for the PowerPC processors indicate that x86 based processors perform better,

though the PowerPC processors are rated for a CPI of 0:25̇. The large values of α (> 1) for the

§4.5 A Linear Performance Model 89

P4 and EM64T is most likely explained by the NetBurst architecture used for these chips. The

architectural emphasis for these processors was towards the use of deep pipelines to ensure

high clock rates [87]. The downsides to this approach are that pipeline flushes are expensive

and cache misses re-circulate until data references have been satisfied.

Moving down the column to the L2 latencies for the k300a-04 and 6-31G* basis set, we

see very different results for the various processors. Note that the LPM ignores β and, hence,

L1 latencies would be absorbed into the values of α and/or γ . This would be reflected in an

increased value for both quantities. An increased value of α would indicate larger CPI values,

whereas a large γ value would indicate that the L2 miss latency potentially encompasses L1

miss latencies also.

It is interesting to note that except for the Opteron and Athlon64 systems, all other systems

have values of γ that are less than the expected worst case latencies, with the Pentium M

being the lowest. In the case of the AMD processors, it is posited that the interplay between

three other microarchitectural features is responsible – (a) out-of-order execution (b) hardware

prefetching of cachelines [43, 76, 289] and (c) L1 to L2 intra-cache bandwidth. Compared

to the other microprocessors, the AMD processors do not have deep out-of-order execution

resources i.e. the AMD processors do not have as many instructions in-flight compared to

the Intel and PowerPC processors. Hence it may not be able to mask the effects of long

latency loads/stores as effectively. Hardware prefetching also plays a role in reducing the

L2 penalty for all of the microprocessor systems used here. While the Opteron and Athlon use

hardware prefetching, it is likely that prefetches were not timely enough. Once data for this

prefetch makes its way to the L1 cache, it would cause lines to be evicted from L1 and would

cause conflict misses for other cachelines. The AMD processors’ L1/L2 data cache have

cachelines which are exclusive to either the L1 or L2 caches, it performs an allocate-on-write

for write misses and implements a write-back policy. All of these features create coherency

traffic and thus affects intra-cache bandwidth. In synchrony with these cache features, prefetch

requests and legitimate read or write-miss cacheline requests need to be handled. The inter-

play between these factors could potentially reduce intra-cache bandwidth [200,305], and lead

to an increased value of γ .

The Pentium M has lowest values of γ and we posit that it might be a direct result of its

micro-architectural features which involve macro-ops fusion, aggressive pre-fetch hardware

and memory reference disambiguation 8 techniques [90, 123].

If we refer to Table 4.14 and consider, the values of α across all benchmarks, we find that

these are remarkably stable for any given processor. There are some variations depending on

8Memory disambiguation is a hardware technique used to speed-up out-of-order execution by iden-

tifying and hoisting-out loads in a memory reference stream which are not dependent on prior loads and

stores.

90 Use of the LPM for ERI Evaluation

Table 4.14: Measured LPM PPCoeffs, CPI and L2 Latency characteristics across processors

and test systems for the B3LYP method.

k300a-04 k300a-08 test397 α-Al2O3
Avg.

Std.

A� B† A� 3-21G 3-21G* Dev.

α

Opteron 0.59 0.60 0.63 0.60 0.60 0.61 0.02

Athlon64 0.63 0.58 0.60 0.62 0.60 0.61 0.02

EM64T 1.20 1.12 1.28 1.25 1.07 1.18 0.07

Pentium 4 1.12 1.07 1.17 1.12 1.02 1.10 0.06

Pentium M 0.72 0.66 0.73 0.69 0.66 0.69 0.03

G5 0.77 0.73 0.65 0.72 0.66 0.71 0.05

G5-XServe 0.74 0.72 0.74 0.70 0.65 0.71 0.04

γ

Opteron 346 469 369 390 381 391 46.8

Athlon64 493 542 403 394 478 462 62.6

EM64T 169 198 144 177 177 173 20.0

Pentium 4 227 224 236 221 173 216 24.5

Pentium M 73 78 78 78 86 78 4.6

G5 436 414 519 443 463 455 40.1

G5-XServe 457 422 459 490 492 474 22.1

A� – 6-31G* basis set B† – 6-31++(3df,3pd) basis set

L2Lat+ – Measured using lmbench CPI� – From vendor literature

the molecular system and basis set; a standard deviation between 0.03 to 0.08 is observed,

across all the different processor types. For γ the earlier observation that the Opteron and

Athlon64 having higher γ values still holds. The lowest standard deviation for average values

of γ in descending order are for the EM64T, PowerPC processors, Pentium M, Opteron and

Athlon64. The Athlon64 has the largest observed deviation.

We now consider the B3LYP method and PPCoeffs obtained for it. The B3LYP method

is a hybrid method which combines HF and numerical quadrature (cf. Section 2.3.4, Chapter

2). The implementation of the B3LYP method uses additional algorithms to the HF method,

exercising a different path through the Gaussian code. Thus evaluating PPCoeffs for B3LYP

provide another test of the effectiveness of the LPM.

The layout of Table 4.14 is similar to Table 4.13, with hardware systems on the left and

benchmark systems across the columns.

If we consider the k300a-04 system with a 6-31G* basis set, values of α get clustered into

two different groups, similar to that seen in the table for HF. The values for γ are slightly lower

than those of obtained using the HF method, but otherwise the threads seen are similar.

§4.5 A Linear Performance Model 91

Table 4.15: Self-fitting errors for the HF and B3LYP methods using the LPM

% Self-Fitting Error

k300a-04 k300a-08 test397 α-Al2O3

A� B† A� 3-21G 3-21G*

H
F

Opteron 3:0 1:0 2:3 1:9 1:3
Athlon64 4:5 5:8 5:3 6:0 1:8

EM64T 2:7 1:4 2:0 2:7 0:8
Pentium 4 2:3 1:8 2:3 2:2 0:5

Pentium M 2:0 0:8 1:9 2:5 1:0
G5 1:8 1:5 2:3 2:7 2:2

G5-XServe 2:4 1:7 2:0 2:9 2:4
B

3
L

Y
P

Opteron 1:2 2:4 1:8 1:3 6:8
Athlon64 3:3 6:5 4:8 4:5 5:4

EM64T 1:0 1:3 5:3 0:8 4:3
Pentium 4 0:9 1:4 1:5 1:3 3:7

Pentium M 2:0 0:8 1:2 1:3 2:1
G5 1:1 1:4 2:8 2:1 2:0

G5-XServe 1:3 1:6 3:1 2:5 2:8
A� – 6-31G* basis set B† – 6-31++G(3df,3pd) basis set

4.5.4 LPM Summary

In previous sub-sections, it was shown that the α and γ PPCoeffs were able to give good fits

for measured cycle counts according to Equation 4.1. The numerical stability of the LPM,

with respect to variation in hardware was assessed. The accuracy of the LPM was evaluated

on the AMD848 Opteron platform, using the HF method and the various benchmark systems.

Fits for cycle counts were in error by 1.3% to 3.0%. The numerical stability with respect to

variation of hardware platform and calculation method was performed, and the PPCoeffs were

found to be stable.

In Table 4.15 we summarize the observed self-fitting errors for HF and B3LYP across all

hardware platforms. Table 4.16 gives the corresponding data for the %AE.

Table 4.15 is divided into two sections corresponding to the ‘HF’ and ‘B3LYP‘ methods.

In each section, the processor is on the left hand side followed by the self-fitting errors for each

system. (The row for the Opteron in ‘% Fitting Error for HF’, in Table 4.15, corresponds to

the diagonal in Table 4.12).

For Table 4.15, if we now consider the error distribution for any given system across the

set of processors for HF, i.e. going down the columns, then the average error ranges from 1.4%

to 3.0% (σ ranges from 0.70 to 1.70). The error distribution for all processors, apart from the

Athlon64, range from 1.6% to 2.3% (σ ranges from 0.45 to 0.80). For the Athlon64 it is upto

92 Use of the LPM for ERI Evaluation

Table 4.16: Percentage average error (%AE) for Transferability and for using Averaged PP-

Coeffs

Transferability Error Avg. PPCoeffs

HF B3LYP HF B3LYP

%AE σ %AE σ %AE σ %AE σ

Opteron 4.3 0.6 5.9 1.7 3.1 1.2 3.3 2.8

Athlon64 8.8 2.1 7.0 2.8 6.7 2.6 4.7 2.1

EM64T 6.9 1.8 6.0 1.7 4.8 2.7 4.5 2.9

Pentium 4 7.6 1.8 7.4 3.1 4.7 2.9 4.7 2.6

Pentium M 5.0 0.6 4.3 0.4 3.6 0.8 3.2 1.2

G5 4.5 0.5 4.4 0.7 3.3 1.4 3.3 1.5

G5-XServe 4.3 0.6 3.6 0.5 3.3 1.4 2.8 1.4

4.7% (σ = 1.71). For B3LYP the fitting errors range from 1.5% to 2.9% (σ ranges from 0.9 to

2.0). The errors for a given processor across all systems range from 1.5% to 4.9% (σ ranges

from 0.6 to 2.3). Thus, overall, the self-fitting errors obtained across all processors have an

upper bound error of approximately 5%.

We now consider Table 4.16. This table gives both the ‘Transferability Error’ and errors

obtained using averaged PPCoeffs (‘Avg. PPCoeffs’) for a given processor. Transferability

errors are used to assess how well the PPCoeffs from one system fit cycle counts for another.

The use of averaged PPCoeffs indicates how well fits are on average across all systems. Both

errors are presented in terms of the %AE and standard deviation. Results for ‘Transferability

Error’ do not include the self-error when the %AE was calculated.

For Table 4.16 the errors range from 4.3% to 8.8% (σ ranging from 0.5 to 2.1). For

B3LYP, the range is 4.3% to 7.0% (σ ranging from 0.5 to 2.8). These ranges indicate the LPM

has increased errors, compared to self-fits, arising from the use of PPCoeffs from one system

to another.

If we now consider the %AE errors for using averaged PPCoeffs, these show that for HF,

there is an error range between 3.1% to 6.7% (σ ranging from 0.8 to 1.2) and B3LYP has an

error range between 2.8% to 4.7% (σ ranging from 1.2 to 2.9). These results indicates that

the use of average PPCoeffs gives better results for assessing other types of calculations than a

single PPCoeff being used to fit another system and basis set, for the same type of processor.

To summarize, the self-fitting errors and %AE results presented in this section for the

HF and B3LYP methods show that the LPM can be considered to be reasonably accurate in

modelling molecular systems using both HF and B3LYP methods as a function of instruction

counts and L2 miss counts, across a range a processors and benchmark systems. It has been

shown that the LPM can obtain good cycle count fits of between 4.3% and 8.8% for the HF

method and between 3.1% to 6.7% for the B3LYP method.

§4.6 LPM and Functional Simulation 93

Figure 4.4: Plots for instruction counts obtained from simulation and hardware performance

counters for k300a-04/6-31G*. Simulation results were obtained using Valgrind/Callgrind.

4.6 PerformanceEstimation using Functional Cache Sim-

ulation and the LPM

In Section 4.5 it was shown that the LPM can be used to obtain cycle counts, if the instruction

count, total L2 misses and PPCoeffs are known. In this section we combine the PPCoeffs ob-

tained by fitting measured results on existing architectures (from Section 4.5) with instruction

counts and L2 misses obtained from functional cache simulation, in order to predict perfor-

mance as a function of cache design.

To perform the functional cache simulation the Callgrind tool, which is part of the Val-

grind program supervision framework, is used to perform execution driven functional cache

simulation. We consider all six hardware architecture types, but present results only for the

k300a-04 benchmark with the 6-31G* basis set and the HF method.

Prior to exploring the effect of architectural changes on performance, it is important to

validate the Callgrind functional cache simulator. This is done in section 4.6.1 where the in-

struction count and cache misses obtained from functional cache simulation are compared with

those from hardware performance counters. Following this, we perform a detailed parametric

study to identify parameters of interest. This is performed using a cache configuration similar

to an AMD Opteron. A detailed study of the effects of changing these parameters across all

validated systems is presented in section 4.6.3.

94 Use of the LPM for ERI Evaluation

4.6.1 Validation of the Callgrind Functional Cache Simulator

In this sub-section we consider the validation of the Callgrind functional cache simulator.

This process is achieved by comparing event counts for instructions executed, total L1 and

L2 misses and cycles counts from both functional simulation and hardware performance coun-

ters. Using a series of plots, each of these counts is examined to see how well simulation can

reproduce observed event counts for the k300a-03 system, using a 6-31G* basis set.

The cache configurations for the simulations presented here are given in Table 2.1, Chapter

2. For the simulations, the L1 organisation of the Opteron and Athlon64 are identical. This

is also the case for the EM64T and Pentium 4 processors. The NetBurst architectures use a

trace cache for instructions, which Callgrind does not explicitly simulate and hence instruction

counts could be different.

Figure 4.4 presents plots for instruction count across all the six processors obtained from

simulation and hardware performance counters. In the figure, data from simulation (colored

red) and those obtained using hardware performance counters (colored green) are presented in

the same sub-plot. The x-axis denotes the PRISM blocking factor used (in Kilowords), the

y-axis uses a log scale. The AMD processors (Opteron, Athlon64) are grouped in column 1,

the two Intel NetBurst processors (EM64T, Pentium 4) are in column 2, the Pentium M and

PowerPC-like cache configurations are in column 3.

Hardware instruction counts for the Opteron and Athlon64 are similar to those obtained

from simulation. The EM64T and Pentium 4 simulation results are remarkably similar to

those obtained from hardware performance counters. In the case of the Pentium M, results

reported from simulation are slightly lower than those obtained from hardware counters. From

the figure it is seen that for all six processors, the instruction count obtained from simulation

are near identical to those obtained using hardware performance counters.

The LPM ignores L1 misses but for completeness, results for the total L1 misses obtained

from simulation and hardware counters are presented in Figure 4.5. For the AMD processors,

there is an initial divergence at 2Kw, but simulation is in agreement with measured L1 miss

count after 32Kw. For the Intel NetBurst processors, the overall trends are followed but the

values from the simulations are less than those obtained using hardware counters. Pentium M

results show an initial discrepancy in L1 miss counts, but good agreement is achieved there-

after. Values for the PowerPC shows that the simulation is not able to reproduce either the

trends or the absolute counts. The L1 miss counts for the Opteron, Athlon64 and Pentium M

processors appear to be satisfactory. L1 miss trends for the EM64T and Pentium 4 are offset

by an almost constant amount from measured L1 misses. For the PowerPC, overall L1 miss

trends are not reproduced correctly. Discrepancies between simulation and experiment arise as

a result of the simplified cache implementation in Callgrind for the L1 cache.

§4.6 LPM and Functional Simulation 95

Figure 4.5: Plots for total L1 Misses obtained from simulation and hardware performance

counters for k300a-04/6-31G*. Simulation results were obtained using Valgrind/Callgrind.

Figure 4.6: Plots for total L2 Misses obtained from simulation and hardware performance

counters for k300a-04/6-31G*. Simulation results were obtained using Valgrind/Callgrind.

96 Use of the LPM for ERI Evaluation

Figure 4.7: Plots for Cycle counts obtained from simulation and hardware performance coun-

ters for k300a-04/6-31G*. Simulation results were obtained using Valgrind/Callgrind.

The total L2 misses obtained from simulation and hardware performance counters are

shown in Figure 4.6. For the Opteron, values produced by simulation are slightly greater

than those obtained from hardware counters, yet simulation is able to closely reproduce the

trends observed in hardware counter results. In the case of the Athlon64, a large increase is

seen before the L2 miss curve levels off at 256Kw and beyond. Simulation is unable to capture

the initial slope from 2Kw to 32Kw and the increase from 32Kw to 256Kw. For the EM64T,

simulation over-estimates L2 misses upto 64Kw by two orders of magnitude, yet it is able to

reproduce the overall trend. For the Pentium 4, simulation results are well correlated with

measured values. In the case of the Pentium M there is good agreement between simulation

and hardware counter values. For the PowerPC, simulation is unable to reproduce the over-

all trend upto 64Kw. After this point a steep jump in simulated L2 misses arises and this is

not in agreement with measured hardware counter values. In summary, simulation is able to

reproduce the L2 misses satisfactorily for the Opteron, Pentium 4 and Pentium M systems.

The final validation plot is for cycle counts obtained from simulation and hardware coun-

ters. In Figure 4.7 for each processor there is an additional curve which corresponds to mea-

sured hardware counter cycle counts and is colored blue. The ‘H/W Counters’ curve cor-

responds to hardware performance counter results and the ‘Sim. + LPM’ curve corresponds

to the use of PPCoeffs and the LPM (Equation 4.1) for each platform using ICount , L1Misses,

L2Misses which were obtained from Callgrind.

For the Opteron, simulation results are slightly larger than those obtained using hardware

counters. The use of the LPM and PPCoeffs with values for instruction count, total L1 and

L2 misses from simulation produces a result which is in very good agreement with hardware

§4.6 LPM and Functional Simulation 97

Table 4.17: Valgrind/Callgrind hardware cache configuration

L1 ICache L1 DCache L2 Unified

Assoc LineSz Size Assoc LineSz Size Assoc LineSz Size

(Ways) (Bytes) (Kb) (Ways) (Bytes) (Kb) (Ways) (Bytes) (MB)

Opteron 2 64 64 2 64 64 8 64 1

Pentium M 8 64 32 8 64 32 8 64 1

Pentium 4 8 32 16 8 64 16 8 64 2

counter results. On the Athlon64, the LPM results are in good agreement upto 256Kw, after

which it varies marginally from hardware counter results. There is good agreement for ‘Sim.

+ LPM’ results for the EM64T and Pentium 4 systems. Excellent agreement is found for cycle

counts for the Pentium M. The LPM using instructions and L2 misses from simulation is able

to reproduce cycle times rather well, even though the L2 misses produced by simulation had

large deviations from measured values. One possible cause of this discrepancy could be due to

prefetch instructions not being modelled by Callgrind.

In summary, functional cache simulation using Callgrind is able to obtain accurate in-

struction counts and can produce reasonable to good reproductions of the L2 misses for most

systems. L1 misses are not accurately reproduced. These validation results show that Callgrind

results for instruction count and L2 misses can be used for the LPM, as simulation is able to

reproduce overall trends for both. Caution is to be taken as to which systems these can be ap-

plied to, as prior validation is required. For the six processor types used the Opteron, Pentium

4 and Pentium M cache configurations give reasonable results.

4.6.2 A Parametric Cache Variation Study of PRISM’s performance

In the previous section, it was shown that functional cache simulation in conjunction with the

LPM could reproduce cycle counts with reasonable accuracy. It was also seen that the overall

trends for L2 misses were reproduced well for the Opteron, Pentium 4 and Pentium M like

cache configurations. Use of fitted PPCoeffs with counts from validated functional cache

simulation enables performance predictions to be made.

The aim of this section is to perform a series of parametric cache variation studies using

an AMD Opteron like cache configuration, in order to identify cache parameters of interest.

Specifically, the effects of varying cache associativity, cache linesize and total cache size for

the k300a-04 system using a 6-31G* basis set are considered.

In depth results for the Opteron are presented in the following order (a) variation of cache

associativity, (b) variation of cache linesize, (c) variation of total cache size and (d) breakdown

of misses for the variation of linesize and total size.

98 Use of the LPM for ERI Evaluation

Table 4.18: Effect of variation in cache associativity of the L1ICache, L1DCache and

L2Unified caches, on the LPM predicted cycle counts for an AMD Opteron like cache hi-

erarchy and using k300a-04 with a 6-31G* basis set. All other cache parameters are held

constant as given in Table 4.17. Cycle counts are x1010.

L1ICache L2DCache L2Unified

Blocking Factor (Kw) Blocking Factor (Kw) Blocking Factor (Kw)
Way 2 32 64 256 512 Way 2 32 64 256 512 Way 2 32 64 256 512

1 4.1 2.6 2.5 4.4 7.3 1 4.1 2.6 2.5 4.4 7.3 1 4.5 3.4 3.3 5.2 7.7

2 4.1 2.6 2.5 4.4 7.3 2 4.1 2.6 2.5 4.4 7.3 2 4.3 2.8 2.7 4.4 7.3
8 4.1 2.6 2.5 4.4 7.3 8 4.1 2.6 2.5 4.4 7.3 8 4.1 2.6 2.5 4.4 7.3

16 4.1 2.6 2.5 4.4 7.3 16 4.1 2.6 2.5 4.4 7.3 16 4.1 2.6 2.4 4.4 7.4
32 4.1 2.6 2.5 4.4 7.3 32 4.1 2.6 2.5 4.4 7.3 32 4.1 2.6 2.4 4.5 7.4

128 4.1 2.6 2.5 4.4 7.3 128 4.1 2.6 2.5 4.4 7.3 128 4.1 2.6 2.4 4.5 7.4
256 4.1 2.6 2.5 4.4 7.3 256 4.1 2.6 2.5 4.4 7.3 256 4.1 2.6 2.4 4.5 7.4

4.6.2.1 Effect of Variation of Opteron Cache Associativity

Cycle counts obtained from the LPM for the variation of the Opteron’s cache associativity, as

a function of the cache blocking factor are presented in Table 4.18. There are three sub-tables

which correspond to varying the associativity of the L1 instruction cache (L1ICache), the L1

data cache (L1DCache) and the L2 unified data and instruction cache (L2Unified).

Associativity is varied from a 1-way set-associate cache to 256-way. Though the LPM

does not model the L1 cache, by virtue of ignoring β , small variations in instruction count

were observed when both the L1 instruction and data caches were changed.

For the L1ICache and L2DCache, variation of cache associativity across all blocking fac-

tors does not give any improvements.

For the L2 cache if we consider the 64Kw result, there is a 4% improvement over the

base 8-way set-associative configuration, when the associativity is increased to 16 ways. This

indicates there are conflict misses being eliminated in the L2 cache, as a result of increased

set-associativity.

4.6.2.2 Effect of Variation of Opteron Cache Linesize

Cycle counts obtained from the LPM for the variation of cache linesize, as a function of cache

blocking, are presented in Table 4.19.

There are again three sub-tables corresponding to varying the L1ICache, L1DCache and

L2Unified caches. Linesize is varied from 32 to 1024 bytes.

There is no improvement when linesize for the L1 instruction cache is increased. The L1

data cache obtains a 8% increase over the base configuration of 64 bytes if the linesize is in-

creased to 256 bytes for the 64Kw blocking factor. For the L2 cache, this is a 4% improvement

if linesize is increased to 128 bytes for the 64Kw blocking factor. The lowest cycle count is

obtained for a 1024-byte L2 cacheline using a 256Kw blocking factor.

The lowest cycle counts obtained for increasing linesize, on comparing results for the L1

§4.6 LPM and Functional Simulation 99

Table 4.19: Effect of variation in cache linesize for the L1 ICache, DCache and L2 unified

caches, on the LPM predicted cycle counts for an AMD Opteron like cache hierarchy and

using k300a-04 with a 6-31G* basis set. All other cache parameters are held constant as given

in Table 4.17. Cycle counts are x1010.

L1ICache L2DCache L2Unified

Blocking Factor (Kw) Blocking Factor (Kw) Blocking Factor (Kw)
Bytes 2 32 64 256 512 Way 2 32 64 256 512 Way 2 32 64 256 512

32 4.1 2.6 2.5 4.4 7.3 32 4.1 2.6 2.5 4.4 7.3 32 4.1 2.6 2.4 4.1 7.1

64 4.1 2.6 2.5 4.4 7.3 64 4.1 2.6 2.5 4.4 7.3 64 4.1 2.6 2.5 4.4 7.3
128 4.1 2.6 2.5 4.4 7.3 128 4.1 2.6 2.4 3.3 4.7 128 4.1 2.6 2.4 3.4 4.8
256 4.1 2.6 2.5 4.4 7.3 256 4.1 2.5 2.3 2.7 3.4 256 4.1 2.6 2.4 2.8 3.5
512 4.1 2.6 2.5 4.4 7.3 512 4.1 2.5 2.3 2.4 2.8 512 4.1 2.5 2.4 2.5 2.8

1024 4.1 2.6 2.5 4.4 7.3 1024 4.1 2.5 2.3 2.3 2.5 1024 4.1 2.5 2.4 2.3 2.4

Table 4.20: Variation of L1, L2 cache size for the Opteron using k300a-04/6-31G*

L1DCache (Cycle Count [x 1010])

Blocking Factor (Kw)

KiloBytes 2 32 64 256 512 1024

16 4.1 2.6 2.5 4.4 7.3 8.0

32 4.1 2.6 2.5 4.4 7.3 8.0

64 4.1 2.6 2.5 4.4 7.3 8.0

128 4.1 2.6 2.5 4.4 7.3 8.0

256 4.1 2.6 2.5 4.4 7.3 8.0

512 4.1 2.6 2.5 4.4 7.2 8.0

L2Unified (Cycle Count [x 1010])

Blocking Factor (Kw)

MB 2 32 64 256 512 1024

0.5 4.3 3.0 4.0 7.9 8.1 8.2

1 4.1 2.6 2.5 4.4 7.3 8.0

2 4.0 2.5 2.3 2.7 3.9 6.7

4 4.0 2.5 2.2 2.1 2.4 3.5

8 4.0 2.5 2.2 2.1 2.0 2.2

16 4.0 2.5 2.2 2.1 2.0 2.0

and L2 caches, is 2.3 x 1010 cycles. This is achieved either by increasing the L1DCache linesize

from 64 to 128 bytes or increasing the L2Unified linesize from 64 to 1024 bytes.

4.6.2.3 Effect of Variation of the Total Data Cache Size for the Opteron

Cycle counts obtained from the LPM for the variation of total data cache size, as a function of

cache blocking, are presented in Table 4.20, for both the L1 and L2 data caches. Varying the

size of the L1 instruction cache did not lead to any significant variation in total cycle time and

hence this data is not shown.

100 Use of the LPM for ERI Evaluation

Table 4.20 is divided into two sections. The first corresponds to cycle counts obtained for

the variation of the L1DCache size. The second section corresponds to cycle counts obtained

for the variation of the L2Unifed cache size. Blocking factors are given as columns.

The total size of the L1 data cache was varied from 16 Kb to 512 Kb and the L2 unified

cache size was varied from 0.5 MB to 16 MB. The default configuration for the Opteron’s L1

data cache is 64 Kb. Increasing the size of the L1 data cache does not affect execution time.

The default configuration for the L2 data cache is 1MB. For a 64Kw blocking factor, there

is a 12% improvement, if the total cache size is increased to 4MB. The lowest cycle count,

however, achieved from increasing the L2 size is 2.0 x 1010 cycles for an 8MB cache using a

512Kw blocking factor. This is a 20% improvement over the base case.

4.6.2.4 Breakdown of Cache Misses for the Variation of Linesize and Total Size

In previous sub-sections gross trends arising from individual variations of cache associativity,

linesize and total size were presented. It was identified that linesize and total L2 size variations

affect PRISM’s performance. In this sub-section we study the combined effect of changes in

L1 linesize and L2 total size on execution time.

Various event counts obtained from Callgrind for an AMD Opteron processor are given

in Table 4.21. This table is divided into two sections. The first section presents data for

the variation of L1 and L2 linesize. The second section presents data for the variation of

the L2 cache. On the left hand side of each section, break-downs are given that correspond

to instruction count (ICount), instruction cache misses (I$Misses), L1 data cache read and

write misses (D$ReadMiss, D$WriteMiss), instructions which missed in L1 that were for-

warded to the L2 cache (L2InstrMiss), L2 data cache read and write misses (L2DataReadMiss,

L2DataWriteMiss). Towards the end of each section, the aggregate L1 and L2 misses are given

as the ‘Total L1 Misses’ and ‘Total L2 Misses’ rows. Using the ICount, ‘Total L2 Misses’ and

PPCoeffs for the Opteron (from Table 4.13) the values for ‘Cycle Count (LPM)’ are computed

using the LPM. Columns in each sub-table correspond to the cache parameter (Linesize or

total size) which were varied.

The first sub-table in Table 4.21 presents cycle counts as a function of varying the linesize

for the L1 and L2 caches. The ‘Original’ column gives detailed breakdowns obtained for a

base configuration of the Opteron like cache for a 64Kw blocking factor. From the sub-table,

it can be seen that the instruction counts (ICount) and instruction cache misses (I$Misses) are

constant, indicating variation of linesize does not affect the total instruction count. Variation

in the L1 linesize (1024 bytes) causes D$ReadMiss, D$WriteMiss-es to be reduced. This is to

be expected, as cachelines now store more data and this increases the likelihood of references

being satisfied from the L1 cache. Use of a 1024 byte cacheline in the L1 cache leads to a

§4.6 LPM and Functional Simulation 101

Table 4.21: Variation of L1 and L2 Linesizes and L2 Total size for the AMD Opteron, using

k300a-04/6-31G*

Original L1 Linesize L2 Linesize

Line size 64Bytes 1024Bytes 1024Bytes

Kw 64 64 64

ICount 3.3E+10 3.3E+10 3.3E+10

I$Misses 8.9E+06 8.9E+06 8.9E+06

D$ReadMiss 3.7E+08 2.0E+08 3.7E+08

D$WriteMiss 1.8E+08 3.2E+07 1.8E+08

L2InstrMiss 7.8E+05 1.1E+05 1.3E+06

L2DataReadMiss 7.4E+06 1.4E+06 5.7E+06

L2DataWriteMiss 7.0E+06 5.5E+05 3.2E+06

Total L1 Misses 5.5E+08 2.3E+08 5.5E+08

Total L2 Misses 1.4E+07 2.0E+06 8.9E+06

Cycle Count (LPM) 2.5E+10 2.3E+10 2.4E+10

L2 Size

Cache Size 1MB 4MB 16MB

Kw 64 256 1024

ICount 3.3E+10 3.0E+10 2.9E+10

I$Misses 8.9E+06 2.8E+06 1.4E+06

D$ReadMiss 3.7E+08 5.8E+08 7.3E+08

D$WriteMiss 1.8E+08 1.8E+08 1.9E+08

L2InstrMiss 7.8E+05 3.2E+04 1.2E+04

L2DataReadMiss 7.4E+06 1.9E+05 4.1E+04

L2DataWriteMiss 7.0E+06 5.2E+06 5.2E+06

Total L1 Misses 5.5E+08 7.6E+08 9.2E+08

Total L2 Misses 1.4E+07 5.3E+06 5.2E+06

Cycle Count (LPM) 2.5E+10 2.3E+10 2.2E+10

I$ – Instruction Cache D$ – Data Cache

ICount – Instruction Count ReadMiss – Read Misses

WriteMiss – Write Misses

102 Use of the LPM for ERI Evaluation

reduction in the L2 instruction cache misses (L2InstrMiss). Increasing the L2 linesize results

in increased L2 instruction misses. L2 data read and write misses are reduced, compared to the

‘Original’ configuration.

The LPM uses L2 miss information for its cycle count estimation. On comparing the

respective L2 data cache read miss and write miss counts for the first sub-table, it is found that

an L1 linesize of 1024 bytes results in the lowest L2 data read miss count (amongst the three

columns), which in turn corresponds to a lower L1 data read miss count. The use of a 1024

byte L2 cacheline results in an overall lower L2 data write miss rate. Increasing the L1 linesize

leads to a reduction in the L1 data cache write misses and also results in lower L2 data read

misses. An increase of the L2 linesize results in a reduction of L2 data write misses.

The second sub-table in Table 4.21 presents data for a 1MB, 4MB and 16MB L2 cache

using a 64Kw, 256Kw and 1024Kw blocking factors respectively.

Results for a 1MB L2 cache with a 64Kw blocking factor are the baseline used to compare

to the 4MB and 16MB caches. Instruction counts are relatively stable across the three columns.

The I$Misses reduce with an increase in L2 size. The L1 data cache read misses increase when

cache size is increased. L1 data cache write misses are constant. The L2 instruction misses

reduce by an order of magnitude. L2 data read misses reduce by two orders of magnitude as the

cache size is increased, L2 data write misses are marginally reduced. The rows for total L1 and

L2 misses show that aggregate L1 misses have increased and aggregate L2 misses decreased as

the L2 size is increased. This behaviour arises from having a larger working-set being present

in the L2 cache and as was pointed out in section 4.4.2, PRISM’s lack of L1 cache blocking

results in much larger L1 misses. Overall, the results predict that use of a 16MB cache will

lead to a 12% reduction in total execution time.

4.6.2.5 Break-down Summary

Individual break downs for L1, L2 linesize variation and L2 total size variation show that (a)

increasing the L1 linesize does improve performance and that (b) increasing the total cache

size for the L2 also improves performance. For PRISM, increasing the L1 data cache linesize

is beneficial, as it leads to a reduction in L1 data write misses, as well as L2 data read and write

misses. An increase in the L2 size results in increased L2 data read misses, and in a greater

reduction of the L2 data read misses compared to write misses.

4.6.3 Variation of L1, L2 Linesize and Total Size for Three Hard-

ware Architectures

In previous sections the use of the LPM with instruction counts and cache misses obtained from

functional cache simulation was validated. A cache parameter variation study of an Opteron

§4.6 LPM and Functional Simulation 103

like cache indicated the relative importance of L1, L2 read and write misses. The results

suggest that the L1 and L2 linesize as well as total L2 size most strongly influenced total

observed cycle count on the Opteron. In this section, the variation of L1, L2 linesize and total

L2 size for the Opteron, Pentium M and Pentium 4 processors as a function of cache blocking

is carried out for the k300a-04 system using a 6-31G* basis set. The aim is to assess the

impact of these changes across three different hardware architectures types.

The effect of varying the L1 linesize as a function of cache blocking on execution time

using the k300a-04 system and a 6-31G* basis set is shown graphically in Figure 4.8. The

figure has three plots in a vertical column, which correspond to the Opteron, Pentium M and

Pentium 4 systems. Data for the Opteron, previously presented as tables, are now plotted. The

plots represent cycle count as a function of the blocking factor and linesize. Each point in the

plot is color coded to indicate its relative weight with respect to other points. A cool color

(hues of dark blue) represent regions of low cycle count, whereas a warm color (hues of deep

orange) represents regions of high cycle counts. Distinct regions are then segregated by a series

of contour lines. A color strip on top of the graph gives the color mapping between the lowest

and highest cycle count values. In the plots, the x-axis denotes increasing PRISM blocking

factors and the y-axis denotes increasing linesize (from 32 bytes to 1024 bytes). Each color

coded pixel for cycle count was log10 scale encoded prior to plotting.

Distinct contour lines are formed for cycle count values (x1010) ranging from 10.37 to

10.86 for the Opteron, 10.50 to 10.74 for the Pentium M and 10.65 to 11.04 for the Pentium

4. For the Opteron, its L1 data cache linesize is 64 bytes. The location of this value for the

blocking factor that gave the lowest cycle count (i.e 32Kw), is colored in a blue hue and is

surrounded by the 10.44 contour line. Increasing the linesize implies moving upwards along

the y-axis. As we move towards a linesize of 1024 bytes, each location of y-axis location for

32Kw is bounded by the 10.44 contour line indicating it is still a blue hue i.e. still a low cycle

count region. The lowest cycle counts however occur for the 10.32 contour line. This is visible

at the (64Kw, 512Kw) and (64Kw, 1024Kw).

For the Pentium M system, a 10.53 contour line demarcates (64Kw, 64 bytes) the default

cache blocking factor. Increasing the linesize for this blocking factor results in low cycles

counts. The lowest cycle count are obtained in the (256Kw, 512 bytes) and (1024Kw, 1024

bytes) region.

The Pentium 4 shows (64Kw, 64 bytes) as a low cycle count region and increasing the

linesize reduces cycle counts. The lowest cycle counts are obtained at (64Kw, 512 bytes) and

(64Kw, 1024 bytes). These are surrounded by a 10.65 contour line.

From the above, increasing L1 linesize causes cycle counts to vary very differently for all

three systems.

Figure 4.9, presents similar plots for L2 linesize variation. The plot for the Opteron shows

104 Use of the LPM for ERI Evaluation

Figure 4.8: Valgrind/Callgrind cycle count results for varying L1 linesize (Bytes) for k300a-

04/6-31G*.

L1 Linesize Variation

Opteron

Pentium M

Pentium 4

§4.6 LPM and Functional Simulation 105

Figure 4.9: Valgrind/Callgrind cycle count results for varying L2 linesize (Bytes) for k300a-

04/6-31G*. The magnitude of contour line values is x1010

L2 Linesize Variation

Opteron

Pentium M

Pentium 4

106 Use of the LPM for ERI Evaluation

Figure 4.10: Valgrind/Callgrind cycle count results for varying L2 size (MB) for k300a-04/6-

31G*.

L2 Size Variation

Opteron

Pentium M

Pentium 4

§4.6 LPM and Functional Simulation 107

that the lowest cycle counts are delineated by the 10.39 contour line. The lowest cycle counts

occur around (256Kw, 256 bytes) to (1024Kw, 1024 bytes).

For the Pentium M system, the default cache blocking factor if (64Kw, 64 bytes). Cycle

count here is a shallow minima and increasing the linesize results in minimums upto 1024

bytes. The lowest cycle counts, however, are located in regions marked by the 10.51 contour

line. This occurs in the region of (256Kw, 512 bytes).

The Pentium 4 system is very different from the previous two. The default is at (64Kw, 64

bytes). Increasing the linesize does ensure this is a minimal cycle count. The 10.73 contour

line bounds this upto 1024 bytes. The deepest hues of blue are between (256Kw, 512 bytes)

and (512Kw, 1024 bytes).

Variation of total L2 size as a function of cache blocking are shown in Figure 4.10. Super-

imposed on each of the plot is a red line denoting Gaussians’ default choice for cache blocking

– i.e for a 0.5MB L2 cache, it chooses a blocking factor of 32Kw; for a 1MB cache, it chooses

64Kw and so on.

For the Opteron, corresponding to every value in the y-axis, i.e. the total cache size, islands

of cycle count minima are to be found (10.38 and 10.45 contour lines). For the 1MB cache,

this occurs at 64Kw; for 2MB at 64Kw; for 4MB at 256Kw; for 8MB at 256Kw and 16MB for

1024Kw.

In two cases the 2MB and the 8MB case, Gaussian’s default blocking choice does result in

the lowest possible cycle count for a given cache size, for the k300a-04/6-31G* system. For

a 2MB cache, the LPM predicts a blocking factor of 64 Kw would perform better than the

default choice of 128 Kw. The LPM predicts a 256Kw blocking factor would perform better

for an 8MB cache than 512Kw. Similar trends are observed for the Pentium M and Pentium 4.

4.6.4 Summary: Functional Cache Simulation and the LPM

In this section the LPM has been used in conjunction with functional cache simulation for six

microprocessor platforms (cf. Chapter 2, Table 2.1). The k300a-04/6-31G* system was used

along with a variety of cache blocking factors for PRISM. A comparison between simulation

and hardware performance counter results were made and a parametric cache variation study

was performed.

The comparison of results obtained from simulation and hardware performance counters

found that Instruction counts were in good agreement for all platforms. L1 misses for the Op-

teron, Athlon64 and Pentium M showed deviations for PRISM blocking factors less than 32Kw

but were in agreement there after. In the case of the Pentium 4 and EM64T configurations the

general trend was followed albeit there was a constant offset between simulation and hardware

performance counters. L1 misses for the PowerPC were not in agreement. Simulation results

108 Use of the LPM for ERI Evaluation

for L2 misses from the Opteron, Pentium 4 and Pentium M configurations followed the same

trends as hardware performance counters. Although the EM64T simulation did follow the gen-

eral trend of values from hardware performance counters, there was a large offset between the

two curves. L2 misses for the PowerPC were not in agreement. On comparing cycle counts,

it was found that the LPM results were in good agreement with hardware performance counter

results.

Results for a parametric cache variation study using the Opteron, Pentium 4 and Pentium

M cache configurations were presented. In-depth results for the Opteron were first discussed

before presenting contour plots of the cache variation study for the other two configurations.

From the in-depth results it was seen that increasing the L1 linesize and total L2 size reduced

the total cycle count, this was attributed to reductions in conflict misses in the L1 data cache

and a greater reduction of read misses than write misses for the L2 cache. Contour plots for the

three processors showed that Gaussian’s default blocking factor works for k300a-04/6-31G*

for all but two cases, the 4MB and 8MB L2 cache respectively.

4.7 Related Work

Ramdas et. al [220, 221] perform qualitative analysis and assess the prospects of mapping an

implementation of the Rys ERI method [73, 161] onto FPGAs. They present a quantitative

analysis of the ‘bootstrap’ phase of Rys ERI evaluation, which corresponds to ‘Generate Sig-

nificant Shell-Pair List’ for the PRISM algorithm (cf. Algorithm 2, page 63). A discrete event

simulation is used to determine the impact of arithmetic units (adders and multipliers) in the

FPGA. In comparison this chapter has considered the PRISM ERI algorithm, its ERI batching

behaviour, cache blocking effects on observed performance.

The LPM is lightweight in obtaining application specific performance characteristics. PP-

Coeffs are obtained using hardware counter data which can then be used by either trace based

or execution based simulators. The following is a review of related work covering the use

of analytic modelling, synthetic benchmarks and simulation to aid in modelling application

performance.

Very recently, Björn [84] developed a cycle-approximate instruction set simulation method-

ology which uses prior training and regression based performance prediction for a series of em-

bedded application benchmarks. The model requires instruction and memory access counter

information, which are fitted to observed cycle counts obtained from an ARM v5 cycle accurate

simulator. The prediction phase uses functional simulation to obtain instruction and memory

access counters, which are then used to obtain fits regression coefficients obtained from prior

training runs. Cycle counts are found to be in error by 5%. Björn’s general approach is very

similar to that taken here in obtaining least-squares fits for the LPM. Unlike Björn, we have fo-

§4.7 Related Work 109

cused on ERI evaluation and obtained fits across a range of hardware platforms and benchmark

molecular systems. The LPM’s results vary from 3.3% to 7.9%.

Other related approaches to application modelling are covered below. Most of these ap-

proaches are heavy-weight in comparison to the LPM, with respect to the time taken to obtain

results. The following review is biased towards related work which considered performance

modelling of scientific application codes.

Using a sparse set of trace based cache simulations, Gluhovsky and O’Krafka [122] build

a multivariate model of multiple cache miss rate components. This can then be used to ex-

trapolate for other hypothetical system configurations. This is used in work carried out by

Sharapov et al. [242]. They provide a methodology for characterising performance on very

large parallel systems. They combine queuing theory models and cycle accurate simulation

for estimating parallel performance using trace driven simulation. Traces are collected from a

full machine simulator and bus traces are obtained from real hardware. These are then used

to drive a trace-driven simulation from which parameters for an analytic model are created to

project performance estimates.

Cheveresan et al. [53] perform detailed characterisation of scientific and commercial ap-

plications. For their study, traces are generated using an ISA simulator which allows for the

capture of architectural traps, direct memory accesses and MMU activity. In their analysis

they show that complete scientific codes (rather than kernels) show similar characteristics to

commercial applications.

Song et al. [252] create an analytic model to quantitatively predict L2 cache misses on a

multi-core chip. They use stack processing and circular sequence profiles to analyze a trace

the L2 cache accesses. The model can predict L2 misses for various multi-core architectures

using previously obtained traces.

Marathe et al. [171] create a framework for extracting partial access memory traces using

dynamic binary re-writing. These traces are compressed using various algorithms tailored for

lossless capturing instruction stream traces. These are then used for offline memory hierarchy

simulations, which allow them to correlate reference statistics for cache eviction information

and streaming behaviour to locations in code that cause this.

Strohmaier and Shan [260] create a synthetic performance probe called APEX-Map, which

measures the performance of global data movement. This is characterised as three parameters

– the global datasize ‘M’, temporal locality ‘α’ and spatial locality ‘L’. APEX-Map generates

a generic address stream based on non-uniform, random access to global data. From the results

obtained, it is possible to generate a multi-dimensional performance surface allowing for the

study of spatial and temporal effects.

Marin and Mellor-Crummey [172] create and evaluate a toolkit for semi-automatic mod-

elling of static and dynamic components of an application’s characteristics by capturing mem-

110 Use of the LPM for ERI Evaluation

ory access traces. This stream is analyzed to generate platform independent characteristics of

the scientific code being studied. This can then be used to extrapolate performance and other

platforms of interest.

Grabelny et al. [104] create a framework for performance prediction based on discrete

event simulation. They model systems of interest into individual components i.e. O/S, network

device, processor etc. In a two-phased approach, they characterise applications of interest by

capturing memory access streams and then replay these using the discrete event simulation

framework to derive performance estimates.

Snavely et al. [1] use profile convolving a trace based method which involves the creation

of a machine profile and an application profile. Machine profiles describe the behavior of loads

and stores for the given processor, while the application profile is a runtime utility which cap-

tures and statistically records all memory references. Convolving involves creating a mapping

of the machine signature and application profile; this is then fed to an interconnect simulator

to create traces that aids in predicting performance.

Ahn and Vetter [7] describe multivariate statistical techniques to analyse hardware perfor-

mance data from scientific codes using clustering, factor analysis and principal components

analysis.

Epshteyn et al. [78] use active learning models along with empirical models to guide gen-

eration of efficient BLAS libraries.

Vera et al. [290] use cache miss equations to obtain an analytical description of cache

memory behavior of loop based codes. These are used at compile time to determine near

optimal cache layouts for data and code.

Andrade et al. [11] extend probabilistic miss equations using analytical modelling to model

cache behavior of indirections in memory access streams. This approach works if accesses

are uniformly distributed in the array of interest. The goal of this work was to create better

analytical models to aid compiler optimizations.

Mathis and Keryson [175] perform analytical modelling of an unstructured mesh applica-

tion. They parametrise system performance and application specific input parameters in terms

of latency, bandwidth and processing rate. Using a detailed analytic model they then make

performance and scalability estimates of the unstructured mesh code.

4.8 Summary, Conclusions and Future Work

A linear performance model was proposed to model the measured execution time for ERI

evaluation. PPCoeffs (α , γ) were obtained for a set of benchmark systems. The α PPCoeff

refers to how well the code uses the superscalar resources of the processor, γ corresponds to

the average cost in cycles of an L2 miss.

§4.8 Summary, Conclusions and Future Work 111

In this chapter, the LPM was shown to produce good fits for measured cycle counts ob-

tained using hardware performance counters. Using a set of test molecular systems, it was

found that the optimal blocking factor is both platform and computation specific.

Evaluation of the LPM in conjunction with functional cache simulation shows it is able

to reproduce the trends and cycle counts as a function of varying the cache blocking factor.

A parametric cache variation study of the PRISM algorithm was performed and this showed

that L1 linesize and total L2 size impact on the algorithm’s performance. Detailed breakdowns

of read and write misses shows that PRISM’s cache performance is limited by read misses

generated during ERI computation.

4.8.1 Future Work

For future work, it would be useful to test the use of the LPM at runtime to aid in searching for

optimal blocking factors. Data could be gathered for the first couple of SCF cycles, to obtain

PPCoeffs. Then the blocking factor could be varied by starting from the default and taking

measurements for an increased and decreased blocking factor. Once the blocking factor with

the lowest cycle count is measured, it can be used for the remaining SCF cycles.

Using the LPM, a training run could be performed to determine the optimal cache blocking

factor for any given hardware architecture, using a range of molecular systems. The results

could be weighted to determine if one cache blocking factor would be universally suitable on

this hardware architecture. This training would be carried out prior to deploying Gaussian for

production use.

Wallin et. al [294], point out in their paper that increased cacheline size aids scientific ap-

plications. The design of modern microprocessors is largely driven by commercial workloads,

most of which have poor data-locality and suffer from false-sharing, and thus the cacheline

sizes of microprocessors are usually 64 bytes. Wallin et. al advocate the judicious use of

prefetching to mimic the effect of larger cachelines.

Our cache variation experiments indicate that there is scope to reduce L1 and L2 read and

write misses. This can be achieved by incorporating a series of prefetch techniques [43, 278].

One possible way of achieving this is through the use of a prefetch queue [52, 88] in sections

of code which exhibit large misses. A prefetch queue is a FIFO queue which holds n address

that need to be prefetched. The queue is effective in handling memory references which are

interspersed throughout memory. The depth of the queue, which is determined experimentally,

is deep enough to ensure that once values are popped off the stack, the cacheline of interest is

cache resident.

Routines and specific lines in the source code which cause read and write misses have been

identified using the KCachegrind tool [140]. KCachegrind uses output from a Callgrind run to

112 Use of the LPM for ERI Evaluation

attribute cycle count costs to specific point in source. For future work, prefetch queues could

be inserted into specific routines, located using the KCachegrind GUI.

Chapter 5

A Study of Thread and Memory

Placement Effects using the Gaussian

Electronic Structure Code

5.1 Introduction

In this chapter, we study the effects of thread and memory placement and extend the LPM to ac-

count for NUMA effects, using selected application kernels from the Gaussian computational

chemistry code [86].

Shared memory, parallel platforms have increased in complexity evolving from UMA

(Uniform Memory Access) to NUMA (Non-Uniform Memory Access) machines. As seen

in Chapter 3, on NUMA architectures it is faster for a processor to access memory which is

local to it, than remote memory. Moreover individual processor chips have now evolved to-

wards multi-core designs [17] accelerating the shift towards asymmetry in memory latency and

bandwidth. Multicore processors from various vendors also have subtle differences in their

cache hierarchy, e.g. where some have shared L2 on-chip, others have dedicated L2 and shared

L3 on-chip [51, 287].

Widely used shared-memory programming models like Pthreads [64] and OpenMP [228],

as mentioned in Chapter 3, do not explicitly expose or handle underlying hardware asymme-

Work reported in this Chapter has been carried out in collaboration with Dr. Rui Yang (School

of Computer Science, ANU). Material from this chapter was published in: (a) Proceedings of IS-

PAN 2008, MEMORY AND THREAD PLACEMENT EFFECTS AS A FUNCTION OF CACHE USAGE: A

STUDY OF THE GAUSSIAN CHEMISTRY CODE ON THE SUNFIRE X4600 M2, http://doi.

ieeecomputersociety.org/10.1109/I-SPAN.2008.13; (b) (Accepted) Proceedings of

HPCC 2009, A SIMPLE PERFORMANCE MODEL FOR MULTI-THREADED APPLICATIONS EXECUT-

ING ON NON-UNIFORM MEMORY ACCESS COMPUTERS

113

114 Study of Thread and Memory Placement Effects in Gaussian

tries1. This in effect poses challenges in obtaining good performance for scientific codes on

NUMA platforms. The goal of this chapter is to study the effects of thread and memory place-

ment on the observed performance of the Gaussian code on a contemporary multi-core NUMA

platform, the SunFire X4600 M2 [265]. To facilitate this, a series of questions are addressed.

(a) What are the performance characteristics (in terms of latency and bandwidth) of the

SunFire X4600 M2?

(b) Cache blocking dramatically affects the performance of the Gaussian code. What are

the combined effects of cache blocking and placement on the overall runtime of the

Gaussian code? How does cache blocking affect scaling as the number of processors is

increased?

(c) Can the Linear Performance Model (LPM) be extended to handle NUMA systems? If

so, how accurate is it?

(d) Can page migration improve the performance of Gaussian calculations run on NUMA

systems?

This chapter is organized as follows: Section 5.2 discusses the architecture and perfor-

mance characteristics of the X4600 M2, in terms of latency and memory bandwidth for specific

thread and memory placements. Section 5.3 reviews the software environment, test molecular

systems and modifications made to Gaussian. Section 5.4 demonstrates how the Placement

Distribution Model (PDM) from Chapter 3 can be used to study the effects of thread and mem-

ory placement in Gaussian; Section 5.5 extends and evaluates the LPM to account for NUMA

effects; Section 5.6 uses page migration to affect data locality in Gaussian. In Section 5.7 we

review previous work in the area of performance modelling of NUMA systems. Section 5.8

concludes the chapter and discusses future work.

5.2 Performance Characteristics of the X4600 M2

5.2.1 Hardware Platform

The SunFire X4600 M2 platform [265] is a glueless cc-NUMA platform. There are eight

sockets populated with 2.6Ghz AMD Opteron 8218 dual-core processors each of which has a

64Kb L1 data cache and 64Kb L1 instruction cache and 1MB of dedicated L2 cache per core.

Each processor, shown in Figure 5.1, has all its Northbridge functionality implemented in on-

chip silicon [56] i.e. a System Request Interface (SRI), memory controller (MCT), DRAM

1Some parallel runtime environments perform rudimentary thread and memory placement either

using a first-touch approach for data or mapping logical threads to physical cores e.g the PGI runtime

for compiled binaries

§5.2 Performance Characteristics of the X4600 M2 115

����
Memory

DDR2
Memory

6.4 GB/s

6.4 GB/s

8 GB/s

8 GB/s

8 GB/s

Figure 5.1: Architecture of the Opteron 800 series processor [56]

controller (DCT). The cores (C0, C1) have access to local DDR2 memory via two 6.4GB/s

channels. C0 and C1’s cache line requests and coherency probes for cache lines (i.e. request

for the state of a cache line that is not ‘Owned’ by that core) are handled by the SRI. There

are separate command and data paths implemented as virtual channels [62] (i.e. requests and

probes are handled by the command pathways, whereas cache line transit via the data pathway).

In this chapter, the grouping of the processor and memory is referred to as a Node.

5.2.1.1 Coherent HyperTransport

The HyperTransport (HT) protocol [282] defines how I/O devices can be linked together in

a system, as well as linking processors. The Opteron implements a MOESI cache coherency

protocol called Coherent HyperTransport protocol (cHT) on top of HT. Each processor has

three duplex links, which operate at 8 Gb/s, and handle coherency (cHT) and HyperTransport

(HT) related traffic. These interprocessor and I/O links are managed by a crossbar, which

implements separate data and command paths. Cut-through routing of data-packets is used

[62]. Cache misses that occur at a given core, are forwarded to the SRI which performs a

table driven lookup to determine if the cache line is local to that node or is owned by another

processor. In case it is local a request is sent to the local MCT, which is responsible for

managing the DCT, in order to access pages from local DRAM. If the cache line is not local

to the processor, the SRI uses the crossbar’s routing table to determine which of the three cHT

links ought to be used to forward the request on. From this point, the cHT implementation of

the MOESI coherency protocol, overlayed on top of a snoopy bus based scheme [58], is used to

obtain cache lines. Cacheable requests by individual cores in cHT are unordered with respect

to each other in so it is the responsibility of each processor to maintain the program order of

116 Study of Thread and Memory Placement Effects in Gaussian

Figure 5.2: Architecture of the SunFire X4600 M2���
���

Node 0

Core 0A

Core 0BM
E
M
 0

Node 6

Core 6A

Core 6BM
E
M
 6

Node 1

Core 1A

Core 1BM
E
M
 1

Node 7

Core 7A

Core 7BM
E
M
 7

Node 5

Core 5A

Core 5BM
E
M
 5

Node 2

Core 2A

Core 2BM
E
M
 2

Node 4

Core 4A

Core 4BM
E
M
 4

Node 3

Core 3A

Core 3BM
E
M
 3

its requests (in order to ensure memory consistency).

5.2.1.2 Topology

Figure 5.2 is a schematic showing the connectivity between the eight nodes. It is referred to

as a twisted ladder topology. All nodes have 3 cHT links, in the case of Node 0 and Node 7,

two cHT links are used for coherence traffic, while the third link is dedicated to I/O. Using the

schematic, four classifications can be made to account for the NUMA nature of the platform,

Level 0 Access to local memory e.g. Core 0A accessing MEM0

Level 1 Access to non-local memory which is one hop away e.g. Core 7B accessing MEM5

Level 2 Access to non-local memory which is two hops away e.g. Core 2A accessing MEM7

Level 3 Access to non-local memory which is three hops away e.g. Core 7A accessing MEM0

5.2.2 Latency and Bandwidth Characteristics of the X4600 M2

Latency and bandwidth measurements for the X4600 M2 are presented in Table 5.1. These

were obtained using modified versions of the lmbench [184] and Stream [177, 178] triad

benchmarks.

Latency is measured in Cycles and was obtained using the random pointer chasing bench-

mark in lmbench. Bandwidth is measured in GB/s and was obtained using the Stream triad

benchmark run using an array size of 8 x 106 elements.

Columns in the table correspond to thread locations (i.e. the first core of any given node

e.g. Core 0A in Node 0) and the rows correspond to Memory locations (i.e. MEM0 to MEM7)

(see Figure 5.2). Each cell in the table is shaded, where the shading indicates thread and

§5.2 Performance Characteristics of the X4600 M2 117

Table 5.1: Latency and Bandwidths for specific memory and thread placement on the SunFire

X4600 M2, using lmbench and the Stream Triad benchmark. Progressively darker shades of

grey are used to indicate accesses that are in the same NUMA level.!

 Latency (Cycles) Bandwidth (GB/sec)

 Thread Location Thread Location

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 539 534 545 712 602 602 608 734 2.07 1.37 1.34 1.35 1.33 1.33 1.35 1.26

1 529 519 719 524 590 584 534 602 1.86 2.09 1.35 1.88 1.67 1.65 1.85 1.67

2 545 596 408 590 474 484 578 596 1.62 1.35 2.50 1.64 1.85 1.87 1.53 1.45

3 602 534 590 404 474 470 585 602 1.36 1.60 1.65 2.51 1.90 1.84 1.53 1.48

4 589 596 464 474 404 596 529 596 1.50 1.50 1.83 1.90 2.51 1.65 1.63 1.35

5 596 584 479 469 584 408 584 539 1.49 1.50 1.86 1.84 1.64 2.51 1.37 1.58

6 602 529 578 590 524 712 513 534 1.65 1.84 1.65 1.68 1.90 1.28 2.12 1.85 M
em
o
ry
 L
o
ca
ti
o
n

7 724 602 608 596 712 534 524 529 1.22 1.39 1.26 1.26 1.39 1.26 1.43 2.05

Table 5.2: Summary of Table 5.1 categorized by NUMA level. Units for ‘Average Latency’ is

in Cycles; ‘Average Bandwidth’ is GB/sec. Standard deviations (σ) for both are also given.

NUMA Average
σ

Average
σ

Level Latency Bandwidth

0 466 64.06 2.30 0.23

1 513 28.64 1.72 0.21

2 605 47.64 1.49 0.15

3 729 7.07 1.24 0.03

memory placements that have the same NUMA level. Progressively darker shades of grey are

used to indicate NUMA levels 0 to 3.

Latencies measured for node local access (the diagonal of the Table 5.1) show some vari-

ation in access time. This variation arises from the cHT protocol that requires all caches to

respond to other processor’s coherency messages [56]. As the number of hops increases, so

does the latency which peaks at 734 cycles for 3 hops. The ratio between the time to access re-

mote memory and the time to access local memory is termed the NUMA ratio. The maximum

NUMA ratio for the X4600 M2 is 734
404 = 1.8.

Similar trends for the bandwidth results are observed, with roughly constant values within

a NUMA level and bandwidth decreasing with increasing hop count. The highest measured

bandwidth results are obtained for node local access (Nodes 2 – 5: 2.5 Gb/sec), and the lowest

for Node 0 accessing MEM7.

Using data given in Table 5.1 the average latency and bandwidth results for each NUMA

level are presented in Table 5.2. As the NUMA level increases, average latency increases

from 466 Cycle to 729 Cycles (36% variation), with a standard deviation between 1 and 10%.

118 Study of Thread and Memory Placement Effects in Gaussian

Table 5.3: Highest and lowest Stream bandwidths (GB/s) for a single thread on the SunFire

X4600 M2

Highest Lowest
Ratio

Bandwidth Bandwidth

Copy 2.41 1.10 2.19

Scale 2.63 1.13 2.33

Add 2.75 1.21 2.27

Triad 2.51 1.22 2.06

Average bandwidth also gets worse with NUMA level, decreasing from 2.3 Gb/sec to 1.24

Gb/sec (46% variation), with a standard deviation of between 2 and 10%. These results show

that the observed latency and bandwidth measurements can be roughly categorized according

to NUMA levels, so the performance of a code executing on the X4600 M2 is expected to be

sensitive to thread and memory placement.

For the different components of the Stream benchmark, aggregated highest and lowest

bandwidths, are presented in Table 5.3. In all cases the highest bandwidths are obtained for

NUMA level 0 and the lowest for NUMA level 3. The Add benchmark obtains the best peak

of 2.75 Gb/s, while the Copy benchmark gives the lowest peak of 2.41 Gb/s. In terms of the

lowest bandwidth results Copy obtained just 1.10 Gb/sec. The ratio between best and worst

bandwidth ranges from 2.06 to 2.33. The operation which is most affected by thread and

memory placement is Scale.

5.3 Software Environment, Test molecular systems and

Modifications to Gaussian

In this section we review the software environment, page placement and migration APIs within

Solaris, the test molecular systems that were used, and the code modifications made to Gaus-

sian to enable thread and memory placement. As part of the discussion surrounding code

modifications, the memory allocation model used by Gaussian is also discussed.

5.3.1 Software Environment

All experiments performed in this Chapter used the SunFire X4600 M2 system, running the

Solaris 10 operating system. The Gaussian code was compiled using Sun Studio 11 compilers,

using the same compiler flags as the released code. Cycle counts were obtained using hardware

performance counters accessed via the Solaris libcpc interface [261].

§5.3 Software environment, Benchmark systems, Gaussian modifications 119

5.3.2 Page Placement and Migration

The Solaris 10 operating system provides a user-space applications API to affect page place-

ment and a means to affect page migration. The requisite page placement APIs were covered

in Chapter 3. Page migration is achieved by using the madvise function call and specifying a

policy to be used by the kernel for a given range of memory addresses. The function declara-

tion for madvise is int madvise(caddr t addr, size t len, int advice);

where addr is the base address of the page in which the data quantity of interest resides, len

defines the size of the data quantity and advice is a set of nine values denoting how the kernel

should handle either page references or thread level access to these pages.

There are two flags of interest that can be specified in an madvise call which affect the

manner in which page allocations are handled by the kernel i.e. MADV ACCESS LWP and

MADV ACCESS MANY. The former indicates that the region of memory will be heavily ac-

cessed by the next thread that touches the associated range of pages. This leads to pages being

migrated and made local to the accessing thread. This process will be referred to later as a

‘dynamic page migration strategy’. The latter, MADV ACCESS MANY, implies many threads

will access this region of memory and results in the kernel migrating pages to the various

lgroups in the system using a pseudo-random mapping [179]. This reduces the likelihood

that any given set of pages, which are required by many threads of execution, are all located in

one lgroup. This process is referred to as ‘node interleaving of memory’.

5.3.3 Test Molecular Systems

The four test molecular systems used in this chapter are: 18-Crown-6 Ether 2 , Valinomycin3

and C604. Two of these (18-Crown-6 Ether and Valinomycin) are used in section 5.4, to

assess serial and parallel performance of Gaussian, as a function of thread and memory place-

ment. We note that the geometry for Valinomycin is the same as that for the ‘test397’ system

used in Chapter 4. In section 5.5, four sets of experiments are defined using two molecules

(Valinomycin and C60) with the HF and BLYP methods, and the 6-311G* [70, 111] and cc-

PVTZ [277] basis sets. These are,

Exp 1 HF/6-311G*, Valinomycin

2http://en.wikipedia.org/wiki/18-Crown-6. (C12H24O6). This organic compound

is a widely used as a phase-transfer catalyst [162].
3http://en.wikipedia.org/wiki/Valinomycin. Valinomycin is an antibiotic which

has selectivity for potassium ions and increases its transport into cell membranes, leading to cell damage

in bacteria [142].
4http://en.wikipedia.org/wiki/Fullerene. C60 or Buckministerfullerene is a novel

form of Carbon which has wide industrial and biochemical applications [71].

120 Study of Thread and Memory Placement Effects in Gaussian

Figure 5.3: Memory allocation in Gaussian and subsequent use of the Density and Fock ma-

trices

Sequential Step

Allocate Density Matrix D

Sequential Step

Allocate Fock Matrices

Parallel Step

OpenMP Parallel SCF

D

F
0

F
1

Sequential Step

D

Working Space

F
0

D

Working Space

D

Working Space

F
0

F
1

F
0

Sum F
i = 1,2 into F

0

Repeat until converged

Exp 2 BLYP/6-311G*, Valinomycin

Exp 3 HF/cc-PVTZ, C60

Exp 4 BLYP/cc-PVTZ, C60

5.3.4 Memory Allocation in Gaussian

Prior to considering modifications made to Gaussian to enable thread and memory placement

we discuss the allocation and use of two major data quantities involved in ERI evaluation,

the Density and Fock matrices. Figure 5.3 presents a schematic representation of the data

quantities and their use at various stages in Gaussian.

The figure has four major steps. In step 1, a single thread of execution prepares data

structures required for Fock matrix formation i.e. shell-quartet information, the Density matrix

and so on. The Density matrix (D) is allocated, at the start of available memory, within a pre-

defined workspace. The size of the Density matrix is dependent on problem size, the basis sets

used and calculation type.

In step 2, as many copies of the Fock matrix are created as there are threads assigned to the

SCF step i.e. for two threads these are F0 and F1. These data items are allocated by a single

thread, contiguously after the Density matrix within the workspace. Thus each thread has its

own copy of the Fock matrix and associated quantities.

In step 3, all threads are initialized. For HF, each thread reads the shared Density matrix

and computes ERIs. In DFT, each thread performs numerical quadrature using batches of

grid points. Contributions are made to each thread’s private Fock matrix. On completing the

evaluation of the integrals or grid points, each thread terminates, leaving its private Fock matrix

in memory.

In step 4, thread zero reads in other Fock matrices and sums them into Fock matrix F0.

Once this is done, the data structures from the other threads are freed. The SCF process then

§5.4 Effects of Thread and Memory Placement in Gaussian 121

repeats until convergence.

5.3.5 Modifications to Gaussian to enable thread andmemory place-

ment

The Gaussian code was modified to allow specific thread and memory placement to take place.

The following changes were made to enable this,

• Prior to the SCF, unique workspaces are allocated per thread. These workspaces are

node local to the thread. This allows private copies of the Fock matrix and other inter-

mediate quantities, to be stored local to each thread.

• The PRISM subroutine computes ERIs and incorporates these into the Fock matrix, for

the HF method. For the DFT method, the subroutine PRISMC evaluates the Coulomb

ERI contribution to the Kohn-Sham Fock matrix. It has a structure similar to PRISM.

The exchange-correlation contribution is computed separately by the CALDFT subrou-

tine using numerical quadrature.

• Three higher-level subroutines PRISMSU, COULSU and CALDSU are used to paral-

lelise PRISM, PRISMC and CALDFT respectively. Within these higher-level subrou-

tines, there is a loop over the total number of threads (NThreads) that are to be run in

parallel. In this loop, the master thread determines the unique workspace of the other

threads, allowing them to read the shared density matrix and accumulate ERIs or nu-

merical quadrature contributions into their own local storage.

• On completion of the parallel region, the master thread sums the Fock matrices com-

puted by other threads into its Fock matrix.

To summarize, each thread requires read access to a shared Density matrix and read/write

access to a private Fock matrix. Other data quantities that each thread access are allocated to

ensure they are physically local to the executing thread.

5.4 Effects of Thread andMemory Placement in Gaus-

sian

In this section we study the effects of cache blocking and thread, memory placement on the

serial and parallel performance of the Gaussian code using the HF method and two molecular

systems – 18-Crown-6 Ether with a 6-31G* basis set and Valinomycin with a 3-21G basis set.

122 Study of Thread and Memory Placement Effects in Gaussian

Table 5.4: Elapsed time (sec.) for a sequential Gaussian SCF process on a 18-Crown-6 Ether

molecule using HF/6-31G*. Timings for the 64Kw and 128Kw (in brackets) cache blocking

factors are presented as a function of memory and thread placement on the SunFire X4600 M2.

Progressively darker shades of grey are used to indicate similar NUMA levels.

Thread Location Memory

Location 0 1 2 3 4 5 6 7

0
177

(224)

174

(251)

175

(254)

177

(262)

177

(263)

178

(264)

177

(262)

182

(280)

1
179

(234)

172

(220)

177

(261)

173

(229)

176

(243)

176

(244)

173

(231)

176

(244)

2
178

(239)

181

(268)

168

 (205)

176

(244)

172

(226)

172

(227)

176

(247)

178

(254)

3
187
(270)

174

(236)

176

(244)

168

(205)

172

(226)

172

(227)

176

(249)

177

(251)

4
182

(251)

177

(250)

172

(227)

172

(226)

168

(205)

176

(243)

173

(235)

181

(269)

5
182

(254)

176

(249)

172

(228)

172

(227)

177

(245)

168

(204)

181

(267)

174

(239)

6
181

(246)

173

(231)

176

(243)

176

(242)

173

(228)

177

(266)

172

(219)

174

(231)

7
189

(286)

178

(259)

178

(269)

178

(268)

177

(259)

175

(261)

174

(249)

173

(222)

We use the thread and memory placement APIs to make specific placement of the Density

and Fock matrices. We also use the Placement Distribution Model (PDM) to characterize the

distribution of contention classes for the X4600 M2.

Timing results for serial Gaussian with the 18-Crown-6 Ether molecule, are varied w.r.t.

memory and thread placement in sub-section 5.4.1. This is done in order to assess the effects

of cache blocking on the results. In sub-section 5.4.2 we use the PDM to define contention

classes for the X4600 M2. Following this, we present timing results for parallel Gaussian

using Valinomycin in Section 5.4.3. We then present analysis and parallel speedups for it,

following which we conclude this section.

5.4.1 Thread, Memory and Cache Effects for Serial Gaussian

Serial runtimes for a HF calculation on 18-Crown-6 Ether using a 6-31G* basis set are pre-

sented as a function of thread and memory location in Table 5.4. Results for two different

cache blocking factors (64Kw and 1024Kw), are given.

There are two motivations in the choice of the 64Kw blocking factor used here. First,

it corresponds to half of the total cache available to a core on the dual-core 8218 Opteron.

Second, in the parametric variation of the blocking factor from 16Kw to 256Kw described in

§5.4 Effects of Thread and Memory Placement in Gaussian 123

Chapter 4 it was shown that 64Kw was the optimal blocking factor for the 8218 Opteron. In

contrast the 128Kw blocking factor uses all of the cache, giving rise to increased cache misses.

For example, when the executing thread was bound to Node 2 and the memory was also located

on MEM 2, the total L2 cache misses (and accesses) where 7.88x106 (5.14x109) and 3.51x107

(6.21x109) for the 64Kw and 128Kw blocking factors respectively. In other words, the 64Kw

blocking factor has a 98.5% L2 cache hit ratio compared to 94.3% L2 cache hit rate for the

128Kw blocking factor. (If alternative thread and memory placement options were used this

led to less than a 10% variation in cache miss and access counts, which is much less than the

effect of switching from a 64Kw to a 128Kw blocking factor).

We now consider Table 5.4, which gives elapsed times for both cache blocking factors

(128Kw is in brackets) as a function of thread and memory placement. Its layout is similar to

Table 5.1, with cells again shaded by NUMA level.

The elapsed times in Table 5.4 for the 64Kw blocking factor indicate that most timings

within a NUMA group are similar, though some overlaps between NUMA levels does exist.

Overall results vary gradually from 168 sec. to 189 sec.

For the 128Kw blocking factor, timings within a given NUMA level vary more, as do

timings between NUMA groups which can now range from 204 sec. to 286 sec.

If the physical location of the actual node is taken into account, results from Node 2 – 5

have the lowest times for both blocking factors i.e. this is a direct result of the topology of the

X4600M2, where Nodes 2 – 5 have three cHT links per node. In general the 64Kw blocking

factor gives results that are 20% faster than for the 128Kw blocking factor.

A summary of the data from Table 5.4 is given in Table 5.5 for both blocking factors.

For the 64Kw blocking factor as the NUMA level increases there is a gradual increase in the

average time from 171 seconds to 186 seconds, which is an increase of 8%. For the 128Kw

blocking factor, the average time increases from 213 seconds to 283 seconds, which is an

increase of 33%. The observed timing variations for the 128Kw case correlates with the varia-

tion in latency measurements, presented in section 5.2. Not surprisingly the average standard

deviations for the 128Kw blocking factor are significantly larger for the 64Kw cases.

Results for both blocking factors indicate that an appropriately cache blocked HF calcula-

tion (64Kw), experiences at worst a 8% performance hit, as a function of thread and memory

placement. This variation increases markedly if cache blocking is poor.

5.4.2 Contention Classes for the X4600

Using the PDM developed in Chapter 3, the thread and memory placement distributions for

the X4600 M2 were obtained.

The X4600 M2 uses dual core Opteron processors. To simplify its topology graph, rather

124 Study of Thread and Memory Placement Effects in Gaussian

Table 5.5: Summary of Table 5.4 categorized by NUMA level. Units for ‘Average Latency’ is

in Seconds. Standard deviations (σ) is also given.

NUMA Avg. Time
σ

Avg. Time
σ

Level 64Kw 128Kw

0 171 3.3 213 8.9

1 174 1.9 235 10.3

2 178 2.7 254 10.8

3 186 5.0 283 4.2

Table 5.6: Analysis of thread and memory placement distributions by contention class, using

the PDM for the SunFire X4600 M2

Contention Distribution Frequency

Class Number (%)

1 to <2 2156 0:01

2 to <3 5723830 34:10

3 to <4 9109808 54:30

4 to <5 1762356 10:50

5 to <6 167628 1:00

6 to <7 10976 0:07

7 to <8 448 0:00�8 8 0:00

than accounting for each core in a node, a dual core node is represented as one logical node in

the PDM.

Thus, assuming there is one thread per node, there are a total of 8*8 possible thread and

memory placement options, for eight threads there are a total of 88*8! placement options. This

assumes memory can be allocated anywhere in the system including all memory allocated on

one node.

The PDM results for the X4600 M2 are presented in Table 5.6. Eight contention classes

are defined, with each class representing all those thread and memory configurations with

contention values between the upper and lower bounds. Given a random thread and memory

placement, there is a 54.3% chance of it being allocated in the ‘3 to <4’ contention class,

a 34.1% chance of being allocated the ‘2 to <3’ class and so on. There are 2156 distinct

placements in the minimum contention class, or a 0.01% chance of selecting this randomly.

The chances of being in the maximum contention class is negligible, if placement is random.

§5.4 Effects of Thread and Memory Placement in Gaussian 125

5.4.3 Parallel HF Performance in Gaussian

The previous section discussed the distribution of contention classes for the X4600 M2. To

obtain an understanding of the range of possible performance outcomes, in this section we per-

form Gaussian performance experiments using an instance from the minimum and maximum

contention classes.

Table 5.7 presents the elapsed times obtained for the first three SCF iterations using the

larger Valinomycin system with the HF method and a 3-21G basis set. The results are divided

in two categories – ‘Co-located Threads and Memory’ and ‘All Memory Located at Node 0’.

The former corresponds to an allocation which occurs in the minimum contention class, the

latter corresponds to the maximum contention class. Within each category, sets of experiments

are defined. These sets are determined by how the threads are allocated to each node on the

X4600 M2. The two options chosen are to use either one core per node (the S* or single option)

or both cores per node (the D* or dual-core option), when adding threads. In this respect Set 1

and Set 3 are similar (S*), and Set 2 and Set 4 are similar (D*). Threads are allocated based on

the ordering given in the ‘Node’ column. Thus for a two threaded calculation a ‘Node’ value

of (0,1) applies to the S* case, whereas a value of 0 applies to the D* case. The times taken

for both the 64Kw and 128Kw blocking factors are given in seconds in the ‘Time’ column.

Considering first the results given in Table 5.7 for ‘Set 1’. As ‘Set 1’ corresponds to single

node allocation the experiments were run using Node 0 and core 0A. This results in times of

218 sec. and 267 sec. for the 64Kw and 128Kw blocking factors respectively. Increasing the

thread count to 2, has threads allocated on Node 0, core 0A and Node 1, core 1A. This gives a

reduction in runtime for both blocking factors. For 4 threads Nodes 0, 1, 6 and 7 were used5.

Timings obtained using the two blocking factors are 58 sec. and 72 sec. For eight threads

all 8 nodes were used with times of 31 sec. and 42 sec. for the two cache blocking factors

respectively.

For ‘Set 3’ using a 64Kw blocking factor execution time reduces with increased thread

count. For the 128Kw blocking factor there is also a decrease with increased thread count, but

scalability is worse than that observed for the 64Kw blocking factor. This is because there are

more cache misses, and these are costly with non-local memory placement.

Comparing the 64Kw and 128Kw results for both ‘Set 1’ and ‘Set 3’. For the 64Kw

blocking factor, times obtained upto 8 threads, are almost identical between ‘Set 1’ and ‘Set

3’. This indicates that cache blocking is mitigating the effects of non-local memory placement.

For the 128Kw blocking factor, as thread count increases, ‘Set 3’ results become progressively

slower than those for ‘Set 1’. By 8 threads, the runtime for the 128Kw blocking factor is 50%

5For 4 threads these nodes were selected as firstly, Nodes 0 and 7 have 2 cHT links, whereas Nodes

1 and 6 have two cHT links and share a third cHT link. Second, the expectation is that greater variation

in runtimes would be obtained for these nodes which have fewer cHT links.

126 Study of Thread and Memory Placement Effects in Gaussian

Table 5.7: Elapsed time for the first three SCF iterations, as a function of memory and thread

placement for a parallel Gaussian calculation on the Valinomycin molecule using HF/3-21G.

NThreads

Co-located Threads and Memory

Set 1 Set 2

Node Time (sec.) Node Time (sec.)

(S�) 64Kw 128Kw (D�) 64Kw 128Kw

1 0 218 267 – – –

2 0,1 111 137 0 109 145

4 0,1,6,7 58 72 0,1 57 76

8 0 – 7 31 42 0,1,6,7 31 38

16 – – – 0 – 7 19 27

NThreads

All Memory Located at Node 0

Set 3 Set 4

Node Time (sec.) Node Time (sec.)

(S�) 64Kw 128Kw (D�) 64Kw 128Kw

1 0 218 267 – – –

2 0,1 110 147 0 111 146

4 0,1,6,7 59 97 0,1 59 94

8 0 – 7 33 83 0,1,6,7 34 85

16 – – – 0 – 7 26 87

S* – Threads are allocated on a single core per node

D* – Threads are allocated per core on a node, prior to using another node

greater than for the equivalent ‘Set 1’ results, with a cache coherency traffic overheads now

significantly reducing performance. This shows that when using single cores per node, it is

important both to minimise cache misses and use node local thread and memory placement in

order to obtain good performance on the SunFire X4600 M2.

For ‘Set 2’, which corresponds to D*, both cores are used and results are reported for 2 –

16 threads. We consider timings for the 64Kw blocking factor. For 2 threads, both cores on

node 0 are used. A time of 109 sec. is measured, this is slightly less than the corresponding

time in ‘Set 1’. When the thread count is increased to 4 threads and both cores on node 0 and

1 are used, the measured time, is again, slightly less than the corresponding ‘Set 1’ time. On

increasing to 8 threads and using nodes 0, 1, 6 and 7 the same difference is seen. For the

128Kw results, when using 2–4 threads there is an increase in times compared to ‘Set 1’ times.

For 8 threads, the ‘Set 3’ results is slightly faster than the corresponding ‘Set 1’ time. This

suggests that use of both cores in each node reduces the intra-node coherency traffic overheads

associated with cHT.

For ‘Set 4’, results for 2 – 8 threads using a 64Kw blocking factor follow the same trends

as 64Kw for ‘Set 2’. The times get progressively longer as thread count increases and is 27%

§5.4 Effects of Thread and Memory Placement in Gaussian 127

slower than the corresponding ‘Set 2’ result for 16 threads. Use of a 128Kw blocking factor

in ‘Set 4’ shows a dramatic increase in execution time compared to 64Kw results. This result

indicates that with 16 threads use of the 64Kw blocking factor, even with all memory being

locate at Node 0, is able to perform better than the 128Kw blocking factor.

For all timing results from ‘Set 1’ to ‘Set 4’, it is seen that a well cache blocked algorithm

can significantly reduce the effects of poor thread and memory placement.

Using data from Table 5.4 five speedup curves are presented in Figure 5.4. The Table 5.4

results are augmented with those obtained from an unmodified version of the Gaussian code

(i.e. one that does not perform thread or memory placement). The speedup curves are labelled

Unmodified, Set 1, Set 2, Set 3 and Set 4 accordingly. The solid black line in the two plots is

a reference line for perfect speedup.

We first consider the 64Kw plot. Upto four threads, there is no significant deviation be-

tween the five curves. At eight threads a segregation occurs between Set 1 and Set 2 which are

faster than Set 3, Set 4 and unmodified Gaussian. The difference between the two groups is

about 10% and is similar to the difference seen between the lowest and highest times recorded

for serial 18-Crown-6 Ether in Table 5.4. For sixteen threads, the difference between the two

groups increases to around 30%. The best achieved speedup is 11.52 for Set 2. Results ob-

tained for unmodified Gaussian are roughly similar to those obtained using thread and memory

placements corresponding to the maximum contention class. This arises because a large block

of memory (the workspace in Figure 5.3) is allocated prior to the start of the SCF iterations.

Sequential code then touches this memory to create intermediate values and a section of this

shared memory is then handed to each worker thread for use in its parallel section. Owing to

the first-touch memory placement policy, any memory accessed prior to the parallel section

will result in allocation on or near to the master thread.

If we now consider the 128Kw blocking factor. Speedups for two threads are similar. For

four threads, Set 1 and Set 2 diverge from Set 3, Set 4 and the unmodified Gaussian by 30%.

At eight threads, Set 1 and Set 2 differ by 9%, indicating that the policy of allocating one core

per node is better, while sets 1, 2 vary from sets 3, 4 and unmodified Gaussian by 57%. For 16

threads there is a 70% difference between set 1 and 2 and sets 3, 4 and unmodified Gaussian.

These results show that thread and memory placement can produce a speedup of 10 for the

co-located case, but a speedup of just 3 for the maximum contention case which is similar to

unmodified Gaussian. It is to be noted that even though the maximum speedup is similar for

both blocking factors, the base times used are very different; the shortest elapsed time is 19s

for sixteen threads with the 64Kw blocking factor versus 29s for the 128Kw blocking factor.

128 Study of Thread and Memory Placement Effects in Gaussian

Figure 5.4: Speedup results for unmodified Gaussian 03 code compared to sets 1 – 4 for two

cache blocking factors (64Kw, 128Kw). Times obtained are for the first three SCF cycles for

using Valinomycin, the HF method and a 3-21G basis set. Note speedups for both cases are

relative to different timings, with 64Kw being faster than 128Kw.

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

S
p
ee

d
u
p

Number of Threads

(a) Cache Blocking: 64Kw

Unmodified
Set_1
Set_2
Set_3
Set_4

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

S
p
ee

d
u
p

Number of Threads

(b) Cache Blocking: 128Kw

Unmodified
Set_1
Set_2
Set_3
Set_4

§5.5 Extending the LPM to Account for NUMA Effects 129

5.4.4 Summary: Effects of Thread and Memory Placement on

Gaussian Performance

In this section the effects of thread and memory placement were investigated for a HF SCF

calculation using G03. The two molecular systems used were 18-Crown-16 Ether with 6-31G*

basis set and Valinomycin with a 3-21G basis set.

The combination of an appropriate cache blocking factor and node local thread and mem-

ory placement gave the lowest measured elapsed times. This result is similar to that observed

in Chapter 3, where a well cache blocked level 3 BLAS routine did not give as large a variation

in performance as a level 1 and 2 BLAS routine. Timing and speedup results using Gaus-

sian, showed that an appropriate blocking factor can mitigate improper thread and memory

placement to some degree.

For the two instances of thread and memory placement parallel experiments were run for

two memory and thread placements which correspond to the minimum and maximum con-

tention classes. Speedup results indicate that appropriate cache blocking and thread, memory

placement affects a 10% improvement when using 8 threads, which increases to 30% for 16

threads.

5.5 Extending the LPM to Account for NUMA Effects

Having established that thread and memory placement can have a significant effect on the

performance of Gaussian, it is of interest to consider how the LPM, developed in Chapter 4,

may be extended for multiple threads and NUMA systems.

This section is structured as follows: section 5.5.1 presents our extension to the LPM. This

is evaluated for a single thread in section 5.5.2 using a modified version of Gaussian, which

can perform thread and memory placement. Sections 5.5.3 – 5.5.5 then consider the NUMA

extended LPM using multiple threads under various scenarios. The section then concludes

with a summary of results.

5.5.1 Extending the LPM to incorporate NUMA effects

The LPM from Chapter 4 is defined as,

Cycles = α � ICount + γ �LMisses (5.1)

where α and γ are empirical cost factors determined by fitting measured cycles to the instruc-

tion count (ICount) and total cache misses for the highest level of cache (LMisses).

130 Study of Thread and Memory Placement Effects in Gaussian

We now define a NUMA domain to be a set of processors and memory, where each pro-

cessor can access memory within some fixed latency bound. Accessing other NUMA domains

will incur a greater latency penalty. A straightforward way of extending the LPM would be to

factor in the various NUMA domains that exist in a given system,

Cycles= α � ICount + NUMA

Domain

∑
i=1

γi � LiMisses (5.2)

where LMisses are total cache misses to NUMA domain i.

This leads to two questions (a) how can cache misses be obtained per NUMA level, and (b)

does the approximation in Equation 5.2 give reasonable results? These issues are addressed in

the following sub-sections.

5.5.1.1 Obtaining Cache misses by NUMA Domain

The original LPM used cache miss information obtained from hardware performance counters.

These are event counts that are incremented irrespective of where the data resides in physical

memory (i.e. there is no distinction between a cache miss being serviced by local or remote

memory). Hardware performance counters on the 8218 Opteron can also measure remote co-

herency events related to aggregate coherency traffic on the cHT links between the eight nodes

of the X4600 M2 [4], but unfortunately there is no means to distinguish between coherency

traffic.

There are three possible approaches to address this problem – cache simulation, statistical

sampling techniques, and (with some caveats) through the use of specific thread and memory

placement experiments.

The first approach uses a simulator to obtain per NUMA domain information as outlined

by Tikir and Hollingsworth [280]6. This is however very expensive. A cheaper approach,

which is being pursuing in other work, is to extend the Valgrind binary translation framework

used in Chapter 4 to include a NUMA memory model [227].

The second approach is the use of statistical sampling techniques and the hardware per-

formance counter overflow facilities available on most hardware platforms [23, 38, 79]. This

involves setting a hardware counter overflow event that once triggered is used to obtain the

current program counter, and then the address of the most recent load or store operation. In

this respect there are two choices: Buck and Hollingsworth [39] used Data Event Address

Registers (EARs) on the Itanium microprocessor with their CacheScope tool to pin-point data

structures and code which lead to long latency events (i.e. cache misses and pipeline stalls).

6Tikir and Hollingsworth state that simulation fidelity for NUMA systems, is heavily dependent on

sufficiently accurate modelling of memory contention between NUMA nodes

§5.5 Extending the LPM to Account for NUMA Effects 131

The EAR was sampled in order to obtain load instructions which missed the first level of cache

or the TLB. (EAR registers are able to store address, instruction and latency of a cache miss).

An alternative approach was suggested by Eranian [23], who claims that the AMD Barcelona

and newer processors allow the use of precise “Instruction Based Sampling” (IBS) that can

determine address location and eviction information for cache misses.

The third approach is to obtain timing information using experiments which consider spe-

cific thread and memory placement. This does not allow precise breakdowns of L2 misses but

does permit the testing of the basic concepts behind the NUMA extended LPM. This approach

is pursued in this work.

5.5.1.2 The NUMA Extended LPM

As discussed in sub-section 5.5.1.1, it is currently difficult to obtain an accurate breakdown

of cache misses by NUMA domain. Inspite of this the usefulness of Equation 5.2 can still be

assessed by performing specific thread and memory placement experiments.

Consider the time taken by one thread when accessing a non-local data structure a which

is located one hop (h1) away from the thread. This can be written as,

T ha = X1 + γ ha L
a
Misses

(5.3)

where X1 is the cost of all other terms in the LPM except those associated with cache misses

to data quantity a, γ ha1
is the cost penalty associated with accessing a at a distance of one hop,

and LaMisses is the number of cache misses that are associated with accessing a. The time taken

for the same computation, when a is local to the thread of execution, i.e. a is 0 hops away (ha0),

is

T ha0 = X0 + γ ha
0
La

Misses
(5.4)

If to a first approximation we assume that X1 and X0 are equal, and that the number of

cache misses associated with accessing a is constant, then the difference between the two

timing results is

∆T ha1 = T ha1�T ha0= γ ha L
a
Misses� γ ha

0
LaMisses= (γ ha

1
� γ ha

0
)LaMisses= ∆γ haL

a
Misses

(5.5)

Here ∆T ha1 is an estimate of the cost associated with moving a from its local NUMA domain

132 Study of Thread and Memory Placement Effects in Gaussian

to NUMA domain that is 1 hop away.

As mentioned, this result depends on two assumptions, namely X1 � X0 and that the cache

miss count does not change with different placements of a. Both are approximations, since

movement of a to a different cache gives a larger effective cache size and will inevitably reduce

conflict misses.

Extending this further to multiple data items (a, b, c, ...) which are moved (i, j, k, ...) hops

away gives a cost penalty of

∆T (hai ; hbj ; hck ; :::) = ∆γ hai
LaMisses+∆γ hb

j
LbMisses+∆γ hc

k
LcMisses+ : : : (5.6)

The implication of Equation 5.6 is that each value on the R.H.S can be determined individually

and used to predict the overall effect of moving multiple data items. Later, we assess this

assumption by using explicit data placement of the Density and Fock matrices in the Gaussian

code.

At this point the NUMA extended LPM does not account for multi-threaded execution.

One possible way of extending Equation 5.1 is to divide the instruction count (ICount) and total

cache misses (LMisses) by the total number of threads. This would assumes perfect parallelization

and that there are no changes in the total number of instructions executed and cache misses in

the parallel code. This is not true. In the first instance the total instruction count can increase

if there is duplicate instructions. Second the cache misses may change; the number of cold

misses would increase due to their being multiple caches, although the combined cache size

from using multiple cores should reduce the number of capacity misses. These effects can be

partially accounted for by only considering parallel portions of application code and instead of

using the number of threads to divide the instruction and L2 miss counts, through the use of an

empirically determined parameter, fn, defined as

fn = T
(ha0; hb0; hc0; :::)
1

T
(ha0; hb0; hc0; :::)
n

(5.7)

where the numerator and the denominator are the times taken for 1 and n threads respectively

where all data quantities are allocated local to each thread.

Values of fn less than n, indicate replicated computation in the parallel region, communica-

tion overheads, or a load imbalance between the threads. A value of fn greater than n indicates

some superlinear effect. Using fn the NUMA extended LPM for multi-threaded cases should

§5.5 Extending the LPM to Account for NUMA Effects 133

conform with,

T
(hai ; hbj ; hck; :::)
n = T (ha0; hb0; hc0; :::)+[∆γ ha

i
La

Misses
+∆γ hb

j
Lb

Misses
+∆γ hc

k
Lc

Misses
+ : : :℄

fn
(5.8)

where, T (ha0; hb0; hc0; :::) is the time taken using a single thread and with all data being local to the

thread; and ∆γ hLMisses are timings measured in a single threaded calculation where individual

data items are migrated separately to remote nodes.

In the sections that follow, we test the validity of Equation 5.8 under a number of different

scenarios.

5.5.2 Single Threaded Placement Experiments

As discussed above, to a first approximation the penalty costs in the extended LPM that are

associated with moving individual data items to different NUMA domains can be treated sep-

arately according to Equation 5.6 In this section we explore this issue by carrying out single

thread placement experiments with varying number of hops for two data items, the Density

and Fock matrices.

Table 5.8 present measured and modelled execution times for a variety of Gaussian single

threaded calculations with specific thread and memory placement. The table presents results

for the PRISM, PRISMC, CALDFT routines obtained from experiments Exp 1 (Valinomycin

using the HF method and a 6-311G* basis set), Exp 2 (Valinomycin using the BLYP method

and a 6-311G* basis set), Exp 3 (C60 using the HF method and a cc-PVTZ basis set), and

Exp 4 (C60 using the BLYP method and a cc-PVTZ basis set). For each Exp there are two

groups of results: ‘Basic Experiments’ and ‘Modelling Predictions’. The basic experiments

give the times taken in seconds by the PRISM, PRISMC and CALDFT routines when the

location of either the Fock or Density matrix, but not both, is varied by a certain number of

hops from the home NUMA domain. The number of hops is given in the columns ‘hD’ and ‘hF ’

for the Density and Fock matrix respectively. The data given under ‘Modelling Prediction’ are

for cases where the number of hops for both the Density and Fock matrices are varied. Times

for these cases are both measured and predicted. We now consider the ‘Basic Experiments’

section of Table 5.8, for Exp 1 and Exp 2. Measured times for each placement are given

in the TMeasured column. The difference in time between the all local case (hD = 0, hF = 0)

and other basic experiments is given in column ∆T1. For example, the measured time for the

single threaded, node-local placement for ‘PRISM from Exp 1’ is (hD=0;hF=0) = 1884 sec. The

difference between this value and a placement where the Fock matrix is one hop away is 39 s.

134 Study of Thread and Memory Placement Effects in Gaussian

Table 5.8: Measured and modelled results in seconds for single-thread calculations for Exp 1

– 4 obtained for first SCF cycle, on the SunFire X4600 M2 system.

Exp 1 (Valinomycin – HF/6-311G*) and Exp 2 (Valinomycin – BLYP/6-311G*)

PRISM from Exp 1 PRISMC from Exp 2 CALDFT from Exp 2

hD hF TMeasured TModelling ∆T1 TMeasured TModelling ∆T1 TMeasured TModelling ∆T1

Basic Experiments

0 0 1884 – 0 584 – 0 969 – 0

0 1 1923 – 39 593 – 9 1040 – 71

0 2 1961 – 77 602 – 17 1082 – 113

1 0 1932 – 48 588 – 4 973 – 4

2 0 2001 – 117 593 – 8 979 – 10

Modelling Predictions

hD hF TMeasured TModelling Err% TMeasured TModelling Err% TMeasured TModelling Err%

1 1 1970 1971 0.06 598 597 -0.07 1044 1044 -0.07

1 2 2008 2009 0.04 606 606 -0.02 1087 1086 -0.08

2 1 2033 2040 0.33 601 602 0.03 1050 1049 -0.02

2 2 2072 2078 0.28 611 610 -0.23 1095 1092 -0.27

Exp 3 (C60 – HF/cc-PVTZ) and Exp 4 (C60 – BLYP/cc-PVTZ)

PRISM from Exp 3 PRISMC from Exp 4 CALDFT from Exp 4

hD hF TMeasured TModelling ∆T1 TMeasured TModelling ∆T1 TMeasured TModelling ∆T1

Basic Experiments

0 0 1073 – 0 488 – 0 471 – 0

0 1 1091 – 18 493 – 6 506 – 35

0 2 1114 – 41 498 – 11 526 – 55

1 0 1095 – 22 489 – 1 472 – 2

2 0 1128 – 55 491 – 3 475 – 4

Modelling Predictions

hD hF TMeasured TModelling Err% TMeasured TModelling Err% TMeasured TModelling Err%

1 1 1118 1113 -0.42 495 495 -0.04 506 507 0.20

1 2 1133 1136 0.29 500 498 -0.28 528 528 -0.06

2 1 1146 1146 -0.02 496 496 -0.04 510 509 -0.04

2 2 1167 1169 0.14 501 501 0.00 528 530 0.36

§5.5 Extending the LPM to Account for NUMA Effects 135

The values under ∆T1 for Exp 1 are therefore those given by Equation 5.5 and as follows:

∆γ hF
1
LF

Misses
= ∆T hF = T

hF1
1 �T hF0 = 39 sec.

∆γ hF2
LFMisses = ∆T hF = T hF1 �T hF0 = 77 sec.

∆γ hD1
LDMisses = ∆T hD = T hD1 �T hD0 = 48 sec.

∆γ hD2
LDMisses = ∆T hD = T hD1 �T hD0 = 117 sec. (5.9)

These basic placement experiments show that for PRISM, the placement of the Density matrix

has greater influence than the Fock matrix, but for PRISM and CALDFT the opposite is true.

Using the results obtained from the ‘Basic Experiments’, it is possible to create modelling

predictions for varying the number of hops for the Fock and Density matrices. As an ex-

ample, the predicted timing for positioning the Fock and Density matrices one hop away i.e.(hD=1;hF=1) for ‘PRISM from Exp 1’ is,

T (hD1 ;hF1) = T (hD0 ;hF0) +∆T hD1 +∆T hF1= 1884+39+48= 1971 (5.10)

While the measured value for T (hD1 ;hF1) corresponding to ‘Prism from Exp 1’ is 1970 sec.

If we consider modelling prediction errors, we find that all results are in error by 1% at

most. This indicates the simple NUMA extension to the LPM can effectively model single

threaded HF and DFT calculations.

In the second part of Table 5.8, corresponding to Exp 3 and Exp 4, similar trends are

observed as for Exp 1 and Exp 2.

Thus a simple extension to the LPM gives reasonable results for single threaded Gaussian

calculations using the HF and DFT methods.

5.5.3 Multi-Threaded, Single-Core Placement Experiments

The multi-threaded placement penalties defined by Equation 5.8, requires a scaling factor fn to

be determined. These values are obtained using specific thread and memory placement timing

experiments, where the requisite data quantities are local to all the threads for both serial and

parallel computation. This required a modified version of Gaussian, where each thread uses a

node-local copy of both the Density and Fock matrix. (The Density matrix is normally shared

by all threads).

Results for these timing experiments are given in Table 5.9. This table gives the average

speedup ‘Sn’ and its standard deviation (σ) for calculations with 2, 4 and 8 threads. Results

136 Study of Thread and Memory Placement Effects in Gaussian

Table 5.9: The average Speedup Sn and its standard deviation (σ) for n-thread calculations

with ideal local access to both Density and Fock matrices/blocks.

n-thread
PRISM PRISMC CALDFT PRISM PRISMC CALDFT

from Exp 1 from Exp 2 from Exp 2 from Exp 3 of Exp 4 of Exp 4

n = 2
S2 1.941 1.848 2.004 1.979 1.906 2.022

σ 0.001 0.001 0.001 0.001 0.006 0.220

n = 4
S4 3.863 3.367 4.008 3.929 3.700 3.979

σ 0.022 0.010 0.009 0.005 0.027 0.018

n = 8
S8 7.548 6.088 7.477 7.728 7.176 7.799

σ 0.002 0.073 0.030 0.009 0.079 0.018

for PRISM, PRISMC and CALDFT for Exp 1 – 4 are given. The results were obtained for

computations run with Nodes 2, 3, 4 and 5 (cf. Figure 5.2) of the SunFire X4600 M2 and

with a single core per node. For the 8 thread results, all 8 nodes were used, but jobs were

executed twice. The first time this was done using threads 1 – 4 running on Nodes 2 – 5. The

second time, threads 5 – 8 were run on Nodes 2 – 5. Speedups were obtained by measuring

the time taken for each thread. By default, dynamic load balancing of work is used in PRISM,

PRISMC and CALDFT. For the purpose of this work a static load balancing scheme was used

in order to avoid skewing fn due to work shifting between threads.

For the PRISM and PRISMC subroutines which compute ERIs, the speedups given in

Table 5.9 are less than n. This is a result of replicated work being done in these routines, e.g.

all threads need to calculate ERI quantities relating to pairs of basis functions. The standard

deviation (σ) is small indicating that static load balancing is good. The CALDFT routine

in some cases gives a slight superlinear speedup, and for the 2 thread case and Exp 2 there

is a large standard deviation. The latter indicates that static load balancing is poor and this

was confirmed to be the case. (Note load balancing had been deliberately disabled as noted

previously).

5.5.3.1 Two Threads, Single Core Thread Assignment

Using the values of ‘ fn’ presented in Table 5.9 we can now derive execution times for multi-

threaded Gaussian calculations, with specific thread and memory placement by using Equation

5.8. In this section we consider the case where only a single core is used at each node.

We consider first the case of using two threads executing on Nodes 2 and 5 with 1 thread

per node. Timing predictions for various threads are given in Table 5.10.

The table is divided into two sections corresponding to thread 1 and thread 2. Variations

in hops are in columns hD and hF . The measured execution time for each thread is given for

the 4 experiments and different routines. In addition, the percentage error that the extended

LPM gave is reported. In each case if there were multiple ways of performing a placement

§5.5 Extending the LPM to Account for NUMA Effects 137

Table 5.10: Modelling error in percent for 2-thread calculations performed at each NUMA

level using fn, for single core thread assignment

Exp 1 Exp 2 Exp 3 Exp 4

PRISM PRISMC CALDFT PRISM PRISMC CALDFT

Thread hD hF TMeasured
Err
% TMeasured

Err
% TMeasured

Err
% TMeasured

Err
% TMeasured

Err
% TMeasured

Err
%

1

0 0 973 -0.2 316 -0.1 485 -0.2 543 -0.2 257 -0.2 255 -8.7

0 1 993 -0.3 324 -1.0 520 -0.1 552 -0.2 261 -0.9 273 -8.6

0 2 1016 -0.6 332 -1.9 544 -0.8 563 0.2 265 -1.5 286 -9.0

2

1 0 1001 -0.5 320 -0.6 482 0.7 557 -0.6 257 -0.2 220 6.2

2 0 1042 -1.0 324 -1.0 484 1.9 573 -0.5 258 -0.4 221 6.3

1 1 1020 -0.5 328 -1.6 516 0.9 565 -0.4 261 -0.7 234 7.1

2 1 1058 -0.7 331 -1.8 517 1.4 582 -0.5 262 -0.8 234 7.6

1 2 1045 -0.9 336 -2.3 538 0.8 575 -0.2 265 -1.4 244 7.0

2 2 1087 -1.5 342 -3.4 546 -0.2 595 -0.7 268 -1.7 247 6.1

experiment, then each of these was timed and the lowest value reported.

In all experiments thread 1 was bound to Node 2 and the shared Density matrix was placed

in MEM2. Thus the values for hD are always zero for thread 1. The Fock matrices for the

two threads were allocated on any of the following Nodes: 2, 3, 4, 5. For thread 1 the Fock

matrix is varied to be 1 or 2 hops away by allocating it on Nodes 5 or (3 or 4) respectively.

This corresponds to entries (0,1) and (0,2) for thread 1. For thread 2, the Density matrix can

only be either 1 or 2 hops away depending if thread 2 is running on nodes 3, 4 or 5. This gives

rise to six possible entries in Table 5.10.

Examining the errors across all the experiments we find that apart from CALDFT in Exp 4,

which is known to have load balancing issues, the maximum errors obtained by use of the

extended LPM and fn is less than 2%.

5.5.3.2 Four and Eight Threads, Single Core Thread Assignment

In this sub-section we extend the 2 thread experiments detailed above to 4 and 8 threads but

still use single core thread assignment.

This time the modelling errors are presented graphically in Figure 5.5. This figure is

composed of 6 plots, with results for PRISM, PRISMC and CALDFT ordered by row. The

figures are labelled (a) to (f), where each corresponds to the following: (a) PRISM from Exp 1;

(b) PRISMC from Exp 2; (c) CALDFT from Exp 2; (d) PRISM from Exp 3; (e) PRISMC from

Exp 4 and (f) CALDFT from Exp 4.

Each sub-plot in Figure 5.5 has error bars to indicate the difference in thread timings as a

result of load imbalance between threads. The x-axis is the number of hops for the Density

and Fock matrices (hD, hF) and the y-axis denotes modelling error (expressed as a percentage).

The values of (hD, hF) along the x-axis are arranged according to increasing execution time.

138 Study of Thread and Memory Placement Effects in Gaussian

Figure 5.5: Modelling error for 4, 8 thread calculations at each NUMA level corresponding

to: (a) PRISM from Exp 1; (b) PRISMC from Exp 2; (c) CALDFT from Exp 2; (d) PRISM

from Exp 3; (e) PRISMC from Exp 4 and (f) CALDFT from Exp 4

-25

-20

-15

-10

-5

 0

 5

(0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (1,2) (2,1) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

PRISM from Exp_1 4 Threads
8 Threads

-25

-20

-15

-10

-5

 0

 5

(0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (1,2) (2,1) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

PRISM from Exp_3 4 Threads
8 Threads

(a) (d)

-25

-20

-15

-10

-5

 0

 5

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

PRISMC from Exp_2 4 Threads
8 Threads

-25

-20

-15

-10

-5

 0

 5

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

PRISMC from Exp_4 4 Threads
8 Threads

(b) (e)

-25

-20

-15

-10

-5

 0

 5

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

CALDFT from Exp_2 4 Threads
8 Threads

-25

-20

-15

-10

-5

 0

 5

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

CALDFT from Exp_4 4 Threads
8 Threads

(c) (f)

§5.5 Extending the LPM to Account for NUMA Effects 139

Table 5.11: Modelling error in percent for 2 thread calculations using fn and dual-core thread

assignment

Exp 1 Exp 2 Exp 3 Exp 4

PRISM PRISMC CALDFT PRISM PRISMC CALDFT

Thread hD hF TMeasured
Err
% TMeasured

Err
% TMeasured

Err
% TMeasured

Err
% TMeasured

Err
% TMeasured

Err
%

1

0 0 981 -1.0 320 -1.3 320 -3.1 545 -0.5 258 -0.7 261 -8.9

0 1 1004 -1.4 329 -2.3 329 -2.9 555 -0.7 263 -1.4 280 -8.8

0 2 1030 -1.9 340 -4.3 340 -5.7 568 -0.9 268 -2.4 299 -11.1

2

0 0 982 -1.5 321 -1.6 321 -2.1 546 -0.7 257 -0.5 226 5.2

0 1 1002 -1.2 327 -1.9 327 -0.5 554 -0.5 261 -0.9 238 7.3

0 2 1024 -1.4 336 -3.0 336 -1.9 564 -0.3 266 -1.5 250 6.2

Three common characteristics are evident in the plots: first, the majority of predicted dif-

ferences are negative. This is due to interconnect contention not being explicitly included in

Equation 5.8. Second, the modelling error is much less for 4-threads than for 8-threads. This

reflects the fact that interconnect contention increases with increased threads. Third, the mod-

elling errors increase slightly with larger NUMA levels. This is to be expected as the model

attempts to predict performance at greater hop counts using execution times obtained from

those of lower hop counts.

Overall the majority of predictions are able to reproduce elapsed times to within 5%. The

largest differences are seen for the PRISMC 8 thread results from Exp 2 indicating that inter-

connect contention is limiting parallel performance.

5.5.4 Multi-Threaded, Dual-Core Placement Experiments

In the previous sub-section new threads were allocated to different nodes. In this section we

consider the effects of dual-core thread assignment on measured performance. The use of

both cores on the 8218 Opteron will invariably introduce contention between both threads for

available bandwidth on the three cHT links.

Table 5.11 presents the results for the four test systems, using two threads. The layout of

the table is similar to Table 5.10. As both threads are resident on the same node, both threads

have node local access to the Density matrix which is 0 hops away. This means the Fock matrix

can only be 0, 1 or 2 hops away from the two threads. This results in 3 entries per thread in the

Table 5.10. The threads were bound to core 2A and core 2B on node 2.

As expected the measured times for each thread are similar in all cases except for CALDFT

of Exp 4 where load imbalance is large. Execution time increases as the number of hops for

the Fock matrix is increased. Modelling errors, apart from CALDFT in Exp 4, are less than

5%.

In comparison with the single core per node results, given in Table 5.10, using two cores per

140 Study of Thread and Memory Placement Effects in Gaussian

Table 5.12: Average modelling error in percent for dual-core and single core thread assign-

ment. Sn is used for single core cases and fDCn is used in dual-core cases.

Exp 1 Exp 2 Exp 3 Exp 4

PRISM PRISMC CALDFT PRISM PRISMC CALDFT

Sn fDCn Sn fDCn Sn fDCn Sn fDCn Sn fDCn Sn fDCn

Single-Core

2-thread -0.7 – -1.5 – 0.4 – -0.4 – -0.9 – 1.6 –

4-thread -1.3 – -3.4 – -1.9 – -0.9 – -1.4 – -1.2 –

8-thread -2.5 – -12.8 – -3.7 – -2.1 – -2.7 – -3.1 –

Dual-Core

2-thread -1.3 -0.3 -2.4 -0.4 -2.7 0.3 -0.6 0.4 -1.2 0.8 -3.7 -0.7

4-thread -1.9 -0.9 -5.2 -3.3 -4.4 -1.5 -1.4 -0.4 -1.6 0.4 -3.3 -0.3

8-thread -3.6 -2.6 -17.0 -15.3 -8.0 -5.2 -3.1 -2.1 -3.7 -1.7 -7.4 -4.6

node gives rise to slight increases in execution times and slightly larger modelling errors. This

is a consequence of intra-core contention which is not accounted for in the NUMA extended

LPM.

5.5.4.1 Four and Eight Threads, Dual Core Assignment

Figure 5.6 presents modelling error plots, obtained for four and eight threads with dual core

assignment. The results show similar trends to those seen in Figure 5.5 i.e. the majority

of prediction errors are negative and the absolute error increases from four threads to eight

threads, and from lower to higher NUMA levels (i.e. across the x-axis).

The modelling errors for both PRISM cases are less than 5%. For the PRISMC and

CALDFT subroutines the modelling errors are less than 15% except for PRISMC from Exp 2

were the errors are greater than 15%. As the extended LPM does not explicitly model intercon-

nect contention, the errors obtained for PRISMC and CALDFT would suggest that intra-core

contention and the cHT protocol overheads are limiting the observed performance.

5.5.5 Accounting for Dual-Core contention

Results presented in the previous section show that modelling errors systematically increase

for cases involving dual-core thread assignment (cf. Figure 5.5 with 5.6). One possible way to

account for dual-core contention is to introduce a dual-core scaling factor SDC, which is a ratio

between dual-core and single-core thread placement results obtained for PRISM, PRISMC

and CALDFT i.e we use (0,0) values from Table 5.8. Values for SDC are 0.99, 0.98, 0.97

for PRISM, PRISMC and CALDFT respectively. These results indicate that CALDFT is most

affected by intra-core contention.

§5.5 Extending the LPM to Account for NUMA Effects 141

Figure 5.6: Modelling Error for 4, 8 thread calculations using fn at each NUMA level: (a)

PRISM from Exp 1; (b) PRISMC from Exp 2; (c) CALDFT from Exp 2; (d) PRISM from

Exp 3; (e) PRISMC from Exp 4 and (f) CALDFT from Exp 4

-25

-20

-15

-10

-5

 0

 5

(0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (1,2) (2,1) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

PRISM from Exp_1 4 Threads
8 Threads

-25

-20

-15

-10

-5

 0

 5

(0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (1,2) (2,1) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)
NUMA Level (hD, hF)

PRISM from Exp_3 4 Threads
8 Threads

(a) (d)

-25

-20

-15

-10

-5

 0

 5

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

PRISMC from Exp_2 4 Threads
8 Threads

-25

-20

-15

-10

-5

 0

 5

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

PRISMC from Exp_4 4 Threads
8 Threads

(b) (e)

-25

-20

-15

-10

-5

 0

 5

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

CALDFT from Exp_2 4 Threads
8 Threads

-25

-20

-15

-10

-5

 0

 5

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

M
o

d
e

lli
n

g
 E

rr
o

r
(%

)

NUMA Level (hD, hF)

CALDFT from Exp_4 4 Threads
8 Threads

(c) (f)

142 Study of Thread and Memory Placement Effects in Gaussian

If we assume that SDC is specific to the system environment (i.e the number of cores and

arrangement of on-chip caches, the specific routing and number of threads) and not on the size

of the problem, a dual-core scaling factor fDCn can be defined as,

fDCn = Sn �SDC (5.11)

where, Sn is the same scaling factor used previously in Table 5.9.

Using the dual-core scaling factor, the average modelling prediction error for dual core and

single core thread assignments are given in Table 5.12 for two, four and eight threads. From

this table it can be seen that the use of fDCn , gives a systematic error reduction for all of the

dual-core cases.

5.5.6 Summary: NUMA and Multi-threaded Extended LPM

In this section, the LPM was extended to account for NUMA locality by use of an additive cost

model for each data item which was not local to a given thread of execution.

A series of base timings were determined by varying the number of hops for both the

Density and Fock matrices for two molecular systems (Valinomycin using a 6-311G* basis set

and C60 using a cc-PVTZ basis set) and the HF and BLYP methods. The extended LPM was

able to reproduce single threaded runtimes to within 1%.

Modelling errors not explicitly accounted for by the extended LPM includes interconnect

contention which increases with thread count. A possible modification to account for con-

tention would be to incorporate, a variable scale factor ‘ fn’ into the model as the function of

the number of threads.

For dual-core the use of a variable scaling factor fDCn is able to reduce modelling prediction

errors.

5.6 Use of Page Migration to Affect Data Locality

In previous sections, thread and memory placement and cache blocking were shown to influ-

ence strongly the performance of the Gaussian code on the SunFire X4600 M2. The aim of this

section is to evaluate the use of application initiated page migration, as a means of improving

data locality.

To achieve this aim, three types of data placement schemes are identified. These are then

used to affect the placement of the Density and Fock matrix. These placements are then eval-

uated using the Valinomycin and C60 benchmarks for the HF, BLYP and B3LYP methods.

§5.6 Use of Page Migration to Affect Data Locality 143

Table 5.13: Three data placement schemes for the Fock and Density Matrices

Placement Density Matrix (D) Fock Matrix (F)

D1-Node – F1-Node Placed on one node Placed on one node

D1-Node – FDynamic Placed on one node Node local

DAll-Nodes – FDynamic Interleaved over all nodes Node local

5.6.1 Data Placement Strategies

Prior to considering data placement schemes, we briefly recap the two page management tech-

niques used to improve data locality in Solaris. The first is the ability of a user-space applica-

tion to affect page mappings within its address space by using the madvice call for the range of

pages requiring migration. This is a ‘dynamic page migration strategy’. The second strategy

involves reducing contention for any given set of pages by re-mapping these pages using a

pseudo-random mapping of node locations in order to ensure that there are no access hot spots.

This is referred to as a ‘node interleaving of memory’.

Using these two strategies, three placement schemes are outlined in Table 5.13 and illus-

trated in Figure 5.7, for the Density (D) and Fock (F) matrix placements. These are elaborated

below

• The D1-Node – F1-Node scheme places the Fock matrix and density matrix on one node. It

resembles the placement behaviour of an unmodified instance of Gaussian, which arises

from the first-touch policy used by the operating system. This placement corresponds

to Figure 5.7, (a).

• The D1-Node – FDynamic scheme places the Density matrix on one node, but through user

initiated page migration, makes the Fock matrix node local to each thread in the parallel

region. This placement corresponds to Figure 5.7, (b).

• The DAll-Nodes – FDynamic scheme uses node interleaving of memory so that pages of the

Density matrix are spread throughout all the nodes in the system. Again the Fock matrix

is migrated to be local to each parallel thread. This placement corresponds to Figure 5.7,

(c).

The DAll-Nodes – FDynamic scheme is used to asses the effectiveness of interleaving the Den-

sity matrix, whereas the D1-Node – FDynamic scheme is used to assess the influence of dynamic

Fock matrix migration on parallel performance.

144 Study of Thread and Memory Placement Effects in Gaussian

Figure 5.7: Node Mappings used for the Density and Fock matrices

���
���

	

��

�

��

N6

N7

N0

N1

F0 F1 F2 F3

F4 F5 F6 F7

D

(a) Shared Density matrix (D) and

Fock matrices (Ff0-8g) on one node

i.e. D1-Node – F1-Node

���
���

��
��

��
��

N6

N7

N0

N1

F0

F1

F2

F3

F4

F5

F6

F7

D

(b) Shared Density matrix (D) and

Fock matrices (Ff0-8g) local to each node

i.e. D1-Node – FDynamic

���
���

��
��

��
�

N6

N7

N0

N1

F0

F1

F2

F3

F4

F5

F6

F7

D D D D

D D D D

(c) Interleaved Density matrix (D) and

Fock matrices (Ff0-8g) local to each node

i.e. DAll-Nodes – FDynamic

§5.6 Use of Page Migration to Affect Data Locality 145

5.6.2 Speedup Plots for Valinomycin and C60

By using the placement schemes previously mentioned, we perform a series of timing exper-

iments for the Valinomycin and C60 systems. The objective of this is to assess HF and DFT

performance as a function of placement of the Density and Fock matrices, for increasing thread

count.

Figures 5.8 and 5.9 refer to Valinomycin and C60 respectively. The figures have three

sub-plots, corresponding to the HF, BLYP and B3LYP methods. Timings are obtained for one

SCF iteration in both cases. This time comprises the time taken for the parallel formation of

the Fock matrix and its serial diagonalization. The base time which is use to compute speed up

corresponds to a single threaded calculation.

There are three curves for each sub-plot, which we refer to as curves 1, 2 and 3. Curve

1, the red curve, corresponds to the D1-Node – F1-Node placement. This curve indicates the

behaviour of unmodified Gaussian. Curve 2, the green curve, corresponds to the D1-Node

– FDynamic placement. This curve shows the influence of local Fock matrix placement on

performance. Curve 3, the blue curve, corresponds to the DAll-Nodes – FDynamic placement.

This curve shows the effectiveness of interleaving the Density matrix. On each sub-plot the

grey line corresponds to ideal speedup. The x-axis of each plot has the thread count (Nproc)

which is varied from 1 to 16. The y-axis is the speedup. For each of the three methods the

base time, which was used to compute the speedup, is also given. We have opted not to present

the base time for all three placement curves as these vary from each other by less than 1%. We

note that the 4 thread experiments used Nodes 2 – 5, the 8 thread experiments used one core

from each node, and the 16 thread experiments used all cores on all the nodes of the SunFire

X4600 M2.

For the Valinomycin molecule and the HF method, all three curves in Figure 5.8 are nearly

identical from 1 – 4 threads, having a speedup very close to 3.5 with 4 threads. From this

point, curve 1 starts to diverge from 2 and 3. For 8 threads, this separation is clear, with curves

2 and 3 being quite distinct from curve 1. This indicates that the overhead if threads having to

access remote Fock matrices (for the red curve) starts to be a limiting factor. On increasing to

16 threads, we see that curve 1 has not been able to make use of the extra thread count owing

to the poor memory placement of the both the Density and Fock matrices. It attains a speedup

of just 6.7. In comparison, curves 2 and 3 attain speedups of 9.8 and 10.1 respectively. The

separation between curves 2 and 3, indicates that interleaving the Density matrix improves

speedup when using 16 threads.

For the BLYP method the speedup curves are identical for 2 threads. Starting from four

threads, there is a separation between curve 1 and the other curves. For 8 threads, the speedup

for curve 1 is less than curves 2 and 3, which are near identical. Increasing to 16 threads,

146 Study of Thread and Memory Placement Effects in Gaussian

Figure 5.8: Speedup plot for Valinomycin using a 6-311G* basis set and HF, BLYP, B3LYP

methods.

(a) HF (Base time: 1996 seconds)

(b) BLYP (Base time: 1649 seconds)

(c) B3LYP (Base time: 2942 seconds)

§5.7 Related and Previous Work 147

curve 1 attains at best a speedup of 7.7 whereas curves 2 and 3 have speedups of 8.7 and 8.8

respectively. The implementation of the BLYP method does scale with increasing processor

count but, it is much less than what was observed for the HF method.

For the B3LYP method speedups follow similar trends to those seen for the HF method, as

PRISM dominates the runtime rather than CALDFT.

For C60 speedups are shown in Figure 5.9. The trends are similar to those seen for Vali-

nomycin for all three methods.

To summarize this section, three placement schemes were used to evaluate the speedups

for specific memory placements of the Density and Fock matrices. Two of these placements

varied the location of the Fock matrix and interleaving of the Density matrix.

It was observed that all calculations benefit from thread local access to Fock matrices.

For the HF and B3LYP methods interleaving of the Density matrix helps improve speedups

obtained. The BLYP method was not sensitive to Density matrix interleaving, but was sensitive

to the use of node local Fock matrices.

For 16 thread calculations the dynamic migration of the Fock matrix and interleaving of

the Density matrix resulted in significantly better HF performance. For BLYP calculations, the

use of dynamic migration of the Fock matrix improved performance. Speedups obtained for

B3LYP were similar to those for HF.

Most importantly the cost of dynamic migration and interleaving were found to be small

in comparison to the gains to be had from accessing node local data and reducing interconnect

contention.

5.7 Related and Previous Work

Very recently Gomperts et al. [98] reported the scalability of the Gaussian code for frequency

calculations on the SGI Altix 450 cc-NUMA machine [240], for a coupled perturbed Hartree-

Fock (CPHF) [74, 203, 215] calculation to obtain the infra-red and vibrational circular dichro-

ism (VCD) spectra [68] for the α-Pinene7 molecule. They observed a performance anomaly

where the first four threads’ execution time was far less than those of the other twenty-eight

threads, within link l1002. The cause was shown to be the near simulataneous data-loads of the

Density matrix by all the worker threads. By using code modifications, which involve creating

thread-local datastructures at runtime, they were able to improve performance by a factor of

2. Performance analysis was done using an SGI developed profiling tool called ‘Histx’, which

works by sampling the hardware performance counters for the Itanium2 processor during ap-

plication execution. Profiling revealed the default first-touch policy led to all memory being

7α-Pinene is commonly found in ‘Oil of Turpentine’ extracted from Pine trees [301].

148 Study of Thread and Memory Placement Effects in Gaussian

Figure 5.9: Speedup plot for C60 using a cc-PVTZ basis set for the HF, BLYP, B3LYP meth-

ods.

(a) HF (Base time: 1275 seconds)

(b) BLYP (Base time: 500 seconds)

(c) B3LYP (Base time: 1475 seconds)

§5.7 Related and Previous Work 149

allocated on one NUMA node. They re-coded Gaussian to create node local copies through the

creation of temporary arrays in parallel regions and relying on the first-touch policy to ensure

pages were local to the thread of execution. (An approach similar to this was used in 5.4 of

this chapter). They go on to propose modifications to the FirstPrivate OpenMP clause

to affect node local placement. There is general agreement with the conclusions reached

in [98] and work performed in this chapter, wherein for different code paths within Gaussian

(the CPHF code) and different test molecule, the need for locality aware access to data im-

pacts performance. In our work we were able to affect application driven thread and memory

placement to ensure node local placement. We found the use of dynamic migration of the Fock

matrix and node interleaving of the Density matrix beneficial in improving scalability for the

HF, BLYP and B3LYP methods. The overheads for migration were outweighed by the benefits

of node local data placement.

The NUMA and multi-thread extended LPM is a simple model which uses an additive cost

model of data items and scaling factors to predict performance. In the following section, we

review previous work done in the area of performance modelling of NUMA platforms.

Yang [309] develops a queuing model for a cache-based multiprocessor system that uses

hierarchical buses, and which resembles modern multi-core CPUs. The model captures system

bus contention as well as cache and memory interference for a general memory reference

pattern. The modelling was validated against simulation and it was found that bus traffic for

enforcing coherency was significant and hence Yang proposes an adaptive cache coherence

protocol which allows for multiple copies of shared data within a set of processors that share

the same interconnect link to main memory.

Torrellas et. al. [281] study the performance of a hierarchical shared-memory multipro-

cessor. They develop an analytic model of traffic in a machine which mimics the Stanford

DASH [158] shared-memory multiprocessor system. By using traces collected for a 16 pro-

cessor configuration they predict performance for a 256 processor system. Three major factors

are identified in their study as influencing performance (a) locality of data access, (b) the

amount of data sharing between threads, and (c) the available bandwidth in a cluster. A key

recommendation for reducing bus contention is to facilitate direct access to memory without

involving the bus used by the attached processors. The SGI Altix system implements this rec-

ommendation by virtue of its hardware SHUB [166] that responds to remote memory requests

for a group of Itanium2 processors that share the same bus.

Zhang and Qin [316] present several analytic models to predict the overhead of opera-

tions (scheduling, synchronization, data layout and access patterns) which impact the perfor-

mance of a NUMA multiprocessor system. Their models incorporate memory and network

contention. It assumes that memory requests are uniformly spread across all the memory mod-

ules, this is done to facilitate quick numerical solutions for their models. A key finding of

150 Study of Thread and Memory Placement Effects in Gaussian

their modelling is that the rate of remote-memory requests could be used to predict the remote-

memory access delay.

LaRowe et. al. [143] implement parametrized dynamic page migration strategies and fol-

low on to measure the performance of parallel programs using these strategies as well as de-

veloping an analytical model of the memory system performance for a NUMA system using

mean-value analysis. Their measurements and modelling shows that replication of commonly

used pages is beneficial and avoids pages bouncing between NUMA memory nodes.

Ring based interconnects are used in multi-core microprocessors notably the Cell BE [8],

the Core i7 [152] and Larabee [238]. Holliday and Stumm [117] investigate the performance of

hierarchical, ring-based shared memory multiprocessors using simulation. The simulator was

validated against the Hector shared-memory system [293]. Instead of using trace or execution

driven simulation, a synthetic workload model was used to enable fast turn-around for a 1024

processor system. Their key findings were that maximizing locality in applications reduces

memory contention; multiple memory banks are required to facilitate multiple outstanding

requests to memory; an adaptive maximum number of outstanding memory transactions is

needed to adjust for and aid computation or communication efficiency subject to changes in

communication locality; and processor and memory subsystem design needs to be balanced to

avoid creating system hot-spots.

Bhuyan et. al. [25] use simulation to quantify the effects of memory management policies

for scientific applications on NUMA platforms which use a multistage switching network. A

key finding was that the degree of performance improvement of an application is both depen-

dent on the memory management technique and the switch architecture.

Kaeli et. al. [144] present performance analysis of a CC-NUMA prototype machine devel-

oped at the IBM T. J. Watson research center. By using hardware instrumentation, traces were

obtained for transaction processing benchmarks to identify which elements in the OS or user

code were responsible for inter-node references. An analytic model of the prototype system

was created to evaluate the effect of architectural changes. Some key results are (a) replication

of read-only pages is critical in reducing the number of non-local references; (b) process pages

should be placed local to the owing process during initial page allocation; (c) there needs to be

an API to provide the OS with semantic hints about page contents and its placement.

Schmollinger and Kaufmann [236] present an extension to the BSP model [288] of parallel

computation to aid in mapping algorithms onto clusters of SMP machines (NUMA machines

with a hierarchical interconnect).

Nordén [196] presents an analytic model describing OpenMP PDE solvers which take into

account the NUMA ratio; a locality and optimal locality factor. Using this model Nordén

shows that ordered local PDE methods are insensitive to high NUMA ratios and allows these

algorithms to scale well on any NUMA system. The modelling also indicates that there are

§5.8 Conclusions and Future Work 151

great gains to be had from using an optimal data distribution.

5.8 Conclusions and Future Work

In this chapter a study of thread and memory placement effects on the Gaussian code was

undertaken. It comprises three parts:

First, a 18-Crown-6 Ether molecule using a 6-31G* basis set and Valinomycin using a 3-

21G basis was used to obtain serial and parallel timings using a modified version of Gaussian,

which could perform thread and memory placement. Timing results were obtained for two

cache blocking factors and speedup plots were presented. Serial results, using 18-Crown-6

Ether, showed that good cache blocking can potentially mitigate the effect of poor thread and

memory placement on a NUMA machine like the SunFire X4600 M2. Parallel results, using

Valinomycin, indicate that good speedups can be obtained by the use of cache blocking and

co-locating threads and memory. Speedup results for an unmodified instance of the Gaussian

code indicated that it scales similarly to an instance which has all memory being allocated on

one node.

Second, a straightforward extension of the LPM to NUMA systems was proposed and eval-

uated. The extension uses a simple additive model to account for the cost penalty associated

with fetching data items from non-local NUMA domains. The NUMA and multi-threaded

LPM requires cache misses for each NUMA domain. By using targeted thread and memory

placements a set of base timings were obtained with combinations of these used to calculate

times for new thread and memory placements. The extended model was then evaluated for

single and multi-threaded experiments. Results upto 4 threads had a 5% error in prediction,

whereas for 8 threads the error increased to 15% for the dual-core case. The extended model

does not account for interconnect contention explicitly. It was proposed that two additional

scaling factors could be used to reduce the modelling errors on multi-core platforms.

Third, the use of page migration to affect data locality was assessed using the memory

placement APIs in the Solaris operating system. These were used to place Fock matrices

locally and to node interleave pages for the Density matrix to reduce contention. A series of

placement experiments were performed for the HF, BLYP and B3LYP methods. All calculation

types benefited from the use of page migration for the Fock matrix and node interleaving of

the Density matrix.

For future work, it would be useful to incorporate the extended LPM as a feedback loop

into PRISM, PRISMC and CALDFT to adaptively alter thread and memory placement deci-

sions based on the topology of the underlying hardware.

152 Study of Thread and Memory Placement Effects in Gaussian

Chapter 6

A Comparative Study of Charges

Obtained for a Set of Water Cluster

Complexes

6.1 Introduction

The primary focus of this thesis is towards the creation and use of performance models for the

Gaussian quantum chemistry code on NUMA platforms. The electronic structure calculations

performed in previous chapters generated a wavefunction for a fixed molecular geometry. As

the wavefunction is a mathematical construct, computational chemists have devised procedures

to extract meaning from it in line with their ‘chemical intuition’. One such model relates to the

assignment of charge onto constituent atoms in a molecular system. Charges are experimen-

tally observable quantities [213], and relate to chemical processes such as to bond formation,

electronegativity, polarization and sites for electrophilic or nucleophilic attack [188, 315].

In this chapter the Gaussian code is used to perform charge analysis of the electronic

wavefunction for a set of molecular systems. This analysis is an example of how Gaussian is

used by computational chemists. In chapter 4 two test molecular systems (k300a-04 and k300a-

08) were used in assessing the Linear Performance Model (LPM). These two test systems are

part of a larger ensemble of molecular systems used in this chapter. The larger ensemble of

systems lie at the forefront of system sizes that are amenable to calculation at present.

In 2004, Bliznyuk and Rendell [28] studied the electronic charge on a potassium ion (K+)

located at two specific positions in a large molecular structure known as a Potassium ion chan-

nel [167]. (The potassium ion channel is a pore-like protein, present in all biological cells

which is responsible for regulating the flow of ions into and out of the cell. A schematic is

shown in Figure 6.1). Charge results have been reproduced in Table 6.1. The table gives the

nett charge on the K+ ion obtained using HF and B3LYP methods with a 6-31G* basis set.

Charges were obtained using the Mulliken Population Analysis (MPA) method [189].

153

154 Comparative Study of DFT Charges

Table 6.1: Mulliken Charges (au) obtained using HF and the B3LYP DFT functional on a K+

ion positioned at two locations (Point B, Point C). The 6-31G* basis set was used for both

methods. Reproduced from Table 5 in [28].

Shell Structure 2 (Point B) Structure 3 (Point C)

Cutoff HF DFT HF DFT

3 0.745 0.580 0.572 0.277

5 0.617 0.369 0.565 0.261

6 0.490 0.169 0.540 0.221

8 0.433 0.079 0.532 0.195

10 0.426 0.068 0.530 0.193

In Table 6.1, there are references to two structures (‘Structure 2’ and ‘Structure 3’), in

which the potassium ion is located at ‘Point B’ or ‘Point C’. These two locations were chosen

as they represent different electronic environments for the passage of the K+ ion through the

channel. The two structures were taken from a molecular dynamics (MD) study performed in

earlier work by Bliznyuk et. al. [29] . The ‘Shell Cutoff’ column, in the table, refers to the

distance criteria used to determine if a given molecule was to be included when computing the

charge on the K+ ion. A key point is the variation of charge on the K+ ion; specifically the

DFT results shows that the K+ ion loses almost all of its charge as the system size is increased,

and this is true for both structures. The dramatic reduction in charge on the K+ ion using DFT

is clearly an unphysical result.

Bliznyuk and Rendell point out that this result reinforces “the view that electron density

results obtained from DFT calculations should be viewed with extreme caution, especially

for large molecules”. They note also that the dramatic reduction in charge on K+ is due to

DFT methods overemphasising the importance of polarization in large molecules as has been

observed elsewhere [103], but they do not prescribe alternative strategies to perform charge

analysis using DFT methods1.

The aim of this study is to further investigate the issue of how to obtain charges for K+

ions using DFT wavefunctions, including the use of two different charge analysis methods –

the Mulliken Population Analysis and Natural Population Analysis (NPA).

The chapter layout is as follows: Section 6.2 presents background material. Section 6.3

briefly discusses the test molecular systems, software and methodologies used in this chapter.

Section 6.4 presents results for charges on a K+ obtained from HF, BLYP and B3LYP methods

using both the MPA and NPA methods. The distribution of charge within a water cluster

system is analyzed in Section 6.5. Following this Section 6.6 presents an analysis of charge

distribution in a water cluster as a function of the radial distribution function. In Section 6.7

1DFT methods are widely used due to their O(N2) scaling for large systems and its ability to obtain

chemically accurate results [137]

§6.2 Background 155

Figure 6.1: Schematic illustration of the KcsA potassium ion channel showing the location of

Point B and C. Taken from [28].

we compare spherically integrated electron density, obtained from the HF, BLYP and B3LYP

methods. Section 6.8 considers the use alternative basis sets. Previous work is discussed in

Section in 6.9 and the Chapter concludes in Section 6.10.

6.2 Background

In this section the Mulliken and Natural charge analysis methods, used in this chapter, are

discussed. Charge analysis techniques are a means of interpreting Schrödinger’s wave equa-

tion; the MPA and NPA methods achieve this by partitioning the wavefunction with reference

to the basis functions used to compute it. This then allows qualitative analysis of the chemi-

cal processes underpinning the system e.g. determining sites for nucleophilic or electrophilic

attacks [188].

The electron density function ρ(r) is defined as the probability of finding an electron in a

volume dr, Z
ρ(r) dr= N (6.1)

where integration is carried out over all space and this results in N electrons. For HF theory,

ρ(r) = N

∑
µ

N

∑
ν

Pµν φµ(r) φν(r) (6.2)

where Pµν is an element of the density matrix and φ(r) are atom centered basis functions. On

156 Comparative Study of DFT Charges

integrating ρ(r) over all space,Z
ρ(r) dr = N

∑
µ

N

∑
ν

Pµν

Z
φµ(r) φν(r) dr (6.3)= N

∑
µ

N

∑
ν

Pµν Sµν (6.4)= N (6.5)

(6.6)

where Sµν is the overlap matrix.

6.2.1 Mulliken Population Analysis

Mulliken proposed the first population analysis technique [189]. The implicit assumption is

that the electron density can be partitioned according to the basis functions used to describe

it. If density is attributed to a product of two functions on different centers, then the density is

split evenly.

The MPA scheme uses the Dαβ Sαβ matrix to apportion charge i.e. the matrix arising from

the product of the Density and overlap matrices. The number of electrons associated with AO

α is the diagonal element Dαα Sαα , whereas half the value of an off-diagonal element Dαβ Sαβ

is the number of electrons shared between AOs α and β . By summing all the contributions

from AOs of a given atomic center, the number of electrons attributed to that center can be

obtained. Thus the electron population on a given atomic center A is defined as,

ρA = AO

∑
α2A AO

∑
β

Dα β Sα β (6.7)

which is then used to define the gross charge QA on the atomic center according to

QA = ZA�ρA (6.8)

where ZA is the atomic number of atom A (i.e the number of positively charged protons in the

nucleus of Atom A).

6.2.2 Natural Population Analysis

Wienhold et al. [224,298] describes the use of Natural population analysis to obtain nett charge

on atoms. The NPA techniques uses natural orbitals to apportion electron density onto atomic

and molecular orbitals.

§6.2 Background 157

Natural orbitals are the eigenfunctions of a quantity called the ‘first-order reduced Density

matrix’. We now discuss the first-order density matrix, the definition of a natural orbital and

its subsequent use in the NPA procedure to obtain nett charge.

6.2.2.1 First-order reduced density matrix

The motion of electrons in a system are described by the wavefunction ψ . The electron density

function ρ(r) is obtained from the wavefunction,

ρ(r) = jψ(r)j2 (6.9)

Given ‘N’ electrons in a system, the probability P, of finding electron 1 located at x1, simulta-

neously when electron 2 is located at x2 and so on for ‘N’ electrons is given by,

P= ψ(x1;x2; : : : ;xN) ψ(x1;x2; : : : ;xN) (6.10)

Thus the probability of finding electron 1, regardless of the locations of the other electrons is

defined as,

P(x1) = N

Z
dx1 dx2 : : :dxN ψ(x1;x2; : : : ;xN) ψ(x1;x2; : : : ;xN) (6.11)

where, N is a normalization factor defined suchZ
dx1ρ(x1) = N (6.12)

The probability function P(x1) can be generalized to a density matrix γ(x1;x0
1), which is

termed the first-order reduced density matrix,

γ(x1;x0
1) = N

Z
dx1 dx2 : : :dxN ψ(x1;x2; : : : ;xN) ψ(x0

1;x2; : : : ;xN) (6.13)

For HF theory, this can be obtained by expanding γ(x1;x0
1) using functions χi,

γHF(x1;x0
1) = ∑

a

χa(x1)χ�
a (x1) (6.14)

6.2.2.2 Natural Atomic Orbitals and NPA

The first-order reduced density matrix (γ) is Hermitian. On diagonalizing γ the eigenfunctions

are called natural atomic orbitals (NAO) and the eigenvalues are occupation numbers. NAOs

can be used to determine nett atomic charge [83]. We now briefly cover the process of ob-

taining charges using NPA. Assume the basis functions for the system of interest have been

158 Comparative Study of DFT Charges

arranged such that all orbitals for center A are before those on center B and so on i.e.,

χA
1 ; χA

2 ; χA
3 ; : : : ; χB

k+1; χB
k+2; χB

k+3; :::; χC
l+1; χC

l+2; χC
l+3; (6.15)

A Density matrix D can be written in terms of blocks of basis functions at a given center,

D = 0BBBB� DAA DAB DAC : : :
DAB DBB DBC : : :
DAC DBC DCC : : :: :

1CCCCA (6.16)

The NAOs for atom A are defined as those which diagonalize the DAA block and similarly

for atom B and so on. The definition of the sub-blocks are constrained to ensure eigenfunctions

are orthonormal within the sub-block and to all other eigenfunctions.

The process of obtaining NPA charges begins by partitioning both the density and overlap

matrices into sub-blocks ordered by the Atom (A) that the sub-block represents, its angular

momentum (l) and the symmetry element (m) for the given l.

All 2l+ 1 symmetry elements in the sub-block are averaged and the sub-blocks are inde-

pendently diagonalized to give eigenfunctions which form what are called pre-NAOs.

These pre-NAOs are classified by their occupancy into two groups, the ones with the high-

est occupancy are called the Natural Minimum Basis (NMBs) and all the rest are called the

Natural Rydberg Basis (NRBs).

As pre-NAOs from one center overlap with other pre-NAOs on another center, two sets of

diagonalizations are done to obtain the intermediate NAOs – the NRBs are Schmidt orthogo-

nalized w.r.t the NMBs and the NRBs are separately diagonalized using a weighted occupancy

symmetric orthogonalization scheme [224].

This process removes overlaps and localized density onto specific atomic centers. The

intermediate NAOs from the two sets of orthogonalizations are re-blocked and diagonalized to

give the final NAOs. The diagonal elements of the density matrix formed using NAOs give the

atomic population of each NAO. If the atomic populations for all the NAOs centered on a given

atom are summed, the resulting charge population is called the natural atomic population.

6.2.3 The Radial Distribution Function

The RDF is a means of describing the structure of systems like gases and liquids [9, 156]. It

measures the correlation between particles in a system and denotes the average probability of

finding some particle at a distance r from a reference particle i.e. it is a spatial measure for the

packing of particles around some central point.

§6.2 Background 159

Figure 6.2: Radial distribution function determined from a 100 ps molecular dynamics sim-

ulation of liquid argon at a temperature of 100 Kelvin and a density of 1.396 g/cm3. Taken

from [156].

The RDF is computed relative to an ideal gas2 and is a dimensionless quantity [115, 223].

In this section the pair-wise RDF g(r) is utilized.

Figure 6.2 is a typical RDF obtained from an MD simulation. The graph, taken from [156],

is for a 100 ps MD simulation of liquid argon. From the graph, at short distances g(r) is zero

owing to the large short-range repulsive force between atoms. At 3.7 Å g(r) peaks at 3 and

this indicates that it is three times more likely that a pair of Argon atoms are separated at this

distance. The RDF reduces at 5Å approaching a minimum, indicating that at this distance the

chances of finding a pair of particles is diminished compared to the 3.7Å . At distances greater

than 7Å the value of g(r) approaches one indicating a distinct lack of long range structure.

The pair-wise RDF is generated by computing the distance between a particle of interest

and other particles in the system. These distances are sorted by distance and binned to create

a histogram. Each population is then normalized by the number of particles that would be

present in an ideal gas.

A Python code for computing the RDF was written to process the test systems used in this

Chapter, this has been reproduced in the Appendix, Section A.4.

2An ideal gas is a theoretical system which has a uniform distribution of its particles over all of

space

160 Comparative Study of DFT Charges

6.3 Experimental Details

This section discusses the molecular systems and the methodology used in this study.

6.3.1 Test Molecular Systems

A set of test molecular systems which consist of a solvated K+ ion, surrounded by progressively

larger numbers of water molecules were used.

Geometries for these water clusters are obtained from MD simulations run at 300 and 345

Kelvin respectively using the Amber program [46]. These snapshots have been labeled as

k300a, k300b, k300c and k345a i.e. there are three snapshots at 300 Kelvin and one snapshot

at 345 Kelvin (cf. Appendix A.3). Four snapshots for the two temperatures are taken for a

water cluster which has a radius of 12Å. Then for each of these snapshots a set of six sub-

systems are derived by using different cutoff radii. These are labelled as (k300a-f03 – 10g),
where each suffix i.e. 03, 04, 06, 08 and 10 denotes the cutoff distance from the center of the

K+ ion.

Using Appendix Table A.9 as an example, k300a-03 is a subset of the k300a-12 snapshot.

It has five water molecules which are at a distance of 3Å from the central K+ ion.

Thus the k300a-12 is a superset of previous five subsets (k300a-f03 – 10g). In the same

manner subsets for the k300b (Table A.10), k300c (Table A.11) and k345a (Table A.12) ge-

ometries are defined.

6.3.2 Software and Methodology

The Gaussian code implements various charge analysis methods. Of these we opted to con-

sider those which either used input basis functions or the electron density. The MPA and

NPA methods use input basis sets. Two alternative methods, which use electron density for

charge analysis, called Atoms in Molecules (AIM) [20] and Hirshfeld charges [105] exist

within Gaussian. We explored the use of the two electron density methods and found that

the AIM implementation in Gaussian was deprecated, and could not handle the large water

cluster systems. It also became apparent that the Hirshfeld charge implementation was not

fully functional and to our knowledge there are no peer reviewed publications based on using

it. Thus, only MPA and NPA charges are considered here.

MPA and NPA charges were calculated for all the snapshots using Gaussian G03D02 [86],

with a 6-31G* basis set using the HF, BLYP and B3LYP methods.

Custom Python scripts were used to extract K+ charges, plots of relative charges were

obtained using a Gnuplot [216] interface from Python. Similarly radial distribution functions

§6.4 MPA and NPA Charges on K+ 161

!"#$%

!"#&%

!"#'%

"#"%

"#'%

"#&%

"#$%

"#(%

"#)%

"#*%

"#+%

"#,%

"#-%

'#"%

!"##$%&'()*+(!"##$%&'()*+(!"##$%&'()*+(

,-(./0*(.1/0*(

2
3
4
56
&
(7
'
(8
9
(

.$""/!"$% .$""/!"(% .$""/!"*% .$""/!",% .$""/!'"% .$""/!'&%

Figure 6.3: Charge on K+ for the k300c system

for each snapshot were computed using Numerical Python [63] and plotted using the same

interface.

6.4 MPA and NPA Charges on the Potassium Ion Ob-

tained Across All Water Complexes

Figure 6.3 presents results for the MPA and NPA charges on the Potassium ion, for the k300c

set of snapshots.

The figure is divided into 3 columns. Charges for k300c-f03, 04, 06, 08, 10, 12g are

grouped by the computational method (HF, BLYP, B3LYP) and sub-grouped by the charge

analysis method used (MPA, NPA). In each column the colored vertical bars are ordered by

distance i.e. 3, 4, 6, 8, 10 and 12 Å . (Results for other snapshots are not shown as these

display similar trends to the k300c snapshot).

For HF, all charges are positive for both MPA and NPA. As the water cluster size increases

from 3Å to 12Å , there is a reduction in charge (� 57%) in the MPA results. For the HF NPA

results there is only a 3% reduction.

For BLYP results the reduction in charge is dramatic for MPA, the results indicate that

from the 8 Å onwards, the charge on the K+ is negative! This implies all charge from the K+

ion has been lost to atoms surrounding it, clearly an unphysical result. For NPA k300c charges

162 Comparative Study of DFT Charges

are positive decreasing by just 9% as the system size is increased.

The B3LYP results follow the same trends as the BLYP results. The MPA charges are neg-

ative starting from the k300c-08 system, but are not of the same magnitude as those calculated

for BLYP. NPA results are all positive and show a 7% decrease as system size is increased. In

short the B3LYP results are mid-way between HF and BLYP, which is to be expected given

that the functional is a hybrid of HF and BLYP.

As noted earlier the MPA procedure is heavily basis set dependent, apportioning charge

equally to atomic centers which share in an overlap density. These deficiencies are reduced

when using NPA. Yet, this does not satisfactorily explain the dramatic reduction in HF charge

as the system size increases and why the Kohn-Sham DFT procedure leads to a dramatic re-

duction in charges using MPA, yet the NPA charges obtained from DFT are slightly less than

those obtained for HF.

6.5 Relative Charge on Potassium as a Function of Dis-

tance

In the previous section, an increase in the size of the water cluster system resulted in a decrease

in the positive charge on the K+ ion. In this section we seek to identify which water molecules

attract the most amount of positive charge from the K+ ion. The expectation is that water

molecules nearest to the K+ ion will have the greatest influence, and this influence will reduce

with distance.

To address the above we present plots for MPA and NPA charges obtained from the HF,

BLYP and B3LYP methods for the relative charge lost from the K+ ion. Figure 6.4 presents

these plots for the k300c-12 system, as a function of distance.

The two plots have “Distance from K+” expressed in Ångstroms, on the x-axis. The y-

axis is the ‘Percentage Relative Charge’ using a log scale. Both plots were generated by

performing two sets of calculations: first, using MD snapshots for each system (k300a,b,c

and k345a) the MPA and NPA charges were obtained; second, the K atom was removed from

the input geometry and the charges were computed. The relative charge was then calculated

by subtracting charges obtained for each atom in the snapshot without the K+ ion from the

snapshot with the K+ ion. The ‘Percentage Relative Charge’ is this number expressed as a

percentage. Results are plotted for each of the HF, BLYP and B3LYP methods.

For the MPA plot, in Figure 6.4, charges obtained from the HF, BLYP and B3LYP methods

are near identical upto a distance of 3Å . The magnitude of these six data points indicates that

the majority of the K+ charge has been attracted to the electronegative water molecules closest

to the K+ ion, as expected.

§6.6 Charges Binned with Respect to the RDF 163

For distances greater than 3Å , variations in the relative charges obtained from HF, BLYP

reduce to around 1%. There is an increase around 3.6Å that then reduces until 6Å . Beyond

6Å the relative charge is much less than 1% indicating that water molecules beyond here play

little part in reducing the charge on the K+ ion.

NPA results vary much more than those for MPA. Upto 3Å all HF, BLYP and B3LYP

methods follow roughly the same trends, as seen for MPA charges, although the BLYP charges

indicate that K+ loses its charge much more quickly than for the other two methods. There is

also a pronounced variation in charge on progressing from 2Å towards 6Å , by comparison the

MPA results are smoother and better correlated between HF, BLYP and B3LYP upto 6Å.

Overall the MPA results looks entirely reasonable, while the NPA results are some what

spurious. Trends observed here, for the k300c plot, were also observed for the k300a, b and

k345a snapshots.

6.6 Charges Binned with Respect to the RDF

The previous section presented results for the variation of relative charge with respect to dis-

tance from the K+ ion. From this it was determined that water molecules which were at a

distance of 6Å or less from K+ played an important role in attracting charge from the K+ ion.

In this section, the Radial Distribution Function (RDF) for the k300c-12 snapshot is pre-

sented to (a) characterize the distribution of water molecules surrounding the K+ ion and (b)

to bin charges as a function of the RDF. Following this discussion, in sub-section 6.6.1, we

present results for a break-down of charges obtained as a function of the RDF.

In typical MD simulations the RDF is usually computed by averaging over multiple MD

snapshots, whereas we computed RDFs using each of the individual k300a, b, c and k345a

snapshots.

The RDF for all snapshots were computed first. This was then followed by the binning of

charges based on computed RDF peaks. Results for k300c-12 MPA and NPA charges, binned

by distance, are presented in Figure 6.5. Charge plots were created by obtaining NPA and

MPA relative charges and binning charges on the Oxygen atom using the same binning width

as the RDF. In both plots, the x-axis denotes distance ‘r’ in Ångstroms from the K+ ion. The

left hand side of the graphs is used for the y-axis, it denotes the RDF ‘g(r)’. The right hand

side is used to denote charges obtained from the HF, BLYP and B3LYP methods using MPA

and NPA.

The RDF (the red curve) for both plots in Figure 6.5 were created using distance histogram

bins separated by 0.5 Å . A peak for g(r) = 3 at 2.6 Å and a second peak for g(r) = 1.45 at 4.16

Å are observed. There are two other peaks for g(r) = 1.19 at 5.75 Å and g(r) = 1.12 at 9.5 Å .

Water molecules occurring at each of these values of g(r), create what are known as solvation

164 Comparative Study of DFT Charges

Figure 6.4: Variation of relative charge as a function of distance from K+ for the k300c-12

system.

 0.001

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

P
e
rc

e
n
ta

g
e
 R

e
la

ti
v
e
 C

h
a
rg

e

Distance from K+ (Angstroms)

MPA

Methods
HF

BLYP
B3LYP

 0.001

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

P
e
rc

e
n
ta

g
e
 R

e
la

ti
v
e
 C

h
a
rg

e

Distance from K+ (Angstroms)

NPA

Methods
HF

BLYP
B3LYP

§6.6 Charges Binned with Respect to the RDF 165

shells. In the case of the water cluster systems, the water acts as a solvent around the K+ ion.

The electronegative oxygen atoms, in all the water molecules nearest to the K+ ion, attracts the

positive charge of the K+ ion. This results in a shell of water molecules surrounding the ion.

The g(r) values indicate there are two major solvation shells [30] around 2.6 Å and 4.16

Å , followed by a minor shell at 5.75 Å . Thus, it is three times more likely to find water

molecules at a distance of 2.25 Å from the K+ ion and around 1.5 times more likely to find

molecules at a distance of 4.25 Å from the K+ ion. From this observation the expectation is

that most of charge on K+ is drawn away from it by the first solvation shell followed by the

second solvation shell.

We now consider results for charges that are binned with respect to the radial distribution

function. For the MPA plot, there is a strong correlation between RDF peaks and aggregate

charge obtained by binning. The highest charge concentration corresponds to the first solvation

shell, as expected. MPA charges obtained from HF are the lowest followed by B3LYP and

BLYP. The second largest charge concentration occurs at the second solvation shell. There

are two other minor charge peaks which occur at 5.75 Å and 11.44 Å . Charges obtained from

MPA peak at points corresponding to the location of the first, second and third solvation shells,

clearly indicate that the charge distribution within the water cluster is directly influenced by

the aggregate distribution of water molecules i.e. where there is a greater likelihood of finding

water molecules, there is a clustering of charge. This observation explains the trends observed

in Figure 6.4 for the variation of the ‘Percentage Relative Charge’ as function of distance.

Charges obtained using NPA for the HF, BLYP and B3LYP methods follow very different

trends from those observed for MPA. Charges upto 3.7 Å are negative and furthermore there is

no direct correlation between binned charges and RDF peaks. From the NPA plot, the highest

charge peak occurs at 11.44 Å , followed by a peak at 4.68 Å . These results do not reflect

expectations of how the charge ought to vary with distance from the K+ ion.

In summary the overall trends for NPA charges do not correlate with the location and

number of water molecules for a given solvation shell. We believe this result arises as a con-

sequence of the NPA procedure, and the way it localizes density onto specific atomic centers.

The process of generating NPA charges, while accounting for the electronegativity of each

atom [105], seems to modify charge densities in a manner such that, for very large water clus-

ter calculations it causes the charge distribution not follow the expected physical trends i.e the

expectation that charge peaks occur for corresponding g(r) peaks is not evident.

166 Comparative Study of DFT Charges

Figure 6.5: RDF and MPA, NPA Charges for k300c-12 obtained for the HF, BLYP and B3LYP

methods. Binning width is 0.5 Å .

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

g(
r)

C
ha

rg
e

r (Ångstroms)

MPA

RDF
HF

BLYP
B3LYP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

g(
r)

C
ha

rg
e

r (Ångstroms)

NPA

RDF
HF

BLYP
B3LYP

§6.6 Charges Binned with Respect to the RDF 167

6.6.1 Breakdown of RDF Charges By Solvation Shell

In this sub-section, a detailed breakdown of charges by solvation shell is presented. The aim is

to characterize how the total charge attracted away from the K+ ion varies as a function of the

solvation shell. This is done by aggregating the results in Figure 6.5 according to the solvation

shell. The results are given in Figure 6.6. Figures (a), (b) and (c) correspond to HF, BLYP and

B3LYP results respectively.

If we consider Mulliken charges for the first solvation shell obtained using HF, BLYP

and B3LYP, we see that the relative ordering between the k300a-12, k300b-12, k300c-12 and

k345a-12 is the same. The same trend is seen for Mulliken charges for the 2nd and 3rd solva-

tion shells.

The NPA charges in the first shell, across HF, BLYP and B3LYP are all negative. The

second solvation shell charges roughly follow the corresponding MPA trends. For the third

shell results show a similar trend to the 3rd shell results for MPA populations but for NPA the

third shell results are larger than what they are for the first shell. The latter is unphysical as it

suggests the 3rd shell (at a distance of � 10Å) is attracting more charge from the K+ ion than

the first shell.

From break-down data presented here, we conclude that trends for MPA charges are in line

with the expectation that a solvation shell near the K+ ion attracts more charge than one further

away.

168 Comparative Study of DFT Charges

Figure 6.6: MPA and NPA charges per RDF shell for all 12 Å systems, using a 6-31G* basis

set.

!"#$%

"%

"#$%

"#&%

"#'%

"#(%

"#)%

"#*%

"#+%

"#,%

"#-%

$%

./001234% 567% ./001234% 567% ./001234% 567%

$89%:;300% &4<%:;300% '=<%:;300%

>?%

!
"
#
$%
&
'

2'""@!$&% 2'""A!$&% 2'""B!$&% 2'()@!$&%

(a) Results for HF

!"#$%

"%

"#$%

"#&%

"#'%

"#(%

"#)%

"#*%

"#+%

"#,%

"#-%

$%

./001234% 567% ./001234% 567% ./001234% 567%

$89%:;300% &4<%:;300% '=<%:;300%

>?@6%

!
"
#
$%
&
'

2'""A!$&% 2'""B!$&% 2'""C!$&% 2'()A!$&%

(b) Results for BLYP

!"#$%

"%

"#$%

"#&%

"#'%

"#(%

"#)%

"#*%

"#+%

"#,%

"#-%

$%

./001234% 567% ./001234% 567% ./001234% 567%

$89%:;300% &4<%:;300% '=<%:;300%

>'?@6%

!
"
#
$%
&
'

2'""A!$&% 2'""B!$&% 2'""C!$&% 2'()A!$&%

(c) Results for B3LYP

§6.7 Density Plots for Charges 169

6.7 Density Plots for Charges

In previous sections, the MPA and NPA charge on the K+ ion obtained for the BLYP and

B3LYP methods indicated a dramatic loss of charge from the K+ as the water cluster size

increased. We then considered how the charge distribution varies with respect to relative

distance and as a function of the RDF. None of these investigations were able to pin-point a

physical reason (i.e. geometry of the snapshots or structure of solvation shells), that would

lead to this.

In this section, we propose and test the hypothesis that the dramatic loss of charge that

arises when using DFT methods arises due to a fundamental difference in the densities pro-

duced by the BLYP and B3LYP methods, in comparison to the HF method. In the MPA and

NPA methods electron density is apportioned to various atomic centers, thus fundamental vari-

ations in density are likely to cause differences in the nett charge on atomic centers.

To test this hypothesis, we obtained the discrete representation of the density, using a

numerical grid, and carried out spherical integration as a function of distance from the center

of the K+ ion. The results are given in Figure 6.7. This was performed using the Gaussian

cube option, which generates a discrete representation of electron density, outputs the results

as a ‘cube’ file. Cube files were generated for the k300fa,b,cg and k345a 12 Å systems using

the ‘Fine’ grid option. (This corresponds to 12 points per Bohr for the entire water cluster

system). The x-axis in Figure 6.8 is the distance from the K+ ion. The number of electrons

was determined by locating the K+ ion within the cube file, and then defining cubic volumes

of dimension 1Å upto 24Å with increments of 0.5Å . The values contained within each cube

were integrated in order to obtain the electronic charge.

In Figure 6.8 the electronic charge obtained from HF, BLYP and B3LYP densities for

the k300c-12 system, as a function of distance are given. These show that for the 248 water

molecules and the K+ there are a total of 2501 electrons (as expected). Results obtained from

integrating the density for HF, BLYP and B3LYP were essentially identical with no significant

variations in the electron density between the three methods. Thus variation in electron den-

sity does not appear to be responsible for the negative charges obtained using MPA and DFT

methods for the large water cluster systems. The only other factor that determines the charges

for MPA and NPA is the input basis sets, hence in the following section we consider the use of

various basis sets.

We note that the result in Figure 6.8 are similar to those obtained for all other snapshots.

170 Comparative Study of DFT Charges

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

!" %" &" '" (" $!" $%" $&" $'" $(" %!" %%" %&"

!"
#$
%&
'
(
)$
*+
,
-&
.#
*

/)0%-($#*1&'2*34*567*

)*" +,-." +/,-."

Figure 6.7: Spherical integration of k300c-12 electron density obtained using a 6-31G* basis

set for the HF, BLYP and B3LYP methods.

6.8 Charge on K+ as a Function of Different Basis Sets

In the previous sections we explored possible physical causes for charge variation and analyzed

the density between those obtained from the HF, BLYP and B3LYP methods for the water

cluster complexes. These showed that physical effects such as system geometry did not play

a role in the dramatic reduction of charge on the K+ ion. Also, there were no meaningful

variations in electron density obtained from the HF, BLYP and B3LYP methods.

In this section, we assess the effect of using different basis sets for the charge obtained on

the K+ ion. The k300c system is used as an exemplar since, as in previous sections, results

for the various k300fa,b,cg snapshots showed similar trends. Two other reasons for choosing

k300c-08 are (a) it is the first snapshot in the k300c series which exhibits negative charges

when using DFT and (b) it is small enough to perform a variational study w.r.t. change of basis

set.

The charges on the K+ ion in the k300c system computed using MPA and various basis

sets are given in Table 6.8. The first set of results are for k300c-08 and the second set are

for k300c-12 using just two basis sets. The first column in the table, lists the basis sets used.

There are three subsequent columns which give the electronic energy and charge observed on

the K+ ion using the HF, BLYP and B3LYP methods.

§6.8 Charge on K+ as a Function of Different Basis Sets 171

Three types of 6-31G* style basis sets are used – 6-31G*, 6-31G*(5D) and 6-311++G(3df,3pd).

The (5D) in 6-31G*(5D) denotes 5 pure d functions rather than the 6 Cartesian d functions

used by the 6-31G* basis set . The rationale for doing this was to test whether the additional

“s” contaminant function that is present in the in the 6-d case is responsible for the spurious

results. The 6-311++G(3df,3pd) basis set has pure spherical diffuse and polarization func-

tions [82,111]. The cc-pVDZ and cc-pVTZ are Dunning style basis sets which are correlation

consistent, polarized valence double zeta (cc-pVDZ) and triple zeta (cc-pVTZ) sets [277]. The

TZVP basis set [235] have a single contraction to define inner shells, and three basis functions

describing the valence shells. The def2-TZVP basis set was specifically designed for “quanti-

tatively accurate DFT treatments” [81].

It is to be noted that NPA charges for the k300c-08/TZVP and k300c-12/def2-TZVP could

not be obtained as NPA analysis, it was later found, expects ‘d’ functions to be present in all

third-row elements. The two basis sets used for the potassium ion did not incorporate this

and this resulted in Gaussian giving an error message – ”‘Error in SR CORTBL’”, in a

subroutine which determines the number of sub-shells for core orbitals.

The results show that the charge on K+ using MPA is positive for the three 6-31G* style

basis sets using the HF method, although it reduces as the number of basis functions increases.

For BLYP the MPA method yields negative charges for these basis sets. The B3LYP MPA

charges are very small and become negative for the 6-311++G(3df,3pd) case. NPA charges

for HF, BLYP and B3LYP using the three 6-31G* style basis sets are positive. The NPA

charges are observed to reduce as the number of basis functions increase.

Using the cc-pVDZ and cc-pVTZ basis sets, the MPA charges are now positive for BLYP

and B3LYP. NPA charges for BLYP are less than those obtained for B3LYP; HF NPA charges

are the largest amongst the three methods.

Use of the TZVP basis set results in positive MPA charges for all methods. The use of def2-

TZVP gives positive charges for the MPA and NPA charges across all methods for the k300c-08

snapshot. The absolute values obtained by the def2-TZVP basis set also seems reasonable.

Given that def2-TZVP gives reasonable results for the k300c-08 snapshot, a set of cal-

culations were performed using the k300c-12 snapshot. The def2-TZVP results for k300c-12

obtained from HF, BLYP and B3LYP methods are all positive which is not the case when using

the 6-31G* basis.

In summary the results show that when using the def2-TZVP basis set with the systems

studied here, meaningful MPA charges can be obtained for DFT methods.

172 Comparative Study of DFT Charges

T
a
b
le
6
.2
:

C
h
arg

e
o
n

K
+

fo
r

th
e

k
3
0
0
c-0

8
sy

stem
u
sin

g
eig

h
t

b
asis

sets
fo

r
th

e
H

F
,B

L
Y

P
an

d
B

3
L

Y
P

m
eth

o
d
s.

C
h
arg

e
o
n

K
+

fo
r

th
e

k
3
0
0
c-1

2

sy
stem

u
sin

g
6
-3

1
G

*
an

d
d
ef2

-T
Z

V
P

are
also

g
iv

en
.

H
F

B
L

Y
P

B
3

L
Y

P

k
3

0
0

c-0
8

#
B

asis
F

n
.

E
n

erg
y

M
PA

N
PA

E
n

erg
y

M
PA

N
PA

E
n

erg
y

M
PA

N
PA

6
-3

1
G

*
1

5
4

3
-6

6
8

0
.6

3
0

.4
0

7
1

0
.9

5
5

1
-6

7
1

1
.8

9
-0

.0
7

4
8

0
.8

2
3

9
-6

7
1

3
.6

0
0

.0
7

2
3

0
.8

6
1

2

6
-3

1
G

*
(5

D
)

1
4

6
2

-6
6

8
0

.5
4

0
.3

9
0

7
0

.8
9

4
3

-6
7

1
1

.7
6

-0
.0

8
1

1
0

.7
4

1
0

-6
7

1
3

.4
8

0
.0

6
4

2
0

.7
9

6
8

6
-3

1
1

+
+

G
(3

d
f,3

p
d

)
6

0
6

0
-6

6
8

4
.1

7
0

.3
0

9
1

0
.7

4
0

9
-6

7
1

6
.0

4
-0

.1
9

6
6

0
.6

6
6

8
-6

7
1

7
.5

4
-0

.0
4

1
9

0
.6

9
0

7

cc-p
V

D
Z

†
1

9
5

1
-6

6
8

2
.0

3
0

.5
4

6
7

0
.8

2
6

5
-6

7
1

2
.9

7
0

.1
9

8
4

0
.6

8
4

3
-6

7
1

4
.7

4
0

.2
9

3
1

0
.7

2
7

8

cc-p
V

T
Z

‡
4

7
0

3
-6

6
8

4
.1

7
0

.6
1

6
8

0
.7

5
4

3
-6

7
1

5
.9

2
0

.3
1

4
6

0
.6

2
0

9
-6

7
1

7
.4

7
0

.3
9

1
4

0
.6

6
1

2

T
Z

V
P

2
4

9
8

-6
6

8
1

.5
6

0
.9

7
4

8
–

-6
7

1
5

.8
9

0
.8

3
3

5
–

-6
7

1
5

.2
4

0
.9

4
4

1
–

d
ef2

-T
Z

V
P ?

3
4

7
3

-6
6

8
4

.2
4

0
.9

2
4

6
0

.7
4

2
5

-6
7

1
6

.0
2

0
.7

3
8

3
0

.6
3

4
4

-6
7

1
7

.5
5

0
.7

9
2

1
0

.6
6

7
7

k
3

0
0

a-1
2

6
-3

1
G

*
5

0
3

9
-2

0
6

6
8

.6
7

0
.3

7
5

7
0

.9
4

9
6

-2
0

7
6

8
.9

9
-0

.1
3

1
7

0
.8

4
5

0
-2

0
7

7
5

.8
6

0
.0

2
3

4
0

.8
8

0
4

2

d
ef2

-T
Z

V
P

1
1

3
8

5
-2

0
6

8
0

.3
8

0
.9

2
4

5
–

-2
0

7
8

8
.6

7
0

.7
9

0
0

–
-2

0
7

8
3

.6
3

0
.7

3
5

3
–

†
T

h
e

cc-p
V

D
Z

b
asis

set
availab

le
in

G
au

ssian
d
o
es

n
o
t

d
efi

n
e

K
.

In
th

is
calcu

latio
n
,

th
e

b
asis

set
u
sed

fo
r

K
w

as
F

eller
M

isc.
C

V
D

Z
fro

m
[2

0
7
]

‡
T

h
e

cc-p
V

D
Z

b
asis

set
availab

le
in

G
au

ssian
d
o
es

n
o
t

d
efi

n
e

K
.

In
th

is
calcu

latio
n
,

th
e

b
asis

set
u
sed

fo
r

K
w

as
F

eller
M

isc.
C

V
T

Z
fro

m
[2

0
7
]

?

d
ef2

-T
Z

V
P

b
asis

set
o
b
tain

ed
fro

m
[2

0
7
]

§6.9 Previous Work 173

6.9 Previous Work

The major objective of this chapter was to explore quantitatively the issue of negative charges

on the K+ ion, that were obtained using DFT methods and the 6-31G* basis sets for large water

cluster systems. While we were unable to find explicit mention of this problem in literature,

the following two items of previous work are relevant.

Martin and Zipse [174] present charge analysis for a single water molecule using a variety

of basis sets, four methods (HF, B3LYP, MP23, and QCISD4), and six population analysis

methods (Mulliken, NPA, AIM, CHELPG, Merz-Kollman, and Resp). They find that charges

for the water molecule are best reproduced by use of electrostatic potential (ESP) methods5. To

achieve good results a Dunning style correlation consistent basis set and a correlated method

(B3LYP, MP2 and QCISD) are also required. (Correlation here refers to the explicit treatment

of electron-electron motion as a function of its spin [55,83]). As we consider very large water

cluster systems in this chapter, the use of B3LYP is attractive, as it is not as computationally

intensive as MP2 or QCSID. Consistent results were obtained using a def2-TVZP basis set for

the B3LYP method.

Tanaka and Aida [273] present an analysis of the orbital interaction between a K+ ion

and the surrounding solvent water molecules using a quantum mechanics/molecular mechanics

(QM/MM) method. A total of 171 water molecules were used. Water molecules were clustered

in shells around a central K+ ion. The K+ ion was treated computationally using the HF method

and a 6-31G* basis set. The MM part, essentially all the solvent molecules, was handled using

a TIP3P MM force-field [139]. Charge distributions were computed using the Mulliken, NPA

and CHELPG [36] charge analysis methods. In their analysis of charges, they conclude that

the NPA method does not give reasonable charge distributions in molecular clusters. It was

found that the influence of the K+ orbitals reached as far as 6 Å to 8 Å from the K atom (cf.

Section 6.5). Unlike Tanaka and Aida, in this chapter, we have used QM methods applied to a

maximum of 264 water molecules (cf. k300a-12, Appendix A.9). Results presented here for

variation of relative charge and for variation of charge as a function of the RDF indicates the

influence of MPA charges is upto a maximum distance of 6 Å (cf. Figure 6.4, 6.5) . We also

observed that NPA charges did not give a realistic distribution for the water cluster systems

considered.

3MP2 is a post-HF method, which builds on HF theory by incorporating electron correlation effects

by using Rayleigh-Schrödinger perturbation theory [55, 83, 112].
4Quadratic Configuration Interaction Singles and Doubles (QCISD) is a post-HF method which is a

type of configuration interaction [112].
5In ESP methods, atomic charges are fitted to reproduce the electrostatic potential for a number of

points around a molecule. This technique does not work for very large systems.

174 Comparative Study of DFT Charges

6.10 Conclusions

In this chapter quantum chemical charge analysis was performed on a series of MD snap-

shots. These snapshots comprised a potassium ion which is surrounded, concentrically by wa-

ter molecules at distances ranging from 3Å to 12Å . The systems were labeled k300-fa,b,cg
and k345a, and snapshots were generated at two temperatures (300 and 345 Kelvin). Using

these snapshots, trends observed for the charge on the K+ ion using the HF, BLYP and B3LYP

methods and the 6-31G* basis set were presented. These trends follow those observed by

Bliznyuk and Rendell [28] using MPA, where the charge the K+ ion was found to be dramati-

cally reduced.

In addition to using MPA, the NPA technique was used to obtain charges. When using

DFT methods, for increasing water cluster sizes, a negative charge on the K+ ion was obtained

using MPA, but NPA did not produce such negative charges.

Following this the distribution of charge around the K+ was examined using a ‘Percentage

Relative Charge’ measure. Results for the HF, BLYP and B3LYP methods using MPA showed

that the water molecules within 5Å of the K+ ion were able to affect the movement of charge

away from the K+ ion due to the electronegative Oxygen atoms in the water molecules. NPA

results for this displayed similar trends (upto 3 Å), but had large variations between the results

from the HF, BLYP and B3LYP methods.

The radial distribution functions for all the snapshots were computed and charges on the

water molecules were then binned as a function of distance from the K+ ion. The RDF results

for the MPA charges obtained from the HF, BLYP and B3LYP methods showed good corre-

lation with the RDF peaks. This conforms with the expectation that the charge distribution

within the water cluster will be a function of the RDF. This correlation was not observed us-

ing NPA charges and it was posited that this is due to the process used to determine the NPA

charges i.e. the electron density is localized onto the individual atoms. Thus even though NPA

assigns a positive charge to the K+ ion, which is in line with expectation, it does not produce

physically consistent results for the charge distribution in large water cluster systems.

We investigated electron densities obtained from the HF, BLYP and B3LYP methods. This

was examined with the expectation that variations in density, produced by different methods,

led to negative charges being computed for DFT methods when using MPA. The electronic

charge was determined as a function of distance from the K+ ion, using spherical integration.

This in turn showed that the electron densities produced by the HF, BLYP and B3LYP methods

were near identical. This observation led to the final set of experiments which involved the use

of a moderately large system (k300c-08) and a parametric variation of the basis set.

Results using six different basis sets were presented, these showed that the use of dou-

ble and triple zeta with valence polarization led to positive charges on K+ when using DFT

§6.10 Conclusions 175

methods and MPA. Particularly, the use of the def2-TZVP basis set, which was specifically

designed for DFT, gave the best results.

A large water cluster system was then considered (k300c-12). Using the def2-TZVP basis

set this also gave reasonable results for MPA populations with DFT methods.

In conclusion, it appears that chemically meaningful charge populations can be obtained

for large water cluster systems using DFT methods, if an appropriate basis set like def2-TZVP

is employed. The MPA method, while splitting equally density which is shared by pairs

of basis functions, does produce charge distributions that correlate well with the location of

solvation shells in large water cluster systems.

176 Comparative Study of DFT Charges

Chapter 7

Conclusions and Future Work

The primary objective of this thesis has been the creation, validation and use of performance

models for electronic structure methods on modern computer architectures. Performance anal-

ysis of complex, parallel, scientific codes like electronic structure methods are complicated by

the fact that these application codes often execute on complex, multi-core, NUMA systems.

This chapter briefly summarizes the contributions made in this thesis and provides a few

directions for future work.

7.1 Summary of Contributions

This thesis has made the following contributions:

(a) Creation of software tools to characterize NUMA architectures i.e. a cross-platform

thread and memory placement infrastructure and a placement distribution model to char-

acterize experiments

(a.1) A defined set of basic performance metrics for any NUMA platform in terms of

latency and bandwidth benchmarks. Experimental protocols that aid in thread

and memory placement experiments using thread and memory placement APIs

(a.2) Creation and validation of the Placement Distribution Model (PDM) to charac-

terise latency and bandwidth experiments without resorting to an exhaustive set

of thread and memory placement experiments

(b) Performance model for ERI evaluation

(b.1) In-depth characterization of ERI evaluation using PRISM was presented in terms

of platform dependent and independent components.

(b.2) A methodology for assessing platform specific cache blocking factors for PRISM.

(b.2) Validation of a Linear Performance Model (LPM) using seven microprocessor

platforms and four test molecular systems.

177

178 Conclusions and Future Work

(b.3) Use of the LPM in combination with functional cache simulation

(b.3.1) Validation of the functional cache simulation counts with those obtained

from hardware performance counters

(b.3.2) Use of the LPM to characterise cache miss behaviour which affects PRISM’s

scalability: L1 read misses

(b.3.3) Use of the LPM to identify key cache parameters which influence perfor-

mance: L1 linesize and L2 size

(c) Studying the effect of thread and memory placement within Gaussian

(c.1) Performance characterisation of Gaussian in terms of thread, memory placement

and its subsequent influence on cache behavior

(c.2) Extending and validating the LPM to account for NUMA, multi-threaded effects

(c.3) Use of dynamic page migration and node interleaving improves Gaussian’s per-

formance

(d) A comparative study of charges for a set of water cluster complexes

(d.1) Characterization and analysis of atomic charges obtained from density functional

methods

(d.2) Demonstration of basis set sensitivity for atomic charges computed using density

functional wavefunctions

7.2 Discussion

In this thesis, a body of work was presented which aimed at creating tools (in terms of APIs)

and models which aid in performance modelling of electronic structure codes.

An observation to be made, from work done here, is that at this time sophisticated scien-

tific codes need to account for the underlying platform characteristics on which they execute,

rather than relying on compiler technology or operating systems to affect thread and mem-

ory placement decisions. A key reason, to be aware of the underlying hardware environment,

is so that the application developer is cognizant of the hardware environment the code exe-

cutes on i.e. the developer does not code against an abstract programming model which makes

implicit simplifications of what the target hardware would be. This in turn reflects the need

for programming models like OpenMP to provide information about hardware elements that

affect performance e.g. cache sizes, cache hierarchies and linesizes, physical layout of proces-

sor and memory locations as well as the locality information that affects memory placement

§7.3 Future Work 179

decisions from within the application code. In effect this would allow a developer to reason

about the target platform onto which the code eventually runs. One could argue that the use

of domain specific languages would make the job of executing complex scientific applications

an exercise in runtime environment construction i.e. an end-user interacts a Mathematica or

Matlab like tool to define and execute their problem. The techniques and performance mod-

elling discussed in this thesis could potentially aid implementors of such runtime systems but

importantly it would aid developers who are either developing new code using contemporary

languages or maintaining large, evolving codes like Gaussian.

The work done here also shows that judicious use of thread, memory placement and appro-

priate cache blocking of key application data structures plays a crucial part in obtaining good

performance from modern computer architectures.

The applications area work performed on large water cluster systems identified that for

large systems, for which DFT methods are competitive, it is essential that a basis set like def2-

TZVP is used in order to obtain meaningful charge results.

7.3 Future Work

Contributions arising from this thesis lead to further questions that remain unanswered. The

following avenues for future work are highlighted.

The implementation of the PDM qualitatively accounts for interconnect contention. It

would be beneficial to incorporate a detailed contention model as it would aid it reducing

errors in the PDM.

The LPM uses instruction counts and Level 2 misses to derive the PPCoeffs and ultimately

the Cycle count. As microprocessors have numerous performance counter events, it might be

beneficial to design a fitting scheme which can evaluate various counter events and synthesize

a set of PPCoeffs which better reproduces Cycle counts.

An in-depth study into the interaction between PRISM’s floating-point workload and the

L1 data cache needs to be carried out, as results obtained in the thesis show that while PRISM

is cache blocked for the L2 cache, as it is not being cache blocked for L1 the utilization of

on-chip floating point units is being hampered.

The LPM does not incorporate the L1 data cache PPCoeff (β) nor does it take into account

the effects of hardware prefetch. As part of future work, avenues for incorporating β and

hardware prefetch into the LPM should be pursued.

In order to affect runtime thread and memory placement decisions, it would be useful to

incorporate the LPM within a feedback loop in the Gaussian code i.e. a larger set of PPCoeffs

could be obtained at runtime and this could be used by the code in guiding thread, memory

placement and the appropriate cache blocking factor for a given input molecule, computational

180 Conclusions and Future Work

method and basis set.

The range of hardware platforms used to evaluate the LPM should be expanded to cover

multi-core, heterogenous and novel architectures (GPGPUs, the Cell processor and embedded

systems (Intel’s Atom, IBM PowerPC 440 and the nVidia Tegra)).

The Valgrind/Callgrind tool set could be extended to include a memory model which can

account for NUMA in its functional cache simulation.

It would be useful to consider the role of High Productivity Computer Systems (HPCS)

languages like X10 [26] to implement electronic structure methods. Using such languages it

may be possible to give high-level hints that a runtime system for the HPCS language could

use.

Appendix A

Appendix

A.1 PAPI native hardware performance counter events

181

182 Appendix

T
a
b
le
A
.1

:
P
A

P
I

n
ativ

e
h
ard

w
are

p
erfo

rm
an

ce
co

u
n
ter

ev
en

ts

P
ro

cesso
r

In
str

C
o

u
n

t
L

1
M

isses
L

2
M

isses
F

L
O

P
S

C
y

cles

F
R

X
8

6
IN

S

1
)

IC
L

2
R

E
F

IL
L

F
P

M
U

L
T

A
N

D
A

D
D

P
IP

E
C

P
U

C
L

K
U

N
H

A
L

T
E

D
O

p
tero

n
2

)
D

C
L

2
R

E
F

IL
L

M
O

E
S

1
)

D
C

S
Y

S
R

E
F

IL
L

M
O

E
S

A
th

lo
n

3
)

D
C

S
Y

S
R

E
F

IL
L

M
O

E
S

2
)

IC
S

Y
S

R
E

F
IL

L

4
)

IC
S

Y
S

R
E

F
IL

L

1
)

B
P

U
fetch

req
u

est
T

C
M

IS
S

B
S

Q
cach

e
referen

ce
R

D
-

M
IS

S
W

R
-

2
n

d
L

M
IS

S

1
)

ex
ecu

tio
n

ev
en

t
N

B
O

G
U

S
1

g
lo

b
al

p
o
w

er-

ev
en

ts
R

U
N

N
IN

G
E

M
6

4
T

2
)

scalar
D

P
u

o
p

T
A

G
1

A
L

L

P
en

tiu
m

4
in

st
retired

-

N
B

O
G

U
S

N
T

A
G

-

N
B

O
G

U
S

T
A

G

2
)

rep
lay

ev
en

t-

N
B

O
G

U
S

P
E

B
S

w
ith

lo
ad

,
sto

re
an

d
L

1
b

its
set

3
)

x
8

7
F

P
u

o
p

T
A

G
1

A
L

L

P
en

tiu
m

M
IN

S
T

R
E

T
IR

E
D

L
2

R
Q

S
T

S
M

E
S

I
L

2
T

O
T

L
IN

E
S

IN
F

L
O

P
S

C
P

U
C

L
K

U
N

H
A

L
T

E
D

G
5

P
M

IN
S

T
C

M
P

L
P

M
L

D
M

IS
S

L
1

P
M

D
A

T
A

F
R

O
M

M
E

M
P

M
F

P
U

A
L

L
P

M
C

Y
C

G
5

-X
S

erv
e

P
M

S
T

M
IS

S
L

1
P

M
F

P
U

F
M

A

§A.2 lmbench Plots 183

A.2 lmbench Plots

A.2.1 AMD Opteron 848

AMD Opteron/HyperTransport

The Opteron [146] system used contains four 2.2Ghz AMD848 processors each with a 64 Kb

L1 data and instruction cache and a 1024 Kb L2 cache. The Celestica A8440 motherboard [47]

is configured with 2GB of memory per processor giving a total of 8GB for the entire system.

The AMD848 Opterons have an on-chip memory controller and uses coherent HyperTransport

to link processor coherency traffic. The Opteron has two coherent HyperTransport links, each

operating at 6.4 GB/s bi-directionally. The processors are arranged in a ring topology resulting

in processors having at most two hops to reach the most distant processor.

184 Appendix

Table A.2: AMD Opteron 848

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Memory load latency - AMD848 2.2Ghz

Stride width
16
32
64

128
256
512

1024

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Random load latency - AMD848 2.2Ghz

Stride width
16
32
64

128
256
512

1024

§A.2 lmbench Plots 185

A.2.2 AMD Athlon64

The Athlon64 system was based on a commodity nVidia nForce motherboard.

Table A.3: Athlon64

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Memory load latency - Athlon64 2.6Ghz

Stride width
16
32
64

128
256
512

1024
2048

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Random load latency - Athlon64 2.6Ghz

Stride width
16
32
64

128
256
512

1024
2048

186 Appendix

A.2.3 Intel NetBurst P4

The Intel Pentium M [245] and P4 [87] microprocessors used in this study were on commodity

hardware (Pentium M: Dell Latitude D800; P4: Dell PowerEdge 2850). The systems use a

Northbridge to link the microprocessors to memory.

Table A.4: NetBurst - P4

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Memory load latency - P4 3.0Ghz

Stride width
16
32
64

128
256
512

1024

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Random load latency - P4 3.0Ghz

Stride width
16
32
64

128
256
512

1024

§A.2 lmbench Plots 187

A.2.4 Intel NetBurst EM64T

Table A.5: NetBurst - EM64T

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Memory load latency - EM64T 3.2Ghz

Stride width
16
32
64

128
256
512

1024
2048

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Random load latency - EM64T 3.2Ghz

Stride width
16
32
64

128
256
512

1024
2048

188 Appendix

A.2.5 Intel Pentium M

Table A.6: Pentium M

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Memory load latency - PentiumM 1.4Ghz

Stride width
16
32
64

128
256
512

1024

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Random load latency - PentiumM 1.4Ghz

Stride width
16
32
64

128
256
512

1024

§A.2 lmbench Plots 189

A.2.6 IBM G5/PPC970Fx

An Apple XServe G5 [16, 247] was used as a platform for the G5/PPC970Fx microprocessor.

The XServe is a two socket system which uses Apples U3H Northbridge bus [247] to link the

two G5s via HyperTransport to memory and I/O devices.

Table A.7: G5

330

12

2.95

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Memory load latency - G5 2.0Ghz

Stride width
16
32
64

128
256
512

1024
2048

700

15.8

3

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Random load latency - G5 2.0Ghz

Stride width
16
32
64

128
256
512

1024
2048

190 Appendix

A.2.7 Sun UltraSPARC IIICu

A SunFire V1280 system [266] was used. It has twelve 900MHz UltraSPARC III Cu proces-

sors [119, 267] each with a 32Kb L1 instruction cache, 64 Kb L1 data cache and 8192 Kb

L2 cache which is off-chip. The system contains three boards that contain four processors

each and are joined by the FirePlane [50] interconnect. The system contains 8GB of memory

per board giving a total of 24GB for the entire system. The three boards form a combined

snooping based coherency domain. For larger systems, i.e. > 24 processors, a directory based

protocol is used at the point-to-point level.

A pair of processors and their associated memories are all linked using a Dual CPU Data

Switch (DCDS), i.e. there are four separate data paths each running at 2.4GB/s from processors

or memories to the DCDS. A processor can directly access its own local memory for addresses,

but needs to use the DCDS to access data from its local memory or from the memory associated

with the second processor. There are two DCDS per board, that are linked to each other using

a board data switch. The DCDSs can sustain 4.8 GB/s to the board data switch. Since memory

on the boards is 16-way interleaved across a board, a peak of 6.4 GB/s per board is achieved.

The point-to-point links among boards have a bi-directional bandwidth of 4.8 GB/s per board,

approaching a peak of 9.6 GB/s for the whole system. Since the four processors on a board

have the same memory access latencies, it is referred to as one node.

§A.2 lmbench Plots 191

Table A.8: UltraSPARC IIICu

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Memory load latency - USIIICu 0.9Ghz

Stride width
16
32
64

128
256
512

1024

 1

 4

 16

 64

 256

 1024

 1 4 16 64 256 1024 4096 16384

L
a
te

n
c
y
 (

C
y
c
le

s
)

Array size (Kilobytes)

Random load latency - USIIICu 0.9Ghz

Stride width
16
32
64

128
256
512

1024

192 Appendix

A.3 Water Clusters Used in this Thesis

Table A.9: k300a Water Clusters; 6-31G* basis set

k300a-03

NAtoms 17

NBasis 118

NWaters 5

k300a-08

NAtoms 454

NBasis 1543

NWaters 80

k300a-04

NAtoms 35

NBasis 232

NWaters 11

k300a-10

NAtoms 455

NBasis 2892

NWaters 151

k300a-06

NAtoms 101

NBasis 650

NWaters 33

k300a-12

NAtoms 794

NBasis 5039

NWaters 264

§A.3 Water Clusters Used in this Thesis 193

Table A.10: k300b Water Clusters; 6-31G* basis set

k300b-03

NAtoms 23

NBasis 156

NWaters 7

k300b-08

NAtoms 245

NBasis 1562

NWaters 81

k300b-04

NAtoms 32

NBasis 213

NWaters 10

k300b-10

NAtoms 458

NBasis 2911

NWaters 152

k300b-06

NAtoms 95

NBasis 612

NWaters 31

k300b-12

NAtoms 740

NBasis 4697

NWaters 246

194 Appendix

Table A.11: k300c Water Clusters; 6-31G* basis set

k300c-03

NAtoms 20

NBasis 137

NWaters 6

k300c-08

NAtoms 233

NBasis 1486

NWaters 77

k300c-04

NAtoms 38

NBasis 251

NWaters 12

k300c-10

NAtoms 443

NBasis 2816

NWaters 147

k300c-06

NAtoms 107

NBasis 688

NWaters 35

k300c-12

NAtoms 746

NBasis 4735

NWaters 248

§A.3 Water Clusters Used in this Thesis 195

Table A.12: k345a Water Clusters; 6-31G* basis set

k345a-03

NAtoms 14

NBasis 99

NWaters 4

k345a-08

NAtoms 221

NBasis 1410

NWaters 73

k345a-04

NAtoms 32

NBasis 213

NWaters 10

k345a-10

NAtoms 398

NBasis 2531

NWaters 132

k345a-06

NAtoms 104

NBasis 669

NWaters 34

k345a-12

NAtoms 665

NBasis 4222

NWaters 221

196 Appendix

A.4 Python code used for generating the pair-wise RDF

Code Listing A.1: Generate a pair-wise radial distribution function

#===

generate the distance histogram and RDF

#===

def getDistanceHistogram(store, atomID, binWidth):

input args:

-store- is a dictionary of datastructures

-atomID- corresponds to the atom of interest e.g. Oxygen

-binWidth- is the spacing between bins

get the keys from the dictionary

tmpKeys = store.keys()

initialize tuples for distance and charge

distances = []

charges = []

what is the largest distance?

for i in tmpKeys:

store[i]['E'] holds the elementID i.e.

atomic number of the atom

if (store[i]['E'][0] == atomID):

store[i]['Distance'] holds the distance

between this atom and the K+ ion

tmpVal = float(store[i]['Distance'])

add this atom's 'Distance' to

the distance tuple

distances.append(tmpVal)

else:

this is an atom we are not interested in

del(store[i])

use Numeric Python

import Numeric

what is the maximum and minimum distances?

distMax = Numeric.maximum.reduce(distances)

distMin = Numeric.minimum.reduce(distances)

§A.4 Python code used for generating the pair-wise RDF 197

number of bins

numBins = int(distMax/binWidth)

create histograms for the pair-wise RDF

define bins and initialize to zero

bins to accumulate distances into

distBins = Numeric.zeros(numBins)

initialize another bin to Floating point zeros

this it to hold the actual distance from K+

for a given bin

tmpDistBins = Numeric.zeros(numBins, Numeric.Float)

how many elements in the distance tuple?

numPoints = len(distances)

index into bins then accumulate distances

first, accumulate distances between atomID atoms and

K+ into distBins

for i in distances:

indx = int((i/binWidth)) - 1

distBins[indx] = distBins[indx] + 1

second, initialize tmpDistBins to hold the actual

distances i.e. binWidth, 2*binWidth, 3*binWidth ...

for i in xrange(0, numBins):

if (i == 0):

tmpDistBins[i] = binWidth

else:

tmpDistBins[i] = tmpDistBins[i-1] + binWidth

third, create a 2D matrix having distances and

populations

hist = Numeric.transpose((tmpDistBins, distBins))

fourth, compute the pair-wise

Radial Distribution Function

#

Computing the RDF involves finding particles which are

confined in within a spherical shell of

thickness r + dr

#

Volume of a Sphere of radius distMax

volume = (4/3)*Numeric.pi*(distMax)**3

198 Appendix

number of atoms

i.e number of entries in the distances tuple

numAtoms = len(distances)

Calculate the RDF

hist[:,1] refers to elements belonging to distBins

hist[:,2] refers to elements belonging to tmpDistBins

#

4 * Pi * hist[:,0]**2 i.e 4 * Pi * rˆ2

is the volume of the spherical shell

hist[:,1] = hist[:,1] * volume \

/ \

(4 * Numeric.pi \

* hist[:,0]**2 \

* binWidth \

* numAtoms)

hist now has distances for each bin in

column 1 and the RDF g(r) in column 2

return hist

Bibliography

[1] A. SNAVELY AND N. WOLTER AND L. CARRINGTON, Modelling Application Perfor-

mance by Convolving Machine Signatures with Application Profiles, IEEE Workshop

on Workload Characterization, (2001).

[2] R. D. ADAMSON, Novel Methods for Large Molecules in Quantum Chemistry, PhD in

Chemistry, Trinity College, Cambridge University, 1998.

[3] ADVANCED MICRO DEVICES, AMD64 Architecture Programmer’s Manual Volume 3:

General-Purpose and System Instructions, Santa Clara, California, USA, April 2003.

Publication Number: 24594.

[4] , Software Optimization Guide for AMD64 Processors, Advanced Micro Devices,

Santa Clara, California, USA, September 2005. Version 3.06.

[5] , AMD64 Architecture Programmer’s Manual, vol. 2, Advanced Micro Devices, Santa

Clara, California, USA, September 2007. Version 3.14.

[6] S. V. ADVE, V. S. PAI, AND P. RANGANATHAN, Recent advances in memory consis-

tency models for hardware shared memory systems, Proceedings of the IEEE, 87 (1999),

pp. 445–455.

[7] D. H. AHN AND J. S. VETTER, Scalable analysis techniques for microprocessor perfor-

mance counter metrics, in Supercomputing ’02: Proceedings of the 2002 ACM/IEEE

conference on Supercomputing, Los Alamitos, CA, USA, 2002, IEEE Computer Soci-

ety Press, pp. 1–16.

[8] T. W. AINSWORTH AND T. M. PINKSTON, Characterizing the Cell EIB On-Chip Network,

IEEE Micro, 27 (2007), pp. 6–14.

[9] M. P. ALLEN AND D. J. TILDESLEY, Computer Simulation of Liquids, Clarendon Press,

New York, NY, USA, 1989.

[10] E. ANDERSON, Z. BAI, C. BISCHOF, L. S. BLACKFORD, J. DEMMEL, J. J. DON-

GARRA, J. DU CROZ, S. HAMMARLING, A. GREENBAUM, A. MCKENNEY, AND

D. SORENSEN, LAPACK Users’ guide (third ed.), Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1999.

199

200 Bibliography

[11] D. ANDRADE, B. B. FRAGUELA, AND R. DOALLO, Precise automatable analytical mod-

eling of the cache behavior of codes with indirections, ACM Trans. Archit. Code Optim.,

4 (2007), p. 16.

[12] J. ANTONY, P. P. JANES, AND A. P. RENDELL, Exploring thread and memory placement

on numa architectures: Solaris and linux, ultrasparc/fireplane and opteron/hypertrans-

port, in HiPC, Y. Robert, M. Parashar, R. Badrinath, and V. K. Prasanna, eds., vol. 4297

of Lecture Notes in Computer Science, Springer, 2006, pp. 338–352.

[13] F. AONO AND M. KIMURA, The AzusA 16-way Itanium server, Micro, IEEE, 20 (2000),

pp. 54–60.

[14] A. W. APPEL, Modern Compiler Implementation in C: Basic Techniques, Cambridge Uni-

versity Press, 1997.

[15] APPLE INC., Power Mac G5 Users Guide. http://manuals.info.apple.com/

en/Power_Mac_G5_Late_2005.pdf.

[16] , Xserve G5 Developer Note. http://developer.apple.com/

documentation/Hardware/Developer_Notes/Servers/XServeG5/

XserveG5.pdf.

[17] K. ASANOVIC, R. BODIK, B. C. CATANZARO, J. J. GEBIS, P. HUSBANDS, K. KEUTZER,

D. A. PATTERSON, W. L. PLISHKER, J. SHALF, S. W. WILLIAMS, AND K. A.

YELICK, The Landscape of Parallel Computing Research: A View from Berkeley, Tech.

Rep. UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec

2006.

[18] T. AUSTIN, E. LARSON, AND D. ERNST, Simplescalar: An infrastructure for computer

system modeling, Computer, 35 (2002), pp. 59–67.

[19] R. AZIMI, M. STUMM, AND R. W. WISNIEWSKI, Online performance analysis by statis-

tical sampling of microprocessor performance counters, in ICS ’05: Proceedings of the

19th annual international conference on Supercomputing, New York, NY, USA, 2005,

ACM, pp. 101–110.

[20] R. F. W. BADER, Atoms in Molecules: A Quantum Theory (The International Series of

Monographs on Chemistry, No 22), Oxford University Press, June 1994.

[21] P. BARHAM, B. DRAGOVIC, K. FRASER, S. HAND, T. HARRIS, A. HO, R. NEUGE-

BAUER, I. PRATT, AND A. WARFIELD, Xen and the art of virtualization, in SOSP ’03:

Proceedings of the nineteenth ACM symposium on Operating systems principles, New

York, NY, USA, 2003, ACM, pp. 164–177.

Bibliography 201

[22] A. D. BECKE, A Multicenter Numerical Integration Scheme for Polyatomic molecules, The

Journal of Chemical Physics, 88 (1988), pp. 2547–2553.

[23] E. BERG AND E. HAGERSTEN, Statcache: a probabilistic approach to efficient and accu-

rate data locality analysis, in ISPASS ’04: Proceedings of the 2004 IEEE International

Symposium on Performance Analysis of Systems and Software, Washington, DC, USA,

2004, IEEE Computer Society, pp. 20–27.

[24] E. BERG, H. ZEFFER, AND E. HAGERSTEN, A Statistical Multiprocessor Cache Model,

Performance Analysis of Systems and Software, 2006 IEEE International Symposium

on, (19-21 March 2006), pp. 89–99.

[25] L. N. BHUYAN, R. R. IYER, H.-J. WANG, AND A. KUMAR, Impact of CC-NUMA Mem-

ory Management Policies on the Application Performance of Multistage Switching Net-

works, IEEE Trans. Parallel Distrib. Syst., 11 (2000), pp. 230–246.

[26] G. BIKSHANDI, J. G. CASTANOS, S. B. KODALI, V. K. NANDIVADA, I. PESHANSKY,

V. A. SARASWAT, S. SUR, P. VARMA, AND T. WEN, Efficient, portable implemen-

tation of asynchronous multi-place programs, in PPoPP ’09: Proceedings of the 14th

ACM SIGPLAN symposium on Principles and practice of parallel programming, New

York, NY, USA, 2009, ACM, pp. 271–282.

[27] N. L. BINKERT, R. G. DRESLINSKI, L. R. HSU, K. T. LIM, A. G. SAIDI, AND S. K.

REINHARDT, The M5 Simulator: Modeling Networked Systems, IEEE Micro, 26

(2006), pp. 52–60.

[28] A. A. BLIZNYUK AND A. P. RENDELL, Electronic effects in biomolecular simulations:

Investigation of the kcsa potassium ion channel, The Journal of Physical Chemistry B,

108 (2004), pp. 13866–13873.

[29] A. A. BLIZNYUK, A. P. RENDELL, T. W. ALLEN, AND S.-H. CHUNG, The potassium

ion channel: Comparison of linear scaling semiempirical and molecular mechanics

representations of the electrostatic potential, The Journal of Physical Chemistry B, 105

(2001), pp. 12674–12679.

[30] C. W. BOCK, G. D. MARKHAM, A. K. KATZ, AND J. P. GLUSKER, The Arrangement

of First- and Second-Shell Water Molecules in Trivalent Aluminum Complexes: Results

from Density Functional Theory and Structural Crystallography, Inorganic Chemistry,

42 (2003), pp. 1538–1548.

[31] H. G. BOCK, E. KOSTINA, X. P. HOANG, AND R. RANNACHER, Modeling, Simulation

and Optimization of Complex Processes: Proceedings of the Third International Con-

ference on High Performance Scientific Computing, March 6-10, 2006, Hanoi, Vietnam,

Springer Publishing Company, Incorporated, 2008.

202 Bibliography

[32] P. A. BONCZ, M. L. KERSTEN, AND S. MANEGOLD, Breaking the memory wall in mon-

etdb, Commun. ACM, 51 (2008), pp. 77–85.

[33] S. F. BOYS, Electronic Wave Functions. I. A General Method of Calculation for the Sta-

tionary States of Any Molecular System, Proceedings of the Royal Society of London.

Series A, Mathematical and Physical Sciences, 200 (1950), pp. 542–554.

[34] , Quantum Theory of Atoms, Molecules and the Solid State, Academic, New York,

1966.

[35] T. BRECHT, On the Importance of Parallel Application Placement in NUMA Multiproces-

sors, in Proceedings of the Fourth Symposium on Experiences with Distributed and

Multiprocessor Systems (SEDMS IV), 1993, pp. 1–18.

[36] C. M. BRENEMAN AND K. B. WIBERG, Determining atom-centered monopoles from

molecular electrostatic potentials. the need for high sampling density in formamide con-

formational analysis, J. Comput. Chem., 11 (1990), pp. 361–373.

[37] S. BROWNE, J. DONGARRA, N. GARNER, G. HO, AND P. MUCCI, PAPI, Intl. Journal of

HPC Applications, 14 (2000), pp. 189–204.

[38] B. R. BUCK AND J. K. HOLLINGSWORTH, Data Centric Cache Measurement on the Intel

Itanium 2 Processor, in In: Proceedings of SuperComputing. (2004, 2004.

[39] B. R. BUCK AND J. K. HOLLINGSWORTH, A New Hardware Monitor Design to Mea-

sure Data Structure-Specific Cache Eviction Information, International Journal of High

Performance Computing Applications, 20 (2006), pp. 353–363.

[40] P. P. BUNGALE AND C.-K. LUK, PinOS: a programmable framework for whole-system

dynamic instrumentation, in VEE ’07: Proceedings of the 3rd international conference

on Virtual execution environments, New York, NY, USA, 2007, ACM, pp. 137–147.

[41] D. BURGER AND T. AUSTIN, The SimpleScalar Tool Set, Version 2.0, Tech. Rep. TR-1342,

University of Wisconsin-Madison Computer Sciences Department, 1997.

[42] A. W. BURKS, H. H. GOLDSTINE, AND J. VON NEUMANN, Preliminary discussion of the

logical design of an electronic computing instrument. Report to the U.S. Army Ordnance

Department, 1946.

[43] S. BYNA, Y. CHEN, AND X.-H. SUN, A Taxonomy of Data Prefetching Mechanisms, Par-

allel Architectures, Algorithms, and Networks, 2008. I-SPAN 2008. International Sym-

posium on, (2008), pp. 19–24.

[44] H. W. CAIN, K. M. LEPAK, AND M. H. LIPASTI, A Dynamic Binary Translation Approach

to Architectural Simulation, Computer Architecture News, 29 (2001).

Bibliography 203

[45] B. M. CANTRILL, M. W. SHAPIRO, AND A. H. LEVENTHAL, Dynamic instrumentation

of production systems, in ATEC ’04: Proceedings of the annual conference on USENIX

Annual Technical Conference, Berkeley, CA, USA, 2004, USENIX Association, pp. 2–

2.

[46] D. A. CASE, T. E. C. III, T. DARDEN, H. GOHLKE, R. LUO, K. M. M. JR.,

A. ONUFRIEV, C. SIMMERLING, B. WANG, AND R. J. WOODS, The Amber biomolec-

ular simulation programs, Journal of Computational Chemistry, 26 (2005), pp. 1668–

1688.

[47] CELESTICA INC., AMD A8440 4U 4 Processor SCSI System. http://www.

celestica.com/products/A8440.asp.

[48] R. CHANDRA, D.-K. CHEN, R. COX, D. E. MAYDAN, N. NEDELJKOVIC, AND J.-A. M.

ANDERSON, Data Distribution Support on Distributed Shared Memory Multiproces-

sors., in PLDI, 1997, pp. 334–345.

[49] B. CHAPMAN, G. JOST, AND R. VAN DER PAS, Using OpenMP: Portable Shared Mem-

ory Parallel Programming (Scientific and Engineering Computation), The MIT Press,

October 2007.

[50] A. CHARLESWORTH, The Sun Fireplane System Interconnect, in Supercomputing ’01: Pro-

ceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), ACM

Press, New York, New York, USA, November 2001.

[51] J. CHEN AND W. W. III, Software Barrier Performance on Dual Quad-Core Opterons, in

NAS ’08: Proceedings of the 2008 International Conference on Networking, Architec-

ture, and Storage, Washington, DC, USA, 2008, IEEE Computer Society, pp. 303–309.

[52] C.-Y. CHER, A. L. HOSKING, AND T. N. VIJAYKUMAR, Software prefetching for mark-

sweep garbage collection: hardware analysis and software redesign, SIGARCH Com-

put. Archit. News, 32 (2004), pp. 199–210.

[53] R. CHEVERESAN, M. RAMSAY, C. FEUCHT, AND I. SHARAPOV, Characteristics of work-

loads used in high performance and technical computing, in ICS, B. J. Smith, ed., ACM,

2007, pp. 73–82.

[54] CHRISTOPH LAMETER, Local and Remote Memory: Memory in a NUMA System.

http://ftp.kernel.org/pub/linux/kernel/people/christoph/

ols2006.

[55] CHRISTOPHER J. CRAMER, Essentials of Computational Chemistry, John Wiley & Sons,

2004.

204 Bibliography

[56] B. CONWAY, P.; HUGHES, The AMD Opteron Northbridge Architecture, IEEE Micro, 27

(March-April 2007), pp. 10–21.

[57] J. CORBALÁN, X. MARTORELL, AND J. LABARTA, Evaluation of the memory page migra-

tion influence in the system performance: the case of the SGI O2000., in ICS, U. Baner-

jee, K. Gallivan, and A. González, eds., ACM, 2003, pp. 121–129.

[58] D. E. CULLER, A. GUPTA, AND J. P. SINGH, Parallel Computer Architecture: A Hard-

ware/Software Approach, Morgan Kaufmann Publishers, Inc., San Francisco, Califor-

nia, USA, 1999.

[59] V. CUPPU, B. JACOB, B. DAVIS, AND T. MUDGE, High-Performance DRAMs in Worksta-

tion Environments, IEEE Transactions on Computers, 50 (2001), pp. 1133–1153.

[60] B. W. CURRAN, E. FLUHR, J. PAREDES, L. J. SIGAL, J. FRIEDRICH, Y.-H. CHAN, AND

C. HWANG, Power-constrained high-frequency circuits for the ibm power6 micropro-

cessor, IBM Journal of Research and Development, 51 (2007), pp. 715–732.

[61] F. DAHLGREN AND P. STENSTROM, Evaluation of hardware-based stride and sequential

prefetching in shared-memory multiprocessors, Parallel and Distributed Systems, IEEE

Transactions on, 7 (1996), pp. 385–398.

[62] W. DALLY AND B. TOWLES, Principles and Practices of Interconnection Networks, Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[63] DAVID ASCHER AND PAUL F. DUBOIS AND KONRAD HINSEN AND JIM HUGUNIN AND

TRAVIS OLIPHANT, Numerical Python. http://numpy.scipy.org/.

[64] DAVID R. BUTENHOF, Programming with POSIX Threads, Addison-Wesley Professional,

1997.

[65] E. R. DAVIDSON AND D. FELLER, Basis set selection for molecular calculations, Chemical

Reviews, 86 (1986), pp. 681–696.

[66] P. J. DENNING, The Locality Principle, Commun. ACM, 48 (2005), pp. 19–24.

[67] P. J. DENNING AND J. P. BUZEN, The operational analysis of queueing network models,

ACM Comput. Surv., 10 (1978), pp. 225–261.

[68] F. J. DEVLIN, P. J. STEPHENS, J. R. CHEESEMAN, AND M. J. FRISCH, Ab Initio Pre-

diction of Vibrational Absorption and Circular Dichroism Spectra of Chiral Natural

Products Using Density Functional Theory: Camphor and Fenchone, The Journal of

Physical Chemistry A, 101 (1997), pp. 6322–6333.

[69] J. DONGARRA, K. LONDON, S. MOORE, P. MUCCI, D. TERPSTRA, H. YOU, AND

M. ZHOU, Experiences and lessons learned with a portable interface to hardware per-

formance counters, 2003.

Bibliography 205

[70] H. DORSETT, A. WHITE, D. SCIENCE, T. O. (AUSTRALIA), AERONAUTICAL, AND

M. R. L. (AUSTRALIA)., Overview of molecular modelling and ab initio molecular

orbital methods suitable for use with energetic materials / H. Dorsett and A. White,

DSTO Aeronautical and Maritime Research Laboratory, Salisbury, S. Aust. :, 2000.

[71] M. S. DRESSELHAUS, G. DRESSELHAUS, AND P. C. EKLUND, Science of Fullerenes and

Carbon Nanotubes: Their Properties and Applications, Academic Press, 1996.

[72] M. DUBOIS, J. SKEPPSTEDT, L. RICCIULLI, K. RAMAMURTHY, AND P. STENSTRÖM,

The Detection and Elimination of Useless misses in Multiprocessors, in ISCA ’93: Pro-

ceedings of the 20th annual international symposium on Computer architecture, New

York, NY, USA, 1993, ACM, pp. 88–97.

[73] M. DUPUIS, J. RYS, AND H. F. KING, Evaluation of molecular integrals over gaussian

basis functions, The Journal of Chemical Physics, 65 (1976), pp. 111–116.

[74] C. E. DYKSTRA AND P. G. JASIEN, Derivative hartree–fock theory to all orders, Chemical

Physics Letters, 109 (1984), pp. 388 – 393.

[75] L. EECKHOUT, D. STROOBANDT, AND K. D. BOSSCHERE, Efficient microprocessor de-

sign space exploration through statistical simulation, in ANSS ’03: Proceedings of the

36th annual symposium on Simulation, Washington, DC, USA, 2003, IEEE Computer

Society, p. 233.

[76] P. G. EMMA, A. HARTSTEIN, T. R. PUZAK, AND V. SRINIVASAN, Exploring the limits of

prefetching, IBM J. Res. Dev., 49 (2005), pp. 127–144.

[77] ENRICO CLEMENTI, Ab Initio Computations in Atoms and Molecules, in IBM Journal of

Research and Development, vol. 1, 1965, pp. 2 – 19.

[78] A. EPSHTEYN, M. J. GARZARÁN, G. DEJONG, D. A. PADUA, G. REN, X. LI,

K. YOTOV, AND K. PINGALI, Analytic models and empirical search: A hybrid ap-

proach to code optimization, in LCPC, E. Ayguadé, G. Baumgartner, J. Ramanujam,

and P. Sadayappan, eds., vol. 4339 of Lecture Notes in Computer Science, Springer,

2005, pp. 259–273.

[79] S. ERANIAN, What can performance counters do for memory subsystem analysis?, in

MSPC, E. D. Berger and B. Chen, eds., ACM, 2008, pp. 26–30.

[80] D. FELLER, The Role of Databases in Support of Computational Chemistry Calculations,

The Journal of Computational Chemistry, 17 (1996), pp. 1571–1586.

[81] FLORIAN WEIGEND AND REINHART AHLRICHS, Balanced basis sets of split valence,

triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assess-

ment of accuracy, Physical Chemistry Chemical Physics, 7 (2005), pp. 3297–3305.

206 Bibliography

[82] J. B. FORESMAN AND A. FRISCH, Exploring Chemistry with Electronic Structure Methods,

Gaussian, Inc., New Haven, CT, 1996.

[83] FRANK JENSEN, Introduction to Computational Chemistry, John Wiley & Sons, 1999.

[84] B. FRANKE, Fast cycle-approximate instruction set simulation, in SCOPES ’08: Proceed-

ings of the 11th international workshop on Software & compilers for embedded systems,

2008, pp. 69–78.

[85] M. J. FRISCH, B. G. JOHNSON, P. M. W. GILL, D. J. FOX, AND R. H. NOBES, An im-

proved criterion for evaluating the efficiency of two-electron integral algorithms, Chem-

ical Physics Letters, 206 (1993), pp. 225 – 228.

[86] M. J. FRISCH, G. W. TRUCKS, H. B. SCHLEGEL, G. E. SCUSERIA, M. A. ROBB, J. R.

CHEESEMAN, J. A. MONTGOMERY, JR., T. VREVEN, K. N. KUDIN, J. C. BURANT,

J. M. MILLAM, S. S. IYENGAR, J. TOMASI, V. BARONE, B. MENNUCCI, M. COSSI,

G. SCALMANI, N. REGA, G. A. PETERSSON, H. NAKATSUJI, M. HADA, M. EHARA,

K. TOYOTA, R. FUKUDA, J. HASEGAWA, M. ISHIDA, T. NAKAJIMA, Y. HONDA,

O. KITAO, H. NAKAI, M. KLENE, X. LI, J. E. KNOX, H. P. HRATCHIAN, J. B.

CROSS, V. BAKKEN, C. ADAMO, J. JARAMILLO, R. GOMPERTS, R. E. STRAT-

MANN, O. YAZYEV, A. J. AUSTIN, R. CAMMI, C. POMELLI, J. W. OCHTERSKI,

P. Y. AYALA, K. MOROKUMA, G. A. VOTH, P. SALVADOR, J. J. DANNENBERG,

V. G. ZAKRZEWSKI, S. DAPPRICH, A. D. DANIELS, M. C. STRAIN, O. FARKAS,

D. K. MALICK, A. D. RABUCK, K. RAGHAVACHARI, J. B. FORESMAN, J. V. ORTIZ,

Q. CUI, A. G. BABOUL, S. CLIFFORD, J. CIOSLOWSKI, B. B. STEFANOV, G. LIU,

A. LIASHENKO, P. PISKORZ, I. KOMAROMI, R. L. MARTIN, D. J. FOX, T. KEITH,

M. A. AL-LAHAM, C. Y. PENG, A. NANAYAKKARA, M. CHALLACOMBE, P. M. W.

GILL, B. JOHNSON, W. CHEN, M. W. WONG, C. GONZALEZ, AND J. A. POPLE,

Gaussian 03, Revision D.02. Gaussian, Inc., Wallingford, CT, 2004.

[87] G. HINTON AND D. SAGER AND M. UPTON AND D. BOGGS AND D. CARMEAN AND

A. KYKER AND P. ROUSSEL, The Microarchitecture of the Pentium 4 processor, Intel

Technical Journal, (2001).

[88] R. GARNER, S. M. BLACKBURN, AND D. FRAMPTON, Effective prefetch for mark-sweep

garbage collection, in The 2007 International Symposium on Memory Management,

Oct. 2007.

[89] GAUSSIAN INC., Gaussian 03: Expanding the limits of Computational Chemistry. http:

//www.gaussian.com/g_brochures/g03_intro.htm.

[90] R. GHIYA, D. LAVERY, AND D. SEHR, On the importance of points-to analysis and other

memory disambiguation methods for c programs, SIGPLAN Not., 36 (2001), pp. 47–58.

Bibliography 207

[91] S. GHOSH, A. KANHERE, R. KRISHNAIYER, D. KULKARNI, W. LI, C.-C. LIM, AND

J. NG, Integrating high-level optimizations in a production compiler: Design and im-

plementation experience, in CC, G. Hedin, ed., vol. 2622 of Lecture Notes in Computer

Science, Springer, 2003, pp. 303–319.

[92] P. M. W. GILL, Molecular Integrals over Gaussian Basis Functions, Advances in Quantum

Chemistry, 25 (1994), pp. 141–205.

[93] P. M. W. GILL, Density Functional Theory (DFT), Hartree-Fock (HF), and the Self-

Consistent Field, in Encyclopaedia of Computational Chemistry, P. v. R. Schleyer et.

al, ed., vol. 2, Wiley, 1998, pp. 678 – 688.

[94] P. M. W. GILL AND S.-H. CHIEN, Radial quadrature for multiexponential integrands,

Journal of Computational Chemistry, 24 (2003), pp. 732–740.

[95] P. M. W. GILL, M. HEAD-GORDON, AND J. A. POPLE, Efficient computation of two-

electron - repulsion integrals and their nth-order derivatives using contracted gaussian

basis sets, The Journal of Physical Chemistry, 94 (1990), pp. 5564–5572.

[96] P. M. W. GILL AND J. A. POPLE, The PRISM algorithm for two-electron integrals, Inter-

national Journal of Quantum Chemistry, 40 (1991), pp. 753–772.

[97] S. R. GOLDSCHMIDT AND J. L. HENNESSY, The Accuracy of Trace-Driven Simulations

of Multiprocessors, in Proceedings of the 1993 ACM SIGMETRICS Conference on

Measurement and Modelling of Computer Systems, ACM Press, 1993, pp. 146–157.

[98] R. GOMPERTS, M. FRISCH, AND J.-P. PANZIERA, Scalability of Gaussian 03 on SGI Altix:

The Importance of Data Locality on CC-NUMA Architecture, in Evolving OpenMP

in an Age of Extreme Parallelism, vol. 5568 of Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, 2009, pp. 93–103.

[99] J. R. GOODMAN, Using cache memory to reduce processor-memory traffic, in ISCA ’83:

Proceedings of the 10th annual international symposium on Computer architecture, Los

Alamitos, CA, USA, 1983, IEEE Computer Society Press, pp. 124–131.

[100] K. GOTO AND R. A. VAN DE GEIJN, Anatomy of high-performance matrix multiplication,

ACM Trans. Math. Softw., 34 (2008), pp. 1–25.

[101] S. L. GRAHAM, P. B. KESSLER, AND M. K. MCKUSICK, gprof: a call graph execution

profiler, SIGPLAN Notices, 39 (2004), pp. 49–57.

[102] A. GRAMA, G. KARYPIS, A. GUPTA, AND V. KUMAR, Introduction to Parallel Comput-

ing: Design and Analysis of Algorithms, Addison-Wesley, 2003.

208 Bibliography

[103] S. P. GREATBANKS, J. E. GREADY, A. C. LIMAYE, AND A. P. RENDELL, Enzyme po-

larization of substrates of dihydrofolate reductase by different theoretical methods, Pro-

teins: Structure, Function, and Genetics, 37 (1999), pp. 157–165.

[104] E. GROBELNY, D. BUENO, I. TROXEL, A. D. GEORGE, AND J. S. VETTER, FASE: A

Framework for Scalable Performance Prediction of HPC Systems and Applications,

SIMULATION, 83 (2007), pp. 721–745.

[105] C. F. GUERRA, J.-W. HANDGRAAF, E. J. BAERENDS, AND F. M. BICKELHAUPT,

Voronoi deformation density (vdd) charges: Assessment of the mulliken, bader, hirsh-

feld, weinhold, and vdd methods for charge analysis, Journal of Computational Chem-

istry, 25 (2004), pp. 189–210.

[106] T. P. HAMILTON AND H. F. SCHAEFER, New variations in two-electron integral evaluation

in the context of direct scf procedures, Chemical Physics, 150 (1991), pp. 163 – 171.

[107] J. HANDY, The cache memory book (2nd ed.): the authoritative reference on cache design,

Academic Press, Inc., Orlando, FL, USA, 1998.

[108] M. HÄSSER AND R. AHLRICHS, Improvements on the direct SCF method, Journal of Com-

putational Chemistry, 10 (1989), pp. 104–111.

[109] M. HEAD-GORDON AND J. A. POPLE, A method for two-electron gaussian integral and

integral derivative evaluation using recurrence relations, J. Chem. Phys., 89 (1988),

pp. 5777–5786.

[110] W. J. HEHRE, R. DITCHFIELD, AND J. A. POPLE, Self—consistent molecular orbital meth-

ods. xii. further extensions of gaussian—type basis sets for use in molecular orbital

studies of organic molecules, The Journal of Chemical Physics, 56 (1972), pp. 2257–

2261.

[111] W. J. HEHRE, L. RADOM, P. V. SCHLEYER, AND J. POPLE, Ab-Initio Molecular Orbital

Theory, Wiley-Interscience, 1986.

[112] T. HELGAKER, P. JORGENSEN, AND J. OLSEN, Molecular Electronic-Structure Theory,

John Wiley & Sons, 2001.

[113] J. L. HENNESSY AND D. A. PATTERSON, Computer Architecture, Fourth Edition: A Quan-

titative Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[114] W. D. HILLIS AND G. L. STEELE, JR., Data parallel algorithms, Commun. ACM, 29

(1986), pp. 1170–1183.

[115] R. W. HOCKNEY AND EASTWOOD, Computer simulation using particles, MacGraw-Hill,

New York, 1981.

Bibliography 209

[116] P. HOHENBERG AND W. KOHN, Inhomogeneous electron gas, Phys. Rev., 136 (1964),

pp. B864–B871.

[117] M. A. HOLLIDAY AND M. STUMM, Performance evaluation of hierarchical ring-based

shared memory multiprocessors, IEEE Trans. Computers, 43 (1994), pp. 52–67.

[118] J. K. HOLLINGSWORTH, B. P. MILLER, AND J. CARGILLE, Dynamic program instrumen-

tation for scalable performance tools, in Proceedings of the Scalable High Performance

Computing Conference (SHPCC), 1994, pp. 841–850.

[119] T. HOREL AND G. LAUTERBACH, UltraSPARC-III: Designing Third-Generation 64-Bit

Performance, IEEE Micro, 19 (1999), pp. 73–85.

[120] A. HORVÁTH AND M. TELEK, eds., Formal Methods and Stochastic Models for Perfor-

mance Evaluation, Third European Performance Engineering Workshop, EPEW 2006,

Budapest, Hungary, June 21-22, 2006, Proceedings, vol. 4054 of Lecture Notes in Com-

puter Science, Springer, 2006.

[121] C. J. HUGHES, V. S. PAI, P. RANGANATHAN, AND S. V. ADVE, RSIM: Simulating

Shared-Memory Multiprocessors with ILP Processors, Computer, 35 (2002), pp. 40–

49.

[122] IILYA GLUHOVSKY AND BRIAN O’KRAFKA, Comprehensive Multiprocessor Cache Miss

Rate Generation Using Multivariate Models, ACM Transactions on Computer Systems,

(2005).

[123] INTEL CORPORATION INC., Intel Core Microarchitecture and Smart Memory Access.

http://download.intel.com/technology/architecture/sma.pdf.

[124] INTEL CORPORATION INC., IA-32 Intel Architecture Software Developer’s Manual Volume

1: Basic Architecture, Santa Clara, California, USA, 2002. Document Number: 245470-

012.

[125] , IA-32 Intel Architecture Software Developer’s Manual Volume 3: System Program-

ming Guide, Santa Clara, California, USA, 2002. Document Number: 245472-012.

[126] , Intel Itanium Architecture Software Developer’s Manual Volume 3: Instruction Set

Reference, Santa Clara, California, USA, October 2002. Document Number 245319-

004.

[127] INTEL CORPORATION INC., Intel VTune Performance Analyzer. http://www.intel.

com/cd/software/products/asmo-na/eng/vtune/239144.htm, 2008.

[128] INTERNATIONAL BUSINESS MACHINES, PowerPCMicroprocessor Family: Programming

Environments Manual for 64 and 32-bit Microprocessors, New York, USA, June 2003.

Available as pem. 64bit.d20030611.pdf.

210 Bibliography

[129] E. ÏPEK, S. A. MCKEE, R. CARUANA, B. R. DE SUPINSKI, AND M. SCHULZ, Effi-

ciently exploring architectural design spaces via predictive modeling, SIGOPS Oper.

Syst. Rev., 40 (2006), pp. 195–206.

[130] A. F. IZMAYLOV, G. E. SCUSERIA, AND M. J. FRISCH, Efficient evaluation of short-

range hartree-fock exchange in large molecules and periodic systems, The Journal of

Chemical Physics, 125 (2006), p. 104103.

[131] B. JACOB, S. NG, AND D. WANG, Memory Systems: Cache, DRAM, Disk, Morgan Kauf-

mann, September 2007.

[132] JAN ALMLÖF, Direct Methods in Electronic Structure Theory, in Modern Electronic Struc-

ture Theory, D. R. Yarkony, ed., World Scientific, 1995.

[133] T. E. JEREMIASSEN AND S. J. EGGERS, Reducing false sharing on shared memory mul-

tiprocessors through compile time data transformations, SIGPLAN Not., 30 (1995),

pp. 179–188.

[134] JIE TAO AND WOLFGANG KARL AND MARTIN SCHULZ, Memory access behavior anal-

ysis of NUMA-based shared memory programs, Scientific Programming, 10 (2002),

pp. 45–53.

[135] B. G. JOHNSON, P. M. W. GILL, AND J. A. POPLE, Exact and approximate solutions to the

one-center mcmurchie-davidson tree-search problem, International Journal of Quantum

Chemistry, 40 (1991), pp. 809–827.

[136] , Exact and approximate solutions to the one-center mcmurchie-davidson tree-search

problem, International Journal of Quantum Chemistry, 40 (1991), pp. 809–827.

[137] , Preliminary results on the performance of a family of density functional methods, The

Journal of Chemical Physics, 97 (1992), pp. 7846–7848.

[138] JONATHAN CHEW, Memory Placement Optimisation. http://www.opensolaris.

org/os/community/performance/.

[139] W. L. JORGENSEN, J. CHANDRASEKHAR, J. D. MADURA, R. W. IMPEY, AND M. L.

KLEIN, Comparison of simple potential functions for simulating liquid water, The Jour-

nal of Chemical Physics, 79 (1983), pp. 926–935.

[140] JOSEF WEIDENDORF, KCachegrind – A Profile Visualisation Tool. http://

kcachegrind.sourceforge.net/.

[141] P. J. JOSEPH, K. VASWANI, AND M. J. THAZHUTHAVEETIL, A Predictive Performance

Model for Superscalar Processors, in MICRO 39: Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, Washington, DC, USA,

2006, IEEE Computer Society, pp. 161–170.

Bibliography 211

[142] JOYCE J. DIWAN, Biochemistry of Metabolism: Membrane Transport. http:

//www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb1/part2/

4-transport.ppt.

[143] R. P. L. JR., C. S. ELLIS, AND M. A. HOLLIDAY, Evaluation of numa memory manage-

ment through modeling and measurements, IEEE Trans. Parallel Distrib. Syst., 3 (1992),

pp. 686–701.

[144] D. R. KAELI, L. L. FONG, R. C. BOOTH, K. C. IMMING, AND J. P. WEIGEL, Perfor-

mance analysis on a cc-numa prototype, IBM Journal of Research and Development,

41 (1997), pp. 205–214.

[145] T. S. KARKHANIS AND J. E. SMITH, A First-Order Superscalar Processor Model, in ISCA

’04: Proceedings of the 31st annual international symposium on Computer architecture,

Washington, DC, USA, 2004, IEEE Computer Society, p. 338.

[146] C. N. KELTCHER, K. J. MCGRATH, A. AHMED, AND P. CONWAY, The AMD Opteron

Processor for Multiprocessor Servers., IEEE Micro, 23 (2003), pp. 66–76.

[147] W. KOCH AND M. C. HOLTHAUSEN, A Chemist’s Guide to Density Functional Theory,

Wiley-VCH, 2001.

[148] J. KOHANOFF, Electronic structure calculations for solids and molecules: theory and com-

putational methods, Cambridge Univ. Press, Cambridge, 2006.

[149] P. KONGETIRA, K. AINGARAN, AND K. OLUKOTUN, Niagara: A 32-way multithreaded

sparc processor, IEEE Micro, 25 (2005), pp. 21–29.

[150] D. KOUFATY AND D. T. MARR, Hyperthreading technology in the NetBurst Microarchi-

tecture, Micro, IEEE, 23 (2003), pp. 56–65.

[151] V. KRISHNAN AND J. TORRELLAS, Hardware and Software Support for Speculative Exe-

cution of Sequential Binaries on a Chip-multiprocessor, in International Conference on

Supercomputing, 1998, pp. 85–92.

[152] N. KURD, J. DOUGLAS, P. MOSALIKANTI, AND R. KUMAR, Next generation Intel micro-

architecture (Nehalem) clocking architecture, June 2008, pp. 62–63.

[153] M. D. LAM, E. E. ROTHBERG, AND M. E. WOLF, The cache performance and optimiza-

tions of blocked algorithms, SIGOPS Oper. Syst. Rev., 25 (1991), pp. 63–74.

[154] J. LAUDON AND D. LENOSKI, The SGI Origin: A ccNUMA highly scalable server, in Pro-

ceedings of the 24th Annual IEEE International Symposium on Computer Architecture,

IEEE, 1997, pp. 241–251.

212 Bibliography

[155] H. Q. LE, W. J. STARKE, J. S. FIELDS, F. P. O’CONNELL, D. Q. NGUYEN, B. J.

RONCHETTI, W. SAUER, E. M. SCHWARZ, AND M. T. VADEN, Ibm power6 microar-

chitecture, IBM Journal of Research and Development, 51 (2007), pp. 639–662.

[156] A. LEACH, Molecular Modelling: Principles and Applications (2nd Edition), Prentice Hall,

March 2001.

[157] C. LEE, W. YANG, AND R. G. PARR, Development of the colle-salvetti correlation-energy

formula into a functional of the electron density, Phys. Rev. B, 37 (1988), pp. 785–789.

[158] D. LENOSKI, J. LAUDON, K. GHARACHORLOO, W.-D. WEBER, A. GUPTA, J. HEN-

NESSY, M. HOROWITZ, AND M. S. LAM, The Stanford DASH Multiprocessor, Com-

puter, 25 (1992), pp. 63–79.

[159] D. E. LENOSKI AND W.-D. WEBER, Scalable Shared-Memory Multiprocessing, Morgan

Kaufmann Publishers, Inc., San Francisco, California, USA, 1995.

[160] J. LEVON, OProfile Manual, Victoria University of Manchester, 2004.

[161] R. LINDH, U. RYU, AND B. LIU, The reduced multiplication scheme of the rys quadrature

and new recurrence relations for auxiliary function based two-electron integral evalua-

tion, The Journal of Chemical Physics, 95 (1991), pp. 5889–5897.

[162] LIOTTA,, C. L. AND BERKNERIN,, J., Encyclopedia of Reagents for Organic Synthesis

(Ed: L. Paquette), (2004).

[163] LIZY KURIAN JOHN AND LIEVEN EECKHOUT, in Performance Evaluation and Bench-

marking, CRC Press Inc., 2006.

[164] H. LÖF AND S. HOLMGREN, affinity-on-next-touch: Increasing the Performance of an

Industrial PDE Solver on a cc-NUMA System, in ICS ’05: Proceedings of the 19th

annual international conference on Supercomputing, New York, NY, USA, 2005, ACM

Press, pp. 387–392.

[165] C.-K. LUK, R. COHN, R. MUTH, H. PATIL, A. KLAUSER, G. LOWNEY, S. WAL-

LACE, V. J. REDDI, AND K. HAZELWOOD, Pin: building customized program analysis

tools with dynamic instrumentation, in PLDI ’05: Proceedings of the 2005 ACM SIG-

PLAN conference on Programming language design and implementation, New York,

NY, USA, 2005, ACM, pp. 190–200.

[166] M. WOODACRE AND D. ROBB AND D. ROE AND K. FEIND, The SGI Altix 3000 Global

Shared-Memory Architecture, 2003.

[167] R. MACKINNON, S. L. COHEN, A. KUO, A. LEE, AND B. T. CHAIT, Structural Con-

servation in Prokaryotic and Eukaryotic Potassium Channels, Science, 280 (1998),

pp. 106–109.

Bibliography 213

[168] P. S. MAGNUSSON, M. . CHRISTENSSON, J. ESKILSON, D. FORSGREN, AND G. HALL-

BERG, SimICS: A Full System Simulation Platform, IEEE Computer, 35 (2002), pp. 50–

58.

[169] G. S. MANKU, Theoretical Principles of Inorganic Chemistry, Tata McGraw-Hill Publish-

ing Company, 1980.

[170] J. MARATHE, F. MUELLER, AND B. R. DE SUPINSKI, Analysis of cache-coherence bot-

tlenecks with hybrid hardware/software techniques, ACM Trans. Archit. Code Optim.,

3 (2006), pp. 390–423.

[171] J. MARATHE, F. MUELLER, T. MOHAN, S. A. MCKEE, B. R. D. SUPINSKI, AND

A. YOO, Metric: Memory tracing via dynamic binary rewriting to identify cache in-

efficiencies, ACM Trans. Program. Lang. Syst., 29 (2007), p. 12.

[172] G. MARIN AND J. MELLOR-CRUMMEY, Cross-architecture performance predictions for

scientific applications using parameterized models, in SIGMETRICS ’04/Performance

’04: Proceedings of the joint international conference on Measurement and modeling of

computer systems, New York, NY, USA, 2004, ACM Press, pp. 2–13.

[173] D. T. MARR, D. P. GROUP, AND I. CORP, Hyper-threading technology architecture and

microarchitecture, Intel Technology Journal, 6 (2002), p. 2002.

[174] F. MARTIN AND H. ZIPSE, Charge distribution in the water molecule - a comparison of

methods, Journal of Computational Chemistry, 26 (2005), pp. 97–105.

[175] M. M. MATHIS AND D. J. KERBYSON, A general performance model of structured and un-

structured mesh particle transport computations, J. Supercomput., 34 (2005), pp. 181–

199.

[176] W. MATHUR AND J. COOK, Improved estimation for software multiplexing of performance

counters, in MASCOTS ’05: Proceedings of the 13th IEEE International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,

Washington, DC, USA, 2005, IEEE Computer Society, pp. 23–34.

[177] J. D. MCCALPIN, Stream: Sustainable memory bandwidth in high performance computers,

tech. rep., University of Virginia, Charlottesville, Virginia, 1991-2007. A continually

updated technical report. http://www.cs.virginia.edu/stream/.

[178] , Memory bandwidth and machine balance in current high performance comput-

ers, IEEE Computer Society Technical Committee on Computer Architecture (TCCA)

Newsletter, (1995), pp. 19–25.

[179] R. MCDOUGAL AND J. MAURO, Solaris Internals: Solaris 10 and OpenSolaris Kernel

Architecture, Prentice Hall PTR, 2nd ed., 2006.

214 Bibliography

[180] S. MCFARLING, Combining branch predictors, Digital WRL Technical Note TN-36,

(1993).

[181] S. A. MCKEE, Reflections on the memory wall, in CF ’04: Proceedings of the 1st conference

on Computing frontiers, New York, NY, USA, 2004, ACM, p. 162.

[182] L. E. MCMURCHIE AND E. R. DAVIDSON, One- and two-electron integrals over cartesian

gaussian functions, Journal of Computational Physics, 26 (1978), pp. 218 – 231.

[183] C. MCNAIRY AND D. SOLTIS, Itanium 2 processor microarchitecture, IEEE Micro, 23

(2003), pp. 44–55.

[184] L. W. MCVOY AND C. STAELIN, lmbench: Portable tools for performance analysis., in

USENIX Annual Technical Conference, 1996, pp. 279–294.

[185] MICK POINT, High-Performance Math Libraries, Dr. Dobb’s Journal, 3 (2005), pp. 39–41.

[186] MIKAEL PETTERSON, Linux kernel support for hardware performance counters – perfctrs.

http://user.it.uu.se/˜mikpe/linux/perfctr.

[187] MIPS TECHNOLOGIES, INC., MIPS64 Architecture for Programmers Volume I: Introduc-

tion to the MIPS64 Architecture, Mountain View, California, USA, June 2003. Docu-

ment Number: MD00083.

[188] R. T. MORRISON AND R. N. BOYD, Organic Chemistry, Allyn and Bacon Boston,, 3d

ed. ed., 1973.

[189] R. S. MULLIKEN, Electronic population analysis on lcao[single bond]mo molecular wave

functions. i, The Journal of Chemical Physics, 23 (1955), pp. 1833–1840.

[190] N. NETHERCOTE, Dynamic Binary Analysis and Instrumentation, PhD thesis, University

of Cambridge, November 2004.

[191] N. NETHERCOTE AND A. MYCROFT, The Cache Behaviour of Large Lazy Functional Pro-

grams on Stock Hardware, in MSP ’02: Proceedings of the 2002 workshop on Memory

system performance, New York, NY, USA, 2002, ACM Press, pp. 44–55.

[192] N. NETHERCOTE AND J. SEWARD, Valgrind: a framework for heavyweight dynamic binary

instrumentation, in PLDI, J. Ferrante and K. S. McKinley, eds., ACM, 2007, pp. 89–

100.

[193] H. NGUYEN AND L. K. JOHN, Exploiting simd parallelism in dsp and multimedia algo-

rithms using the altivec technology, in ICS ’99: Proceedings of the 13th international

conference on Supercomputing, New York, NY, USA, 1999, ACM, pp. 11–20.

[194] D. S. NIKOLOPOULOS, T. S. PAPATHEODOROU, C. D. POLYCHRONOPOULOS,

J. LABARTA, AND E. AYGUADÉ, Leveraging Transparent Data Distribution in

Bibliography 215

OpenMP via User-Level Dynamic Page Migration., in ISHPC, M. Valero, K. Joe,

M. Kitsuregawa, and H. Tanaka, eds., vol. 1940 of Lecture Notes in Computer Science,

Springer, 2000, pp. 415–427.

[195] D. B. NOONBURG AND J. P. SHEN, A framework for statistical modeling of superscalar

processor performance, in HPCA ’97: Proceedings of the 3rd IEEE Symposium on

High-Performance Computer Architecture, Washington, DC, USA, 1997, IEEE Com-

puter Society, p. 298.

[196] M. NORDÉN, Performance Modelling for Parallel PDE Solvers on cc-NUMA Systems,

Technical reports from the Department of Information Technology, 2006-041 (2006).

Part of urn:nbn:se:uu:diva-7149.

[197] S. OBARA AND A. SAIKA, Efficient recursive computation of molecular integrals over

cartesian gaussian functions, The Journal of Chemical Physics, 84 (1986), pp. 3963–

3974.

[198] , General recurrence formulas for molecular integrals over cartesian gaussian func-

tions, The Journal of Chemical Physics, 89 (1988), pp. 1540–1559.

[199] V. G. OKLOBDZIJA, Performance Evaluation: Techniques, Tools and Benchmarks, in The

Computer Engineering Handbook: Electrical Engineering Handbook, Boca Raton, FL,

USA, 2001, CRC Press, Inc.

[200] L. OLIKER, A. CANNING, J. CARTER, C. LANCU, M. LIJEWSKI, S. KAMIL, J. SHALF,

H. SHAN, E. STROHMAIER, S. ETHIER, AND T. GOODALE, Scientific application

performance on candidate petascale platforms, March 2007, pp. 1–12.

[201] M. OLSZEWSKI, K. MIERLE, A. CZAJKOWSKI, AND A. D. BROWN, Jit instrumentation:

a novel approach to dynamically instrument operating systems, SIGOPS Oper. Syst.

Rev., 41 (2007), pp. 3–16.

[202] K. OLUKOTUN, B. A. NAYFEH, L. HAMMOND, K. WILSON, AND K. CHANG, The case

for a single-chip multiprocessor, in ASPLOS-VII: Proceedings of the seventh interna-

tional conference on Architectural support for programming languages and operating

systems, New York, NY, USA, 1996, ACM, pp. 2–11.

[203] Y. OSAMURA, Y. YAMAGUCHI, AND H. F. S. III, Generalization of analytic energy

derivatives for configuration interaction wave functions, Theoretical Chemistry Ac-

counts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 72 (1987),

pp. 71–91.

[204] A. J. OVER, Multiprocessor Memory-System Simulation, PhD in Computer Science, ANU

Department of Computer Science, 2009.

216 Bibliography

[205] P. C. HARIHARAN AND J. A. POPLE, The influence of polarization functions on molecular

orbital hydrogenation energies, Theoretical Chemistry Accounts: Theory, Computation,

and Modeling (Theoretica Chimica Acta), 28 (1973), pp. 213– 222.

[206] P. M. W. GILL, BENNY G. JOHNSON, JOHN A. POPLE, A simple yet powerful upper bound

for Coulomb integrals, Chemical Physics Letters, 217 (1994), pp. 65–68.

[207] PACIFIC NORTHWEST LABS (PNL), EMSL Basis Set Exchange ver 1.2.2, 2009.

[208] V. PAI, P. RANGANATHAN, AND S. ADVE, RSIM Reference Manual Version 1.0, Tech.

Rep. Tech. Rep. 9705, Department of Electrical and Computer Engineering, Rice Uni-

versity, 1997.

[209] D. A. PATTERSON AND J. L. HENNESSY, Computer organization and design (2nd ed.):

the hardware/software interface, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1998.

[210] PAUL S. BAGUS AND ARTHUR R. WILLIAMS, Electronic Structure Theory, in IBM Journal

of Research and Development, vol. 25, 1981, pp. 793 – 810.

[211] PER EKMAN, Linux kernel memory-to-node mappings. http://www.pdc.kth.se/

˜pek/linux/NUMA/.

[212] J. P. PERDEW, K. BURKE, AND M. ERNZERHOF, Generalized Gradient Approximation

Made Simple, Phys. Rev. Lett., 77 (1996), pp. 3865–3868.

[213] F. PLUCINSKI AND A. MAZUREK, An experimental method of determination of the point

charges located on the carbon atoms in benzene ring, Journal of Molecular Structure,

597 (2001), pp. 269 – 272.

[214] V. PRASAD, F. EIGLER, AND J. KENISTON, Abstract locating system problems using dy-

namic instrumentation, in Proceedings of the Linux Symposium, 2005.

[215] P. PULAY, Second and third derivatives of variational energy expressions: Application

to multiconfigurational self-consistent field wave functions, The Journal of Chemical

Physics, 78 (1983), pp. 5043–5051.

[216] J. RACINE, gnuplot 4.0: a portable interactive plotting utility, Journal of Applied Econo-

metrics, 21 (2006), pp. 133–141.

[217] S. RADHAKRISHNAN, S. CHINTHAMANI, AND K. CHENG, The blackford northbridge

chipset for the intel 5000, IEEE Micro, 27 (2007), pp. 22–33.

[218] R. RAJESH KOTA; OEHLER, Horus: large-scale symmetric multiprocessing for opteron

systems, IEEE Micro, 25 (March-April 2005), pp. 30–40.

Bibliography 217

[219] A. RALSTON AND J. EDWIN D. REILLY, Encyclopedia of Computer Science and Engi-

neering, Thomson Learning, 1982.

[220] T. RAMDAS, G. K. EGAN, D. ABRAMSON, AND K. BALDRIDGE, Towards a special-

purpose computer for Hartree-Fock computations.

[221] , Converting massive tlp to dlp: a special-purpose processor for molecular orbital

computations, in CF ’07: Proceedings of the 4th international conference on Computing

frontiers, New York, NY, USA, 2007, ACM, pp. 267–276.

[222] R. R. RAMSEYER AND A. VAN DAM, A multi-microprocessor implementation of a gen-

eral purpose pipelined cpu, in ISCA ’77: Proceedings of the 4th annual symposium on

Computer architecture, New York, NY, USA, 1977, ACM, pp. 29–34.

[223] D. C. RAPAPORT, The Art of Molecular Dynamics Simulation, Cambridge University Press,

New York, NY, USA, 1996.

[224] A. E. REED, R. B. WEINSTOCK, AND F. WEINHOLD, Natural population analysis, J.

Chem. Phys., (1985), pp. 735–746.

[225] A. P. RENDELL, J. ANTONY, W. ARMSTRONG, P. JANES, AND R. YANG, Building fast,

reliable, and adaptive software for computational science, Journal of Physics: Confer-

ence Series, 125 (2008), p. 012015 (10pp).

[226] N. ROBERTSON AND A. P. RENDELL, OpenMP and NUMA Architectures I: Investigating

Memory Placement on the SGI Origin 3000., in International Conference on Compu-

tational Science, P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. Dongarra, A. Y.

Zomaya, and Y. E. Gorbachev, eds., vol. 2660 of Lecture Notes in Computer Science,

Springer, 2003, pp. 648–656.

[227] D. ROBSON AND P. E. STRAZDINS, Parallelisation of the valgrind dynamic binary instru-

mentation framework, in ISPA, IEEE, 2008, pp. 113–121.

[228] ROHIT CHANDRA AND RAMESH MENON ET. AL., Parallel Programming in OpenMP,

Morgan Kaufmann, 2000.

[229] ROLAND LINDH, Integrals of Electron Repulsion, in Encyclopaedia of Computational

Chemistry, P. v. R. Schleyer et. al, ed., vol. 2, Wiley, 1998, p. 1337.

[230] M. ROSENBLUM, E. BUGNION, S. DEVINE, AND S. A. HERROD, Using the SimOS ma-

chine simulator to study complex computer systems, ACM Transactions on Modelling

and Computer Simulation, 7 (1997), pp. 78–103.

[231] M. ROSENBLUM, S. A. HERROD, E. WITCHEL, AND A. GUPTA, Complete computer

system simulation: the SimOS approach, IEEE Parallel and Distributed Technology:

Systems and Applications, 3 (1995), pp. 34–43.

218 Bibliography

[232] RUI YANG AND A. P. RENDELL, First principles study of gallium atom adsorption on the

α-al2o3(0001) surface, Journal of Physical Chemistry B, 110 (2006), pp. 9608–9618.

[233] S. RUSU, H. MULJONO, AND B. CHERKAUER, Itanium 2 processor 6m: higher frequency

and larger l3 cache, Micro, IEEE, 24 (2004), pp. 10–18.

[234] S. SAINI, D. TALCOTT, D. JESPERSEN, J. DJOMEHRI, H. JIN, AND R. BISWAS, Scientific

application-based performance comparison of sgi altix 4700, ibm power5+, and sgi ice

8200 supercomputers, in SC ’08: Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, Piscataway, NJ, USA, 2008, IEEE Press, pp. 1–12.

[235] A. SCHÄFER, C. HUBER, AND R. AHLRICHS, Fully optimized contracted gaussian basis

sets of triple zeta valence quality for atoms li to kr, The Journal of Chemical Physics,

100 (1994), pp. 5829–5835.

[236] M. SCHMOLLINGER AND M. KAUFMANN, kappa numa: A model for clusters of smp-

machines, in PPAM, R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski,

eds., vol. 2328 of Lecture Notes in Computer Science, Springer, 2001, pp. 42–50.

[237] K. L. SCHUCHARDT, B. T. DIDIER, T. ELSETHAGEN, L. SUN, V. GURUMOORTHI,

J. CHASE, J. LI, AND T. L. WINDUS, Basis set exchange: A community database

for computational sciences, J. Chem. Inf. Model., 47 (2007), pp. 1045–1052.

[238] L. SEILER, D. CARMEAN, E. SPRANGLE, T. FORSYTH, P. DUBEY, S. JUNKINS,

A. LAKE, R. CAVIN, R. ESPASA, E. GROCHOWSKI, T. JUAN, M. ABRASH, J. SUG-

ERMAN, AND P. HANRAHAN, Larrabee: A many-core x86 architecture for visual com-

puting, Micro, IEEE, 29 (2009), pp. 10–21.

[239] SGI, SGI NUMA Tools. http://techpubs.sgi.com/library/tpl/cgi-bin/

getdoc.cgi/linux/bks/SGI_Admin/books/LX_Resource_AG/sgi_

html/ch07.html.

[240] SGI CORPORATION, The SGI Altix 450 System User’s Guide.

[241] I. SHARAPOV, R. KROEGER, G. DELAMARTER, R. CHEVERESAN, AND M. RAMSAY, A

case study in top-down performance estimation for a large-scale parallel application,

in PPOPP, J. Torrellas and S. Chatterjee, eds., ACM, 2006, pp. 81–89.

[242] I. SHARAPOV, R. KROEGER, G. DELAMARTER, R. CHEVERESAN, AND M. RAMSAY, A

case study in top-down performance estimation for a large-scale parallel application,

in PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles

and practice of parallel programming, New York, NY, USA, 2006, ACM, pp. 81–89.

[243] I. SHAVITT, The Gaussian Function in Calculations of Statistical Mechanics and Quantum

Mechanics, vol. 2, Academic Press, 1963.

Bibliography 219

[244] S. S. SHENDE AND A. D. MALONY, The tau parallel performance system, The Interna-

tional Journal of High Performance Computing Applications, 20 (2006), pp. 287–331.

[245] SIMCHA GOCHMAN AND RONNY RONEN AND ITTAI ANATI AND ARIEL BERKOVITS

AND TSVIKA KURTS AND ALON NAVEH AND ALI SAEED AND ZEEV SPERBER AND

ROBERT C. VALENTINE , The Intel Pentium M Processor: Microarchitecture and Per-

formance, Intel Technical Journal, 7 (2003).

[246] J. SIMONS, An experimental chemist’s guide to ab initio quantum chemistry, The Journal of

Physical Chemistry, 95 (1991), pp. 1017–1029.

[247] A. SINGH, Mac OS X Internals, Addison-Wesley Professional, 2006.

[248] K. SKADRON, M. MARTONOSI, D. I. AUGUST, M. D. HILL, D. J. LILJA, AND V. S. PAI,

Challenges in computer architecture evaluation, Computer, 36 (2003), pp. 30–36.

[249] A. SLOSS, D. SYMES, AND C. WRIGHT, ARM System Developer’s Guide: Designing and

Optimizing System Software, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2004.

[250] A. J. SMITH, Cache memories, ACM Comput. Surv., 14 (1982), pp. 473–530.

[251] J. E. SMITH AND A. R. PLESZKUN, Implementation of precise interrupts in pipelined

processors, SIGARCH Comput. Archit. News, 13 (1985), pp. 36–44.

[252] F. SONG, S. MOORE, AND J. DONGARRA, L2 cache modeling for scientific applications

on chip multi-processors, in ICPP ’07: Proceedings of the 2007 International Confer-

ence on Parallel Processing (ICPP 2007), Washington, DC, USA, 2007, IEEE Computer

Society, p. 51.

[253] D. J. SORIN, J. L. LEMON, D. L. EAGER, AND M. K. VERNON, Analytic evaluation of

shared-memory architectures, IEEE Transactions on Parallel and Distributed Systems,

14 (2003), pp. 166–180.

[254] D. J. SORIN, V. S. PAI, S. V. ADVE, M. K. VERNON, AND D. A. WOOD, Analytic

evaluation of shared-memory systems with ilp processors, SIGARCH Comput. Archit.

News, 26 (1998), pp. 380–391.

[255] B. SPRUNT, Managing the complexity of performance monitoring hardware: The brink and

abyss approach, Int. J. High Perform. Comput. Appl., 20 (2006), pp. 533–540.

[256] R. SRINIVASAN AND O. LUBECK, Montesim: a monte carlo performance model for in-

order microachitectures, SIGARCH Comput. Archit. News, 33 (2005), pp. 75–80.

[257] B. STACKHOUSE, S. BHIMJI, C. BOSTAK, D. BRADLEY, B. CHERKAUER, J. DESAI,

E. FRANCOM, M. GOWAN, P. GRONOWSKI, D. KRUEGER, C. MORGANTI, AND

220 Bibliography

S. TROYER, A 65 nm 2-billion transistor quad-core itanium processor, Solid-State Cir-

cuits, IEEE Journal of, 44 (2009), pp. 18–31.

[258] M. C. STRAIN, G. E. SCUSERIA, AND M. J. FRISCH, Achieving Linear Scaling for the

Electronic Quantum Coulomb Problem, Science, 271 (1996), pp. 51–53.

[259] A. STREY AND M. BANGE, Performance Analysis of Intel’s MMX and SSE: A Case Study,

in Euro-Par ’01: Proceedings of the 7th International Euro-Par Conference Manchester

on Parallel Processing, London, UK, 2001, Springer-Verlag, pp. 142–147.

[260] E. STROHMAIER AND H. SHAN, Apex-map: a parameterized scalable memory access

probe for high-performance computing systems, Concurrency and Computation: Prac-

tice and Experience, 19 (2007), pp. 2185–2205.

[261] SUN MICROSYSTEMS INC., Solaris 10 : Extended Library Functions. http://docs.

sun.com/app/docs/doc/817-0679.

[262] , Solaris 10 : Programming Interfaces Guide. http://docs.sun.com/app/

docs/doc/817-4415.

[263] , Sun Studio 11 Collection. http://docs.sun.com/app/docs/coll/771.7.

[264] , Sun Studio 11: Sun Performance Library User’s Guide. http://docs.sun.

com/app/docs/doc/819-3692.

[265] , The SunFire X4600 M2 Architecture.

[266] , The Sun Fire V1280 Server Architecture, November 2002.

[267] , UltraSPARC III Cu User’s Manual, Sun Microsystems Inc., Santa Clara, California,

USA, January 2004. Version 2.2.1.

[268] , Sun studio performance analyzer. http://developers.sun.com/

sunstudio/overview/topics/analyzing.jsp, 2010.

[269] S. SWANSON, L. K. MCDOWELL, M. M. SWIFT, S. J. EGGERS, AND H. M. LEVY, An

evaluation of speculative instruction execution on simultaneous multithreaded proces-

sors, ACM Trans. Comput. Syst., 21 (2003), pp. 314–340.

[270] P. SWEAZEY AND A. J. SMITH, A class of compatible cache consistency protocols and their

support by the ieee futurebus, SIGARCH Comput. Archit. News, 14 (1986), pp. 414–

423.

[271] A. SZABO AND N. S. OSTLUND, Modern Quantum Chemistry, Dover Publications, 1996.

[272] T. HELGAKER AND P. R. TAYLOR, Gaussian Basis Sets and Molecular Integrals, in Mod-

ern Electronic Structure Theory, D. R. Yarkony, ed., World Scientific, 1995.

Bibliography 221

[273] M. TANAKA AND M. AIDA, An Ab-Initio mo study on orbital interaction and charge distri-

bution in alkali metal aqueous solution: Li+, na+, and k+, Journal of Solution Chem-

istry, 33 (2004), pp. 887–901.

[274] J. TAO AND J. WEIDENDORFER, Cache Simulation Based on Runtime Instrumentation for

OpenMP Applications, in ANSS ’04: Proceedings of the 37th annual symposium on

Simulation, IEEE Computer Society, 2004, p. 97.

[275] TERRANCE TAO, The Euler-Maclaurin formula, Bernoulli num-

bers, the zeta function, and real-variable analytic continua-

tion. http://terrytao.wordpress.com/2010/04/10/

the-euler-maclaurin-formula-bernoulli-numbers-the-zeta-function-and-re

2010.

[276] THE PORTLAND GROUP INC., Fortran, C, C++ Compilers. http://www.pgroup.

com/.

[277] THOM H. DUNNING, KIRK A. PETERSON AND DAVID E. WOON, Basis sets: Correlation

Consistent Sets, in Encyclopaedia of Computational Chemistry, P. v. R. Schleyer et. al,

ed., vol. 1, Wiley, 1998, p. 88.

[278] X. TIAN, R. KRISHNAIYER, H. SAITO, M. GIRKAR, AND W. LI, Impact of compiler-

based data-prefetching techniques on spec omp application performance, Parallel

and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International,

(2005), pp. 53a–53a.

[279] M. M. TIKIR AND J. K. HOLLINGSWORTH, Using Hardware Counters to Automatically

Improve Memory Performance., in SC, IEEE Computer Society, 2004, p. 46.

[280] M. M. TIKIR AND J. K. HOLLINGSWORTH, Hardware monitors for dynamic page migra-

tion, J. Parallel Distrib. Comput., 68 (2008), pp. 1186–1200.

[281] J. TORRELLAS, J. L. HENNESSY, AND T. WEIL, Analysis of critical architectural and pro-

gram parameters in a hierarchical shared memory multiprocessor, in SIGMETRICS,

1990, pp. 163–172.

[282] J. TRODDEN AND D. ANDERSON, HyperTransport System Architecture, Addison-Wesley

Professional, 2003.

[283] A. M. TURING, On Computable Numbers, with an application to the Entscheidungsprob-

lem, Proc. London Math. Soc., 2 (1936), pp. 230–265.

[284] U. PRESTOR AND A. DAVIS, An Application-Centric ccNUMA Memory Profiler, in IEEE

International Workshop on Workload Characterization, 2001, pp. 101–110.

222 Bibliography

[285] R. A. UHLIG AND T. N. MUDGE, Trace-Driven Memory Simulation: A Survey, ACM

Computing Surveys (CSUR), 29 (1997), pp. 128–170.

[286] ULRICH DREPPER, What Every Programmer Should Know About Memory. http://

people.redhat.com/drepper/cpumemory.pdf.

[287] S. VADLAMANI AND S. JENKS, Architectural considerations for efficient software execu-

tion on parallel microprocessors, Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007. IEEE International, (2007), pp. 1–10.

[288] L. G. VALIANT, A bridging model for parallel computation, Commun. ACM, 33 (1990),

pp. 103–111.

[289] S. P. VANDERWIEL AND D. J. LILJA, Data prefetch mechanisms, ACM Computing Sur-

veys, 32 (2000), pp. 174–199.

[290] X. VERA, N. BERMUDO, J. LLOSA, AND A. GONZÁLEZ, A fast and accurate framework

to analyze and optimize cache memory behavior, ACM Trans. Program. Lang. Syst., 26

(2004), pp. 263–300.

[291] B. VERGHESE, S. DEVINE, A. GUPTA, AND M. ROSENBLUM, Operating System Sup-

port for Improving Data Locality on CC-NUMA Compute Servers., in ASPLOS, 1996,

pp. 279–289.

[292] S. H. VOSKO, L. WILK, AND M. NUSAIR, Accurate spin-dependent electron liquid corre-

lation energies for local spin density calculations: a critical analysis, Canadian Journal

of Physics, 58 (1980), pp. 1200–1211.

[293] Z. VRANESIC, M. STUMM, D. LEWIS, AND R. WHITE, Hector-a hierarchically structured

shared memory multiprocessor, vol. i, Jan 1991, pp. 444–453 vol.1.

[294] D. WALLIN, H. JOHANSSON, AND S. HOLMGREN, Cache Memory Behavior of Advanced

PDE Solvers, in Processing of Parallel Computing 2003 (ParCo2003), Dresden, Ger-

many, Sept. 2003.

[295] W.-H. WANG AND J.-L. BAER, Efficient Trace-Driven Simulation Methods for Cache

Performance Analysis, ACM Transactions on Computer Systems (TOCS), 9 (1991),

pp. 222–241.

[296] J. WEIDENDORFER, M. KOWARSCHIK, AND C. TRINITIS, A tool suite for simulation

based analysis of memory access behavior, in International Conference on Computa-

tional Science, M. Bubak, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds.,

vol. 3038 of Lecture Notes in Computer Science, Springer, 2004, pp. 440–447.

[297] J. WEIDENDORFER AND C. TRINITIS, Collecting and exploiting cache-reuse metrics, in

International Conference on Computational Science (2), V. S. Sunderam, G. D. van

Bibliography 223

Albada, P. M. A. Sloot, and J. Dongarra, eds., vol. 3515 of Lecture Notes in Computer

Science, Springer, 2005, pp. 191–198.

[298] F. WEINHOLD AND C. R. LANDIS, Valency and Bonding: A Natural Bond Orbital Donor-

Acceptor Perspective, Cambridge University Press, 2005.

[299] R. C. WHALEY, A. PETITET, AND J. DONGARRA, Automated empirical optimizations of

software and the ATLAS project., Parallel Computing, 27 (2001), pp. 3–35.

[300] C. A. WHITE, B. G. JOHNSON, P. M. W. GILL, AND M. HEAD-GORDON, The continuous

fast multipole mmthod, Chemical Physics Letters, 230 (1994), pp. 8 – 16.

[301] WIKIPEDIA, Alpha-Pinene. http://en.wikipedia.org/wiki/Alpha-Pinene.

[302] , Basic Block. http://en.wikipedia.org/wiki/Basic_block.

[303] , Diffuse Functions. http://en.wikipedia.org/wiki/Basis_set_

(chemistry).

[304] , Euler-Maclaurin Formula. http://en.wikipedia.org/wiki/

Euler-Maclaurin_formula.

[305] S. WILLIAMS, J. CARTER, L. OLIKER, J. SHALF, AND K. YELICK, Lattice boltzmann

simulation optimization on leading multicore platforms, April 2008, pp. 1–14.

[306] S. WINKEL, R. KRISHNAIYER, AND R. SAMPSON, Latency-tolerant software pipelining

in a production compiler, in CGO, M. L. Soffa and E. Duesterwald, eds., ACM, 2008,

pp. 104–113.

[307] M. E. WOLF AND M. S. LAM, A data locality optimizing algorithm, SIGPLAN Not., 26

(1991), pp. 30–44.

[308] WOLFRAM MATHWORLD, Hermite Polynomial. http://mathworld.wolfram.

com/HermitePolynomial.html.

[309] Q. YANG, Performance Analysis of a Cache-Coherent Multiprocessor Based on Hierarchi-

cal Multiple Buses, in PARBASE / Architectures, 1990, pp. 260–275.

[310] R. YANG, J. ANTONY, P. P. JANES, AND A. P. RENDELL, Memory and thread placement

effects as a function of cache usage: A study of the gaussian chemistry code on the

sunfire x4600 m2, in ISPAN, IEEE Computer Society, 2008, pp. 31–36.

[311] R. YANG, J. ANTONY, AND A. RENDELL, Effective use of dynamic page migration on

numa platforms: The gaussian chemistry code on the sunfire x4600m2 system, Paral-

lel Architectures, Algorithms, and Networks, International Symposium on, 0 (2009),

pp. 63–68.

224 Bibliography

[312] R. YANG, J. ANTONY, AND A. P. RENDELL, A simple performance model for multi-

threaded applications executing on non-uniform memory access computers, in HPCC

’09: Proceedings of the 2009 11th IEEE International Conference on High Performance

Computing and Communications, Washington, DC, USA, 2009, IEEE Computer Soci-

ety, pp. 79–86.

[313] K. C. YEAGER, The MIPS R10000 Superscalar Microprocessor, IEEE Micro, 16 (1996),

pp. 28–40.

[314] T.-Y. YEH AND Y. N. PATT, A comparison of dynamic branch predictors that use two levels

of branch history, SIGARCH Comput. Archit. News, 21 (1993), pp. 257–266.

[315] D. C. YOUNG, Computational Chemistry: A Practical Guide for Applying Techniques to

Real-World Problems, Wiley, 2001.

[316] X. ZHANG AND X. QIN, Performance prediction and evaluation of parallel processing on

a numa multiprocessor, IEEE Trans. Software Eng., 17 (1991), pp. 1059–1068.

Index

[0℄m, 32

libnuma, 44

madvice, 44

mbind(), 44

numactl, 44

sched setaffinity(), 44

set mempolicy(), 44

Bandwidth characterisation, 47

18-Crown-6, 119

6-31G*, 30

A Linear Performance Model, 84

Accuracy of the LPM for the AMD848 Op-

teron, 86

ACML, 47

Algorithmic locality, 10

AMD848, 46

analytical performance modelling, 21

associativity, 10

ATLAS, 47

atomic basis functions, 27

aug-cc-pCVTZ, 30

B3LYP functional, 36

basic block, 22

basis functions, 27

Becke functional, 35

BLYP functional, 35

Born-Oppenheimer approximation, 24

Branch prediction, 7

C60, 119

cache blocking and quartet type, 74

cache blocking PRISM, 60

cache capacity, 10

cache coherency, 13

cache coherency protocols, 14

Cache Memory, 8

Cache misses by NUMA domain, 130

cache size, 10

Cache variation study across three architec-

tures, 102

CALDFT, 121

CALDSU, 121

Callgrind, 22, 67

Callgrind validation, 94

capacity misses, 12

Cell, 180

CGTO, 29, 59

Charge on K+ as a Function of Different

Basis Sets, 170

charges, 153

charges binned w.r.t RDF, 163

cHT, 50

coherent HyperTransport, 50, 115

cold misses, 12

Comparison between DFT and HF, 37

conflict misses, 12

contention class, 42

contracted Gaussian, 29

contracted shell, 29

coulomb integrals, 27

COULSU, 121

Data Level Parallelism, 6

225

226 Index

data placement strategies, 143

DBT, 22

DCache, 11

def2-TZVP, 30

Density Functional Theory, 34

Density matrix, 27

Density plot for charges, 169

DFT, 34

diffuse functions, 70

direct mapped, 11

directory based coherency, 15

DLP, 6

drivers in PRISM, 64

Dual-core contention in the LPM, 140

dynamic binary translation, 22

Effects of thread and memory placement in

Gaussian, 121

electron-repulsion integrals, 27

electronic structure methods, 23

ERI, 27

ERI batching and cache blocking, 72

ERI evaluation using PRISM, 59

ERI quartet, 64

ESP, 173

exchange integrals, 27

exclusive cache, 12

exclusive cacheline state, 14

Extending the LPM to account for NUMA

effects, 129

FIFO, 11

FirePlane, 42

First-order reduced density matrix, 157

Fock matrix, 27

full-machine simulation, 22

fully associative, 11

Functional cache simulation, 67

Gaussian product rule, 30

GOTO, 47

GPGPU, 180

GTO, 59

Hamiltonian, 23

hardware counter multiplexing, 17

hardware performance counters, 16

Hartree K.E. functional, 35

Hartree-Fock approximation, 25

Hartree-Fock equations, 26

Hermite Gaussian, 31

HWPC, 16

HyperThreading, 8

HyperTransport, 42

ICache, 11

inclusive cache, 12

Instruction pipelining, 7

integral screeing, 71

Intel Atom, 180

invalid cacheline state, 14

Jellium, 35

K+ ion channel, 154

Kohn-Sham Equations, 36

Kohn-Sham SCF, 34

KS SCF, 34

Latency Characterisation, 47

Lebedev grids, 38

lgrp, 43

lgrpinfo, 45

line size, 10

Linear Performance Model, 58

Linux, 42

Linux NUMA memory mangement policy,

44

Index 227

Linux NUMA support, 44

LPM, 58, 91

LPM and Functional Cache Simulation, 93

LRU, 11

MaxCom, 64

McMurchie-Davidson, 31

MD ERI, 31

MD tree search, 32

Memory allocation in Gaussian, 120

memory consistency, 13

MESI, 14

microprocessors used in thesis, 17

MO, 25

Modifications to Gaussian, 121

modified cacheline state, 15

MOESI, 14

molecular orbital coefficients, 25

molecular orbitals, 25

MP2, 173

MPA, 156

MPA and NPA Charges on K+, 161

MPI, 42

Mulliken population analysis, 156

multiplexing, 17

Natural atomic orbitals, 157

Natural population analysis, 156

NPA, 156

NPerS4, 64

NUMA, 15, 41

NUMA extended LPM, 131

Obara-Saika, 34

on-chip performance counters, 20

OpenMP, 41

Out-of-order execution, 7

owned cacheline state, 15

Page migration, 142

page migration, 119

Page migration and data locality, 142

page placement, 119

PAPI, 17

Parametric cache variation study, 97

partial differentiation, 30

PDM, 42, 49

PDM algorithm, 50

performance evaluation, 19

performance modelling using simulation, 21

PES, 25

PGTO, 29, 59

pipelining floating-point requests, 60

pipelining memory requests, 60

Placement Distribution Model, 42, 49

pmadvise, 45

potential energy surface, 25

PPC440, 180

PPCoeff stability on the Opteron, 85

PPCoeffs, 58

primitive Gaussian, 29

PRISM, 121

PRISM algorithm, 32, 62

PRISM and Cache Blocking, 62

PRISMC, 121

PRISMSU, 121

PThreads, 42

QCISD, 173

Radial distribution function, 158

RDF, 158

RDF charges by solvation shell, 167

recursive relations, 30

Relative charge on Potassium, 162

SCF, 27

228 Index

SCF convergence, 27

Schrödinger wave-equation, 23

set associative, 11

shared cacheline state, 15

shell-pair, 31, 59

shell-quartet, 33, 59

Shell-Quartets for the Water molecule, 64

Single threaded placement experiments, 133

software profiling, 19

Solaris, 42

Solaris NUMA support, 43

Spatial locality, 9

Speculative execution, 7

spherical harmonic, 29

spherical polar quadrature, 38

Stability of PPCoeffs Across Different Hard-

ware Architectures, 87

summary of contributions, 177

Sunperf, 47

Super scalar execution, 7

Tegra, 180

Temporal locality, 9

Thread Level Parallelism, 8

TLB, 11

TLP, 8

trial wavefunction, 26

two-electron integral evaluation, 30

UMA, 15, 41

user-level simulation, 22

V1280, 46

Valgrind, 22

Valinomycin, 119

variational principle, 25

VEX, 23

von Neumann architecture, 5

Water molecule basis set break-up, 60

working set, 8

write-back, 12

write-through, 12

X10, 180

X4600 M2 contention classes, 123

X4600 M2 latency, 116

X4600 M2 performance, 114

X4600 M2 topology, 116

X4600M2 bandwidth, 116

