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Abstract

The software tool GRworkbench is an ongoing project in visual, numeri-
cal General Relativity at The Australian National University. This year,
GRworkbench has been significantly extended to facilitate numerical exper-
imentation. The numerical differential geometric engine has been rewritten
using functional programming techniques, enabling fundamental concepts
to be directly represented as variables in the C++ code of GRworkbench.
Sophisticated general numerical methods have replaced simpler specialised
algorithms. Various tools for numerical experimentation have been imple-
mented, allowing for the simulation of complex physical situations.

A recent claim, that the mass of the Milky Way can be measured using
a small interferometer located on the surface of the Earth, has been inves-
tigated, and found to be an artifact of the approximations employed in the
analysis. This difficulty is symptomatic of the limitations of traditional pen-
and-paper analysis in General Relativity, which was the motivation behind
the original development of GRworkbench. The physical situation pertaining
to the claim has been modelled in a numerical experiment in GRworkbench,
without the necessity of making any simplifying assumptions, and an accu-
rate estimate of the effect has been obtained.
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Chapter 1

Introduction

GRworkbench is a numerical, visual tool for exploring analytic space-times in
General Relativity. This year, the numerical differential geometric engine of
GRworkbench has been rewritten using functional programming techniques,
with the objective of creating a general platform in which complex physical
situations can be simulated in numerical experiments. New tools for mod-
elling physical systems were implemented within the functional framework. A
recently proposed experiment, to determine the mass of the Milky Way, was
analysed, and then investigated numerically in GRworkbench, demonstrating
the applicability of the new techniques for numerical experimentation.

1.1 Summary of thesis

GRworkbench arose from work in visual numerical relativity by S. M. Scott,
B. J. K. Evans, and A. C. Searle, at The Australian National University. Most
recently, A. C. Searle implemented a numerical differential geometric engine,
and improved 3-D visualisation [15]. The efficacy of the differential geo-
metric engine, and the utility of GRworkbench as an intuitive visualisation
tool, has been demonstrated [14, 5]. Chapter 2 presents an overview of the
GRworkbench project.

In order to facilitate the creation of a general system for numerical exper-
imentation in analytic space-times, the numerical and differential geometric
aspects of GRworkbench have, this year, been rewritten using functional pro-
gramming techniques. Functional programming allows functions, like normal
data, to be stored in program variables and manipulated by other functions.
Important concepts in differential geometry, which are naturally thought of
as functions, can thus be directly represented in the C++ code of GRwork-

bench. The functional programming methods employed in GRworkbench are

1



2 CHAPTER 1. INTRODUCTION

introduced in Chapter 3.
Some of the numerical methods previously employed by GRworkbench

were found to be too inflexible or inaccurate to be applied to potentially
complex and computationally intensive numerical experiments. Sophisti-
cated new algorithms have been implemented this year for key numerical
operations including differentiation, integration, and minimisation; these op-
erations act directly on functions, using the new functional framework of
GRworkbench. A general notion of approximate equality permits the numer-
ical methods to be implemented in a consistent and elegant way. Numerical
methods are the topic of Chapter 4.

Appendix A lists the C++ code, written by the author, for the new
numerical algorithms discussed in Chapter 4.

The differential geometric engine of GRworkbench, which relies on nu-
merical methods for operations such as the transformation of tangent vector
components between coordinate systems, has been rewritten within the func-
tional framework, to interact cleanly with the numerical engine of GRwork-

bench. Abstract notions such as points and tangent vectors are represented by
C++ classes, which provide routines to obtain the coordinates of the objects
in any coordinate system. The functional numerical differential geometric
engine is described in Chapter 5.

Physical situations in numerical experiments are modelled in terms of
important objects in differential geometry, particularly points, tangent vec-
tors, and geodesics. The key operation of geodesic tracing from initial data
has been re-implemented using the new functional numerical engine. New
methods for locating geodesics that are implicitly defined by boundary condi-
tions have been developed using the function minimisation algorithms. These
tools facilitating numerical experimentation in GRworkbench are the topic of
Chapter 6. Appendix B lists the C++ code, written by the author, for a
numerical experiment described in Chapter 8.

An analysis of a recent claim by Karim et al. [8], that the mass of the
Milky Way can be determined using a small interferometer located on the
surface of the Earth, is presented in Chapter 7. Properties of the interferom-
eter model employed in the calculation of Karim et al. are investigated. The
claimed size of the effect is found to be due to the coordinate-dependent def-
inition of the interferometer employed, and not to the effects of space-time
curvature. A more physically motivated interferometer model (‘geodesic-
defined interferometer’) is proposed, and its properties are investigated.

The interferometer model of Karim et al. and the geodesic-defined inter-
ferometer were each simulated in GRworkbench. The results of these numer-
ical experiments are presented in Chapter 8. The analysis by Karim et al. of
their proposed interferometer was found to be in agreement with the results
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of the GRworkbench simulations of that interferometer. The behaviour of the
geodesic-defined interferometer was characterised, and used to obtain a new,
more accurate, estimate on the size of the effect described in [8]. The effect
was found to be too small to detect with an interferometer on Earth. We
conclude that the proposed experiment, to measure the mass of the Milky
Way using an interferometer located on Earth, is not currently technically
feasible.





Chapter 2

GRworkbench

GRworkbench is a software tool for visualising numerical operations on ana-
lytically defined space-times in General Relativity. It has arisen from work in
visual numerical relativity by S. M. Scott, B. J. K. Evans, and, most recently,
A. C. Searle. In this chapter we give an overview of the motivation behind,
and history of, the GRworkbench project.

2.1 Motivation

Analytic results in General Relativity are, in general, difficult to obtain.
Exact solutions of the Einstein field equation are rare, and some physically
important exact solutions are sufficiently complicated to be difficult to work
with algebraically. It is usually necessary to make approximations if algebraic
results are desired; this is exemplified by the claim analysed in Chapter 7.

Computational methods have been applied to the solution of the Ein-
stein field equation for various boundary conditions, most famously to the
currently unsolved problem of two in-spiralling black holes. Symbolic al-
gebra software such as Mathematica, as well as specialised packages, such
as GRTensorII and Sheep, are used to manipulate the tensor equations of
General Relativity.

Computational methods have also been used to explore the physical prop-
erties of analytic solutions to the Einstein equation, through numerical opera-
tions such as geodesic tracing. Traditionally, such simulations were performed
using specialised codes as required.

Visualisation in General Relativity is intrinsically difficult because space-
times are 4-dimensional and curved, whereas computer monitors (and most
other visualisation devices) are 2-dimensional and flat. Traditionally, visu-
alisation is performed by choosing a coordinate system, suppressing 1 coor-

5



6 CHAPTER 2. GRWORKBENCH

dinate, and plotting the remaining three coordinates via a projection from 3
dimensions to 2 dimensions.

The goal of the GRworkbench project is to create a visual software tool for
numerical General Relativity, in which a point-and-click interface encourages
the user to explore freely in a space-time. Such a tool would, for the first
time, allow experimental techniques to be applied to problems in General
Relativity in an intuitive, visual environment.

2.2 GRworkbench

Working with S. M. Scott and B. J. K. Evans, A. C. Searle implemented a
new version of GRworkbench in 1999 [15]. It featured an imbedded platform-
independent gui (Graphical User Interface), a novel numerical differential
geometric engine, and a flexible visualisation system, as well as being easy
to extend with additional space-time definitions.

The differential geometric engine of GRworkbench allowed for abstract
objects, such as points and tangent vectors, to have multiple numerical rep-
resentations, corresponding to different coordinate charts. GRworkbench was
informed, through the space-time definitions, of the maps between the var-
ious charts. Numerical operations, such as geodesic tracing, are performed
on a single chart, until a chart boundary or other obstacle is encountered,
at which point the algorithms are able to transform the data into another
coordinate system and resume computation there.

The components of the metric tensor on each coordinate chart, together
with the maps between charts, define a space-time in GRworkbench. For
numerical operations which involve derivatives of the metric components,
such as geodesic tracing, simple, robust numerical methods are employed to
compute the derivatives.

A highly general visualisation system was implemented in GRworkbench.
In the coordinate system of choice, space-times are visualised by transform-
ing the 4 coordinates under arbitrary distortions down to a 3-dimensional
visualisation space, which is then rendered on the screen using the OpenGL
graphics library. Higher-dimensional structures (surfaces, volumes, hyper-
volumes), such as the event horizon of a black hole, are also intelligently
visualised under arbitrary distortions.

Figure 2.1 is a screen-shot from GRworkbench showing a time-like geodesic
in the Kerr space-time, which describes the gravitational field around a ro-
tating black hole. The geodesic represents the world-line of a particle falling
into the near-field of the black hole, orbiting the event horizon several times,
and then escaping in a different direction. The spherical object in the centre
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Figure 2.1: GRworkbench screen-shot showing an interesting time-like
geodesic in the Kerr rotating black hole space-time.
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of Figure 2.1 is the event horizon of the black hole. Elements of the gui are
visible in the top-left corner.

The interesting geodesic of Figure 2.1 was obtained in a just a few min-
utes using the fast turn-around of real-time geodesic tracing and visualisa-
tion. Other physically interesting situations can be explored visually in a
similar way. GRworkbench enables users to quickly get an intuitive ‘feel’
for the properties of a space-time, and is thus also potentially useful as an
educational tool.

2.3 Objective

Simple visual experiments have been performed in GRworkbench, demon-
strating its utility. However, the simulation of more complex physical situa-
tions was hindered by the numerical methods, which were not as efficient or
flexible as they could be, and the differential geometric engine, which was not
sufficiently general for rapid extension. The modification of GRworkbench,
with the aim of performing complex numerical experiments, is the topic of
this thesis.



Chapter 3

Functional programming

The numerical and differential geometric engine of GRworkbench has been
rewritten during 2003 within the framework of functional programming. An
overview of C++ and functional programming is presented in this chapter.
The benefits for GRworkbench are discussed in Section 3.4. Numerical meth-
ods and differential geometry within this functional framework are the topics
of Chapters 4 and 5, respectively.

3.1 Functions

In the traditional programming languages of scientific computing, such as C,
C++, and Fortran, a program typically consists of routines which operate
on data stored in program variables. Every variable in C++ has a type,
and there is a natural correspondence between C++ types and standard
mathematical sets. Table 3.1 lists the most important examples.

The first two sets in Table 3.1, Z and R, are represented in some way
or other in every language of scientific computing. The type name double

stands for ‘double-precision floating point number’.

Set C++ type Notes
Z int max. ±(231 − 1)
R double max. ∼ ±10308, precision ∼ 10−15

R
n nvector<double> (as for double)

(A → B) function<B (A)> see Section 3.2

Table 3.1: Correspondence between certain sets and C++ types in GRwork-

bench.

9



10 CHAPTER 3. FUNCTIONAL PROGRAMMING

The nvector<T> type, written by Antony Searle, uses the C++ template

mechanism1 to provide a type representing n-tuples of any other type T. The
type T is called the template parameter. In the case of R

n, T will be double.
The template parameter may itself be an nvector, as in nvector<nvector<
double>>, which is a type representing the set of m × n matrices with real
entries.

The following is a routine in C++:

double mean(double a, double b)
{

return (a + b) / 2;
}

The corresponding mathematical definition is

mean: R × R → R,

mean(a, b) =
a + b

2
. (3.1)

The first line of the routine conveys the same information as the first line of
(3.1): the routine mean takes two real numbers as arguments, and returns a
real number. The rest of the routine definition, enclosed in braces, encodes
the second line of (3.1).

The signature of a routine is obtained by taking the first line of a routine
and removing the routine name and argument names, leaving only their
types. Thus the signature of the routine mean is double (double, double),
and the signature of a function f : R

n × Z → R would be double (nvector<
double>, int).

We may define a function as anything which behaves like the routine mean
above, in the sense that it accepts zero or more arguments, and returns a
value. In traditional programming languages (C, Fortran) the only possible
functions are routines, and so the terms ‘function’ and ‘routine’ are used
interchangeably. The key feature of functional programming is that there
can be functions other than the routines typed in by the programmer—
functions created while the program is running. The mechanism to achieve
this is introduced in Section 3.3. To create functions at run-time, we need
to be able to store them in variables, which is the topic of the next section.

3.2 Functions as data

The capability to store functions in variables is not unique to functional
programming. Most languages used for scientific computation have some

1See [19], page 327.
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way to store a reference to a program routine; GRworkbench uses the Boost

Function Library [6]. The Function Library provides the templatised type
function<T> representing a function whose signature is T. The following
code fragment shows how the routine mean can thus be stored in a variable:2

function<double (double, double)> f = mean;
// the following two lines are now equivalent
double x = f(1, 2);
double x = mean(1, 2);

Observe from the last two lines that the variable f can be used just like the
routine mean; they are both functions.

In general, if we let (A1 × · · · × An → B) denote the set of functions
from A1 × · · · × An to B, then the corresponding C++ type is function<B (
A1, . . . , An)>, where the sets B,A1, . . . , An correspond to the types B, A1,
. . . , An. The fourth row of Table 3.1 summarises this relationship.

The most important consequence of the capability to store functions in
variables is that functions can be arguments to other functions. To illustrate
this, consider the following routine, which approximates the derivative of a
function f at a point x:3

double slope(function<double (double)> f, double x)
{

double h = 0.1;
return (f(x + h) − f(x − h)) / (2 ∗ h);

}
The corresponding mathematical definition is

slope : (R → R) × R → R,

slope(f, x) =
f(x + h) − f(x − h)

2h
, h = 0.1. (3.2)

Again the first line of the routine definition encodes the same information as
the first line of (3.2), and the remainder of the routine definition, enclosed
in braces, encodes the second line of (3.2).

In addition to differentiation, many other numerical algorithms naturally
take a function as an argument. Two classic examples are

minimise : (R → R) × R → R,

minimise(f, x) = (a local minimum of f near x), (3.3)

2Anything after the characters // in a line of C++ code is a comment, and is ignored
by the compiler.

3This crude method for estimating the derivative is for illustrative purposes only; the
differentiation algorithm employed by GRworkbench is described in Section 4.3.
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and

integrate : (R → R) × R × R → R,

integrate(f, a, b) = (numerical estimate of

∫ b

a

f(x) dx). (3.4)

Finally, note that the signature of slope is double (function<double (
double)>, double), and so slope itself may be stored in a variable of type
function<double (function<double (double)>, double)>. Every function in
C++ can be stored in a variable of type function<T>, where T is the signa-
ture of the function.

3.3 Creating functions at run-time

Consider the following function, defined in terms of the slope function (3.2):

derivative : (R → R) → (R → R),

derivative(f) = g, g : R → R, g(x) = slope(f, x). (3.5)

For any function f , it returns the function which returns the slope of f at its

argument.
This expression of the operation of numerical differentiation as a map-

ping from functions to functions is more flexible than slope. By recursively
applying derivative, for example, we have derivative(derivative(f)), which is
an approximation to the second derivative of f . Using only the mechanisms
introduced so far, however, we cannot encode (3.5) in C++.

3.3.1 Functors

New types are created in C++ by writing a class. A class may optionally
define an operator()4 routine, in which case it is called a functor class.5 A
variable whose type is a functor class is a function as defined in Section 3.1.
To see this, consider the following functor class:

class multiply functor
{
public:

// constructor (see the discussion, below)
multiply functor(double a )

4(pronounced ‘operator parenthesis’ or ‘the parenthesis operator’)
5The use of the term ‘functor’ in category theory is not related to its use in this context.
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{
a = a ;

}

double operator()(double x)
{

return a ∗ x;
}

private:
double a;

};
It can be used in the following way:

function<double (double)> f = multiply functor(1.5);
double y = f(3);

This code fragment sets f to the function which returns 1.5 times its argu-
ment, and thus it sets y to 4.5.

A functor class represents the function encoded by its operator() routine,
parameterised by the variables in its private: section. The variables in the
private: section are initialised by the constructor, which always has the same
name as the functor class. In the code fragment, above, the line a = a ;
initialises the private: variable a with the value of the variable a , which was
passed to the constructor of multiply functor.

Thus, multiply functor represents the class of functions which multiply
their argument by some constant a ∈ R; the value of the parameter a is the
argument to the constructor. We may even think of the constructor itself as
a function:

multiply functor : R → (R → R),

multiply functor(a) = f, f : R → R, f(x) = ax. (3.6)

Using a functor class we can encode the derivative function (3.5) in C++:

class derivative functor
{
public:

derivative functor(function<double (double)> f )
{

f = f ;
}

double operator()(double x)
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{
return slope(f, x);

}

private:
function<double (double)> f;

};

function<double (double)> derivative(function<double (double)> f)
{

return derivative functor(f);
}

If we were to replace the primitive slope routine with a more sophisticated
algorithm for numerical differentiation, then this derivative routine would be
a good approximation to the mathematical operation of differentiation. For
example, derivative(sin) would be a good approximation to the function cos.6

3.4 Applicability to GRworkbench

There are two reasons why functional programming is an ideal framework
in which to implement the numerical and differential geometric aspects of
GRworkbench. Functional programming permits numerical operations, like
derivative, to be expressed in a way which closely resembles the mathematical
operation that they approximate; and many fundamental notions in differen-
tial geometry and general relativity, such as the action of the metric tensor,
and particle world-lines, are functions.

By elevating functions to the same level as traditional data types (Z,
R), functional programming makes these notions directly representable as
variables in C++ code. As we shall see in Chapter 6, this is invaluable in
the construction of numerical experiments.

6The functions sin and cos, and many other standard functions, are built-in to C++.



Chapter 4

Numerical methods

The numerical engine of GRworkbench has been rewritten during 2003 within
the framework of functional programming. Functional algorithms have re-
placed third-party routines and inline implementations of simpler methods.
Some algorithms needed to be rewritten or added as part of the develop-
ment of GRworkbench for numerical experiments, as described in Chapter 6,
while other changes were directed towards increasing robustness, accuracy,
or speed of computation.

A technique for scale-independent computation is described in Section 4.1.1,
and the method of Richardson extrapolation is introduced in Section 4.2.
These tools are employed in new implementations for the operations of dif-
ferentiation, integration of ordinary differential equations, and function min-
imisation, which are described in Sections 4.3, 4.4 and 4.5, respectively.

4.1 Scale-independent computation

As mentioned in Section 3.1, the name of the type double, which represents
real numbers in GRworkbench, stands for ‘double-precision floating point
number’. The term ‘double-precision’ arises from the size of the data type,
64 bits, being twice that of the smallest floating point data type in C++,
which is called float and referred to as ‘single-precision’. The term ‘floating
point’ refers to the particular way that numbers are encoded in the 64 bits.

Floating point numbers are represented in mantissa-exponent form, which
is similar to standard scientific notation. For example, the number 1.234 ×
10−56 is represented as a double by 1.234e−56, where 1.234 is the mantissa,
which can contain up to 15 significant figures, and −56 is the exponent, which
ranges from −308 to +308.1 These limitations of the double data type were

1The mantissa is stored in 52 bits, so its precision is one part in 252 ' 4.5× 1015. The

15
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summarised in Table 3.1.
The alternative to mantissa-exponent form is fixed-point form, in which a

certain number of bits (32 bits, say) store the part of the number to the left
of the decimal point, and the remaining bits (31 bits, say) store the part of
the number to the right of the decimal point, with 1 bit reserved to indicate
the sign (+ or −) of the number. In this form, the largest representable
number is ∼ 232, and the smallest (in magnitude) representable number is
∼ 2−31, so the example above, 1.234 × 10−56, is not representable at all.
Mantissa-exponent form, offering a wider range of length scales, and the
same precision at all length scales, is more suitable than fixed-point form for
scientific computation.

4.1.1 Approximate equality

In approximate methods, it is necessary to have a notion of two numbers
being approximately equal, to some relative precision ε. For example, suppose
ε = 0.01; then we want to consider 1.001 × 1043 to be approximately equal
to 1.002 × 1043, because their difference, 1040, divided by either of their
magnitudes, ∼ 1043, is ∼ 10−3 < ε. On the other hand, we also want to
consider 0 to be approximately equal to 10−4, simply because 10−4 < ε.
We require a definition of approximate equality which satisfies both of these
examples.

A notion of approximate equality is also required for elements of other
sets, most importantly R

n, where there is an additional consideration. Con-
sider two vectors v1,v2 ∈ R

2,

v1 =

[

105

1

]

, v2 =

[

105

2

]

. (4.1)

Denoting the standard Euclidean norm on R
2 by ‖ · ‖, we have that ‖v1‖ '

‖v2‖ � 1, ‖v2 − v1‖ = 1, and

‖v2 − v1‖
‖v1‖

< ε. (4.2)

However, we may not want to consider the vectors v1 and v2 to be approxi-
mately equal, because their second components are not approximately equal,
and the scale of interest of the first component may be different to that of
the second component.

exponent is stored in 11 bits, so binary exponents up to ±210 = ±1024 can be represented,
corresponding to decimal exponents of ± log

10
21024 ' ±308.
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In the literature, it is common for numerical algorithms to assume that
the scale of interest is approximately unity, or at least that it is uniform for
all components of a vector or matrix; for such algorithms, it is necessary to
appropriately normalise input variables, and then apply the inverse transfor-
mation to the output of the algorithm. Definitions like double tiny = 1.0e
−30; are also common, where the variable tiny is intended to be smaller than
any quantity that might otherwise arise, apart from zero. Such a definition
invalidates the routine for scales smaller than 10−30, which partially nullifies
one of the main benefits of floating point arithmetic. Whenever either of the
two issues above was encountered while implementing the numerical meth-
ods of this chapter, it was found that, by rethinking the relevant parts of the
algorithm in terms of a general notion of approximate equality, the problem
could be avoided.

In the redesigned numerical engine of GRworkbench, the notion of ap-
proximate equality for any set S is represented by the function

approx equal : S × S × R → {true, false},

approx equal(a, b, ε) =

{

true, if relative difference(a, b) < ε;

false, otherwise,
(4.3)

where the function relative difference encodes, for each set S, a method to
determine to what precision two given elements are equal. The range of
approx equal, {true, false}, is represented by the type bool in C++.

The default definition,2 for any set S which has a norm3 ‖·‖ and is closed
under an addition operation, is

relative difference : S × S → R,

relative difference(a, b) =
‖a − b‖

max(
√

‖a‖‖b‖, 1)
. (4.4)

Thus, the relative difference is the absolute difference divided by the geomet-
ric mean of the absolute values, unless the geometric mean is less than unity,
in which case the relative difference is just the absolute difference. Defini-
tion (4.4) is not the only conceivable default definition for relative difference
that is suitable for R and that is easily generalisable to other sets with

2The C++ template mechanism allows for routines which have no particular type
specified for one or more of their arguments; such a routine may be called with arguments
of any type for which the routine body makes sense.

3The norm on R is represented by the function abs, which is built-in to C++. In
GRworkbench the norm is defined for other types by specialising (overloading) abs to take
arguments of other types.
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norms; but it is the definition employed in GRworkbench. The code of the
relative difference routine is listed in Section A.1.

The relative difference function is specialised for the case S = R
n, to

resolve the problem exemplified by (4.2):

relative difference : R
n × R

n → R,

relative difference(a,b) =

√

√

√

√

n
∑

i=1

relative difference(ai, bi)2, (4.5)

where a = (a1, . . . , an) and b = (b1, . . . , bn). Thus, the square of the rel-
ative difference is the sum of the squares of the relative differences of the
components.

The specialisation of the relative difference routine in GRworkbench has
signature double (nvector<T>, nvector<T>), where T is a template param-
eter. As such, the componentwise definition (4.5) applies to n-tuples of any
set. In particular, recalling that matrices are represented by the type nvector
<nvector<double>>, by recursively applying (4.5) we find that the square
of the relative difference of two matrices is just the sum of the squares of the
relative differences of their components, independent of their representation
as vectors of vectors.

More general than the notion of relative difference, as defined in (4.4) and
(4.5), is to associate with each set S and norm ‖·‖ on S not just a C++ type
S, representing S, but also a function of signature double (S), representing
the norm ‖ · ‖. The particular norm on S will depend on what the elements
of S are being used to represent; multiple norms on R

n, for example, could
facilitate the correct definition of approximate equality for the two vectors in
(4.1), which will depend on the particular meaning of the various components
of the vectors.

4.2 Evaluation of limits

Two of the numerical methods presented in this chapter (that for differenti-
ation and that for integration of ordinary differential equations) involve an
algorithm f(h) which approximates the desired solution as a function of a
small parameter h ∈ R, such that

lim
h→0

f(h) = (the exact solution), (4.6)

but such that f(0) is not defined. The limit (4.6) must be estimated by
evaluating f(h) for a finite number of values of h. For very large4 values of

4(relative to the scale over which f varies significantly)
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h, f(h) will be a poor estimate of the limit; but for very small values of h,
roundoff error in the floating point arithmetic will contribute significantly to
the value of f(h).

To see the effect of roundoff error, let

f(h) =
sin (π + h) − sin π

h
=

sin (π + h)

h
, (4.7)

so that limh→0 f(h) = −1 is the derivative of sin x at x = π. Now, f(0.1) '
−0.998 equals the limit to 2 significant figures, and in general f(10−n), n ∈ N,
equals the limit to 2n significant figures, if we perform the computation to
arbitrary precision. However, if we evaluate, say, f(10−12) using double pre-
cision floating point numbers, the result is approximately −0.99996, accurate
to only 4 significant figures. Accuracy is lost because π + h differs from π
only after 12 significant figures,5 and so the computed quantity sin(π + h) is
only accurate to 4 significant figures.

4.2.1 Richardson extrapolation

The purpose of the technique called Richardson extrapolation is to estimate
the value of the limit (4.6) from several values of f(h), none of which may
themselves be sufficiently accurate estimates. The basic method is to con-
struct a polynomial approximation to the function f , and evaluate it at h = 0.
That is, evaluate p(0), where p(h) is the unique polynomial of order m fitting
the m known values (h, f(h)).

Given the polynomial of order m passing through m known values, it is
possible to efficiently determine the polynomial of order m+1 passing through
the m+1 points consisting of the m original points plus one additional point.
As such, if the estimate of the limit (4.6) afforded by the first m evaluations
of f(h) is not sufficiently accurate, another single evaluation can be made
and a new estimate of the limit obtained.

If the estimate after m + 1 function evaluations is approximately equal
to the estimate after m function evaluations, to within the desired relative
precision ε, in the sense defined in Section 4.1.1, then no more function
evaluations are made. The most recent estimate, namely the estimate after
m+1 function evaluations, is then the output of the Richardson extrapolation
process: an approximation of the limit (4.6).

Richardson extrapolation is particularly useful when a power series of the
function f(h) about h = 0 is known to contain only even powers of h; this
is the case for both of the applications of Richardson extrapolation in this

5(out of the 15 or at most 16 significant figures representable in the double data type)
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chapter. The power series may then be treated as a polynomial in h2, rather
than a polynomial in h. The extrapolation polynomial is then p(h2), passing
through known values (h2, f(h)). In evaluating the function f at, say, half
the previous value of h, a new polynomial fitting point is obtained which is
four times closer to zero.

In GRworkbench, the templatised class richardson extrapolation<T>, whose
code is listed in Section A.2, represents the operation of Richardson extrapo-
lation on a function from R to the set represented by the type T; typically T
is double or an nvector type. The refine routine of the richardson extrapolation
class takes one argument of type double and one argument of type T, repre-
senting a new known value pair (h, f(h)); using the new values, and the values
supplied in previous calls to the routine, refine computes a new estimate of
the limit (4.6), and computes the difference between the new estimate and
the previous estimate as an approximation of the error. The most recent
estimate and error are accessed, respectively, through the routines limit and
error of the richardson extrapolation class.

4.3 Differentiation

Numerical differentiation in GRworkbench is implemented in terms of the
class richardson extrapolation of Section 4.2.1, exposing a functional interface
similar to that developed for the derivative routine of Section 3.3. For a vector
space V , numerical differentiation is encoded in a routine

derivative : (R → V ) × R × R → (R → V ),

derivative(f, µ, ε) = g, g : R → V,

g(x) = (the derivative of f at x, to relative precision ε), (4.8)

where the argument µ is a characteristic length scale over which the function
f varies significantly. Depending on the choice of µ, the routine may not
successfully converge to an estimate of the derivative to relative precision ε.
The code of the derivative routine is listed in Section A.3.

The function g in (4.8) employs Richardson extrapolation to estimate the
value of

lim
h→0

f(x + h) − f(x − h)

2h
= lim

h→0
d(h), (4.9)

which is the centred difference approximation to the derivative of f at x.
Observe that d(h) is an even function of h; hence a power series expansion
of d(h) about h = 0 contains only even powers of h, and the Richardson ex-
trapolation can be performed using the value pairs (h2, d(h)), rather than the
value pairs (h, d(h)), with the advantage described at the end of Section 4.2.1.
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The first value of h for which d(h) is computed by the derivative routine
is h = µ, the characteristic length scale of the function f ; the nth value
of h is µ/σn−1, where σ = 1.7 is a constant parameter of the algorithm.
At most nmax = 13 values of h are processed, after which the algorithm
terminates, and the derivative is undefined. Thus, the algorithm explores
the region around x at length scales between µ/σnmax ' 10−3µ and µ. The
particular values of the constants σ and nmax were empirically chosen to
optimise computation speed for the applications of GRworkbench discussed
in this thesis.

Previously in GRworkbench, numerical differentiation was accomplished
by, where an algorithm required it, evaluating d(h) at progressively smaller
values of h, until the difference between two successive evaluations was smaller
than the desired precision. The new implementation, employing Richardson
extrapolation and the C++ template mechanism, converges faster and more
accurately, and its interface is more general, in that functions from R to any
sensible set can be differentiated.

4.3.1 Gradient

The gradient of a function of R
n is defined in terms of derivative. For any

vector space V , the gradient is defined by

gradient : (Rn → V ) → (Rn → V n),

gradient(f) = g, g : R
n → V n,

g(x) = (derivatives of f at x with respect to the n components). (4.10)

The code of the gradient routine is listed in Section A.3.1.
Like many routines in GRworkbench that employ derivative, gradient uses

default values of µ = 1 and ε = 10−9 for the arguments to derivative. In
general, these routines should be extended to accept these parameters as
arguments, and to pass them on to all numerical routines which require
them; the scale information µ in GRworkbench must originally be supplied
with definitions of the metric. For current applications, the metrics input to
GRworkbench have unity as an appropriate length scale, and so this extension
has not yet been performed.

Previously in GRworkbench, the gradient of a field was computed by,
where an algorithm required it, explicitly calculating the numerical deriva-
tives with respect to the various components of the vector argument, and
populating a vector with the results. Like derivative, the new implementation
employs the C++ template mechanism to create a more general algorithm,
which can apply the definition (4.10) for any set V for which it makes sense.
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4.4 Integration of ordinary differential equa-

tions

Previously in GRworkbench, numerical integration of ordinary differential
equations (odes) was performed using the third-party Slatec ddriv3 Runge-
Kutta algorithm [16], originally written in Fortran, converted to C using a
Fortran-to-C source code converter, and then adapted to the C++ code of
GRworkbench. During the course of the project, it was discovered that the
Slatec algorithm was coded such that only one numerical integration can
be in operation at any time. Normally, this presents no problem; but in
the case that the function f which gives the derivatives in the initial value
problem specification,

dy

dx
= f(y, x),

y(0) = y0. (4.11)

is defined in terms of the integration of another, separate ode, the Slatec

algorithm is inadequate.

It was decided that, rather than further adapting the Slatec algorithm,
a general ode integrator should be directly implemented in the newly func-
tional framework of GRworkbench. The Bulirsch-Stoer method, described in
[12], pages 724–732, and [18], pages 484–486, was selected based on argu-
ments in [18], pages 487–488, which recommend it for odes whose derivative
functions f are smooth,6 and for applications where high accuracy is required.
The Bulirsch-Stoer method is generally inferior to Runge-Kutta methods for
odes for which the derivative function f contains discontinuities near the ex-
act solution,7 or for stiff odes, but neither of these cases occur in the current
applications of GRworkbench.

The Bulirsch-Stoer method, as implemented in GRworkbench, applies
Richardson extrapolation to a series of estimates obtained using the modified

midpoint method, from [12], pages 722–724. The modified midpoint method
is an algorithm for estimating y(H) from y(0), evaluating the derivative
function f at the initial point y0 and at n other points, by the following

6By ‘smooth’ we mean not varying significantly on scales much smaller than the region
of integration.

7(because Bulirsch-Stoer steps are longer than Runge-Kutta steps, and are thus more
likely to ‘accidentally’ land on or near a discontinuity)
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process:

h = H/n,

z0 = y0

z1 = z0 + hf(0, z0),

zm+1 = zm−1 + 2hf(mh, zm),

y(H) ' zn + zn−1 + hf(H, zn)

2
. (4.12)

It is a second-order method in h.
The modified midpoint estimate of y(H), for the initial value problem

(4.11), is a function m(h). The modified midpoint method is chosen for
extrapolation using Bulirsch-Stoer because, like the function d(h) in (4.9)
employed by derivative, in a power series of m(h) about h = 0, all odd powers
of h cancel out, and so the extrapolation can be performed in h2.

The modified midpoint method is represented in GRworkbench by the
class modified midpoint stepper, whose code is listed in Section A.4.1. It must
be supplied with the derivatives function f and the initial data y0. The only
routine, step, takes H and n as arguments, and returns the estimate y(H).

The difficult problem of choosing the optimal value for H, so that the
Richardson extrapolation will not take too many steps, but so that a signif-
icant distance in x will be covered, is discussed in [12], pages 726–728.

The class bulirsch stoer, whose code is listed in Section A.4, is adapted
from the implementation of the Bulirsch-Stoer method in [12]. The class
must be supplied with the same information as modified midpoint stepper,
as well as: a characteristic length scale in x, over which f in (4.11) varies
significantly; the maximum number of steps8 to try before giving up; and the
desired relative accuracy of the solution. The routine step takes an argument
indicating the desired final value of x, after which the routines x and y return,
respectively, the final values of x and y obtained by the algorithm; if the
result of a call to the routine x equals the argument given to step, then the
integration was successful.

The new implementation of numerical ode integration in GRworkbench

is more general than the Slatec Runge-Kutta algorithm. Previously, the
ode integrator required the function f to satisfy f : R

n×R → R
n, and to be

encoded using the built-in array notation of C++ (rather than in terms of
nvector, or some other type). Now, the function f can satisfy f : V ×R → V ,
where V is any vector space.

8A step is a successful Richardson extrapolation of the results of as many calls to
modified midpoint stepper as are necessary.
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4.5 Minimisation of functions

Previously, the applications of GRworkbench did not necessitate a mechanism
to find local minima of functions. The development of tools for numerical
experimentation, as described in Chapter 6, highlighted the need for a general
algorithm which, for a function f : R

n → R, can locate a minimum of f near
a given initial ‘guess’ point x.

If f : R → R, then a local minimum of f can be bracketed by three num-
bers a < b < c which satisfy f(a) > f(b) < f(c). More efficient algorithms
exist for this special case; GRworkbench employs Brent’s method, from [12],
pages 402–405, which repeatedly refines the bracket on a minimum by fitting
the three smallest function values found so far (the smallest of which will
be f(b)) to a parabola, and using the exact minimum of that parabola as
the next trial point; it converges quadratically near the minimum. Brent’s
method is represented in GRworkbench by the functor class brent minimiser,
whose constructor must be supplied with the function f ; it is then the func-
tion

brent minimiser : R × R × R → R × R,

brent minimiser(x0, µ, ε) = (xmin, f(xmin)), (4.13)

where xmin is within relative precision ε of a local minimum of f near x0, and
µ is a characteristic length scale over which f varies significantly. The code
of the brent minimiser class is listed in Section A.5.1.

4.5.1 Multi-dimensional minimisation

In the general case of multi-dimensional minimisation, minima cannot be
bracketed, and minimisation consists, more or less, of ‘rolling’ downhill from
the initial guess x0. GRworkbench employs Powell’s method, from [12], pages
412–418, which proceeds by using brent minimiser to minimise the function
one-dimensionally in each of n linearly independent directions. The n basis
directions are then updated, based on the overall distance moved from x0,
and the process is repeated with the new directions. The problem of how to
choose the right basis directions is discussed in [12].

Powell’s method is represented in GRworkbench by the functor class
powell minimiser, whose constructor must be supplied with the function f : R

n →
R; it is then the function

powell minimiser : R
n × Mn×n × R → R

n × R,

powell minimiser(x0, B, ε) = (xmin, f(xmin)), (4.14)
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where xmin is within relative precision ε (in the Euclidean norm on R
n) of a

local minimum of f near x0, Mn×n is the set of n×n matrices with real entries,
and B is the matrix whose columns are the initial directions to minimise over.
The minimisation is made over the subspace of R

n spanned by the columns
of B; this will be all of R

n only if the columns of B are linearly independent.
The code of the powell minimiser class is listed in Section A.5. The imple-

mentation of Powell’s method in [12] requires a separately coded implemen-
tation of Brent’s method9 to perform the minimisations over one-dimensional
subspaces of R

n; the quite general interface of the brent minimiser class makes
this inelegance unnecessary in the implementation of Powell’s method in GR-

workbench.

4.6 Conclusion

The rewritten and extended numerical engine of GRworkbench is more effi-
cient, robust, and general. The implementation of sophisticated algorithms
for key operations yields increased computation speed. The relative difference
abstraction enables algorithms to be encoded with consistent notions of ap-
proximate equality, making them more robust and elegant. Through the
C++ template mechanism, numerical methods can be encoded such that
they can be applied to any sets which have the required structure defined
upon them.

9See [12], pages 418–419.





Chapter 5

Functional differential

geometry

The differential geometric engine of GRworkbench has been rewritten within
the framework of functional programming, using the functional numerical
tools of Chapter 4. The definition of charts, and the components of the
metric on charts, is discussed in Section 5.1. Collections of charts, and inter-
chart maps, are introduced in Section 5.2. The representation of points and
tangent vectors as C++ classes is described in Section 5.4.

Table 5.1 summarises the correspondence between important concepts
in differential geometry and their representations in GRworkbench. Each
correspondence is described in detail in this chapter, but, as the concepts are
interrelated, Table 5.1 will be useful when reading the earlier sections.

5.1 Charts and the metric components

A chart is a subset C ⊂ R
n, representing a coordinate system on a subset

MC ⊂ M of the space-time manifold M. We denote by φC : MC → C the
one-to-one and onto function which maps points in MC into the chart C.

A space-time in GRworkbench consists of the definition of the components
of the metric tensor on one or more charts, and the definition of maps (coor-
dinate transformations) between those charts. In this section we describe the
definition of the metric components on charts; discussion of the inter-chart
maps is deferred until Section 5.2.

The coordinates of a point on a chart, {xi}n
i=1 ∈ R

n, or simply xi ∈ R
n,

where n is the dimensionality of the space-time, are represented by a variable
of type nvector<double> (see Table 3.1). The components of the metric
tensor gab at a point on a chart are represented as an n × n matrix, by a

27
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Concept Representation in GRworkbench Section
Space-time atlas 5.3
Coordinates nvector<double> 5.1
Metric components nvector<nvector<double>> 5.1
Inter-chart map See (5.9) 5.2
Point point 5.4.1
Tangent vector tangent vector 5.4.3
Metric function<double (tangent vector, tangent vector)> 5.4.4
World-line function<point (double)> 5.4.2

Table 5.1: Representation of important differential geometric concepts in
GRworkbench

variable of type nvector<nvector<double>>. A function which defines the
metric components gab, as a function of the chart coordinates xi, might then
be of the form

chart : R
n → Mn×n,

chart(xi) = gab|xi , (5.1)

represented in GRworkbench by a function of signature nvector<nvector<
double>> (nvector<double>). In general, however, the chart coordinates
are an open subset of R

n, and so (5.1) will not be defined everywhere in R
n.

A mechanism is required to represent functions which are only defined on a
subset of some other, standard, set.1

5.1.1 The optional mechanism

GRworkbench employs the Boost Optional Library [2] to represent functions
which are undefined for some values of their arguments. The Optional Li-
brary provides a templatised type optional<T>, which represents the set
S ∪ {∅}, where S is the set corresponding to the template parameter type
T, and ∅ is a special value taken by functions at points where they are
undefined.

The optional template might be used in the following way:

optional<double> square root(double x)
{

if (x < 0)

1By ‘standard set’ we mean a set which is represented by a type in C++, such as those
in Tables 3.1 and 5.1.
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{
// undefined; return the special value ‘undefined’
return optional<double>();

}
else

{
// defined; return the result of the standard C++ square root

algorithm, ‘sqrt’
return optional<double>(sqrt(x));

}
}

Thus, by returning a variable of type optional<double>, instead of a variable
of type double, the square root routine can return the special value ∅ (using
the code return optional<double>();) to indicate points where the algorithm
is undefined; in this case, ∅ is returned for negative values of the argument
x.

The optional mechanism is most useful when the caller of a function can-
not know beforehand whether the function will be defined at the arguments
to be given to it. This would be the case for callers of the function (5.1);
the differential geometric algorithms in GRworkbench must be coded in such
a way that they can operate on any space-time definition, without prior
knowledge of the particular coordinate systems (charts) they will be working
in.

We can now modify (5.1) to support charts defined on subsets of R
n, using

the optional mechanism. Thus, in GRworkbench, functions which return the
metric components gab, as a function of the chart coordinates xi, are of the
form

chart : R
n → Mn×n ∪ {∅},

chart(xi) =

{

gab|xi , if the xi are valid chart coordinates;

∅, otherwise.
(5.2)

The corresponding C++ type is

function<optional<nvector<nvector<double>>> (nvector<double>)>, (5.3)

for which GRworkbench declares a short synonym, chart, using the C++
typedef mechanism:

typedef function<optional<nvector<nvector<double>>> (nvector<double

>)> chart;

References to charts are stored in variables of type shared ptr<chart>, using
the Boost Smart Pointers Library [1].
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5.1.2 Example chart and metric components

In this section we demonstrate the encoding of the flat space metric of special
relativity, in cylindrical coordinates (t, r, φ, z), using a C++ function of type
chart. The line element is

ds2 = −dt2 + dr2 + r2 dφ2 + dz2, (5.4)

so the metric components, as functions of the chart coordinates (t, r, φ, z), are
−gtt = grr = gzz = 1, gφφ = r2, and all other gab = 0. The chart coordinates
are valid in the open subset of R

n satisfying

t ∈ (−∞,∞),

r ∈ (0,∞),

φ ∈ (0, 2π),

z ∈ (−∞,∞). (5.5)

The following routine encodes (5.4) and (5.5) in C++:

optional<nvector<nvector<double>>> flat metric cylindrical(nvector<
double> x)

{
// t = x[0], r = x[1], phi = x[2], and z = x[3]
if (x[1] <= 0 or x[2] <= 0 or x[2] >= 2 ∗ pi)
{

// invalid chart coordinates; return ‘undefined’
return optional<nvector<nvector<double>>>();

}
else

{
// valid chart coordinates; compute and return metric components
nvector<nvector<double>> gab;

gab[0][0] = −1;
gab[1][1] = 1;
gab[2][2] = x[1] ∗ x[1];
gab[3][3] = 1;
// all other gab = 0

return optional<nvector<nvector<double>>>(gab);
}

}
The operator [i], applied to an nvector such as in x[i], returns the ith compo-
nent of the vector.
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The opening if statement determines whether the argument x represents
valid chart coordinates; if so, the metric components are computed in the
variable gab, and returned; if not, ∅ is returned. All space-times in GR-

workbench have the metric components defined on each of their charts by
functions like flat metric cylindrical, above.

5.1.3 The connection

The components of the connection, or the Christoffel symbols, are the useful
quantities defined in terms of the metric components gab by

Γc
ab =

1

2
gdc(gad,b + gbd,a − gab,d), (5.6)

where gab,c denotes partial differentiation of gab with respect to the coordinate
xc, and gab denotes the contravariant components of the metric tensor. The
Christoffel symbols are used by the numerical differential geometric functions
of Chapter 6.

The GRworkbench routine connection accepts an argument of type chart,
and returns a variable of type function<optional<nvector<nvector<nvector<
double>>>> (nvector<double>)>, representing the function which returns
the components (5.6) as a function of the chart coordinates.

The differentiation of the metric components gab is accomplished using
the numerical tools of Chapter 4. A function which returns the components
of gab,c, as a function of the chart coordinates, is given simply by gradient(c),
where c is the function, of type chart, which returns the metric components
gab as a function of the chart coordinates.

The matrix of contravariant components gab of the the metric is simply
the inverse of the matrix gab of covariant components. This matrix inversion
is performed in GRworkbench using standard row reduction techniques (see
for example [9], pages 115-116).

5.2 Inter-chart maps

As mentioned at the beginning of Section 5.1, space-times are defined by
specifying, together with the metric components on each chart, maps between
the various charts.

For two charts A,B ⊂ R
n, the inter-chart map from A to B is

φAB : A → B,

φAB(xi) = (φB|MA
◦ φ−1

A )(xi), (5.7)
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where φB|MA
is the function φB restricted to the set MA, and ◦ denotes

function composition. The inter-chart maps must be specified to complete
the definition of a space-time.

In the definition (5.7), the domain A of φAB is, in general, a subset
of R

n. Hence φAB cannot be represented by a variable of type function<
nvector<double> (nvector<double>)>; instead, the optional mechanism of
Section 5.1.1 is again employed. Thus, in GRworkbench, an inter-chart map
from a chart A to a chart B is represented by a function of the form

map: R
n → R

n ∪ {∅},

map(xi) =

{

(φB|MA
◦ φ−1

A )(xi), if (xi) ∈ A and φ−1

A (xi) ∈ MB;

∅, otherwise.
(5.8)

The corresponding C++ type is

function<optional<nvector<double>> (nvector<double>)>. (5.9)

As with charts, the C++ typedef mechanism is used to define a synonym
map for the type (5.9). References to maps are stored in variables of type
shared ptr<map>.

5.2.1 Example inter-chart map

In this section we demonstrate the encoding in GRworkbench of an inter-chart
map of the form (5.9), which transforms between two cylindrical coordinate
systems like example (5.5) in Section 5.1.2, with the coordinate systems dis-
placed from each other by π in the φ coordinate. Together, the two coordi-
nate systems thus cover the entire flat-space manifold R

4 of special relativity,
except for the line r = 0.

The coordinate transformation, of the form (5.8), is

revolve : R
n → R

n ∪ {∅},

revolve(t, r, φ, z) =











(t, r, φ + π, z), if φ < π;

∅, if φ = π;

(t, r, φ − π, z), otherwise,

(5.10)

and is encoded in C++ in the following way:

optional<nvector<double>> revolve(nvector<double> x)
{

// t = x[0], r = x[1], phi = x[2], and z = x[3]
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if (x[2] == pi)
{

// mapping not defined; return ‘undefined’
return optional<nvector<double>>();

}
else

{
// mapping defined; perform transformation
nvector<double> y;

y[0] = x[0];
y[1] = x[1];
if (x[2] < pi)

y[2] = x[2] + pi;
else

y[2] = x[2] − pi;
y[3] = x[3];

return optional<nvector<double>>(y);
}

}
The operator ==, used in the first if statement, is the test for equality in
C++.

By using a functor class (Section 3.3.1), we could parameterise the trans-
formation revolve on the angle of rotation, which is currently π. All space-
times in GRworkbench have their inter-chart maps specified by routines or
functors like revolve, above.

5.3 Atlases

A collection of charts with the metric components defined on them, of the
form (5.2), and a collection of inter-chart maps, of the form (5.8), together
comprising a space-time, are represented in GRworkbench by the class atlas.
The atlas class uses C++ Standard Template Library (stl) [10] containers
to maintain the collections of charts and maps.

An atlas contains a std::set of charts, and a std::map from std::pairs of
charts to inter-chart map definitions of type map.2 An atlas also contains an
int named dimension which stores the dimensionality of the space-time.

The members charts and maps of class atlas are used by the differential
geometric algorithms of GRworkbench to, respectively, enumerate the set of

2std::set, std::map, and std::pair are stl templates; see [10].
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all charts, and retrieve the inter-chart map between any two charts. If two
charts do not overlap at all, there will be no inter-chart map between them;
this is equivalent to there being an inter-chart map between them that always
returns ∅.

5.4 Points and tangent vectors

For a point, a valid chart is a chart containing the point; for a tangent vector,
a valid chart is a chart containing the point whose tangent space contains
the tangent vector. While points and tangent vectors may be represented
by their coordinates on a valid chart, it is useful to have a representation of
these objects which is not linked to any particular chart. The GRworkbench

representation for points is described in Section 5.4.1, and the representation
for tangent vectors is described in Section 5.4.3.

5.4.1 Points

The abstract notion of a point p ∈ M, independent of any particular coor-
dinate system, is represented in GRworkbench by the class point. A point is
constructed from three pieces of information: the atlas to which it belongs,
a chart which contains it, and its coordinates on that chart.

The context and valid chart routines of class point return, respectively, the
atlas and the chart from which the point was constructed. Numerical opera-
tions involving points can only be performed in terms of a valid coordinate
system, so the valid chart routine is used whenever a variable of type point is
an argument to a numerical differential geometric routine in GRworkbench.

Change of coordinates

The operator[] routine of class point, which takes one argument, a variable of
type chart, returns a variable of type optional<nvector<double>>, represent-
ing the coordinates of the point on the given chart. (The optional mechanism
of Section 5.1.1 is used because a particular point may, or may not, have
coordinates on the given chart.) Thus, if p is a variable of type point, and c
is a variable of type chart, then the coordinates of p on c are given by p[c].

Let a be the variable of type chart from which p was constructed. If c and
a represent the same chart, then p[c] will simply return the coordinates from
which p was constructed. If, on the other hand, c and a are different charts,
then GRworkbench will use the maps member of the atlas class to determine
if there is an inter-chart map from a to c defined; if so, then the inter-chart
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map is used to compute the coordinates of p on c, which are then returned;
if not, then ∅ is returned, indicating that p is not contained in the chart c.

5.4.2 World-lines

A curve in space-time, such as a world-line, is a function λ : R → M;
such functions are represented by variables of type function<point (double)
>. However, if the curve λ is not defined for all values of its real parameter,
then it will instead be represented by a variable of type function<optional
<point> (double)>. All curves in GRworkbench are in fact represented in
this latter form, because they are often defined in terms of numerical pro-
cesses which may not converge to a solution. The computation of geodesics,
discussed in Section 6.2, exemplifies this.

The C++ typedef mechanism is used to define the synonym worldline for
the type function<optional<point> (double)>:

typedef function<optional<point> (double)> worldline;

5.4.3 Tangent vectors

The abstract notion of a tangent vector v ∈ Tp, where Tp is the tangent space
of a point p ∈ M, is represented in GRworkbench by the class tangent vector.
Like a point, a tangent vector is constructed from three pieces of information:
the point to whose tangent space it belongs, a chart containing that point,
and the contravariant components3 of the tangent vector on that chart.

The context routine of class tangent vector returns the point from which
the tangent vector was constructed; through the valid chart routine of this
point, a valid chart for the tangent vector can be obtained. As with the point
class, the operator[] routine of the tangent vector class, taking one argument,
a variable of type chart, returns the components of the tangent vector on the
given chart, in a variable of type optional<nvector<double>>.

Change of coordinates

As with the point class, when the components of a tangent vector are re-
quested on a chart other than that from which the tangent vector was con-
structed, GRworkbench uses the inter-chart map, if it exists, to compute the
components. If vi are the components of a tangent vector v at a point p

3Whenever we discuss the components of a tangent vector, we always mean its con-
travariant components.
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on a chart with coordinates xi, then the components on another chart, with
coordinates xi′ , are

vi′ =
∂xi′

∂xi

∣

∣

∣

∣

p

vi = Ai′

i vi. (5.11)

The columns of the matrix Ai′

i are the derivatives of the inter-chart map
φ : R

n → R
n with respect to the coordinates xi of its argument, evaluated

at p. GRworkbench computes Ai′

i , and thereby the components vi′ , by using
the methods of Chapter 4 to numerically evaluate the derivatives.

5.4.4 Tangent vectors and the metric

At a point p, the metric gab is naturally considered as the inner product

metric : Tp × Tp → R,

metric(u, v) = gabu
avb. (5.12)

If u = v in (5.12), then the sign of metric(u, u) determines whether u is
space-like, null, or time-like. If metric(u, u) = −1 then u represents the time
direction of a physical observer—this is discussed in Section 6.1.1.

The function (5.12) is encoded in GRworkbench in the routine metric,
whose signature is double (tangent vector, tangent vector). Also, the operator

∗ routine of the class tangent vector is defined to call metric, so that if u and
v are variables of type tangent vector, then the expression u ∗ v is equiva-
lent to the expression metric(u, v). This notation is reminiscent of the two
equivalent forms

gabu
avb = ubv

b (5.13)

for the inner product of two vectors.

5.5 Conclusion

The implementation of the differential geometric structure of GRworkbench

within the framework of functional programming, using the numerical meth-
ods of Chapter 4, is robust and elegant. The representation of abstract ob-
jects such as points and tangent vectors, independent of any particular chart,
will be useful in the construction of the numerical experiments of Chapter 6.



Chapter 6

Numerical experiments

A numerical experiment is a model of a physical situation in GRworkbench,
from which a measurement of a physical quantity is obtained. Tools for simu-
lating physical situations in GRworkbench have been implemented using the
methods of Chapters 4 and 5. Basic operations on points and tangent vec-
tors are described in Section 6.1. Geodesic tracing and the parallel transport
operation are the topics of Sections 6.2 and 6.3, respectively. In Section 6.4
we discuss methods for finding geodesics that are defined implicitly in terms
of boundary conditions.

In Chapter 8, the methods of this chapter are used to numerically inves-
tigate the claim to be discussed in Chapter 7.

6.1 Basic operations

In this section we describe some operations on points, tangent vectors, and
world-lines, which will be useful for constructing numerical experiments.

6.1.1 Tangent vectors and observers

As was mentioned at the end of Section 5.4.3, a tangent vector u, such that
metric(u, u) = −1, represents the proper time direction of a physical observer.
More precisely: physical observers are defined by their time-like world-lines,
with parameter t; if the tangent vector u to the world-line always satisfies
metric(u, u) = −1, then the parameter t is the (proper) time coordinate in
the frame of reference of the observer.

37
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Normalisation of a tangent vector is defined by

normalise : Tp → Tp,

normalise(u) =
u

√

|metric(u, u)|
. (6.1)

Thus, the normalisation of a vector u is a vector v such that metric(v, v) =
±1, according as whether u was space-like or time-like. The definition (6.1)
is encoded in GRworkbench in the routine normalise, which has signature
tangent vector (tangent vector).

Also useful is the operation of orthonormalisation. The orthonormalisa-
tion of a vector u with respect to another vector v is defined by

orthonormalise : Tp × Tp → Tp,

orthonormalise(u, v) = normalise(metric(u, v)v − metric(v, v)u), (6.2)

which is encoded in GRworkbench in the routine orthonormalise, which has
signature tangent vector (tangent vector, tangent vector). Orthonormalisation
has the property that, if w = orthonormalise(u, v), then metric(v, w) = 0,
and either metric(w,w) = 1 or metric(w,w) = −1.

6.1.2 Orthonormal tangent bases

An orthonormal tangent basis for Tp at a point p is a set of n vectors in
Tp that are mutually orthonormal. The metric components expressed in
an orthonormal tangent basis form a diagonal matrix; this will be useful in
Section 6.4. The determination of an orthonormal tangent basis is also called
diagonalising the metric.

GRworkbench constructs an orthonormal tangent basis by finding the
eigenvectors of the matrix g of metric components gab. The eigenvectors are
orthogonal, because the matrix g is symmetric. The process of determining
the eigenvectors of a matrix is represented in GRworkbench by the class
eigen, which is constructed from a variable of type nvector<nvector<double

>>, representing the matrix whose eigenvectors are to be determined. The
routine vectors of class eigen then returns a variable of type nvector<nvector
<double>>, representing the n eigenvectors, and the routine values of class
eigen returns a variable of type nvector<double>, a list of the corresponding
eigenvalues.

The eigen class uses an iterative method to find the eigenvectors of g (see
[15], page 25). Starting with a coordinate basis vector e1, the sequence of
vectors gne1 converges, as n → ∞, to an eigenvector v1 of g. A second eigen-
vector v2 is obtained by seeding the process with e2. Because the sequence
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gnei will tend to converge to the eigenvector which has the largest eigenvalue,
each successive estimate is orthogonalised with respect to the previously de-
termined eigenvectors, before the next left-multiplication by g. Once this
process has been completed, starting with each coordinate basis vector, the
full set of orthogonal eigenvectors are known.

If the metric is Lorentzian, then one of the eigenvectors will have a nega-
tive eigenvalue, corresponding to a time-like direction, and all the others will
have positive eigenvalues, corresponding to space-like directions. The nor-
malised eigenvectors constitute an orthonormal tangent basis. The GRwork-

bench routine orthonormal tangent basis takes one argument of type point,
and one argument of type chart, and uses the eigen class to return a variable
of type nvector<nvector<double>>, representing a matrix whose columns
are the components of an orthonormal basis of the tangent space of the given
point in the given chart.

6.1.3 Coordinate lines

If a particular coordinate system on a space-time has known properties, such
as the metric being independent of one of the coordinates, then it may be
useful to specify space-time curves explicitly in terms of the coordinates.
Straight lines in a particular coordinate system are obtained in GRworkbench

through the coordinate line routine, which takes three arguments: a point on
the curve; the chart on which the curve is to be a straight line; and an nvector
<double> giving the components of the tangent vector to the coordinate line
at the given point.

The coordinate line routine returns a variable of type worldline, as defined
in Section 5.4.2. If the coordinate line intersects a chart boundary, then it is
undefined beyond it; hence the use of the optional mechanism.

6.2 Geodesics

Geodesics, the straightest possible lines in a curved space-time, are physically
important. Geodesics whose tangent vectors are time-like are the world-
lines of freely-falling observers; geodesics whose tangent vectors are space-
like represent straight ‘rulers’, for observers whose world-lines intersect them
orthogonally; and geodesics whose tangent vectors are null represent the
world-lines of photons.

Geodesics are uniquely defined by a point p on the geodesic and the
tangent vector v of the geodesic at p. The coordinates xc of a geodesic on a
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chart A, as functions of an affine parameter t, satisfy the geodesic equation,

d2xc

dt2
+ Γc

ab

dxa

dt

dxb

dt
= 0, (6.3)

which involves the connection (5.6). Note that the components of Γc
ab in (6.3)

are a function of the coordinates xc.
The equation (6.3) is a system of n second order odes in the coordinates

xc; we may rewrite it as a system of 2n first order odes. Together with
the n components of an initial point p on A, and the n components of an
initial vector v ∈ Tp on A, (6.3) defines an initial value problem, which can
be solved on the chart A using the numerical ode integration techniques of
Section 4.4.

In general, no single chart will cover the entire space-time. Equation
(6.3) can only be integrated up to a chart boundary; beyond that, the metric
components gab, and hence the Christoffel symbols Γc

ab, are undefined on that
chart.

Let y be a point near the boundary of a chart A, beyond which numerical
integration of (6.3) fails. If there is another chart B containing y, and an
inter-chart map from A to B, then integration of (6.3) can be attempted on
B: Using the inter-chart map, the components xc, in (6.3), can be computed
on B from those on A; using (5.11), the components dxi/dt, in (6.3), can be
computed on B from those on A; and, using (5.6), the components of Γc

ab at
y can be computed on B.

6.2.1 Implementation in GRworkbench

A point on a geodesic, and the tangent vector to the geodesic at that point,
are represented in GRworkbench by a variable of type tangent vector. (The
context routine of class tangent vector returns the point at which the tangent
vector exists.) To determine a new tangent vector on the geodesic, at a desired
value t = tfinal of the affine parameter, GRworkbench uses the operator[]
routines of the classes point and tangent vector to obtain the initial data for
equation (6.3) on each chart, one by one, until it finds a chart on which (6.3)
can be integrated.

If no chart exists on which (6.3) could be successfully integrated to the
desired value tfinal of the affine parameter, then integration to affine parameter
tfinal/2 is attempted, followed by integration to affine parameter tfinal. If
either of these integrations fail, then the corresponding interval in t is further
subdivided, up to a maximum of 7 bisections.1 If the maximum number of

1The maximum number of bisections, 7, was empirically determined to be adequate for
current applications of GRworkbench.
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bisections is reached without successful integration to t = tfinal, then ∅ is
returned, indicating that the geodesic is undefined at the value tfinal of the
affine parameter.

This definition of a geodesic from its initial data is represented in GR-

workbench by the functor class geodesic, which is constructed from a variable
of type tangent vector. Upon construction, a geodesic is a function of type
worldline, as defined in Section 5.4.2. The code of the geodesic class is listed
in Section A.6.

The class geodesic maintains a list (cache) of all tangent vectors found so
far on the geodesic. The operator() routine of class geodesic, which takes tfinal

as its only argument, uses the class bulirsch stoer of Section 4.4 to attempt
to numerically integrate (6.3) from initial data in the cache. The particular
initial data chosen is that whose affine parameter is nearest to tfinal.

6.3 Parallel transport

The operation of parallel transport represents the notion of transporting a
vector along a curve while changing its direction as little as possible. It is
defined in a similar way to a geodesic.2

A parallel transport is defined by a curve, and a tangent vector at a point
on that curve. It then defines a unique tangent vector at each other point
on the curve. On a chart, the components vc of the parallelly-transported
tangent vector satisfy the equation

dvc

dt
+ Γc

abv
a dxb

dt
= 0, (6.4)

where xb(t) are the coordinates of the curve as a function of the curve pa-
rameter t.

Just as for geodesics, (6.4) must in general be integrated on multiple
charts to determine the tangent vector at a desired value t = tfinal of the
curve parameter. The operation of parallel transport is represented in GR-

workbench by the functor class parallel transport, which is constructed from
a tangent vector and a worldline. It is then a function with signature optional
<tangent vector> (double), representing the tangent vector as a function of
the curve parameter t. The parallel transport class uses a similar algorithm
to the geodesic class to integrate (6.4) on any chart for which it is possi-
ble, bisecting the interval of integration if integration cannot proceed on any
chart.

2A geodesic is, by definition, a curve whose tangent vector is the parallel transport of
itself along the curve.
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A parallelly-transported vector has a physical interpretation which makes
it potentially useful in constructing numerical experiments: it is a fixed co-
ordinate direction for a locally non-rotating physical observer who is moving
on a geodesic. For locally non-rotating physical observers moving on non-
geodesic world-lines, the operation with the corresponding physical interpre-
tation is Fermi-Walker transport (see [17], pages 47–49), which has not yet
been implemented in GRworkbench.

6.4 Implicitly-defined geodesics

The methods of Section 6.2 allow the computation of the unique geodesic
solving the initial value problem comprising (6.3) together with the initial
coordinates xi and the initial components of the tangent vector dxi/dt. How-
ever, there are ways other than the initial value problem to define a geodesic.
Two physically important examples are discussed in this section.

6.4.1 Unique connecting geodesics

Around every point there is a neighbourhood such that, given two points
within it, there will be a unique geodesic that intersects both points. The
way to find this connecting geodesic is the topic of this section. The problem
can be formulated in the following way: given two points a and b, find a
tangent vector v ∈ Ta such that the unique geodesic passing through a with
tangent v also passes through b. If v is a solution to this problem, then
so is αv for any α 6= 0; changing the value of α simply changes the affine
parameter value at which the geodesic intersects b.

The problem of finding the tangent vector v, up to scaling by a real
number, can be thought of as determining which direction, in space and
time, to launch a geodesic from a such that it ‘hits’ b. We solve this problem
by minimising, over all possible directions at a, the amount by which the
launched geodesic ‘misses’ b. To do this, we need a definition for the amount
by which the geodesic misses—a real-valued function to minimise.

The function f : Ta → R, which gives the amount by which the geodesic,
launched from a with the given tangent vector, misses b, must satisfy certain
properties. It must be zero for a geodesic which exactly intersects the point
a, and strictly greater than zero otherwise; and it must be continuous, in the
sense that, whenever a sequence of vectors vn satisfy limn→∞ f(vn) = 0, then
we must have vn → v, where v is an exact solution to the problem.
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min euclidean separation

A simple definition for the function f , satisfying the requirements listed
above, is as follows:

f(v) = min
t∈R

min
charts C

‖δxi‖, δxi = geodesic(v)(t)|C − b|C , (6.5)

where geodesic(v) denotes the geodesic with tangent vector v ∈ Ta at a, ‖ · ‖
denotes the standard Euclidean norm on R

n, and we have used the notation
that, for any point q and chart C, qC denotes the coordinates of q on C. That
is, the distance between the curve geodesic(v) and the point b is defined as the
closest they ever get, in the Euclidean norm, in the coordinates of any chart.
The quantity δxi is intended to be a small displacement in the coordinates
of the chart C; in any case, it will certainly be zero if geodesic(v) intersects
b at affine parameter value t.

The definition (6.5) is adequate, and was briefly employed in GRwork-

bench, but it has a practical disadvantage: By using the Euclidean norm on
R

n, it effectively assigns equal importance to each of the coordinates. This is
not ideal for some common coordinate systems. For example, consider, in the
cylindrical coordinate system (t, r, φ, z) of (5.5), the point p = (0, 104, 0, 0).
Then the two points p+r = (0, 104+1, 0, 0) and p+φ = (0, 104, 1, 0) are equidis-
tant from p in the sense of (6.5), but p+r is much closer than p+φ to p in the
sense of the standard flat metric (5.4), essentially because the coefficient of
the dr2 term in (5.4) is 1, whereas the coefficient of the dφ2 term is r2 = 108.

If the metric is diagonal, as above, then we can assign to each coordinate
direction xi an approximate ‘importance’ equal to the coefficient of dxi2 in
the line element. If the metric is not diagonal then we diagonalise it at b,
using the methods of Section 6.1.2, and express the coordinate displacement
δxi in terms of the resulting orthonormal basis B of Tb:

3

δxi|B = B−1δxi. (6.6)

Like δxi, the coordinate displacement δxi|B ∈ R
n will depend on the chart C.

The value ‖δxi|B‖ is, in general, a better definition than ‖δxi‖ for the amount
by which geodesic(v)(t) ‘misses’ b|C , because it accounts for the difference in
importance of the various coordinate directions at b.

We rewrite (6.5), using (6.6), as

f(v) = min
t∈R

min
charts C

‖δxi|B‖. (6.7)

3In (6.6), B is the matrix whose columns are the components of the orthonormal basis
of Tb on the chart C.
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Definition (6.7) is implemented in the routine min euclidean separation, which
takes one argument of type worldline, and one argument of type point; it
performs the minimisation of f over the curve parameter t using the one-
dimensional minimisation routine brent minimiser, of Section 4.5.

Parameterising the search space

We want to minimise the function f(v), (6.7), over the variable v ∈ Ta.
The tangent space Ta has dimension n, but, as already noted, f(αv) = f(v)
whenever α 6= 0, and so the space to minimised over has dimension n − 1.

In GRworkbench, the minimisation is performed in the following way:
The vector v ∈ Ta is expressed in terms of its components vi ∈ R

n in an
orthonormal tangent basis B (Section 6.1.2). Then, we minimise f(v) with
vi ranging over the unit sphere in R

n, by parameterising the unit sphere
by the n − 1 coordinates (θ1, . . . , θn−1) using the generalised spherical polar
coordinate transformation,

v1 = sin θ1,

vm = sin θm

m−1
∏

i=1

cos θi, (1 < m < n),

vn =
n−1
∏

i=1

cos θi. (6.8)

The multi-dimensional minimisation of f(v) is thus performed over the n−1
variables (θ1, . . . , θn−1).

If the determined minimum value of f(v) is approximately equal to zero
(in the sense of Section 4.1.1), then the solution values (θ1, . . . , θn−1) of the
minimisation problem define, via (6.8), the components vi of v in the or-
thonormal tangent basis B, which in turn defines the solution vector v ∈ Ta,
which finally defines, with a, the initial data for a geodesic intersecting a and
b, as required.

Implementation in GRworkbench

The generalised spherical polar transformation (6.8) is encoded in GRwork-

bench in the routines from polar and to polar, both of which have signature
nvector<double> (nvector<double>). The routine from polar encodes (6.8),
and to polar encodes the inverse transformation to (6.8). The code for these
routines is listed in Section A.7.
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The entire process of first solving the minimisation problem,

min
v∈Ta

f(v), (6.9)

by parameterising the space Ta and minimising over the generalised spherical
polar coordinates, and then constructing and returning the geodesic defined
by the solution to (6.9), is encapsulated in the routine connecting geodesic
of GRworkbench, which has signature optional<geodesic> (point, point). The
optional mechanism is employed because it may not be possible to find the
connecting geodesic; for example, the numerical minimisation of (6.9) may
converge to a local, rather than a global, minimum, where f(v) 6= 0. The
code of connecting geodesic is listed in Section A.8.

The connecting geodesic routine uses the routines to polar and from polar
to perform the generalised spherical polar coordinate transformation, and
the functor class powell minimiser of Section 4.5.1 to perform the multi-
dimensional minimisation.

The minimisation class powell minimiser requires an initial guess for the
location of the minimum, around which it looks for an exact minimum; the
guess supplied to powell minimiser by connecting geodesic is simply the coor-
dinate difference between the two points a and b on some chart, transformed
to the generalised spherical polar coordinates by the routine to polar. This
guess is good if the space-time curvature between a and b is small.

6.4.2 Connecting null geodesics

Given any world-line λ(s) and a nearby point p, there will be two null
geodesics which connect p with a point on λ, corresponding to the intersec-
tions of λ with the the past and future null cones of p. These null geodesics
are important because, if λ is the world-line of a physical observer, they
represent the world-lines of photons travelling to the event p from the ob-
server, and from the event p to the observer. The determination of these null
geodesics is the topic of this section.

We solve the problem in a very similar way to the solution of the problem
of Section 6.4.1, above: We minimise, over all null vectors v ∈ Tp, the amount
by which a geodesic launched from p with tangent vector v ‘misses’ the world-
line λ. There are two important differences between the two problems: We
require a definition for the amount by which a curve misses another curve,
analagous to the function f of (6.7) which gives the amount by which a curve
misses a point; and we only wish to minimise over null vectors in Tp, rather
than all vectors in Tp.
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min euclidean separation of two curves

We require a function g : Tp → R, analagous to f of (6.7), which we can
minimise to find the tangent vector at p of a null geodesic intersecting the
point p and the world-line λ. We define g in a similar way to f , as

g(v) = min
s∈R

min
t∈R

min
charts C

‖δxi|B‖, (6.10)

where the quantity δxi|B is defined in terms of the quantity δxi as in (6.6),
using an orthonormal tangent basis B at λ(s), and δxi is redefined as

δxi = geodesic(v)(t)|C − λ(s)|C , (6.11)

so that it is now a function of s, as well as t and C.
We can summarise (6.10) as follows: the distance between two curves is

defined as the closest they ever get, in the Euclidean norm, in the coordi-
nates of any chart. The definition (6.10) is encoded in a specialisation of the
GRworkbench routine min euclidean separation, which takes two arguments of
type worldline, representing the space-time curves; it performs the minimisa-
tion (6.10), over the two real parameters s and t, using the multi-dimensional
minimisation routine powell minimiser of Section 4.5.1.

Parameterisation of the null cone

We want to minimise the function g(v), (6.10), over the variable v ∈ Tp. The
null subspace of Tp has dimension n−1, and, as in Section 6.4.1, g(αv) = g(v)
whenever α 6= 0, and so the space to be minimised over has dimension n− 2.

The search space is parameterised in a similar way to that of Section 6.4.1:
The vector v ∈ Tp is expressed in terms of its components vi ∈ R

n in an
orthonormal tangent basis B at p. Let the first vector in the basis B be the
time-like eigenvector, and thus let the remaining eigenvectors be space-like.4

The component v1 thus represents the ‘time-like part’ of v, and the remaining
n− 1 components vβ, β = 2, . . . , n, represent the ‘space-like part’ of v. Now,
given any values for the vβ, if we set

v1 =

√

√

√

√

n
∑

β=2

|vβ|2, (6.12)

then the vector v defined by the components vi is null, since the tangent basis
B is orthonormal. Thus, to restrict our minimisation to the null space of Tp,

4In doing this, we implicitly assume that the metric is Lorentzian, which is the usual
case for physical applications of GRworkbench.
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we minimise g over the components vβ, and fix the remaining component v1

using (6.12).

We minimise g(v) over the components vβ ∈ R
n−1 by using the generalised

spherical polar coordinate transformation (6.8) to obtain from the vβ the
coordinates (θ1, . . . , θn−2), which parameterise the unit sphere in R

n−1, and
then minimise g(v) over the n − 2 variables (θ1, . . . , θn−2).

As in Section 6.4.1, if the minimum located value of g(v) is approximately
equal to zero, then the solution values (θ1, . . . , θn−2) define the components
vβ via the generalised spherical polar coordinate transformation, and the vβ,
together with (6.12), define the components vi of v in the tangent basis B,
which in turn define the solution vector v ∈ Tp, which finally, together with
the point p, defines initial data for a solution geodesic intersecting both p
and λ. The geodesic is guaranteed to be null, due to (6.12).

Implementation in GRworkbench

The GRworkbench routine connecting null geodesic implements the process
described above for minimising the function g(v) over all v in the null space of
Tp, and constructing the resulting geodesic, using the to polar and from polar
routines, and the powell minimiser class. The signature of connecting null geodesic
is optional<std::pair<double, geodesic>> (functional<optional<point> (double

)>, point, double). The code of connecting null geodesic is listed in Sec-
tion A.9.

The first and second arguments represent λ and p, respectively. The
third argument is an initial guess for the value of the parameter s of the
world-line λ, such that the connecting null geodesic will intersect λ(s). This
third argument is necessary for two reasons: There is otherwise no natural
way for the connecting null geodesic routine to choose an initial guess for the
values of the generalised spherical polar coordinates (θ1, . . . , θn−2) to pass to
powell minimiser; and it permits a degree of control over which of the two
possible connecting null geodesics (corresponding to either the backward or
forward null cone of Tp) the connecting null geodesic routine will converge to.

The return type of connecting null geodesic, optional<std::pair<double,
geodesic>>, represents, in the first element of the std::pair, the parameter
value s of the curve λ at which the null geodesic intersects λ; and in the
second element of the std::pair, the null geodesic itself. By convention, the
null geodesic returned by the routine connecting null geodesic intersects the
curve λ at the parameter value 1.
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6.5 Conclusion

Various tools useful for the simulation of physical situations have been im-
plemented in GRworkbench. The tools are written within the functional
framework of GRworkbench, allowing them to be easily interfaced with one-
another to construct potentially complex physical models. Algorithms for
the determination of implicitly-defined geodesics, in particular, demonstrate
the numerical solution of an important physical problem using the numerical
methods of Chapter 4 and the differential geometric framework of Chapter 5.



Chapter 7

Analysis of a recent claim

In this chapter we introduce and investigate a recent claim by Karim et al. [8]
that the mass of the Milky Way can be determined using a small Michelson
interferometer located on the surface of the Earth. After summarising their
calculation in Section 7.1, we analyse consequences of the physical model em-
ployed by Karim et al. in Section 7.2. An alternative model, argued to be the
correct one on physical grounds, is proposed and investigated in Section 7.3.

In Chapter 8 we describe numerical experiments performed in GRwork-

bench using both models, and compare the results.

7.1 Summary of the claim

Employing a model metric of our galaxy, Karim et al. approximate the world-
lines of the beam-splitter, end-mirrors, and connecting photons of an idealised
Michelson interferometer located on the surface of the orbiting Earth. The
proper time elapsed at the beam-splitter between the departure and return
of photons along each interferometer arm is computed.

The galaxy is modelled using a Kerr black hole metric. In Boyer-Lindquist
coordinates1 (t, r, θ, φ), the Kerr metric takes the form

ds2 = gtt dt2 + 2gtφ dt dφ + grr dr2 + gθθ dθ2 + gφφ dφ2. (7.1)

The metric components gab depend on two parameters, m and a, which rep-
resent, respectively, the mass and specific angular momentum,2 as measured
from infinity, of the field source. Using the approximation employed by Karim
et al., that a is small compared to m, and that m is small compared to the

1See for example [7], page 161.
2(angular momentum per unit mass)
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radius of the Earth’s orbit about the centre of the galaxy, the metric com-
ponents are3

gtt =
a2 sin2 θ − ξ

ρ2
' −(1 − 2m/r),

gtφ = −2mar sin2 θ

ρ2
' −2m

r
a sin2 θ,

grr =
ρ2

ξ
' 1

1 − 2m/r
,

gθθ = ρ2 ' r2,

gφφ =
(r2 + a2)2 − ξa sin2 θ

ρ2
' r2 sin2 θ, (7.2)

where
ξ = r2 − 2mr + a2, ρ2 = r2 + a2 cos2 θ.

The world-line of the beam-splitter is modelled as a circular equatorial
orbit about the centre of the galaxy: r = R, θ = π/2, and φ = φ0 + (v/R)t,
where R is the coordinate distance of the beam-splitter from the field centre,
v is the coordinate speed of the beam-splitter, and v/R is the corresponding
angular coordinate speed. The constant φ0 is chosen to be zero.

Karim et al. compute light travel times, to go up and back an interferom-
eter arm, for three possible orientations of the interferometer arm: inward-
radially directed, positive-φ directed, and positive-θ directed. Each arm is
intended to have the same length L.

The world-line of the end-mirror of the inward-radially directed arm
(henceforth ‘radial arm’) is approximated as a circular orbit inside that of
the beam-splitter: r = R − L, θ = π/2, and φ = (v/R)t. The world-line of
the end-mirror of the positive-φ directed arm (henceforth ‘φ arm’) is approx-
imated as a circular equatorial orbit which leads the beam-splitter in the φ
direction by the angle Φ = L/R: r = R, θ = π/2, and φ = Φ + (v/R)t.
The world-line of the end-mirror of the positive-θ directed arm (henceforth
‘θ arm’) is approximated as differing from that of the beam-splitter only in
the θ direction, again by the angle Φ: r = R, θ = π/2 + Φ, φ = (v/R)t.

The world-line of a photon travelling along an interferometer arm will in
reality be a null geodesic which intersects the beam-splitter world-line, then
intersects an end-mirror world-line, and finally intersects the beam-splitter
world-line once again. To simplify the analytic calculation, Karim et al.

3Throughout, we use geometric units in which times are scaled by a factor c, and
masses by a factor G/c2, so that physical quantities are measured in powers of metres.
For example, angular momentum (kg m2 s−1) is measured in square metres.
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make the approximation that the coordinates (r, θ, φ) are linearly related
along each photon world-line. The values of the remaining coordinate t for
each world-line are fixed by requiring the tangent vector to the world-line to
be null (ds = 0 in (7.1)).4

Explicitly, for photons travelling along the radial arm (where θ = π/2
is constant by symmetry), dφ/dr is assumed to be constant; for photons
travelling along the φ arm, r and θ are assumed to be constant; and for
photons travelling along the θ arm, r and dφ/dθ are assumed to be constant.

To summarise, Karim et al. make the following assumptions and approx-
imations:

1. Our galaxy is modelled by the Kerr black hole metric (7.1) in the low
angular-momentum approximation (7.2).

2. The Michelson interferometer is modelled in terms of the Boyer-Lindquist
coordinates as described above.

3. Photon world-lines are approximated as null curves in which the coor-
dinates (r, θ, φ) are linearly related to one-another.

7.1.1 Main results of the claim

With the assumptions described above, Karim et al. solve for the coordinates
of a photon’s arrival at the end-mirror, and for the reflected photon’s return
to the beam-splitter. The t coordinate of the return event, scaled by the
factor

√−gtt, gives the proper time elapsed at the beam-splitter. In terms of
the dimensionless parameter µ ≡ 2m/R and the coordinate speed v, Karim
et al. find that the elapsed proper times for the radial, φ, and θ arms are,
respectively,

τr = 2L

[

1 +
1

2
µ − 5

8
µ2 − 1

2
v2 + · · ·

]

,

τφ = 2L

[

1 − 1

2
µ2 +

1

2
v2 + · · ·

]

,

τθ = 2L

[

1 − 1

2
v2 + · · ·

]

. (7.3)

The · · · denote terms of higher order in µ, v, and the parameter κ ≡ a/R.

4The photon world-lines so defined, while null, will not, in general, be null geodesics.
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field source 2m (m) R (m) µ = 2m/R δτrθ (s)
Milky Way ∼ 1014 ∼ 2.8 × 1020 ∼ 10−6 ∼ 6 × 10−15

Sun ∼ 103 ∼ 1011 ∼ 10−8 smaller
Earth ∼ 10−2 ∼ 6 × 106 ∼ 10−8 smaller

Table 7.1: Order of magnitude estimates of (7.4) for various bodies with
L = 10 cm, from [8].

For interferometry, the measurable quantity is the light travel time dif-
ference between two arms. Karim et al. find that

δτrθ = τr − τθ ' Lµ

[

1 − 5

4
µ

]

,

δτφθ = τφ − τθ ' 2Lv2, (7.4)

and propose to determine µ (and hence the galactic mass m) by measuring
the time differences (7.4).

Karim et al. estimate the order of magnitude of the effect (7.4) due to
the Earth, Sun, and Milky Way, for an interferometer of length 10 cm. The
calculation is summarised in Table 7.1. The effect due to the Milky Way is
found to be largest, with

δτrθ ∼ 6 × 10−15 s. (7.5)

Karim et al. conclude that the galactic mass can be determined by measuring
δτrθ with a small interferometer.

7.2 Theoretical analysis of the claim

We now investigate properties of the physical model employed by Karim
et al. In Section 7.3 we propose an alternative interferometer model, and
investigate its properties.

The main result in [8], upon which the proposed experiment depends, is
the approximate light travel time difference (7.4). It is independent of κ and
hence independent of a, the specific angular momentum of the gravitational
field source. Thus, the result will be unchanged if the galaxy is instead mod-
elled using a Schwarzschild black hole metric (setting a = 0 in (7.2)). In this
case gtφ vanishes, and the algebra is simplified. We adopt this simpler model
for the analytical calculations in Sections 7.2.1 and 7.3 and the numerical
investigation of Chapter 8.
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In discussing why the predicted time difference δτrθ is proportional to
µ ∝ 1/R, Karim et al. note that the proposed effect depends on the variation
of the gravitational potential5 m/R over the volume of the interferometer,
and suggest that it is therefore reasonable to expect an effect proportional
to this potential. However, the variation of the potential over the volume of
the interferometer will be approximately

L
∂

∂R

m

R
= −L

m

R2
∝ 1

R2
∝ µ2. (7.6)

Thus, it would seem that we should instead expect δτrθ ∝ µ2.

7.2.1 Properties of the coordinate-defined interferom-

eter

The interferometer of [8] is defined in terms of the Boyer-Lindquist coordi-
nates (t, r, θ, φ): The radial arm has coordinate length L in the r direction,
and the θ and φ arms have coordinate length Φ = L/R in the positive θ and
positive φ directions, respectively. The justification for such a model is that,
as R/2m → ∞, the metric components (7.2) asymptote to those of the flat
metric in spherical polar coordinates,

−gtt = grr = 1,

gtφ = 0,

gθθ = r2,

gφφ = r2 sin2 θ, (7.7)

and in that metric all of the arms of the coordinate-defined interferometer
would have proper length L.

Since gθθ and gφφ in (7.2) are equal to those in (7.7), the θ and φ arms
of the coordinate-defined interferometer have proper length L. On the other
hand, since grr in (7.2) differs from that in (7.7), the r arm of the coordinate-
defined interferometer does not have proper length L. In fact, the proper

5Karim et al. in fact describe 2m/R as the gravitational potential. In any case, since
m/R ∝ 2m/R, the line of reasoning is unchanged.



54 CHAPTER 7. ANALYSIS OF A RECENT CLAIM

length s of the r arm is

s =

∫ R

R−L

√
grr dr =

∫ R

R−L

1
√

1 − 2m/r
dr

'
∫ R

R−L

(

1 +
1

2

2m

r

)

dr

= L − 1

2
2m ln

R − L

R

' L +
1

2
2m

L

R

= L +
1

2
Lµ. (7.8)

Consequences of model

The proper length of the r arm differs from L by an amount proportional to
µ. The estimated time difference δτrθ is also proportional to µ. This raises
the possibility that the calculated value for δτrθ is due, at least in part, to the
proper length difference between the r and θ arms of the coordinate-defined
interferometer.

The total difference in proper length along and back each arm is 2(s−L) '
Lµ. From (7.4), the lowest order term in δτrθ is also Lµ. This is exactly the
time difference expected for an interferometer in flat space, with arms of
differing proper lengths s and L. We therefore conclude that the largest
term in δτrθ, proportional to µ, is entirely due to the difference in proper
lengths between the r and θ arms of the coordinate-defined interferometer,
and not to space-time curvature.

Note that it does not follow from the above argument that there is no
term proportional to µ in the true physical value of δτrθ; it merely shows
that, in the analysis of [8], the term proportional to µ is an artifact of the
coordinate-dependent manner in which the interferometer is defined. Due to
(7.6), however, we have good reason to believe that the lowest-order term in
δτrθ is proportional to µ2, and not to µ.

7.3 Geodesic-defined interferometer

The problems resulting from the coordinate-dependent interferometer model
of Karim et al. suggest that we should look for a coordinate-independent

model; we develop such a model in this section. Its properties are explored
in Sections 7.3.2 and 7.3.3. Along with the original model of Karim et al., this
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alternative model is investigated numerically using GRworkbench in Chap-
ter 8.

7.3.1 Definition

We begin by specifying the world-line of the beam-splitter in the same way
as Karim et al.: r = R, θ = π/2, and φ = (v/R)t. Since this world-line
will not, in general, be a geodesic,6 it models an accelerating interferometer,
rather than a freely-falling one.

When deciding how to model the world-lines of the end-mirrors of each
interferometer arm, the most obvious requirement is that the arms have
length L. While the proper distance between two nearby points in a space-
time may be defined as the proper length of the unique geodesic connecting
them, it is a consequence of special relativity that there is no such observer-

independent definition of the distance between two nearby world-lines. There
is, however, a natural choice for a preferred observer: the beam-splitter, since
proper time along the beam-splitter’s world-line is the physical quantity to
be measured.

With respect to a preferred observer, we can define the property of simul-
taneity of two events.7 Let b(τ) be the world-line of the beam-splitter, where
τ is the proper time on b, let p be a point on b, let Tp be the tangent space
of p, and let λ0 ∈ Tp be the tangent vector to b(τ) at p. The vector λ0 is the
beam-splitter’s time direction at p. Let Sp be the space-like subspace of Tp

orthogonal to λ0. The vectors in Sp are the beam-splitter’s space directions
at p. An event q not on b is simultaneous with p if the unique geodesic
connecting p and q has tangent v ∈ Sp at p. That is, q is simultaneous to p
if it is reachable from p by a (space-like) geodesic orthogonal to b.

If q is simultaneous to p ∈ b then the distance between p and q is defined
as the proper length of the space-like geodesic connecting them.

Using the above definitions, we can construct an end-mirror world-line
which is always a distance L from the beam-splitter. At each point p ∈ b

take a geodesic through p whose tangent vector λ1 is orthogonal to λ0, and
trace it out to proper length L. The end-point of this geodesic segment
defines a point on the world-line of the end-mirror. To construct a second
interferometer arm, take a second geodesic through p whose tangent vector
λ2 is orthogonal to both λ0 and λ1, and trace it out to proper length L,
defining the end-point as a point on the world-line of the second end-mirror.

6For each value of v there will be one value of R such that the world-line of the beam-
splitter is, in fact, a circular equatorial geodesic.

7For discussion regarding this definition of simultaneity see [4], pages 274–280.
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A third interferometer arm can be similarly constructed by taking a third
vector λ3 which is orthogonal to λ0, λ1, and λ2.

Since the vectors (λ1, λ2, λ3) must be chosen for each p = b(τ), they are
functions of τ . We require (λ1, λ2, λ3) to satisfy the following condition: each
vector must vary continuously8 with τ . This ensures that the orientation of
the interferometer does not vary discontinuously.

λ0 is fixed by our choice for the world-line b(τ) of the beam-splitter, and
g(λ0, λ0) = −1. We then choose λ1, λ2, and λ3 to model as closely as possible
the same physical situation as Karim et al.:9

λ0 ∝ ∂t +
v

R
∂φ,

λ1 = −∂r,

λ2 = ∂θ,

λ3 = ∂φ + g(λ0, ∂φ)λ0. (7.9)

To see that this set is orthogonal, observe that in the Kerr space-time
(∂t, ∂r, ∂θ) are mutually orthogonal, as are (∂φ, ∂r, ∂θ), while

g(λ0, λ3) = g(λ0, ∂φ + g(λ0, ∂φ)λ0)

= g(λ0, ∂φ) + g(λ0, ∂φ)g(λ0, λ0)

= g(λ0, ∂φ) − g(λ0, ∂φ)

= 0. (7.10)

Note that in the Schwarzschild space-time ∂t is orthogonal to ∂φ, and so if
v = 0 then λ0 is orthogonal to ∂φ and thus λ3 = ∂φ.

It remains to specify the world-lines of the photons connecting the beam-
splitter to the end-mirrors. Now, from Section 6.4.2, given any world-line
c and a nearby point p, there will be two null geodesics which connect p
with a point on c, corresponding to the intersections of c with the the past
and future null cones of p. Thus, for each interferometer arm, we let the
world-line of the outgoing photon be the (locally unique) future directed null
geodesic joining the origin event O to some point q on the world-line of the
end-mirror, and we let the world-line of the returning photon be the future
directed null geodesic joining q to some point r on b.

For each arm, the proper length of b between the origin event O and
the return event r is the time experienced by the beam-splitter between
the departure and return of a photon travelling along that arm. The point
r will in general be different for each interferometer arm, and the proper

8The components of each vector must be continuous in any coordinate system.
9The shorthand notation ∂xi represents the coordinate basis vector ∂/∂xi.
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length along b between two such points gives the measurable light travel
time difference between the corresponding interferometer arms: δτrθ, δτrφ, or
δτθφ.

7.3.2 Comparison with the coordinate-defined inter-

ferometer

The geodesic-defined interferometer has the following properties:

1. The arms are of proper length L.

2. The arms are straight, in the sense of a geodesic being the straightest
possible line in a curved space.

3. At their point of intersection, the arms are orthogonal to:

(a) one-another;

(b) the world-line of the beam-splitter.

We have seen in Sections 7.1 and 7.2 that properties 1 and 2 are not shared
by the coordinate-defined interferometer of Karim et al..

Property 3a is shared by the coordinate-defined interferometer, because
the tangent vectors to the arms are ∂r, ∂θ, and ∂φ, which are mutually or-
thogonal. Property 3b does not hold in general because, when v 6= 0, the
tangent vector to the world-line of the beam-splitter (equal to λ0, above) is
not orthogonal to ∂φ; and because in the Kerr space-time ∂t is not orthog-
onal to ∂φ. In the special case of the Schwarzschild space-time with v = 0,
property 3b does hold for the coordinate-defined interferometer.

7.3.3 Estimate of light travel time

In this section we estimate τr for the geodesic-defined interferometer, for the
simplest case of v = 0 in the Schwarzschild space-time. We will find that the
result differs from 2L by an amount proportional to µ2, in contrast to the
corresponding result (7.3) for the coordinate-defined interferometer.

From symmetry it follows that the world-line of the outgoing radial light
ray has constant θ = π/2 and constant φ. Since the world-line is null, ds = 0
along it. Thus, from (7.1) and (7.2), with a = 0,

0 = gtt dt2 + grr dr2, (7.11)

where

gtt = −(1 − 2m/r), grr =
1

1 − 2m/r
.
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Let the time coordinate of the photon leaving the beam-splitter be t = 0,
and let the time coordinate of the photon reflecting at the mirror be t = tr.
Then, since the space-time is static and time-reversible,10 the time coordinate
of the photon’s return to the beam-splitter is

t = 2tr, (7.12)

in terms of which
τr = 2tr

√−gtt. (7.13)

From (7.11) we have

tr =

∫ R

R−∆

√

−grr

gtt

dr, (7.14)

where ∆ is the coordinate distance on the r axis corresponding to a proper
length L.

Relation between coordinate length and proper length

To find an expression for ∆ in terms of L, we first find L in terms of ∆:

L =

∫ R

R−∆

√
grr dr =

∫ R

R−∆

1
√

1 − 2m/r
dr. (7.15)

The solution to this integral can be expressed in closed form, but we only
require the first few terms in ∆∗ = ∆/2m. Using Mathematica we obtain11

L∗ =

√

R∗

R∗ − 1
∆∗ +

1

4
√

R∗(R∗ − 1)3/2
∆2

∗

+
4R∗ − 1

24R
3/2
∗ (R∗ − 1)5/2

∆3
∗ + · · · , (7.16)

where R∗ = R/2m = 1/µ and L∗ = L/2m. We can invert12 this series to
obtain a series for ∆∗ in terms of L∗. We begin by rewriting (7.16) as

L∗ = a1∆∗ + a2∆
2
∗ + a3∆

3
∗ + · · · , (7.17)

10The Schwarzschild space-time is static because the metric is independent of t, and
time-reversible because it is invariant under the exchange t → −t, dt → −dt. The Kerr
space-time is thus static but not time-reversible.

11Mathematica input: Simplify[Series[Integrate[1 / Sqrt[1 − 1 / r], {r, R − Delta, R
}], {Delta, 0, 3}]]

12The general process of finding a series which is the inverse function of another series
is called series inversion or series reversion.
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and then writing a general series for ∆∗ in terms of L∗:

∆∗ = b1L∗ + b2L
2
∗ + b3L

3
∗ + · · · . (7.18)

Substituting (7.17) into (7.18), equating powers of ∆∗, and solving for the bi

yields13

b1 =
1

a1

,

b2 = −a2

a3
1

,

b3 =
2a2

2 − a1a3

a5
1

. (7.19)

The series for ∆∗ in terms of L∗ is thus

∆∗ =

√

R∗ − 1

R∗

L∗ −
1

4R2
∗

L2
∗ −

1

6R3
∗

√

R∗ − 1

R∗

L3
∗ + · · · . (7.20)

Solution

We evaluate the integral (7.14) for tr∗ = tr/2m using the reduced variable
r∗ = r/2m:

tr∗ =

∫ R∗

R∗−∆∗

1

1 − 1/r∗
dr∗ = ∆∗ + ln

R∗ − 1

R∗ − 1 − ∆∗

. (7.21)

Substituting (7.20) and (7.21) into (7.13) and expanding in powers of L∗ and
1/R∗ yields, after some simplification,

τr

2m
= 2L∗ −

L2
∗

2R2
∗

+
L3
∗/3 − L2

∗/4

R3
∗

+ · · ·

= 2L∗ −
µ2

2
L2
∗ + · · · , (7.22)

or

τr = 2L − mL2

R2
+ · · · . (7.23)

Thus, τr differs from 2L by an amount proportional to µ2, in agreement
with the argument of (7.6). (7.23), along with (7.3), will also be useful in
validating the numerical analysis of Chapter 8.

13For a formula for the general coefficient bn, see, for example, [11], page 412.
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The quantity mL2/R2 in (7.23) differs from the corresponding quantity
2mL/R from the analysis of Karim et al. (7.3) by a factor of L/2R. For
L = 1 metre and R = 8 kpc,14 we have L/2R ' 2 × 10−21. Thus we might
expect a change in the time difference estimate (7.5) of roughly a factor
of 10−21, so that δτrθ ∼ 10−35 s, which is too small to detect with current
methods. An accurate estimate of the time difference δτrθ for the geodesic-
defined interferometer is obtained numerically in Chapter 8.

7.4 Intermission

Because it is defined explicitly and simply in terms of the Boyer-Lindquist
coordinates (t, r, θ, φ), the coordinate-defined interferometer of Karim et al.

is more susceptible to analytic methods than the geodesic-defined interfer-
ometer of Section 7.3. Nonetheless, to keep the algebra manageable, various
approximations were necessarily employed in [8]. In particular, by approx-
imating null geodesics as null curves in which the coordinates (r, θ, φ) are
linearly related, Karim et al. completely avoid the geodesic equation in their
analysis.15

The geodesic-defined interferometer, on the other hand, is defined explic-
itly terms of space-like geodesics, and so an analysis of it akin to that of
[8] would be even more complicated. We do, however, have the methods of
Chapter 6 at our disposal. In Chapter 8 we directly simulate both interfer-
ometers, bypassing the algebraic complexities of the metric and the geodesic
equation. By performing a range of numerical experiments, we can charac-
terise the behaviour of both interferometers in terms of the parameters R,
L, and v.

14The estimate for R is taken from [3], page 917.
15Similarly, the analysis of Section 7.3.3 was relatively simple because the radial

geodesics were easily found via the symmetries present in the special case v = a = 0.



Chapter 8

Numerical investigation of the

claim

Using the methods of Chapter 6, the coordinate-defined interferometer of
Karim et al. and the geodesic-defined interferometer of Section 7.3 were sim-
ulated in GRworkbench, in the Schwarzschild space-time. In Section 8.1 the
modelling of the interferometers in GRworkbench is described. The results
of the numerical experiments are presented in Section 8.3. In Section 8.4
the results for the geodesic-defined interferometer are used to obtain a new
estimate for the size of the predicted effect on Earth due to the Milky Way.
Conclusions are drawn in Section 8.5.

The motivation for the experiments was twofold: Under the assumption
that the geodesic-defined interferometer is more physically realistic than the
coordinate-defined interferometer of [8], we aimed to obtain a new estimate
on the size of the effect δτrθ, in order to determine whether the Milky Way
can in fact be weighed with a small interferometer on Earth; and we aimed to
verify the analysis of the coordinate-defined interferometer made in [8]. By
directly simulating the coordinate-defined interferometer, we can bypass the
approximations necessary in an analytic argument, including the approxima-
tion of light rays as certain (non-geodesic) null curves, and thus determine
the extent to which those approximations affected the final result of Karim
et al.

8.1 Modelling the interferometers

In this section we describe how to simulate the two interferometer mod-
els defined in Chapter 7, using the tools for numerical experimentation de-
scribed in Chapter 6. The coordinate-defined interferometer of Karim et

61
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al. is constructed in terms of straight lines in coordinate space, using the
coordinate line tool of Section 6.1.3, while the geodesic-defined interferometer
also makes use of the geodesic functor class of Section 6.2. For both inter-
ferometers, null geodesics, representing photon world-lines, are determined
using the implicit methods of Section 6.4.

Each interferometer model depends on the three parameters R, L, and v,
corresponding, respectively, to the coordinate distance of the beam-splitter
from the field centre, the interferometer arm length, and the coordinate speed
of the beam-splitter (Section 7.1). The important physical quantities ob-
tained from each simulation are the light travel time differences δτrθ, δτrφ,
and δτθφ, which are arc lengths along the world-line of the beam-splitter. By
simulating each interferometer model for a wide range of values of R, L, and
v, the effect of each parameter on the light travel time differences can be
characterised.

8.1.1 Beam-splitter world-line

For both interferometer models, the world-line of the beam-splitter is mod-
elled as a circular equatorial orbit, which is a straight line in the Boyer-
Lindquist coordinates (t, r, θ, φ). The world-line satisfies (Section 7.1)

t = s, r = R, θ = π/2, φ = φ0 + (v/R)s, (8.1)

where s is a curve parameter; the tangent vector to the curve (8.1) every-
where has the components (1, 0, 0, v/R). However, the parameter s does not
correspond to the proper time τ of the beam-splitter, because the vector λ0

with components λi
0 = (1, 0, 0, v/R) does not satisfy metric(λ0, λ0) = −1.

We normalise λ0 using the routine normalise of Section 6.1.1, and use the re-
sulting vector u to construct a coordinate line whose parameter is the proper
time τ . The arbitrary constant φ0 is chosen to be π/2. Note that λ0 as
defined here is simply the λ0 of (7.9).

The following code fragment demonstrates the construction of the beam-
splitter world-line in GRworkbench:

// construct the point representing the origin event
nvector<double> origin coordinates = make vector(0, R, half pi, half pi);
point origin(a, c, origin coordinates);

// construct the world−line of the beam−splitter
nvector<double> coordinate direction = make vector(1, 0, 0, v / R);
tangent vector beam splitter tangent = normalise(tangent vector(origin, c,

coordinate direction));
worldline beam splitter worldline = coordinate line(beam splitter tangent, c);
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The variable c is assumed to be of type chart, representing a chart which
uses the Boyer-Lindquist coordinates, and the variable a is assumed to be
of type atlas, representing the Schwarzschild space-time encoded in GRwork-

bench. After execution of the code fragment, above, the beam-splitter world-
line, represented by a function of type worldline (Section 5.4.2), is stored
in the variable beam splitter worldline, and the argument to the function
beam splitter worldline, of type double, corresponds to the proper time of
the beam-splitter.

Note that the coordinate line on the last line of the code fragment, above,
is constructed from a tangent vector and a chart; the information regarding
the origin point is contained in the context routine of the tangent vector class;
see Section 5.4.3.

8.1.2 End-mirror world-lines

Both interferometer models have all parts of the interferometer orbiting the
field centre at a constant value of the r coordinate. Hence, the end-mirror
world-lines, like the beam-splitter world-line, have tangent vectors whose
components are proportional to (1, 0, 0, v/R). The only difference between
the construction of an end-mirror world-line in GRworkbench, and the con-
struction of the beam-splitter world-line in the code listing, above, will be
the definition of the variable origin of type point.

Coordinate-defined interferometer

For the coordinate-defined interferometer, the origin events of the end-mirrors
are defined simply in terms of the Boyer-Lindquist coordinates. For the
inward radial arm, the origin event has coordinates (0, R − L, π/2, π/2); for
the positive φ arm, the origin event has coordinates (0, R, π/2, π/2 + L/R);
and for the positive θ arm, the origin event has coordinates (0, R, π/2 +
L/R, π/2). The following code fragment demonstrates the construction of
the end-mirror world-lines in GRworkbench:

// (choose one of the following three lines)
nvector<double> mirror origin coordinates = make vector(0, R − L, half pi,

half pi); // inward radial arm
nvector<double> mirror origin coordinates = make vector(0, R, half pi + L

/ R, half pi); // positive theta arm
nvector<double> mirror origin coordinates = make vector(0, R, half pi,

half pi + L / R); // positive phi arm

// construct the point representing the origin event
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point mirror origin(a, c, mirror origin coordinates);

// construct the world−line of the end−mirror
nvector<double> coordinate direction = make vector(1, 0, 0, v / R);
tangent vector mirror tangent = normalise(tangent vector(mirror origin, c,

coordinate direction));
worldline mirror worldline = coordinate line(mirror tangent, c);

The only significant difference between this code fragment, and the code frag-
ment demonstrating the construction of the beam-splitter world-line, above,
is in the definition of the coordinates of the origin point.

Geodesic-defined interferometer

As described in Section 7.3.1, the origin events for the end-mirrors of the
geodesic-defined interferometer are the end-points of space-like geodesics of
length L emanating from the beam-splitter’s origin event, and orthogonal to
the beam-splitter’s world-line. The tangent vectors of the space-like geodesics
at the origin event are the mutually orthogonal vectors λ1, λ2, and λ3, of
(7.9).

The vectors λ1, λ2, and λ3 are obtained from the coordinate basis vectors
∂r, ∂θ, and ∂φ by using the orthonormalise routine of Section 6.1.1. Specifi-
cally, λ1 is defined as the orthonormalisation of ∂r with respect to the tangent
λ0 to the world-line of the beam-splitter; λ2 is defined as the orthonormal-
isation of ∂θ with respect to both λ0 and λ1 (obtained by two applications
of orthonormalise); and λ3 is defined as the orthonormalisation of ∂φ with
respect to λ0, λ1, and λ2. This process is equivalent to applying the Gram-
Schmidt process (see for example [9], page 399) to the vectors λ0, ∂r, ∂θ, and
∂φ, to obtain an orthonormal basis for the tangent space at the origin.

The following code fragment demonstrates the construction of the end-
mirror world-lines of the geodesic-defined interferometer in GRworkbench:

// coordinate basis vectors
tangent vector r (mirror origin, c, make vector(0., −1., 0., 0.));
tangent vector theta (mirror origin, c, make vector(0., 0., 1., 0.));
tangent vector phi (mirror origin, c, make vector(0., 0., 0., 1.));

// gram−schmidt process
tangent vector radial mirror direction = orthonormalise(

r, beam splitter tangent);
tangent vector theta mirror direction = orthonormalise(orthonormalise(

theta, beam splitter tangent), radial mirror direction);
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tangent vector phi mirror direction = orthonormalise(orthonormalise(
orthonormalise(
phi, beam splitter tangent),
radial mirror direction), theta mirror direction);

// construct the space−like geodesic representing the interferometer arm
// (choose one of the following three lines)
worldline interferometer arm = geodesic(r mirror direction);
worldline interferometer arm = geodesic(theta mirror direction);
worldline interferometer arm = geodesic(phi mirror direction);

// determine the point representing the origin event of the end−mirror
point mirror origin = interferometer arm(L);

// construct the world−line of the end−mirror
nvector<double> coordinate direction = make vector(1, 0, 0, v / R);
tangent vector mirror tangent = normalise(tangent vector(mirror origin, c,

coordinate direction));
worldline mirror worldline = coordinate line(mirror tangent, c);

The difference between this code fragment, and the corresponding code frag-
ment for the construction of the coordinate-defined interferometer, is in the
definition of the origin event for the end-mirror—the variable mirror origin.
For the geodesic-defined interferometer, above, it is constructed in terms of a
space-like geodesic from the mirror origin event, whereas, for the coordinate-
defined interfermeter, it was constructed explicitly in terms of the Boyer-
Lindquist coordinates.

8.1.3 Photon world-lines

In Sections 8.1.1 and 8.1.2, the origin event mirror origin, from which pho-
tons are emitted, and the end-mirror world-lines (mirror worldline in the code
fragment above), with which the photons must intersect, were defined. This
is sufficient information for the application of the method of Section 6.4.2 to
obtain null geodesics representing the world-lines of outgoing photons.

Once the outgoing geodesics have been obtained, their points of intersec-
tion with the end-mirror world-lines define reflection events. The reflection
events, together with the beam-splitter world-line, beam splitter worldline,
constitute sufficient information to again apply the method of Section 6.4.2,
to obtain null geodesics representing the world-lines of ingoing photons.

The points of intersection of the ingoing geodesics with the world-line of
the beam-splitter will occur at various values of the world-line parameter τ ,
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the proper time of the beam-splitter. The difference between these values of
τ define the light travel time differences δτrθ, δτrφ, and δτθφ, which are the
quantities to be obtained.

The following code fragment demonstrates the application of the routine
connecting null geodesic of Section 6.4.2 to determine the light travel time for
one interferometer arm:

geodesic outward ray = connecting null geodesic(beam splitter origin,
mirror worldline, L)−>second;

point reflection = outward ray(1);
double light travel time = connecting null geodesic(reflection,

beam splitter worldline, 2 ∗ L)−>first;

In the first line, the routine second obtains the second element of the std::
pair<double, geodesic> returned by the routine connecting null geodesic (see
the end of Section 6.4.2). In the second line, we make use of the con-
vention that the null geodesic returned by connecting null geodesic inter-
sects mirror worldline at parameter value 1. In the third line, the routine
first obtains the first element of the std::pair<double, geodesic> returned by
connecting null geodesic, which corresponds to the parameter τ of the world-
line of the beam-splitter at which the ingoing photon arrives.

Note that the third argument to connecting null geodesic, an initial guess
for the parameter value of the curve at which the null geodesic will intersect,
is chosen to be L for the outgoing ray intersecting with the end-mirror world-
line, and 2L for the ingoing ray intersecting with the beam-splitter world-
line. These guesses correspond to the exact points of intersection for an
interferometer in flat space, where the light travel time will be L to reach
the mirror, and 2L to return to the beam-splitter; they are good guesses if
the space-time curvature is small in the region of interest.

Figure 8.1 shows the coordinate-defined interferometer modelled in GR-

workbench, as described in this section. There are 5 interferometer arms:
inward radial, outward radial, positive-φ, negative-φ, and positive-θ. (By
symmetry, the negative θ arm has the same light travel time as the positive
θ arm.) The photon world-lines, determined by connecting null geodesic, are
visible for both of the radial arms and the positive-θ arm.

8.2 Experiment

Using the methods of Section 8.1, we can simulate either the coordinate-
defined interferometer of Karim et al., or the geodesic-defined interferometer
of Section 7.3, for any values of the parameters R, L, and v. Because physical
values of L/R are smaller than 10−15, the precision of the double type in
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Figure 8.1: The coordinate-defined interferometer with 5 orthogonal arms,
simulated in GRworkbench.



68 CHAPTER 8. NUMERICAL INVESTIGATION OF THE CLAIM

C++, it is not possible to directly simulate an interferometer on Earth under
the influence of the galactic gravitational field. However, by simulating the
interferometer for a wide range of values of R, L, and v, the dependence of
the light travel time difference on each parameter can be discovered, and the
effect at Earth due to the galactic gravitational field can be predicted.

Appendix B lists the code of the numerical experiment performed in
GRworkbench to characterise each of the interferometer models. The sim-
ulation of the coordinate-defined interferometer is represented by the class
karim interferometer, and the simulation of the geodesic-defined interferom-
eter is represented by the class geodesic interferometer. The reflect routine
of each class performs the simulation of the corresponding interferometer;
it takes three arguments of type double, representing the values of the di-
mensionless parameters R∗ = R/2m, L∗ = L/2m, and v, where 2m is the
Schwarzschild radius for a black hole of mass m.

The reflect routine computes the light travel times τr, τθ, and τφ, as
described in Section 8.1, and takes their difference to form the travel time
differences δτrθ, δτrφ, and δτθφ. The computed travel time differences are in
units of 2m.

For each interferometer, 5 experiments were performed, with each ex-
periment comprising many calls to reflect, that is, many simulations of the
interferometer. The 5 experiments were

1. v = 0, L∗ = 1, 3 ≤ R∗ ≤ 50, and

2. v = 10−2, L∗ = 1, 3 ≤ R∗ ≤ 50 (varying R∗);

3. v = 0, R∗ = 10, 10−2 ≤ L∗ ≤ 6, and

4. v = 10−2, R∗ = 10, 10−2 ≤ L∗ ≤ 6 (varying L∗); and

5. R∗ = 10, L∗ = 1, 10−3 ≤ v ≤ 0.5 (varying v).

In the experiments, R∗ was varied over 17 values in a geometric progression
starting with R∗ = 3; L∗ was varied over 37 values in a geometric progression
starting with L∗ = 10−2; and v was varied over 37 values in a geometric
progression starting with v = 10−3. Thus, each interferometer model was
simulated for a total of 145 different sets of values for the parameters R∗, L∗,
and v.

8.3 Results

In this section we present the results of the numerical experiments described
in Section 8.2.
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8.3.1 Validation

An analytic calculation for the light travel time along the radial arm of the
geodesic-defined interferometer, for the special case v = 0, was made in
Section 7.3.3, resulting in a power series expansion in L∗ and R∗ for the
travel time τr, (7.22). This travel time was compared with the values for
τr obtained in the numerical experiments of Section 8.2, for various values
of R∗ and L∗. In all cases the numerical experiment results were found to
agree with the analytic calculation in the first 8 or 9 significant figures. The
relative precision used by the approx equal mechanism of Section 4.1.1 was
10−9 for the numerical experiments described in this chapter.

The case v = 0 is not special from the point of view of the numerical
differential geometric engine of GRworkbench. It can thus be extrapolated
that the light travel times determined by the numerical methods of this
chapter when v 6= 0 are also as accurate as permitted by the relative precision
of the numerical methods.

8.3.2 Varying orbital radius

Figures 8.2 and 8.3 show the light travel time differences for Experiment 1,
of Section 8.2, for the coordinate-defined interferometer and the geodesic-
defined interferometer, respectively. Note the logarithmic axes on these plots,
and all plots in this section.

In all figures in this section, three sets of data are plotted, corresponding
to the light travel time differences between the three pairs of interferometer
arms: r–θ, r–φ, and θ–φ.

The data for the r–θ time difference coincides with the data for the r–
φ time difference on Figures 8.2 and 8.3 because, when v = 0, the φ and
θ arms are equivalent, owing the spherical symmetry of the Schwarzschild
space-time.

The relative precision of the numerically determined light travel time
differences is at best 10−9; we see from Figures 8.2 and 8.3 that the θ–φ time
differences are well below the numerical precision limit—they are effectively
zero. This is to be expected because, since the θ and φ arms are equivalent
when v = 0, the light travel time along them should be exactly the same
(within the numerical precision).

From Figure 8.2, for large values of R∗, the slope of the r–θ time difference
data is very close to −1 on the logarithmic scale, corresponding to the travel
time difference δτrθ being proportional to 1/R∗ for the coordinate-defined in-
terferometer. This 1/R∗ scaling is in agreement with the calculation (7.4) of
Karim et al. and, comparing the values of the r–θ data in Figure 8.2 with the
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Figure 8.2: Light travel time difference for the coordinate-defined interfer-
ometer, for various values of R∗, with fixed L∗ = 1 and v = 0.
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Figure 8.3: Light travel time difference for the geodesic-defined interferome-
ter, for various values of R∗, with fixed L∗ = 1 and v = 0.
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Figure 8.4: Light travel time difference for the coordinate-defined interfer-
ometer, for various values of R∗, with fixed L∗ = 1 and v = 10−2.

predicted travel time differences, (7.4) is found to be accurate to several sig-
nificant figures. Thus, the analysis of the coordinate-defined interferometer
by Karim et al. is validated.

For large values of R∗, the slope of the r–θ time difference data for the
geodesic-defined interferometer (Figure 8.3) is found to be very close to −2
on the logarithmic scale, corresponding to the travel time difference δτrθ

being proportional to 1/R2
∗. This is in agreement with the argument (7.6) of

Section 7.2.

Figures 8.4 and 8.5 show the light travel time differences for Experi-
ment 2, for the coordinate-defined interferometer and the geodesic-defined
interferometer, respectively. The physical situation modelled in producing
these plots differs from that of Figures 8.2 and 8.3 only in the interferometer
coordinate speed v being non-zero for these plots.

The r–θ data and the r–φ data of Figures 8.4 and 8.5 do not differ sig-
nificantly from the corresponding data for Figures 8.2 and 8.3, despite the
non-zero interferometer coordinate speed. In particular, the data for the r–θ
time differences still coincides with data for the r–φ time differences, despite
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Figure 8.5: Light travel time difference for the geodesic-defined interferome-
ter, for various values of R∗, with fixed L∗ = 1 and v = 10−2.



74 CHAPTER 8. NUMERICAL INVESTIGATION OF THE CLAIM

the two arms θ and φ being no longer equivalent. The coincidence of these
two data sets is, in fact, a feature of all the plots in this section.

The θ–φ time difference data for the coordinate-defined interferometer
(Figure 8.4) can be seen to be roughly independent of R∗, for large values
of R∗. This is in agreement with the estimate (7.4) of the time difference
δτθφ of Karim et al.. Once again, examining the data comprising Figure 8.4,
it is found to be in agreement with the estimate (7.4) in the first several
significant figures, validating the analysis of Karim et al..

Interestingly, for large values of R∗, the θ–φ time difference data for the
geodesic-defined interferometer has a slope very close to −3 on the loga-
rithmic scale, corresponding to the time difference δτθφ being proportional
to 1/R3

∗. Thus, while the θ–φ time difference is already smaller than the
r–θ time difference on Figure 8.5 by several orders of magnitude, at physi-
cal values of R∗ (R∗ > 105), it will be comparatively even smaller. This is
in contrast with the situation for the coordinate-defined interferometer: On
Figure 8.4 it would appear that, if we extrapolate the data to physical values
of R∗, we might enter a regime where the θ–φ time difference is larger than
the r–θ time difference.

8.3.3 Varying interferometer length

Figures 8.6 and 8.7 show the light travel time differences for Experiment 3,
for the coordinate-defined interferometer and the geodesic-defined interfer-
ometer, respectively.

As with the other experiment with v = 0 (Experiment 1), and as ex-
pected, the θ–φ time difference data is everywhere zero, within the numerical
precision.

For small values of L∗, the r–θ data for the coordinate-defined inter-
ferometer has slope very close to 1 on the logarithmic scale of Figure 8.6,
corresponding to the travel time difference δτrθ being proportional to L∗.
Again, the scaling is in agreement with the estimate (7.4) of Karim et al..

For the geodesic-defined interferometer, for small values of L∗, the r–θ
data has slope very close to 2 on the logarithmic scale of Figure 8.6, corre-
sponding to the travel time difference δτrθ being proportional to L2

∗.

Figures 8.8 and 8.9 show the light travel time differences for Experi-
ment 4, for the coordinate-defined interferometer and the geodesic-defined
interferometer, respectively.

As with Experiments 1 and 2, there is no significant difference between the
r–θ data of Figures 8.8 and 8.9 and the corresponding data from Figures 8.6
and 8.7.
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Figure 8.6: Light travel time difference for the coordinate-defined interfer-
ometer, for various values of L∗, with fixed R∗ = 10 and v = 0.
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Figure 8.7: Light travel time difference for the geodesic-defined interferome-
ter, for various values of L∗, with fixed R∗ = 10 and v = 0.
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Figure 8.8: Light travel time difference for the coordinate-defined interfer-
ometer, for various values of L∗, with fixed R∗ = 10 and v = 10−2.
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Figure 8.9: Light travel time difference for the geodesic-defined interferome-
ter, for various values of L∗, with fixed R∗ = 10 and v = 10−2.
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Figure 8.10: Light travel time difference for the coordinate-defined interfer-
ometer, for various values of v, with fixed R∗ = 10 and L∗ = 1.

For small values of L∗, the slope of the θ–φ data on the logarithmic scale
of Figure 8.8 is very close to 1, corresponding to the travel time difference
δτθφ being proportional to L∗ for the coordinate-defined interferometer. This
scaling is in agreement with the calculation (7.4) of Karim et al..

Almost all of the θ–φ data for the geodesic-defined interferometer (Fig-
ure 8.9) are near or below the relative precision of the numerical methods,
10−9, and so no reliable conclusions can be drawn about it. Based on the few
reliable data points, which are unfortunately at large (non-physical) values
of L∗, we might conjecture an L2

∗ dependence of δτθφ on L∗, consistent with
the scaling of δτrθ, since the slope of the valid θ–φ data points is roughly 2.

8.3.4 Varying interferometer coordinate speed

Figures 8.10 and 8.11 show the light travel time differences for Experiment 5,
for the coordinate-defined interferometer and the geodesic-defined interfer-
ometer, respectively.

The most important property of these plots is that, for both interferome-
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Figure 8.11: Light travel time difference for the geodesic-defined interferom-
eter, for various values of v, with fixed R∗ = 10 and L∗ = 1.
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ter models, for small values of v, the r–θ time difference data are independent
of v. For the coordinate-defined interferometer, this result is in agreement
with the estimate (7.4) of Karim et al.. For the geodesic-defined interferom-
eter we conclude that, for physical values of v (v ∼ 10−3), the travel time
difference δτrθ is independent of v.

For small values of v, the slope of the θ–φ data on the logarithmic scale
of Figure 8.10 is very close to 2, corresponding to the travel time difference
δτθφ being proportional to v2 for the coordinate-defined interferometer. This
scaling is in agreement with the calculation (7.4) of Karim et al..

The slope of the θ–φ data for the geodesic-defined interferometer (Fig-
ure 8.11) is also very close to 2 for small values of v, although it should be
noted that the first few data points are near or below the relative precision
10−9 of the numerical methods employed.

The unusual behaviour of the r–θ data on Figures 8.10 and 8.11 for values
of v approaching unity is simply due to the light travel time difference passing
through zero on the logarithmic axes. Because v is a coordinate speed, if it
is increased beyond approximately unity, then the world-lines of the various
parts of the interferometer will become space-like, which is certainly not
physical.

8.3.5 Summary

The results of the all the numerical experiments simulating the coordinate-
defined interferometer were in agreement with the estimated light travel time
differences (7.4) of Karim et al. Thus, the analysis of the coordinate-defined
interferometer in [8] was validated.

The light travel time differences for the geodesic-defined interferometer
were investigated as a function of the dimensionless parameters R∗, L∗, and
v. The largest travel time difference was δτrθ (or δτrφ), which was found
to be proportional to L2

∗/R
2
∗, independent of v, for small values of L∗, large

values of R∗, and small values of v.

8.4 Estimate of physical effect

In this section we employ the relation

δτrθ ∝ L2
∗/R

2
∗ (8.2)

for the geodesic-defined interferometer, which was discovered by numerical
experimentation in Section 8.3, to estimate the size of the light travel time
difference δτrθ for a 1 metre interferometer on Earth. Analagous to Table 7.1,
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field source M (kg) R (m) δτsi (s)
Earth 5.97 × 1024 6.38 × 106 3.5 × 10−25

Sun 1.99 × 1030 1.50 × 1011 2.09 × 10−28

Milky Way 2 × 1041 2.5 × 1020 8 × 10−36

Table 8.1: Estimates of δτsi for various bodies with L = 1 m, for the geodesic-
defined interferometer model.

we estimate the effect due to three nearby gravitational fields: The Earth,
the Sun, and the Milky Way.

To use (8.2) we first need a data point to fix the constant of proportion-
ality. The data point selected is that with the largest value of R∗. Noting
that the light travel time differences computed by the reflect routine are in
units of 2m, where m is the geometric mass of the gravitational field source,
the data point is

R∗ = 48, L∗ = 1,
δτrθ

2m
= 2.06 × 10−4. (8.3)

From (8.2) and (8.3) we have

δτrθ = (2.06 × 10−4)2m
L2
∗

(R∗/48)2
, (8.4)

or, since R∗ = R/2m, L∗ = L/2m, and m = GM/c2 where M is the mass in
si units,

δτsi = 482 × (2.06 × 10−4) × 2GM

c3

L2

R2
, (8.5)

where we have also divided by c to obtain the time difference in seconds,
rather than metres.

Using (8.5) we can estimate the effect due to the Earth, the Sun, and the
Milky Way. The calculation is summarised in Table 8.1. Compare Table 8.1
with Table 7.1 of Section 7.1.1.

In Table 8.1, the effect due to Milky Way is ∼ 10−35 seconds. The smallest
time-scale currently detectable with gravitational wave detectors is on the
order of 10−20 seconds. We conclude that the Milky Way cannot be weighed
by measuring δτsi.

The ordering of the effects (Earth > Sun > Milky Way) is in opposition
to that of Table 7.1. This may be thought of as due to the extra factor of
L/R in (8.2) compared with (7.4). (For the Milky Way, L/R ∼ 10−20, and
for the Earth, L/R ∼ 10−7.)
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The estimate for the effect due to the Earth in Table 8.1 cannot be as-
sumed to be very accurate, because the Schwarzschild radius of the Earth is
about 9 millimetres and so, for a 1 metre interferometer, L∗ ' 113, which
is significantly larger than any value of L∗ tested in a numerical experiment
in this chapter—the relation (8.2) may not hold in that regime, although we
have no reason to think it will not.

8.5 Conclusions

By simulating the coordinate-defined interferometer of Karim et al. in GR-

workbench, we were able to validate the theoretical analysis of that interfer-
ometer, made in [8].

By simulating a physically realistic geodesic-defined interferometer, a
more accurate estimate of the light travel time difference δτrθ on Earth due to
the Milky Way was obtained, and was found to be too small to be detected.
It was also found that, in contrast to the case for the coordinate-defined
interferometer of Karim et al., the light travel time difference due to the
gravitational field of the Earth is the most important for an interferometer
located on Earth, and that due to the gravitational field of the Milky Way is
the least important of the major gravitational fields in the vicinity of Earth.

We conclude that the experiment proposed by Karim et al., to weigh the
galaxy using a small interferometer on Earth, is not feasible, and that their
conclusion is false because of the approximations implied in their coordinate-
dependent interferometer model.





Chapter 9

Conclusion

GRworkbench has been successfully and substantially extended to facilitate
numerical experimentation in General Relativity.

A functional programming framework has been crucial to the development
of tools for numerical experimentation within GRworkbench. The functional
framework is more expressive, permitting important concepts in numerical
programming and differential geometry to be directly represented in the C++
code of GRworkbench.

New algorithms for key numerical operations have replaced pre-existing
simpler methods. The numerical engine is now expressed in the paradigm
of functional programming, enabling algorithms to easily interface with one-
another. The sophisticated new algorithms are faster and more accurate, and
an abstraction of the notion of approximate equality enables them to be en-
coded in a robust and elegant way. Through the C++ template mechanism,
numerical methods can be encoded such that they can be applied to any sets
with the required structure defined upon them.

The differential geometric engine of GRworkbench has been rewritten
within the functional programming framework. Abstract notions, such as
points and tangent vectors, are represented by C++ classes. Functions used
in differential geometry, such as curves in space-time, are now represented
and manipulated directly as functions.

Using the new numerical and differential geometric core of GRworkbench,
tools for numerical experimentation have been developed. Geodesics and
the parallel transport operation, both implemented in terms of the new ode

integration algorithm, represent fundamental physical concepts in General
Relativity. Methods for determining unique geodesics, defined implicitly in
terms of boundary conditions, have been developed using the new algorithm
for function minimisation; these methods enable the construction of photon
world-lines joining observers to particular events, representing an important

85
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physical situation.
The utility of numerical experimentation in GRworkbench was demon-

strated. A traditional analysis of a physical problem in General Relativity,
involving various simplifying approximations in the mathematical model, was
investigated and found to yield an inaccurate estimate of the desired phys-
ical quantity. A more physically motivated model was devised, and an ac-
curate estimate of the quantity was obtained by simulating the new model
in GRworkbench. A physically meaningful result was thereby produced by a
numerical experiment in GRworkbench, where analytic methods had proven
to be inadequate.
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Appendix A

GRworkbench code listings

This appendix contains code listings from important parts of the rewritten
numerical engine of GRworkbench, described in Chapter 4, and some of the
tools for numerical experimentation described in Chapter 6.

Whenever a conflict arises, the algorithms in GRworkbench are generally
coded with execution speed taking priority over code brevity or simplicity.
As such, the code in this appendix may appear significantly different to the
code in Chapters 3, 4, 5, and 6. In many cases, however, the algorithms may
be more easily read by completely disregarding the symbols const and &,
and by interpreting variable declarations of the form

const Type variable(expression);

as the more familiar

Type variable = expression;

A.1 Relative difference

template <typename T> struct relative difference implementation
{

static double apply(const T& a, const T& b)
{

const double abs a abs b(abs(a) ∗ abs(b));
const double abs a minus b(abs(a − b));
return abs a abs b <= 1 ? abs a minus b : abs a minus b / sqrt(

abs a abs b);
}

static double apply squared(const T& a, const T& b)

89
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{
const double abs a abs b(abs(a) ∗ abs(b));
const double abs a minus b squared(square(abs(a − b)));
return abs a abs b <= 1 ? abs a minus b squared :

abs a minus b squared / abs a abs b;
}

};

template <typename T> double relative difference(const T& a, const T&
b)

{
return relative difference implementation<T>::apply(a, b);

}

template <typename T> double relative difference squared(const T& a,
const T& b)

{
return relative difference implementation<T>::apply squared(a, b);

}

template <typename T> struct relative difference implementation<nvector
<T> >

{
static double apply(const nvector<T>& a, const nvector<T>& b)
{

return sqrt(apply squared(a, b));
}

static double apply squared(const nvector<T>& a, const nvector<T
>& b)

{
if (a.size() != b.size())

throw nvector<T>::incompatible();

typename nvector<T>::const iterator i, j;
double r(0.);
for (i = a.begin(), j = b.begin(); i != a.end(); ++i, ++j)

r += relative difference squared(∗i, ∗j);

return r;
}

};
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template <typename T, size t N> struct relative difference implementation
<grwb::vector<N, T> >

{
static double apply(const grwb::vector<N, T>& a, const grwb::vector<

N, T>& b)
{

return sqrt(apply squared(a, b));
}

static double apply squared(const grwb::vector<N, T>& a, const grwb::
vector<N, T>& b)

{
typename grwb::vector<N, T>::const iterator i, j;
double r(0.);
for (i = a.begin(), j = b.begin(); i != a.end(); ++i, ++j)

r += relative difference squared(∗i, ∗j);

return r;
}

};

A.2 Richardson extrapolation

template <typename T> class richardson extrapolation
{
public:

richardson extrapolation(const double& x, const T& y)
: limit (y),

error (y)
{

refine(x, y);
}

const T& limit() const

{
return limit ;

}

const T& error() const

{
return error ;

}
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void refine(const double& x, const T& y)
{

// adapted from Numerical Recipes in C (2nd Edition), p. 731

data .resize(data .size() + 1, make pair(x, y));
error = limit = y;

const size t n(data .size());
if (n == 1)

return;

T c(y);
for (size t i(1); i < n; ++i)
{

const double x i(data [n − i − 1].first);
const double delta(1. / (x i − x));
const double f1(x ∗ delta);
const double f2(x i ∗ delta);
const T q(data [i − 1].second);
data [i − 1].second = error ;
const T d2(c − q);
error = f1 ∗ d2;
c = f2 ∗ d2;
limit += error ;

}

data [n − 1].second = error ;
}

private:
std::vector<pair<double, T> > data ;
T limit ;
T error ;

};

A.3 Differentiation

template <typename T> class derivative functor
{
public:

derivative functor(const function<optional<T> (const double&)>& f,
const double& scale, const double& tolerance)

: f (f),
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scale (scale),
tolerance (tolerance)

{
}

optional<T> operator()(const double& x) const

{
if (!f (x))

return optional<T>();

double h(scale );

optional<richardson extrapolation<T> > extrapolator;

for (size t i(0); i < max steps ; ++i)
{

const optional<T> right(f (x + h));
const optional<T> left(f (x − h));
if (left && right)
{

const T diff((∗right − ∗left) / (2. ∗ h));

if (!extrapolator)
extrapolator.reset(richardson extrapolation<T>(h ∗ h, diff));

else

{
extrapolator−>refine(h ∗ h, diff);
if (tolerance > relative difference(extrapolator−>limit(),

extrapolator−>limit() + extrapolator−>error()))
return optional<T>(extrapolator−>limit());

}
}

h /= step scale ;
}

return optional<T>();
}

private:
const function<optional<T> (const double&)> f ;
const double scale ;
const double tolerance ;
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static const size t max steps = 13;
static const double step scale = 1.7;

};

template <typename T> function<optional<T> (const double&)>
derivative(const function<optional<T> (const double&)>& f, const

double& scale = 1., const double& tolerance =
default approx equal tolerance)

{
return derivative functor<T>(f, scale, tolerance);

}

A.3.1 Gradient

namespace gradient detail
{

template <typename T> class single coordinate function
{
public:

single coordinate function(const function<optional<T> (const nvector
<double>&)>& f, const nvector<double>& x, const size t& i)

: f (f),
x (x),
i (i)

{
}

optional<T> operator()(const double& delta x i)
{

nvector<double> x(x );
x[i ] += delta x i;
return f ( x);

}

private:
const function<optional<T> (const nvector<double>&)>& f ;
const nvector<double>& x ;
const size t& i ;

};
}

template <typename T> class gradient functor
{



A.4. BULIRSCH-STOER METHOD 95

public:
gradient functor(function<optional<T> (const nvector<double>&)>f)

: f (f)
{
}

optional<nvector<T> > operator()(const nvector<double>& x)
{

const optional<T> default value(f (x));

if (!default value)
return optional<nvector<T> >();

nvector<T> result(x.size(), unchanging(∗default value));

for (size t i = 0; i != x.size(); ++i)
{

optional<T> d(derivative<T>(gradient detail::
single coordinate function<T>(f , x, i))(0.));

if (!d)
return optional<nvector<T> >();

result[i] = ∗d;
}

return optional<nvector<T> >(result);
}

private:
const function<optional<T> (const nvector<double>&)> f ;

};

template<typename T> function<optional<nvector<T> >(const nvector<
double>&)> gradient(const function<optional<T>(const nvector<
double>&)>& f)

{
return gradient functor<T>(f);

}

A.4 Bulirsch-Stoer method

template <class T, template <class> class U> class bulirsch stoer
// adapted from Numerical Recipes in C (2nd Edition), p. 728
{
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public:
bulirsch stoer(const function<optional<T> (const double&, const T&)

>& f, const double& x 0, const T& y 0, const double&
default stepsize = 1., const size t& maximum steps = 100, const

double& relative error = default approx equal tolerance)
: f (f),

maximum steps (maximum steps),
relative error (relative error),
default h (default stepsize),
x (x 0),
y (y 0)

{
const double safe relative error(relative error ∗ safe1 );

typename std::map<double, vector<bulirsch stoer parameters<U>::
k total, vector<bulirsch stoer parameters<U>::k total, double

> > >::const iterator i(alpha cache ().find(safe relative error));
if (i != alpha cache ().end())

alpha = i−>second;
else

{
for (size t i = 1; i < bulirsch stoer parameters<U>::k total; ++i)

for (size t j = 0; j < i; ++j)
alpha [j][i] = pow(safe relative error, (a ()[j] − a ()[i]) / ((a

()[i] − a ()[0] + 1.) ∗ (2 ∗ j + 3)));
alpha cache ()[safe relative error] = alpha ;

}

for (optimal k = 1; optimal k < bulirsch stoer parameters<U>::k total
− 1; ++optimal k )
if (a ()[optimal k + 1] > a ()[optimal k ] ∗ alpha [optimal k − 1][

optimal k ])
break;

max k = optimal k ;
}

const double& x() const

{
return x ;

}

const T& y() const

{
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return y ;
}

bool step(const double& to x)
{

double h(default h );
if (to x < x )

h ∗= −1;

for (size t i = 0; i < maximum steps ; ++i)
{

bool reduced step size(false);
bool success(false);
size t k(0), km(0);
double stepsize reduction factor(0.);
double err[bulirsch stoer parameters<U>::k total];
U<T> stepper(f , x , y );

if (to x == x )
return true;

if ((to x − x ) ∗ (to x − x − h) < 0.)
h = to x − x ;

while (true)
{

optional<richardson extrapolation<T> > extrapolator;

for (k = 0; k < max k ; ++k)
{

optional<T> y est(stepper.step(h, bulirsch stoer parameters<U
>::k values[k]));

if (!y est)
return false;

const double little h squared(square(h /
bulirsch stoer parameters<U>::k values[k]));

if (!extrapolator)
extrapolator.reset(richardson extrapolation<T>(

little h squared, ∗y est));
else

{
extrapolator−>refine(little h squared, ∗y est);
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y = extrapolator−>limit();

const double error(relative difference(y , y + extrapolator
−>error()) / relative error );

km = k − 1;
err[km] = pow(error / safe1 , 1. / (2 ∗ km + 3));

if (k >= optimal k − 1 || i == 0)
{

if (error < 1.)
{

success = true;
break;

}
if (k == max k || k == optimal k + 1)
{

stepsize reduction factor = safe2 / err[km];
break;

}
if (k == optimal k && alpha [optimal k − 1][

optimal k ] < err[km])
{

stepsize reduction factor = 1. / err[km];
break;

}
if (optimal k == max k && alpha [km][max k

− 1] < err[km])
{

stepsize reduction factor = alpha [km][max k
− 1] ∗ safe2 / err[km];

break;
}
if (alpha [km][optimal k ] < err[km])
{

stepsize reduction factor = alpha [km][optimal k
− 1] / err[km];

break;
}

}
}

}

if (success)



A.4. BULIRSCH-STOER METHOD 99

break;

if (stepsize reduction factor > min stepsize reduction )
stepsize reduction factor = min stepsize reduction ;
if (stepsize reduction factor < max stepsize reduction )
stepsize reduction factor = max stepsize reduction ;
h ∗= stepsize reduction factor;
reduced step size = true;

}

x += h;

double work min(1.e300);
double scale factor(0.);
for (size t j = 0; j <= km; ++j)
{

const double s(err[j] < max stepsize increase ?
max stepsize increase : err[j]);

const double work(s ∗ a ()[j + 1]);
if (work < work min)
{

scale factor = s;
work min = work;
optimal k = j + 1;

}
}
if (optimal k >= k && optimal k != max k && !reduced step size)
{

double s(scale factor / alpha [optimal k − 1][optimal k ]);
if (s < max stepsize increase )
s = max stepsize increase ;

if (a ()[optimal k + 1] ∗ s <= work min)
{

scale factor = s;
++optimal k ;

}
}
h /= scale factor;

}

cout << ”Bulirsch−Stoer: Too many steps required.” << endl;
return false;
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}

private:
const static double safe1 = 0.25;
const static double safe2 = 0.7;
const static double max stepsize reduction = 1.e−5;
const static double min stepsize reduction = 0.7;
const static double max stepsize increase = 0.1;

const function<optional<T> (const double&, const T&)> f ;
const size t maximum steps ;
const double relative error ;
const double default h ;

vector<bulirsch stoer parameters<U>::k total, vector<
bulirsch stoer parameters<U>::k total, double> > alpha ;

static std::map<double, vector<bulirsch stoer parameters<U>::k total,
vector<bulirsch stoer parameters<U>::k total, double> > >&
alpha cache ()

{
static std::map<double, vector<bulirsch stoer parameters<U>::k total,

vector<bulirsch stoer parameters<U>::k total, double> > > ;
return ;

};

static vector<bulirsch stoer parameters<U>::k total + 1, double>& a ()
{

static optional<vector<bulirsch stoer parameters<U>::k total + 1,
double> > ;

if (! )
{

.reset(vector<bulirsch stoer parameters<U>::k total + 1, double>());
(∗ )[0] = bulirsch stoer parameters<U>::k values[0] + 1;
for (size t i = 0; i < bulirsch stoer parameters<U>::k total; ++i)

(∗ )[i + 1] = (∗ )[i] + bulirsch stoer parameters<U>::k values[i
+ 1];

}
return ∗ ;

}

double x ;
T y ;
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size t optimal k ;
size t max k ;

};

A.4.1 Modified midpoint method

template <class T> class modified midpoint stepper
{
public:

modified midpoint stepper(const function<optional<T> (const double&,
const T&)>& f, const double& x 0, const T& y 0)

: f (f),
x 0 (x 0),
y 0 (y 0),
f y 0 (f(x 0, y 0))

{
}

optional<T> step(const double& total h, const size t& steps) const

{
// adapted from Numerical Recipes in C (2nd Edition), p. 724

optional<T> ret;

if (!f y 0 )
return ret;

const double h(total h / double(steps));
const double two h(2. ∗ h);

T ym(y 0 ), yn(y 0 + h ∗ ∗f y 0 );
double x(x 0 + h);

optional<T> dydx(f (x, yn));
if (!dydx)

return ret;

for (size t i(1); i < steps; ++i)
{

T y next(ym + two h ∗ ∗dydx);
ym = yn;

dydx = f (x += h, yn = y next);
if (!dydx)
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return ret;
}

ret.reset(0.5 ∗ (ym + yn + h ∗ ∗dydx));
return ret;
}

private:
const function<optional<T> (const double&, const T&)> f ;
const double x 0 ;
const T y 0 ;
const optional<T> f y 0 ;

};

template <> class bulirsch stoer parameters<modified midpoint stepper>
{
public:

const static size t k total = 10;
const static size t k values[k total + 1];

};

template <> const size t bulirsch stoer parameters<
modified midpoint stepper>::k values
[] = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22};

A.5 Powell’s method

template <typename T, typename U> class powell minimiser
{
public:

powell minimiser(const function<optional<T> (const U&)>& f)
: f (f)

{
}

optional<pair<U, T> > operator()(const U& x, const nvector<U>&
basis, const double& tolerance = default approx equal tolerance)
const

{
U minimum(x);
optional<T> op(f (minimum));
if (!op)

return optional<pair<U, T> >();
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T f min(∗op);
nvector<U> basis (basis);

for (size t i(0); i < max steps; ++i)
{

const U prev min(minimum);
const T prev f min(f min);
T largest decrease(zero(f min));
size t largest decrease index(0);

for (size t j(0); j < basis.size(); ++j)
{

optional<pair<double, T> > line minimum(brent minimiser(
linear subspace(f , minimum, basis [j]))(0., 0., tolerance));

if (!line minimum)
return optional<pair<U, T> >();

if (f min − line minimum−>second > largest decrease)
{

largest decrease = f min − line minimum−>second;
largest decrease index = j;

}

if (zero(line minimum−>first) != line minimum−>first && f min >
line minimum−>second)

{
basis [j] ∗= line minimum−>first;
minimum += basis [j];
f min = line minimum−>second;

}
}

if (approx equal(prev f min, f min, tolerance))
return optional<pair<U, T> >(make pair(minimum, f min));

const U new direction(minimum − prev min);
const U extrapolated min(minimum + new direction);
op = f (extrapolated min);
if (!op)

return optional<pair<U, T> >();
const T f extrapolated min(∗op);

if (f extrapolated min < prev f min)
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{
if (2. ∗ (prev f min − 2. ∗ f min + f extrapolated min) ∗ square(

prev f min − f min − f extrapolated min) <= largest decrease ∗
square(prev f min − f extrapolated min))

{
optional<pair<double, T> > line minimum(brent minimiser(

linear subspace(f , minimum, new direction))(0., 0., tolerance
));

if (!line minimum)
return optional<pair<U, T> >();

if (zero(line minimum−>first) != line minimum−>first && f min
> line minimum−>second)

{
basis [largest decrease index] = basis [basis.size() − 1];
minimum += (basis [basis.size() − 1] = new direction ∗

line minimum−>first);
f min = line minimum−>second;

}
}

}
}

return optional<pair<U, T> >();
}

optional<pair<U, T> > operator()(const U& x, const double& tolerance
= default approx equal tolerance) const

{
return operator()(x, default basis(x), tolerance);

}

private:
const function<optional<T> (const U&)> f ;

const static size t max steps = 100;
const static double auto scale = 1.e−2;

class linear subspace functor
{
public:

linear subspace functor(const function<optional<T> (const U&)>& f,
const U& origin, const U& direction)
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: f (f),
origin (origin),
direction (direction)
{
}

optional<T> operator()(const double& t) const

{
return f (origin + t ∗ direction );

}

private:
const function<optional<T> (const U&)>& f ;
const U& origin ;
const U& direction ;

};

function<optional<T> (const double&)> linear subspace(const function<
optional<T> (const U&)>& f, const U& origin, const U& direction)
const

{
return linear subspace functor(f, origin, direction);

}

nvector<U> default basis(const U& x) const

{
nvector<U> r(unity(nvector<U>(x.size(), unchanging(x))));
for (size t i(0); i < x.size(); ++i)
{

const double scale(auto scale ∗ abs(x[i]));
if (scale > 0)

r[i] ∗= scale;
}
return r;

}
};

A.5.1 Brent minimiser

template <typename T, typename U> class bracketer
{
public:

bracketer(const function<optional<T> (const U&)>& f)
: (f)
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{
}

optional<vector<3, pair<U, T> > > operator()(const U& x, const U&
step size = U()) const

{
optional<vector<3, pair<U, T> > > result;

optional<T> op( (x));
if (!op)

return result;
vector<3, pair<U, T> > r(unchanging(make pair(x, ∗op)));
U step = step size == U() ? (x == zero(x) ? unity(x) : auto scale ∗ abs(

x)) : step size;

r[1].first += step;
op = (r[1].first);
if (!op)

return result;
r[1].second = ∗op;

if (r[1].second > r[0].second)
{

swap(r[0], r[1]);
step ∗= −1;

}

for (size t i(0); i < max steps; ++i)
{

r[2].first = r[1].first + step;
op = (r[2].first);
if (!op)

return result;
r[2].second = ∗op;

if (r[2].second >= r[1].second)
{

if (step < 0)
swap(r[0], r[2]);

result.reset(r);
return result;

}
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r[0] = r[1];
r[1] = r[2];
step ∗= ratio;

}

return result;
}

private:
const function<optional<T> (const U&)> ;

const static size t max steps = 100;
const static double ratio = 1.6;
const static double auto scale = 1.e−2;

};

template <typename T, typename U> class brent minimiser functor
// adapted from Numeric Recipes in C (2nd Edition), p. 404
{
public:

brent minimiser functor(const function<optional<T> (const U&)>& f)
: f (f)
, bracketer (f)

{
}

optional<pair<U, T> > operator()(const U& x, const U& scale = U(),
const double& tolerance = default approx equal tolerance) const

{
const optional<vector<3, pair<U, T> > > bracket(bracketer (x, scale));
if (!bracket)

return optional<pair<U, T> >();

U left((∗bracket)[0].first), best((∗bracket)[1].first), right((∗bracket)[2].first
);

U third best(best), second best(best);
T f best((∗bracket)[1].second);
T f trial(f best), f third best(f best), f second best(f best);

U d(0.), prev d(0.);

const double two tolerance(2. ∗ tolerance);
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for (size t i(0); i < max steps; ++i)
{

const U mid(0.5 ∗ (left + right));

if (approx equal(left, right, two tolerance))
return optional<pair<U, T> >(make pair(best, f best));

if (abs(prev d) > tolerance ∗ abs(best))
{

const U r((best − second best) ∗ (f best − f third best));
U q((best − third best) ∗ (f best − f second best));
U p((best − third best) ∗ q − (best − second best) ∗ r);
q = 2. ∗ (q − r);
if (q > 0.)
p = −p;
q = abs(q);

U prev prev d(prev d);
prev d = d;

if (abs(p) >= abs(0.5 ∗ q ∗ prev prev d) || p <= q ∗ (left − best) ||
p >= q ∗ (right − best))
d = cgold ∗ (prev d = (best >= mid ? left − best : right − best

));
else

d = p / q;
}
else

d = cgold ∗ (prev d = best >= mid ? left − best : right − best);

const U trial(best + d);
const optional<T> op(f (trial));
if (!op)

return optional<pair<U, T> >();
f trial = ∗op;

if (f trial <= f best)
{

if (trial >= best)
left = best;
else

right = best;
third best = second best; second best = best; best = trial;



A.6. GEODESIC 109

f third best = f second best; f second best = f best; f best = f trial;
}
else

{
if (trial < best)

left = trial;
else

right = trial;
if (f trial <= f second best || second best == best)
{

third best = second best; second best = trial;
f third best = f second best; f second best = f trial;

}
else if (f trial <= f third best || third best == best || third best ==

second best)
{

third best = trial;
f third best = f trial;

}
}

}

return optional<pair<U, T> >();
}

private:
const function<optional<T> (const U&)> f ;
const bracketer<T, U> bracketer ;

const static size t max steps = 100;
const static double cgold = 0.3819660;

};

template <class T, class U> brent minimiser functor<T, U>
brent minimiser(const function<optional<T> (const U&)>& f)

{
return brent minimiser functor<T, U>(f);

}

A.6 Geodesic

class geodesic
{
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public:
geodesic(const tangent vector& t)

: atlas (t.context().context()),
least upper bound (positive infinity),
greatest lower bound (negative infinity),
cache (new std::map<double, tangent vector>)

{
cache −>insert(cache value type(0, t));

}

optional<point> operator()(const double& t) const

{
return operator()(t, 0.).second;

}

pair<double, optional<point> > operator()(const double& t, const

double& epsilon) const

{
typedef pair<double, optional<point> > return type;

if (t >= least upper bound )
return return type(least upper bound , optional<point>());

else if (t <= greatest lower bound )
return return type(greatest lower bound , optional<point>());

cache iterator type initial data(get initial data(t));

if (abs(initial data−>first − t) <= epsilon)
return return type(initial data−>first, optional<point>(initial data−>

second.context()));

optional<cache iterator type> result(advance(initial data−>second,
initial data−>first, t));

if (result)
return return type(t, optional<point>((∗result)−>second.context()));

if (t > 0)
least upper bound = t;

else

greatest lower bound = t;

return return type(t, optional<point>());
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}

optional<tangent vector> tangent(const double& t) const

{
if (!operator()(t))

return optional<tangent vector>();

return optional<tangent vector>(cache −>find(t)−>second);
}

private:
const weak ptr<atlas> atlas ;

mutable double least upper bound ;
mutable double greatest lower bound ;

shared ptr<std::map<double, tangent vector> > cache ;

typedef std::map<double, tangent vector>::const iterator
cache iterator type;

typedef std::map<double, tangent vector>::value type cache value type;

class geodesic callback
{
public:

geodesic callback(const shared ptr<atlas::chart>& c)
: (c)

{
}

optional<vector<2, nvector<double> > > operator()(const double& t
, const vector<2, nvector<double> >& y) const

{
const int dim(y[0].size());

vector<2, nvector<double> > ret(unchanging(y[1]));

optional<ntensor components<3>::type> con(connection(∗ )(y[0]));
if (!con)

return optional<vector<2, nvector<double> > >();

ret[1] ∗= 0.;
for (int a = 0; a < dim; ++a)
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for (int b = 0; b < dim; ++b)
for (int c = 0; c < dim; ++c)

ret[1][a] −= (∗con)[a][b][c] ∗ y[1][b] ∗ y[1][c];

return optional<vector<2, nvector<double> > >(ret);
}

private:
const shared ptr<atlas::chart> ;

};

cache iterator type get initial data(const double& t) const

{
cache iterator type after(cache −>lower bound(t));

if (after == cache −>begin())
return after;

if (after == cache −>end())
return −−cache iterator type(after);

cache iterator type before(after);
−−before;
return abs(before−>first − t) < abs(after−>first − t) ? before : after;

}

optional<cache iterator type> advance(const tangent vector& tangent,
const double& from t, const double& to t, size t recursion = 1)
const

{
const point& origin = tangent.context();

if (recursion > max recursion )
return optional<cache iterator type>();

//cout << ” Geodesic: ” << from t << ” −> ” << to t << endl;

shared ptr<atlas> a(atlas );

for (set<shared ptr<atlas::chart> >::const iterator i = a−>charts.begin
(); i != a−>charts.end(); ++i)

if (origin[∗i] && tangent[∗i])
{
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optional<cache iterator type> result(advance on chart(∗i, ∗origin[∗i
], ∗tangent[∗i], from t, to t));

if (result)
return result;

}

optional<cache iterator type> halfway(advance(tangent, from t, (from t
+ to t) / 2, recursion + 1));

return halfway ? advance((∗halfway)−>second, (from t + to t) / 2, to t
, recursion + 1) : optional<cache iterator type>();

}

optional<cache iterator type> advance on chart(const shared ptr<atlas::
chart>& c, const nvector<double>& x, const nvector<double>& dx
, const double& from t, const double& to t) const

{
bulirsch stoer<vector<2, nvector<double> >, modified midpoint stepper

> solver((geodesic callback(c)), from t, make vector(x, dx));

if (!solver.step(to t))
return optional<cache iterator type>();

point dest(atlas .lock(), c, solver.y()[0]);
tangent vector tv(dest, c, solver.y()[1]);

return optional<cache iterator type>(cache −>insert(cache value type(
to t, tv)).first);

}

const static size t max recursion = 7;

const static double positive infinity = 1e300;
const static double negative infinity = −1e300;

};

A.7 Generalised spherical polar coordinate trans-

formation

template <typename T> inline nvector<T> to polar(const nvector<T>&
x)

{
nvector<T> r(x);
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T cosine(abs(x));
const T zero t(zero(cosine));

r[0] = cosine;
for (size t i(1); i < x.size() − 1; ++i)

if (cosine != zero t)
{

r[i] = asin(x[i − 1] / cosine);
cosine ∗= cos(r[i]);

}
else

r[i] = zero t;

r[x.size() − 1] = atan2(x[x.size() − 2], x[x.size() − 1]);

return r;
}

template <typename T> inline nvector<T> from polar(const nvector<T
>& x)

{
nvector<T> r(x);
T cosine(x[0]);

for (size t i(0); i < x.size() − 1; ++i)
{

r[i] = cosine ∗ sin(x[i + 1]);
cosine ∗= cos(x[i + 1]);

}
r[x.size() − 1] = cosine;

return r;
}

template <typename T> inline nvector<T> from polar with radius(const

nvector<T>& x, const T& radius)
{

nvector<T> x2(x.size() + 1, unchanging(radius));
for (size t i(0); i < x.size(); ++i)

x2[i + 1] = x[i];
return from polar(x2);

}
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template <typename T> inline nvector<T> to polar without radius(const

nvector<T>& x)
{

const nvector<T> polar(to polar(x));
return nvector<T>(polar.size() − 1, polar.begin() + 1);

}

A.8 Connecting geodesic

namespace connecting geodesic detail
{

class geodesic shooter
{
public:

geodesic shooter(const point& a, const point& b, const shared ptr<atlas
::chart>& c)

: a (a),
b (b),
chart (c)
{
}

optional<double> operator()(const nvector<double>& v) const

{
geodesic geo(tangent vector(a , chart , from polar with radius(v, 1.)));
optional<pair<double, double> > r(min euclidean separation(geo, b )

);
return r ? optional<double>(r−>second) : optional<double>();

}

private:
const point& a ;
const point& b ;
const shared ptr<atlas::chart>& chart ;

};
}

inline optional<geodesic> connecting geodesic(const point& a, const point
& b)

{
const shared ptr<atlas::chart>& c(a.valid chart());
connecting geodesic detail::geodesic shooter shooter(a, b, c);
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function<optional<double> (const nvector<double>&)>
shooter function(shooter);

powell minimiser<double, nvector<double> > pm(shooter function);

const nvector<double> va(∗a[c]), vb(∗b[c]);
optional<pair<nvector<double>, double> > r(pm(to polar without radius

(vb − va)));

if (!r)
return optional<geodesic>();

const nvector<double> v(from polar with radius(r−>first, 1.));
const double scale(min euclidean separation(geodesic(tangent vector(a, c, v

)), b)−>first);

return optional<geodesic>(geodesic(tangent vector(a, c, v ∗ scale)));
}

A.9 Connecting null geodesic

namespace connecting null geodesic detail
{

class null geodesic shooter
{
public:

null geodesic shooter(const function<optional<point> (const double&)
>& curve, const point& a, const shared ptr<atlas::chart>& c,
const nvector<nvector<double> >& tangent basis, const double&
null guess, const double& guess)

: guess (make vector(null guess, guess)),
curve (curve),
a (a),
chart (c),
basis(tangent basis)
{
}

optional<double> operator()(const nvector<double>& v) const

{
const nvector<double> v2(from polar with radius(v, 1.));
nvector<double> v3(v2.size() + 1, unchanging(1.));
for (size t i(0); i < v2.size(); ++i)

v3[i + 1] = v2[i];
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geodesic geo(tangent vector(a , chart , basis ∗ v3));
optional<pair<nvector<double>, double> > r(

min euclidean separation(geo, curve , guess ));

if (!r)
return optional<double>();

guess = r−>first;
return optional<double>(r−>second);

}

const nvector<double>& last guess() const

{
return guess ;

}

private:
mutable nvector<double> guess ;
const function<optional<point> (const double&)>& curve ;
const point& a ;
const shared ptr<atlas::chart>& chart ;
const nvector<nvector<double> >& basis;

};
}

inline optional<pair<double, geodesic> > connecting null geodesic(const

function<optional<point> (const double&)>& curve, const point& a,
const double& guess)

{
const static nvector<nvector<double> > polar basis(make vector(

make vector(0.01, 0.), make vector(0., 0.01)));

const shared ptr<atlas::chart>& c(a.valid chart());
const nvector<nvector<double> > basis(orthonormal tangent basis(a, c));

const point b(∗curve(guess));

const nvector<double> va(∗a[c]), vb(∗b[c]);
const nvector<double> spacelike(vb.size() − 1, (inverse(basis) ∗ (vb − va)

).begin() + 1);
const nvector<double> spacelike polar(to polar without radius(spacelike));
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const connecting null geodesic detail::null geodesic shooter shooter(curve, a
, c, basis, abs(spacelike), guess);

const function<optional<double> (const nvector<double>&)>
shooter function(shooter);

const powell minimiser<double, nvector<double> > pm(shooter function)
;

optional<pair<nvector<double>, double> > r(pm(spacelike polar,
polar basis));

if (!r)
return optional<pair<double, geodesic> >();

const nvector<double> vr(from polar with radius(r−>first, 1.));
nvector<double> vr2(vr.size() + 1, unchanging(1.));
for (size t i(0); i < vr.size(); ++i)

vr2[i + 1] = vr[i];
const nvector<double> solution(basis ∗ vr2);

const nvector<double> scales(min euclidean separation(geodesic(
tangent vector(a, c, solution)), curve, shooter.last guess())−>first);

return optional<pair<double, geodesic> >(make pair(scales[1], geodesic(
tangent vector(a, c, solution ∗ scales[0]))));

}

inline optional<pair<double, geodesic> > connecting null geodesic(const

point& a, const function<optional<point> (const double&)>& curve,
const double& guess = 0.)

{
return connecting null geodesic(curve, a, guess);

}



Appendix B

Numerical experiment code

listing

This appendix lists the code, written by the author, for the numerical ex-
periment described in Chapter 8. The code fragments listed in that chapter
were adapted from portions of this code; they were simplified for clarity, and
any code not directly relevant to the discussion was removed.

The comments at the beginning of Appendix A also apply to the code
listed here.

template <class T> class geodesic interferometer : public

numerical experiment<T>
{
public:

explicit geodesic interferometer(const shared ptr<T>& );

private:
void reflect(const double& r, const double& interferometer speed, const

double& arm length);
};

template <class T> class karim interferometer : public

numerical experiment<T>
{
public:

explicit karim interferometer(const shared ptr<T>& );

private:
void reflect(const double& r, const double& interferometer speed, const

double& arm length);
};
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template <class T> inline karim interferometer<T>::karim interferometer(
const shared ptr<T>& )

: numerical experiment<T>( )
{

add distortion(”Spherical to Orthonormal”);
add distortion(”Linear”);
nvector<nvector<double> >& lin(∗dynamic pointer cast<linear distortion

>(distortions.back())−>matrix);
lin[0][0] = 0.;
lin[0][3] = 1.;

reflect(10., 0.2, 3.);
}

template <class T> inline geodesic interferometer<T>::
geodesic interferometer(const shared ptr<T>& )

: numerical experiment<T>( )
{

add distortion(”Spherical to Orthonormal”);
add distortion(”Linear”);
nvector<nvector<double> >& lin(∗dynamic pointer cast<linear distortion

>(distortions.back())−>matrix);
lin[0][0] = 0.;
lin[0][3] = 1.;

reflect(4., 0.2, 2.);
}

template <class T> inline void geodesic interferometer<T>::reflect(const

double& r, const double& interferometer speed, const double&
arm length)

{
const double two arm length(2. ∗ arm length);

const shared ptr<atlas::chart>& c(any chart());

const nvector<double> coordinate direction(make vector(1., 0., 0.,
interferometer speed / r));

const point origin(this−>atlas(), c, make vector(0., r, half pi, half pi));
const tangent vector tangent(normalise(tangent vector(origin, c,

coordinate direction)));
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const cached worldline beam splitter(coordinate line(tangent, c));

cout << endl << ”Beam−splitter origin = ” << ∗origin[c] << ”, tangent
= ” << ∗tangent[c] << ”.” << endl;

cout << ”Interferometer speed: ” << interferometer speed << endl;
cout << ”Interferometer arm length: ” << arm length << ”.” << endl;
output << r << endl;
output << interferometer speed << endl;
output << arm length << endl;

const tangent vector radial mirror direction(orthonormalise(tangent vector(
origin, c, make vector(0., 1., 0., 0.)), tangent));

const tangent vector theta mirror direction(orthonormalise(orthonormalise(
tangent vector(origin, c, make vector(0., 0., 1., 0.)), tangent),
radial mirror direction));

const tangent vector phi mirror direction(orthonormalise(orthonormalise(
orthonormalise(tangent vector(origin, c, make vector(0., 0., 0., 1.)),
tangent), radial mirror direction), theta mirror direction));

const vector<5, tangent vector> directions(make vector(
radial mirror direction, −radial mirror direction, theta mirror direction,
phi mirror direction, −phi mirror direction));

double max affine length(0.);

for (const tangent vector∗ i(directions.begin()); i != directions.end(); ++i)
{

const point mirror origin(∗geodesic(∗i)(arm length));
const tangent vector mirror tangent(normalise(tangent vector(

mirror origin, c, coordinate direction)));
const cached worldline mirror(coordinate line(mirror tangent, c));

const geodesic outward ray(connecting null geodesic(origin, mirror,
arm length)−>second);

const point reflection(∗outward ray(1.));

const pair<double, geodesic> con(∗connecting null geodesic(reflection,
beam splitter, two arm length));

const double& affine length(con.first);
const geodesic& inward ray(con.second);

plot(mirror, 0., affine length);
plot(outward ray, 0., 1.);
plot(inward ray, 0., 1.);
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cout << ” Mirror direction = ” << ∗(∗i)[c] << ”, time experienced
by beam splitter = ” << affine length << ”.” << endl;

cout << ” Outward ray tangent = ” << ∗(∗outward ray.tangent(0.))
[c] << endl;

cout << ” Inward ray tangent = ” << ∗(∗inward ray.tangent(0.))[c
] << endl;

output << affine length << endl;

if (affine length > max affine length)
max affine length = affine length;

}

plot(beam splitter, 0., max affine length);
}

template <class T> inline void karim interferometer<T>::reflect(const

double& r, const double& interferometer speed, const double&
arm length)

{
const double two arm length(2. ∗ arm length);

const shared ptr<atlas::chart>& c(any chart());

const nvector<double> coordinate direction(make vector(1., 0., 0.,
interferometer speed / r));

const point origin(this−>atlas(), c, make vector(0., r, half pi, half pi));
const tangent vector tangent(normalise(tangent vector(origin, c,

coordinate direction)));
const cached worldline beam splitter(coordinate line(tangent, c));

cout << endl << ”Beam−splitter origin: ” << ∗origin[c] << ”, tangent:
” << ∗tangent[c] << ”.” << endl;

cout << ”Interferometer speed: ” << interferometer speed << endl;
cout << ”Interferometer arm length: ” << arm length << ”.” << endl;
output << r << endl;
output << interferometer speed << endl;
output << arm length << endl;

const tangent vector radial mirror direction(origin, c, make vector
(0., 1., 0., 0.));

const tangent vector theta mirror direction(origin, c, make vector
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(0., 0., 1. / r, 0.));
const tangent vector phi mirror direction(origin, c, make vector

(0., 0., 0., 1. / r));
const vector<5, tangent vector> directions(make vector(

radial mirror direction, −radial mirror direction, theta mirror direction,
phi mirror direction, −phi mirror direction));

double max affine length(0.);

for (const tangent vector∗ i(directions.begin()); i != directions.end(); ++i)
{

const point mirror origin(∗coordinate line(∗i, c)(arm length));
const tangent vector mirror tangent(normalise(tangent vector(

mirror origin, c, coordinate direction)));
const cached worldline mirror(coordinate line(mirror tangent, c));

const geodesic outward ray(connecting null geodesic(origin, mirror,
arm length)−>second);

const point reflection(∗outward ray(1.));

const pair<double, geodesic> con(∗connecting null geodesic(reflection,
beam splitter, two arm length));

const double& affine length(con.first);
const geodesic& inward ray(con.second);

plot(mirror, 0., affine length);
plot(outward ray, 0., 1.);
plot(inward ray, 0., 1.);

cout << ” Mirror direction = ” << ∗(∗i)[c] << ”, time experienced
by beam splitter = ” << affine length << ”.” << endl;

cout << ” Outward ray tangent = ” << ∗(∗outward ray.tangent(0.))
[c] << endl;

cout << ” Inward ray tangent = ” << ∗(∗inward ray.tangent(0.))[c
] << endl;

output << affine length << endl;

if (affine length > max affine length)
max affine length = affine length;

}

plot(beam splitter, 0., max affine length);
}




