
TR-CS-03-02

A Garbage Collection Design and
Bakeoff in JMTk: An Efficient

Extensible Java Memory Management
Toolkit

Stephen M Blackburn, Perry Cheng, and
Kathryn S McKinley

September 2003

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports
Department of Computer Science
Faculty of Engineering and Information Technology
The Australian National University
Canberra ACT 0200
Australia

or send email to:

Technical.Reports@cs.anu.edu.au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs.anu.edu.au/techreports/

Recent reports in this series:

TR-CS-03-01 Thomas A. O’Callaghan, James Popple, and Eric McCreath.
Building and testing the SHYSTER-MYCIN hybrid legal expert
system. May 2003.

TR-CS-02-06 Stephen M Blackburn and Kathryn S McKinley. Fast garbage
collection without a long wait. November 2002.

TR-CS-02-05 Peter Christen and Tim Churches. Febrl - freely extensible
biomedical record linkage. October 2002.

TR-CS-02-04 John N. Zigman and Ramesh Sankaranarayana. dJVM - a
distributed JVM on a cluster. September 2002.

TR-CS-02-03 Adam Czezowski and Peter Christen. How fast is
-fast? Performance analysis of KDD applications using hardware
performance counters on UltraSPARC-III. September 2002.

TR-CS-02-02 Bill Clarke, Adam Czezowski, and Peter Strazdins.
Implementation aspects of a SPARC V9 complete machine
simulator. February 2002.

A Garbage Collection Design and Bakeoff in JMTk: An
Efficient Extensible Java Memory Management Toolkit

Stephen M Blackburn
�

Department of Computer Science
Australian National University

Canberra, ACT, 0200, Australia
Steve.Blackburn@cs.anu.edu.au

Perry Cheng
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY, 10598, USA

perryche@us.ibm.com

Kathryn S McKinley
Department of Computer Sciences

University of Texas at Austin
Austin, TX, 78712, USA
mckinley@cs.utexas.edu

ABSTRACT
In this paper, we describe the design, implementation, and evalua-
tion of a new garbage collection framework called the Java Memory
Management Toolkit (JMTk). The goals of JMTk are to provide an
efficient, composable, extensible, and portable toolkit for quickly
building and evaluating new and existing garbage collection algo-
rithms. Our design clearly demarcates the external interface be-
tween the collector and the compiler for portability. For extensibil-
ity, JMTk provides a selection of allocators, garbage identification,
collection, pointer tracking, and other mechanisms that are efficient
and that a wide variety garbage collection algorithms can compose
and share. For instance, our mark-sweep and reference counting
collectors share the free list implementation. We perform a compre-
hensive and detailed study of collectors including copying, mark-
sweep, reference counting, copying generational, and hybrid gener-
ational collectors using JMTk in the Jikes RVM on a uniprocessor.
We find that the performance of collectors in JMTk is comparable
to the highly tuned original Jikes collectors. In a study of full heap
and generational collectors, we confirm the significant benefits of
generational collectors on a wide variety of heap sizes, and reveal
that on very small heaps, collection time is enormous. These exper-
iments add other new insights, such as firmly establishing that for
a variety of generational collectors, a variable-size nursery which
is allowed to grow to fill all the space not in use by the older gen-
eration performs better than a fixed-size nursery. We thus show the
utility of extensive collector comparisons and establish the benefits
of our design.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Algorithms

�

This work is supported by NSF ITR grant CCR-0085792, and
DARPA grant F33615-01-C-1892. Any opinions, findings, con-
clusions, or recommendations expressed in this material are the au-
thors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submission to OOPSLA-2003, October, 2003, Anaheim, CA.
Copyright 2003 ACM 0-89791-88-6/97/05 ...$5.00.

Keywords
mark-sweep, copying, reference counting, generational, hybrid, Java

1. Introduction
Programmers are embracing high-level languages such as Java and
C# which require automatic memory management, i.e., garbage
collection. Although, researchers have studied garbage collection
for a long time [3, 25, 26, 31, 35, 41], this new reliance on it and the
growing effects of locality, has resulted in a number of new collec-
tion algorithms and optimizations [11, 12, 16, 34, 40], as well as re-
consideration of some old ones [10]. Most collectors are built from
scratch without the benefits of shared, extensible components, and
as a result, performance comparisons across a range of approaches
is problematic and rare [5, 8]. Although a few researchers have
developed garbage collector toolkits [16, 27, 28], these toolkits in-
clude only copying collectors but not free lists, and are unable to
compose disparate policies and mechanisms.

This paper presents the design, implementation, and evaluation
of JMTk, a Java Memory Management Toolkit. Our goal was to
combine modularity and appropriate abstractions in an infrastruc-
ture that made it fast and easy to build efficient new and existing
collector algorithms in a variety of settings. To attain portabil-
ity, JMTk defines a clean interface between the compiler and the
collector. (We do not evaluate portability here, but are pursuing a
validation.) For efficiency and composability, JMTk implements a
variety of shared collector mechanisms and utilities, such as root
enumeration and work queues. In addition, collectors define a pol-
icy using the appropriate shared underlying space organization for
allocation (copying contiguous allocation or free lists), dead object
identification, reclamation, and pointer tracking. JMTk composes
policies to build hybrid collectors, such as a generational copying
nursery and mark-sweep old space.

We use this infrastructure to build a wide variety of copying,
mark-sweep, reference counting, copying generational, and hybrid
generational collectors in the Jikes RVM, which we describe in de-
tail in Section 4. Although a few experimental studies of garbage
collection precede this one [5, 16, 39], ours is unique in its variety
of collectors, its thoroughness of heap size exploration, detailed
performance measurements, and its apples-to-apples nature.

In the next section, we compare our framework to other frame-
works, including explicit memory management toolkits. We then
present our framework design, the individual collectors, and some
implementation details. Using the SPEC JVM Benchmarks, we
compare our implementations of a copying semi-space and a mark-
sweep collector to those in the Jikes RVM, since these collectors
are the most highly tuned in the Jikes RVM. We include results for
garbage collection time, total time, mutator time, and the number of
collections. JMTk collectors perform similarly to these collectors.

JMTk makes much better dynamic use of space, but they allocate
and collect faster. The former effect is more dominate and thus
JMTk out performs the equivalent collectors in the Jikes RVM, but
we can still improve our implementations. These results show some
of the advantages of our design.

We next compare JMTk’s full heap collectors: copying semi-
space, mark-sweep, semi-space/mark-sweep (a new full heap hy-
brid), and reference counting. The mark-sweep collector does bet-
ter than copying on small heap sizes, but worse on large ones be-
cause the memory efficiency tradeoffs vary with memory pressure.
All the full heap collectors perform much worse than all of the gen-
erational collectors. For small heaps, pure copying generational is
worse than a generational hybrid with a copying nursery and mark-
sweep old space, but they are indistinguishable in large heaps. Both
perform better if they allow the nursery to fill all available free
space, rather than using our choice of fixed-size nursery. These
results give a taste for the benefits of JMTk as an experimental
platform, and show that JMTk has met the design goals.

2. Related Work
This section compares JMTk with several previous garbage col-
lection and memory management toolkits. We also briefly discuss
how this paper goes beyond or complements other garbage collec-
tion algorithm studies.

2.1 Memory Management Frameworks
The UMass Language Independent GC Toolkit was the first garbage
collection toolkit to tease apart the language and collector inter-
face in order to build portable garbage collectors [27]. Systems
for Smalltalk, Modula-3, Cecil, and Java [23] used the UMass GC
Toolkit. It provided generational copying collectors, and managed
memory in fixed-size blocks. It managed each large object directly,
using a list associated with each generation. It did not include free
lists. Its design was not general enough to include recent copying
collectors such as Older-First [40] nor Beltway [16].

These defects led to the design and implementation of GCTk, a
more general Garbage Collection Toolkit for Java [16, 18, 39]. This
framework provided a single shared implementation of key func-
tions such as scanning and remembered sets. In addition, GCTk im-
plemented copying age-based collectors by separating the collec-
tion increment from the heap position [16, 39], but it did not include
free-list managers, nor could it mix and match policies. JMTk im-
proves upon GCTk in a number of ways. It creates a cleaner, and we
believe portable language/compiler interface. JMTk uses a com-
posable design such that we can easily mix and match policies and
mechanisms. It also adds free-list memory managers (e.g., mark-
sweep and reference counting), a large object space, the composi-
tion of copying and free-list spaces, and dynamic flexible bound-
aries between different allocation spaces.

A few researchers have also built memory management toolk-
its for explicit memory management of C/C++ programs [6, 7, 14,
42]. Heap layers is the most general and high performance of these
frameworks [14]. It provides multiple and composable heaps. It
achieves the performance of existing custom and general-purpose
allocators in a flexible, reusable framework. It attains this combi-
nation through the use of mixins [20]. Our framework could also
probably benefit from mixins that statically express multiple pos-
sible class hierarchies, but we have not investigated it here. Ex-
plicit memory managers for C/C++ interact with the program only
through the malloc and free interface. JMTk has a more complex
interface since it also provides functionality such as write barriers
and address consistency. C/C++ also limits the manager to free
lists, since objects cannot move. The Customizable Memory Man-

agement (CMM) framework focuses on automatically collecting
these heaps, but uses virtual method calls, thus sacrificing perfor-
mance [6, 7]. These frameworks thus are not and need not be as
general as JMTk.

2.2 Experimental Garbage Collection Evalu-
ation

Many researchers have evaluated a range of memory allocators for
C/C++ programs [13, 14, 15, 19, 24, 44]. For example, Attanasio
et al. [5], evaluate different parallel collectors on SPECjbb, focus-
ing on the effect of parallelism on throughput and heap size when
running at 8 processors. They concluded that mark-sweep and gen-
erational mark-sweep with a fixed-size nursery (16 MB or 64 MB)
were both equal and the best among all the collectors. Our data
shows that the generational collectors are superior but only if one
uses a variable-size nursery.

To our knowledge, very few studies have quantitative compar-
isons of uniprocessor garbage collection algorithms [16, 28, 29,
39], and these studies evaluate various copying and generational
collectors. Our results on copying collectors are similar to theirs,
but they do not compare with free-list mark-sweep or reference
counting collectors. Only a few studies consider the effect of heap
size on performance [16, 21, 32, 39], and as we show here, garbage
collectors are very sensitive to heap size, and in particular to tight
heaps. Hicks et al. [29] and others [17, 30] measure detailed, spe-
cific mechanism costs, but do not consider a variety of collection
algorithms. Our work thus stands out as the first thorough evalua-
tion of a variety of different garbage collection allocation, collec-
tion, and pointer tracking mechanisms. The comprehensiveness of
our approach reveals new insights, such as the most space efficient
collection algorithms and the performance tradeoffs each strategy
makes.

3. Design
This section describes the JMTk design and implementation. It first
presents the language and collector interfaces, and the mechanisms
for changing from a mutation phase to collection phase. We present
our object model and the mechanisms for enumerating roots and
pointers. We also discuss how we dynamically manage virtual and
physical memory resources. All of these components are shared
among all of the JMTk collectors. We then show how we used an
object oriented design to make collector components reusable and
composable without sacrificing performance.

3.1 Collector Interface
Since one of JMTk’s goal is to be portable, the interface between it
and the rest of the virtual machine must be as clear and thin as pos-
sible without compromising on design flexibility. Here, we present
the most important parts of the interface.

3.1.1 Address Types and Unsafe Operations
At first blush, current type theory does not permit us to express
a general garbage collector in a generic type-safe language which
precludes us from implementing JMTk in pure Java. In JMTk, we
choose to extend the language with certain types and functions that,
in general, are unsafe. In particular, JMTk expects the runtime sys-
tem to provide three special types. The first type, Address, cor-
responds to a hardware-specific notion of memory addresses. The
second type is Offset which expresses the distance between two
addresses. Finally, a value of type Word corresponds to the value
returned by dereferencing an address. Not surprisingly, these types
provide methods that allow pointer arithmetic, pointer comparison,
memory reads and writes including atomic operations, and casts. It

is through these methods that the collector performs its lowest-level
operations, such as allocating and moving objects.

Since Java does not provide extensible primitive types, these spe-
cial types must be written as Java classes. However, we rely on the
underlying VM to treat these types specially. The intended behav-
ior is for values of such types to be unboxed such that operations
on these types never result in allocation.

3.1.2 Scheduler
In JMTk, the application threads perform memory allocation but
dedicated collection threads perform collection. The transfer of
control is mediated through an interface between JMTk and the
scheduler. When an allocation fails due to memory exhaustion, the
JMTk allocation code calls a scheduler method which suspends fur-
ther operation on that thread and notifies all other threads to stop
execution at the next garabage collection safe-point in which the
application threads are not for example, in the middle of an allo-
cation or calling sequence. When all threads have reached a con-
sistent state, the scheduler wakes up all the collection threads to
perform a collection.

3.2 Roots and Object Model
Garbage collection typically begins at the root set which consists of
global variables and local variables residing on the threads’ stacks.
JMTk assumes that the runtime system provides a method for ob-
taining all roots. In an adaptive system, where the compiler dy-
namically generates code, code can die before the program exits,
and the garabage collector must be able to reclaim it. In general,
the interface must cope with the possibility that the collector moves
code. Since return addresses are interior pointers into code objects,
the root collection interface must handle this special case. In gen-
eral, the language side must provide an interface to obtain the base
object of an interior pointer. JMTk’s interface insists that interior
references be paired with their base object. The interface also per-
mits parallel root enumeration.

Likewise, JMTk makes few assumptions about the object model
but instead relies on an interface to query about object size and the
location of pointer fields within an object. Additionally, JMTk can
request a space in the object model to store per-object GC state such
as forwarding pointers and color bits. JMTk assume that objects are
contiguous.

3.2.1 Allocation
To support fast allocation, we use a compiler pragma to force inlin-
ing of unsynchronized allocation sequences for the usual case (the
sequence is a function of the allocation policy). This requirement
coupled with the need to prevent preemption during allocation, re-
quires compliance on the part of the runtime system. Using Java’s
throws mechanism, JMTk notates which methods should not be in-
terrupted by the scheduler. Additionally, a collector may choose to
allocate object in different regions depending on a static property
of the allocation such as object type, object size, and allocation
site. The interface provides all statically known information to the
optimizing compiler so it can remove as many unnecessary run-
time tests as possible. Finally, JMTk is designed to interact well
with an optimizing compiler and expects the compiler to perform
constant propagation and to provide a mechanism for indicating
exactly when or when not to inline.

3.3 Mechanisms
In this section, we discuss the core components of JMTk. The sys-
tem is designed to take advantage of object-oriented design with
consideration given to performance. For example, we eschew the

use virtual function calls in frequent execution paths by using static
or final methods.

3.3.1 Utilities
JMTk provides a number of shared helper classes including locks
which will synchronize memory, an important property on hard-
ware with a relaxed memory model. JMTk provides special bar-
riers to synchronize collection threads between different phases of
collection. Finally, it provides work queues to manage the working
set of objects for the collector to trace. Local variants provide fast
access to the owning collector thread. In case of queue overflow or
underflow, we use a global shared queue to redistribute work. All
of these meta-data structures live in the heap.

3.3.2 Memory Resources
JMTk distinguishes between physical and virtual memory resources
in order to dynamically choose the right mixture of allocation strat-
egy. Physical resources track the amount of memory that actually
contains application data. We divide the physical resources into
blocks for convenience and flexibility. For instance, the blocks in
the free-list allocator contain only objects of a single size class and
their meta-data. In contrast, virtual memory resources track which
portion of its virtual memory ranges the allocator has mapped and
are in use. A simple example of a virtual memory resource is a
monotone virtual memory resource that supports contiguous alloca-
tion with an operation to logically discard all of its contents. This
mechanism implements a copying collector with parallel alloca-
tion. The physical resource can exactly match this virtual resource,
or it can occupy a fraction of the resource, for example, when only
a fraction of the nursery is occupied.

3.3.3 Allocators and Collectors
JMTK distinguishes between local lock-free allocators and globally
synchronized allocators. Since there is no restriction on pointers
between threads, collection threads must always be synchronized.
JMTk supports two types of allocation: bump-pointer allocation
and a free-list style allocation typically for non-moving collectors.
Corresponding to the allocators are the copying space and a mark-
sweep space. Since the free-list allocators support per-object deal-
location, this mechanism supports reference counting as well.

3.4 Plans
At the highest level, every memory management system in JMTk
provides a plan which exports the ability to allocate, a polling mech-
anism to determine when to trigger collection, and a reclamation
facility. To accomplish these functions, a plan must decide what
virtual memory resources it intends to support. At a minimum, it
must have a boot image resource for the runtime boot image (cf.
Section 4.9), an immortal heap to store immortal runtime data, and
an area for storing JMTk’s internal data. For the application data,
the plan must choose one or more additional virtual memory re-
source and the corresponding virtual memory range. Depending on
the algorithm, the collector may specify a write barrier.

Each instance of the plan supports a local allocator which is tied
to a corresponding virtual memory resource. The allocation rou-
tine then dispatches the request to the appropriate allocator. A plan
also specifies an object tracing method for the each virtual mem-
ory resource. To dispatch the correct trace method for an object,
we considered two methods. In the first, the collector performs
an address comparison to determine the virtual memory resource
for the object. The second uses JMTk’s global virtual memory re-
source table to look up the object’s virtual memory resource. The

second method is more scalable with respect to the number of vir-
tual memory resources and is more amenable to discontinuous or
adaptive spaces. Since this dispatch requires an additional memory
load, there might be a performance concern. To determine the cost
of this overhead, we measured both variants using the semi-space
collector, which has the fewest memory resources, on a benchmark
with small average object size (4 fields). The slowdown for table
look up is very small; it slows collection throughput by about 0.8%.

3.4.1 Using Inheritance
The many similarities between different garbage collectors is re-
flected in the use of inheritance in JMTk. For example, the base
virtual memory resource class supports the acquisition and release
of arbitrary memory pages. The monotone subclass imposes con-
tiguous allocation behavior with a single discard operation. By
eliminating the discard operation, we derive an immortal heap. Fi-
nally, the boot image is a special case of the immortal heap where
no further allocation is permitted. In a different hierarchy, the base
plan contains the three mandatory spaces and support for pointer
fields, interior pointers, work management, and command-line op-
tions. Subclassed from the abstract base class is another abstract
class (stop-the-world) which provides support for starting and stop-
ping a collection, root computation, and work queue management.
One of the subclasses of the stop-the-world class is an abstract gen-
erational plan which adds a nursery space, an optional large-object
space, and a write barrier. Finally, one particular concrete subclass
is the generational hybrid mark-sweep collector discussed in the
following section.

4. Collectors
Most of the collectors we use are well established in the litera-
ture [31]. We first give a short description of the collectors that
we implement in JMTk. We then categorize them, discuss each in
detail, and include some additional shared implementation details.

SS: The semi-space collector uses one policy on the whole heap:
bump-pointer allocation with a collector that traces and copies
live objects.

FG: The fixed-size nursery generational collector uses the SS pol-
icy in both a fixed-size nursery and the mature space.

VG: The variable-size nursery generational collector [3] is the same
as FG, except it uses all available memory that is not con-
sumed by the mature space for the nursery.

BW: The Beltway collectors add incrementality and older-first prin-
ciples to generational copying collection.

MS: The mark-sweep collector uses one policy on the whole heap:
a free-list allocator and a collector that traces and marks live
objects, and then reclaims unmarked objects.

FG-MS: The generational mark-sweep hybrid uses a SS policy in
a fixed-size nursery, and a MS policy in the mature space.

VG-MS: This collector is the same as FG-MS, except that it has a
nursery that dynamically adjusts to use all available memory.

VC-MS: This copy mark-sweep hybrid collector is a whole heap
collector. It uses a copying variable-size young space and
MS free list old space. On every collection, it promotes nurs-
ery survivors to the MS space, and traces the MS space. This
collector requires no write barrier.

RC: The deferred reference-counting collector uses a free-list al-
locator and a collector that periodically processes mutator
increments and decrements for heap objects, deleting objects
with a reference count of zero.

We categorize these collectors as follows. FG, VG, FG-MS, and
VG-MS are the generational collectors which divide the heap into
a nursery and an old generation. The whole heap collectors, SS,
MS, VC-MS, and RC, scavenge the entire heap on every collec-
tion. SS, MS, and RC use only one policy. Pure copying collectors,
SS, FG, and VG, only ever copy objects, and the pure non-copying
collectors are RC and MS. Hybrid collectors use multiple policies.
Here we use copying on the young space and a free-list old space
for FG-MS, VG-MS, and VC-MS.

For each collector, we now describe the collection triggering
mechanisms, the write barrier, space overhead, and time overhead.
We fix the heap size in our implementation to ensure fair compar-
isons.

4.1 SS: Semi-Space
A semi-space collector [22] divides the heap into two halves, a to-
space and from-space, reserving half for copying into (since in the
worst case all objects could survive) and half for allocation. It allo-
cates using a bump pointer into the to-space until it is full. It then
swaps to-space and from-space, scans all of the reachable objects
in from-space, copies them to new to-space, and begins allocat-
ing into to-space again. It uses a breadth-first order to traverse all
reachable objects. It does not have a write barrier. Collection time
is proportional to the number of survivors. Its throughput perfor-
mance suffers because it repeatedly copies objects that survive for
a long time, and its responsiveness suffers because it collects the
entire heap every time.

All of the copying collectors (SS, FG, VG, FG-MS, VG-MS,
VC-MS) use the same allocation and collection mechanisms (and
code!) for the young objects (nursery, to-space) with the same re-
sultant space and time overheads.

4.2 FG: Fixed-Size Nursery Generational
The fixed-size nursery two-generation collector uses the SS pol-
icy in both the nursery and old space [35, 41]. Filling the nursery
of size N triggers a collection that copies the survivors to the old
generation. Filling the entire usable heap triggers a whole heap col-
lection in which FG copies survivors back into the old generation.
To collect the nursery independently of the higher generation, FG
tracks pointers from the older generation into the nursery. We use
a standard generational write barrier [17] that tests whether new
pointers cross the nursery address boundary in the old-to-young di-
rection (the nursery resides in high memory). Because object life-
times typically follow the weak-generational hypothesis, it exhibits
good throughput. Its average pause time is also good because it is
proportional to the nursery survivors, but its worst case pause time
is proportional to collecting the entire heap.

4.3 VG: Variable-Size Nursery Generational
The variable-nursery generational copying collector [3, 16] makes
efficient use of memory by allowing the nursery to dynamically use
all available memory. In particular, the nursery can grow to half of
the heap size less the current size of the mature space (half the
heap must always be kept in reserve for copying). When the nurs-
ery hits this limit, it triggers a nursery (minor) collection. When
the older generation is full, it collects the entire heap. If the nursery
size drops below some small fixed threshold, a major collection is
also triggered in order to prevent arbitrarily inefficient minor col-
lections. Its write barrier records old-to-nursery pointers by testing

if the new pointer crosses the nursery address boundary in the old-
to-young direction. As we show in the results section, its through-
put is even better than FG because it utilizes the heap more fully
and has fewer collections, but its average pause times suffer be-
cause the nursery is larger on average. Maximum pause times are
similar to FG.

4.4 BW: Beltway
Beltway collectors are generational copying collectors that divide
the heap into belts of FIFO increments [16]. Belts are analogous
to generations, but more general since they are divided into fixed
size increments that are collected independently. A Beltway con-
figuration X.Y.100 uses a fixed-size nursery which is at most X%
of the heap on the first belt. The second belt consists of multiple
increments, each at most Y% of the total heap, and the last belt can
grow to consume all of the heap. When the heap is full, the col-
lector selects the youngest belt with a full increment, and collects
it. The collector promotes to the end of the next higher belt, and
collects from the front. Beltway configurations use a dynamically
sized copy reserve based on the worst case survival rate of the next
collection (accounting for the potential cascading of collections).
At the worst, the copy reserve is half the heap, but it is typically
much less. Its write barrier is more expensive than a generational
collector since it needs to track pointers between increments as well
as belts. We are only just getting the Beltway framework working
in JMTk, and will report its results in the final paper.

4.5 MS: Mark-Sweep
The mark-sweep collector organizes the heap space using a free
list. Our MS implementation partitions blocks of memory into size
classes [33, 43], and allocates an object into an available slot in
the block of the smallest size class in which it fits. MS allocates
a new block of the requested size class if no slot is available. It
recycles blocks to different size classes only if the block becomes
completely free. It triggers collection when the heap is full. For
each block, MS keeps a linked list of free slots, an inuse bit map
and a mark bit map. During a collection, it scans the reachable
objects, and marks them as reachable by setting the corresponding
bit in the mark bit map. For each block, it identifies dead objects
by an exclusive-or of the mark and inuse bit maps, and links each
free object onto the free list.

Tracing is proportional to the number of live objects, and recla-
mation is proportional to the number of free objects. Thus, collec-
tion is proportional to the total number of objects in the space. The
space requirements include the live objects, bit maps, and fragmen-
tation due to both mismatches between object sizes and size classes
(internal fragmentation), and distribution of live objects among dif-
ferent size classes (external fragmentation). Some MS implemen-
tations occasionally perform mark-sweep-compaction to limit ex-
ternal fragmentation, but we do not explore that option here. Since
MS is a whole heap collector, its maximum pause time is poor and
its performance suffers from repeatedly tracing objects that survive
many collections.

4.6 FG-MS and VG-MS:
Generational Copying/Mark-Sweep

These hybrid generational collectors use a fixed-size (FG-MS) or
a variable-size (VG-MS) nursery and a mark-sweep policy for the
older generation. Both allocate using a bump pointer and when the
nursery fills up, trigger a nursery collection. FG-MS and VG-MS
are use the same code as FG and VG, except that semi-space mature
space is replaced with a MS mature space. Thus the write barrier,
nursery collection, and nursery allocation policies and mechanisms

are identical to those for FG and VG. In both cases, the test for
the heap being full must accommodate space for copying a entire
nursery full of survivors.

If after a nursery collection the heap is full, these collectors per-
form a full heap MS collection over the old space. By exploiting
the generational hypothesis, they mitigate the drawbacks of MS for
throughput and average pause times, but full heap collections drive
up maximum pause times.

4.7 VC-MS: Copying/Mark-Sweep
This whole heap collector works similarly to VG-MS, except that
it has no write barrier, and collects the entire heap every time. It
triggers a collection when the heap is full, copies nursery survivors
to the old mark-sweep space, and reduces the nursery size by the
size of the old space in addition to holding a matching copy reserve.
It is an interesting hybrid because by comparing it with MS and
VG-MS we can pull apart the benefit of copying young objects as
opposed to delaying the collection of the old space.

4.8 RC: Reference Counting
The pure deferred reference-counting collector [25] organizes the
heap using the same free-list allocator as MS. It defers counting
references from the registers, stacks, and class variables. The write
barrier remembers other new pointers to objects in an increment
buffer, and over-written pointers to objects in a decrement buffer.
Our implementation collects after a fixed amount of allocation.
This collector uses Bacon et al.’s trial deletion algorithm to find
dead cycles [12]. Collection time is proportional to the number of
dead objects, but the mutator load is significantly higher than in the
generational collectors or other full heap collectors since it records
one or two entries for every heap pointer store.

4.9 Implementation Details
This section adds a few more implementation details about the
write barriers, allocation paths, size classes, reference counting
header, the large object space, and the boot image.

For all of the generational collectors, we inline the write-barrier
fast path which filters out stores to nursery objects and thus does not
record most pointer updates, i.e., ignores between 93.7% to 99.9%
of pointer stores. The slow path makes the appropriate entries in
the remembered set. Since the write barrier for RC is uncondi-
tional, it is fully inlined but the increment and decrement remem-
bering mechanisms are forced out of line to minimize code bloat
and compiler overhead [17]. The full heap collectors, SS, MS, and
VC-MS, have no write barrier. We also inline the fast path for the
allocation sequence.

For the copying collectors, the inlined sequence consists of in-
crementing a bump pointer and testing it against a limit pointer. If
the test fails (failure rate is typically 0.1%), the allocation sequence
calls an out-of-line routine to acquire another block of memory.

For the free-list collectors (MS and RC), the inline allocation
sequence consists of establishing the size class for the allocation
(which for scalars is statically evaluated using the optimizing com-
piler), and removing a free cell from the appropriate free list, if
such a cell is available. If there is no available free cell, the alloca-
tion path calls the slow path to move to another block, or if there
are no more blocks of that size class, acquire a new block.

We have a two word (8 byte) header for each object which con-
tains a pointer to the TIB (type information block located in the
immortal space), hash bits, lock bits, and GC bits. We can cor-
rectly implement a one word header for MS collectors, but have
not yet done so. Bacon et al. found that a one word header yields
an average of 2-3% improvement in overall execution. [9] The RC

collector has an additional word (4 bytes) in the object headers to
accomodate the reference count.

For our free-list allocators, we use a range of size classes similar
to, though less extensive than, the Lea allocator [33]. We select 51
size classes that attain a worst case internal fragmentation of 1/8.
The size classes are 4 bytes apart from 8 to 63, 8 bytes apart from
64 to 127, 16 bytes apart from 128 to 255, 32 bytes apart from 256
to 511, 256 bytes apart from 512 to 2047, and 1024 bytes apart
from 2048 to 8192. Small, word-aligned objects get an exact fit—
in practice, these are the vast majority of all objects. All objects
8KB or larger get their own block.

JMTk implements the large object space (LOS) as follows. For
pure free-list allocators (MS and RC), it just allocates large objects
directly. For hybrid collectors with a free-list in the older genera-
tion, we allocate (pretenure) objects that are 64K or larger directly
onto the free-list in the old space. For SS, FG, and VG, we add a
MS space only for these objects. During full heap collections, we
scan and collect the large objects. We do not apriori reserve space
for the LOS, but allocate it on demand.

The boot image contains various objects and precompiled classes
necessary for booting the Jikes RVM, including the compiler, class-
loader, the garbage collector, and other essential elements of the
virtual machine. None of the Jikes RVM collectors collect the boot
image objects. Jikes RVM’s tracing collectors (including SS, VG,
FG, MS, VG-MS, and FG-MS) trace through the boot image ob-
jects whenever they perform a full heap collection.

5. Methodology
This section briefly describes the Jikes RVM, our experimental plat-
form, and some key characteristics of our benchmarks.

5.1 The Jikes RVM
We use the Jikes RVM (formerly known as Jalapeño) for our ex-
periments with JMTk. The Jikes RVM is a high-performance VM
written in Java with an aggressive optimizing compiler [1, 2]. The
Jikes RVM offers three compiler choices: baseline, a quick non-
optimizing compiler for all methods; optimizing, an aggressive op-
timizing compiler for all methods; and adaptive, which initially
uses baseline and adaptively recompiles hot methods with the opti-
mizing compiler [4]. The adaptive compiler uses sampling to select
optimization candidates, and thus tends to make slightly different
choices for each execution which are influenced by changes in the
collector and write barrier. This non-determinism can make the
adaptive compiler a difficult platform for any detailed study, but
we use it for this study because it places the most realistic load on
the system. This introduces variations in the load on the garbage
collector because the write barrier for each collector is part of the
runtime system as well as the program and induces both differ-
ent mutator behavior and collector load [17]. The Jikes RVM can
be configured with various levels of ahead-of-time compilation. A
minimal configuration only precompiles those classes essential to
bootstrapping the VM (which does not include the optimizing com-
piler). We turn off assertion checking for our experiments. We use
the configuration which precompiles as much as possible, includ-
ing key libraries and the optimizing compiler (the Fast build-time
configuration).

5.2 Experimental Platform
We perform all of our experiments on 2 GHz Pentium 4, with 8KB
L1 data cache, a 12K L1 instruction cache, a 512KB unified L2
on-chip cache, and 1GB of memory running Linux 2.4.18. We run
each benchmark at a particular parameter setting five times and use
the fastest of these. The variation between runs is low, and we

JMTk Watson
min

heap alloc alloc/ immortal large SS MS
benchmark collector MB MB min MB MB MB MB
compress VG-MS 13 158 12 1 13 4 3
jess VC-MS 6 287 48 1 6 8 7
raytrace VC-MS 11 154 14 1 6 29 9
db VC-MS 17 93 5 1 7 20 13
javac VC-MS 18 253 14 1 6 24 23
mpegaudio VC-MS 7 42 6 1 6 6 5
mtrt VG-MS 19 164 9 1 6 38 12
jack VG-MS 12 257 21 1 6 7 9
pseudojbb VG-MS 7 323 46 1 7 49

Table 1: Benchmark Characteristics Using the FastAdaptive
Compiler

believe this number is the least disturbed by other system factors
and the natural variability of the adaptive compiler.

5.3 Benchmarks
Table 1 shows key characteristics of each of our benchmarks. We
use seven taken from the SPEC JVM benchmarks, and pseudo-
jbb, a slightly modified variant of SPEC JBB2000 [36, 37]. Rather
than running for a fixed time and measuring transaction throughput,
pseudojbb executes a fixed number of transactions. This modifi-
cation makes it possible to compare running times under a fixed
garbage collection load. The collector column indicates which col-
lector works in the smallest heap, and that heap size is listed in the
min heap column. The minimum heap size is inclusive of the mem-
ory requirements of the adaptive system compiling the benchmark.
Notice VC-MS generally executes in the tightest heap, however, it
never performs particularly well. The alloc column in Table 1 indi-
cates the total number of bytes allocated for each benchmark. The
fourth column indicates the ratio between total allocation and MS
minimum heap size, giving an indication of the garbage collection
load for each benchmark. This ratio shows these are reasonable,
but not great benchmarks for garbage collection experiments. Real
Java benchmarks with ratios greater than 100 would be welcome.
Section 7 describes remaining columns in the table.

6. Results
In the following sections, we first compare our implementations of
SS, and MS with the original Jikes RVM collectors called the Wat-
son collectors to illustrate that our collector design has not come at
a performance penalty. Our measurements include garbage collec-
tion, mutator, and total time. The results show that the flexibility
of dynamically partitioning the heap and reuse of highly optimized
components can result in performance improvements for JMTk as
compared to the highly tuned Watson collectors.

We then systematically compare JMTk collectors, beginning with
the full heap collectors: SS, MS, VC-MS, and RC. We find, for ex-
ample, that SS performs worse than MS in a tight heap because
of its need for a copy reserve that causes more frequent collec-
tions. In addition, the mutator cost of RC causes it to perform much
more poorly than the other benchmarks. For these benchmarks, the
generational collectors significantly outperform the full heap col-
lectors on all metrics. Section 9 presents the performance results
for the generational collectors: FG, VG, FG-MS, and VG-MS. We
find that the flexibly-sized nursery attains better performance than a
fixed-size nursery for both a copying and MS older generation, and
that for our benchmarks, VG and VG-MS perform very similarly.

7. JMTk versus Watson Collectors
This section compares the SS, MS, and new-MS (an improved, but
in-progress MS collector described below) JMTk collectors to the

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

500

1000

1500

2000

2500

3000

3500

4000

20MB 30MB 40MB 50MB 60MB 70MB 80MB
N

or
m

al
iz

ed
 g

ct
im

e

gc
tim

e

Heap size relative to minimum heap size

Heap size

MS-new
MS
SS

Watson MS
Watson SS

(a) GC time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

9500

10000

10500

11000

11500

12000

12500

13000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

MS-new
MS
SS

Watson MS
Watson SS

(b) Mutator time

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

12000

14000

16000

18000

20000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

MS-new
MS
SS

Watson MS
Watson SS

(c) Total time

Figure 1: JMTk vs. the Watson Collectors

equivalent well-tuned Watson collectors, Watson-SS and Watson-
MS. Although the collectors are equivalent in spirit, a few differ-
ences in the implementations account for the variations that appear
in Figure 1. These results are collected as the heap size varies from
the minimum shown in Table 1 to 6 times the minimum at 32 dif-
ferent points. We use the geometric mean over our benchmarks
and measure garbage collection, mutator (which includes alloca-
tion and adaptive compilation time, as well as the application), and

total time. We normalize these graphs to the best performing col-
lector in our study which is almost always one of the generational
collectors. We also measure the number of collections for all our
experiments, but do not present the graphs since the collection time
is essentially perfectly predicted by the number of collections.

A few differences in the monolithic implementations of the Wat-
son collectors are as follows. Both JMTk and Watson directly man-
age objects larger than 8 KB with a large object space (LOS). These
collectors trace the LOS on every collection. Watson’s LOS is a
first-fit algorithm with page alignment. It does not maintain a free
list. On a request, it scans through the LOS memory until it finds
sufficient contiguous free pages. We use a free list (see Section 4.9).

The Watson collectors statically divide the heap into small, large,
and immortal objects based on command line parameters. We ex-
perimentally determined the smallest possible parameter for the
large and immortal space to maximize the amount available for
other (most) objects for these experiments. These settings enable
us to make fair comparisons by giving the Watson collectors the
best possible command-line parameters, and are presented in Ta-
ble 1. Comparing their total to the JMTk minimum, shows that
this feature alone is costly in space. A command line parameter
sets the total heap size in JMTk, and then JMTk dynamically de-
termines the divisions into the three spaces (and others depending
on the collector) based on program allocation. JMTk thus enjoys
a space advantage during the periods that the program is not using
the maximum in the large and immortal space, since the Watson
partitions are statically sized.

Algorithmically, the SS and Watson-SS are essentially the same.
Their implementations of the inlined allocation sequence are also
very similar and they thus perform very similarly with respect to
mutator performance, as shown in Figure 1(b). Figure 1(a) and
(c) show that the collection phase and consequently the total time
for SS is actually slightly faster than the Watson-SS. Currently,
the scan and copy implementation in JMTk is slower than in the
Watson collectors as measured by the number of bytes scanned or
copied per second by about 5%. However, because JMTk only al-
locates space to large objects when they are in use, it can and does
use this space when it is available for other heap objects, and this
feature results in fewer collections and the performance advantage
we see for SS. We expect that most of this time can be recovered
given sufficient tuning so that JMTk’s overall advantage will be
even greater.

Algorithmically, the Watson MS collector is similar to MS and
new-MS, but it uses different size classes. It uses power of two,
except below 32 bytes it adds a few: 8, 12, 16, 20, 32, 64, 128, ...,
8192, with worst case internal fragmentation of 1

�
2 of the heap.

Since most objects are less than 64, this worst case is unlikely.
However our size classes get a perfect fit on all objects less than 64
bytes and have a worst case fragmentation of 1

�
8 (cf. Section 4.9).

Because the Watson-MS collector has a one word header, it enjoys
a runtime advantage of on average 2% for our benchmarks over
the two word header in JMTk. (We have not yet implemented this
optimization in JMTk.)

Another optimization Watson-MS implements is lazy sweeping,
which sets the unused bits, but it does not actually weave through
free memory constructing the free list for a block until an alloca-
tion fits in the block. This optimization eliminates the reclamation
of free objects at collection time which reduces collector process-
ing time to a function of the live data, and eliminates accesses that
are likely to be costly due to poor locality until the mutator would
have used them anyway. This feature and a more streamlined al-
location path are the major differences between MS and new-MS.
This difference accounts for the collection time advantage new-MS

enjoys over MS, since they perform exactly the same number of
collections.

We very recently got new-MS working which is why all of the
other experiments use MS as the base implementation for the hy-
brids. For the final paper, we plan to use new-MS in all our results.

Even with these drawbacks, Figure 1(a) and (c) illustrates that
both MS and new-MS outperform Watson-MS on collector and to-
tal time. We believe that the dynamic specification of the large
object space and to a lesser extent the space efficiency of our size
classes are the reasons. We do have two space size disadvantages:
(1) JMTk headers are twice as big, and (2) all the meta-data for
JMTk lives in the heap, whereas Watson-MS puts the meta-data
in the boot image. Our measurements of the number of collec-
tions confirms the heap occupancy explanation: MS and new-MS
generally perform fewer collections than Watson-MS, except in
large heaps where all of the collectors perform very few collections.
Fewer full heap collections imply that MS is more effectively using
its space and the dominate effect in a small heap is the dynamic
partitioning of the heap by JMTk.

One interesting point is that MS and new-MS achieve this result
even though their allocation paths are not as highly optimized as
Watson-MS as can be seen by the significantly worse mutator per-
formance in Figure 1(b). We also confirmed this result in micro-
measurements with no compiler activity. When the number of col-
lections is very small in larger heaps, then this effect dominates and
Watson-MS slightly outperforms MS on total time. In a moderate
to small heap, MS and new-MS outperform Watson-MS as shown
in Figure 1(c).

These results show that our basic mechanisms can probably be
further optimized, but that our dynamic algorithms for heap par-
titioning results in well performing collectors. Now we further
explore the tradeoffs that different memory management policies
make and how they exploit object demographics.

8. Full Heap Collector Bakeoff
This section compares the JMTk full-heap (i.e., non-generational)
collectors: SS, MS, VC-MS, and RC. As before, we compare the
collection, mutator, and total time across a range of heap sizes for
the collectors, and normalize to the best performing collector for
the benchmark which is usually a generational collector. Figure
2 gives the geometric mean of the normalized execution times for
all benchmarks, and Figures 5, 6, and 7 show garbage collection,
mutator, and total time for the individual programs.

The worst performing collector on all metrics is RC in which
we collect every 4MB of allocation. Mutator overhead is much
worse because every pointer store results in a buffered increment
and decrement. The collector time is not as low as one might ex-
pect, but is consistent with Bacon et al. [10] in which they need a
separate processor to tolerate reference counting and the latency of
the trial deletion phase to detect dead cycles. Trial deletion traces
objects for which a decrement does not result in a zero reference
count, and is expensive.

Figure 2(a) shows that MS has the best collection times. It achieves
this result because it uses space more efficiently than SS and VC-
MS. Both SS and VC-MS require copy reserve space. The copy
reserve for SS is half the heap, and for VC-MS, it is equivalent
to the dynamically-sized nursery. In the whole heap context, this
extra space overhead causes more frequent collections and is the
reason MS is better since it utilizes more of the heap and collects
less frequently in our measurements. SS and VC-MS have similar
collection times in general with VC-MS slightly outperforming SS
when the heap size is less than 2.5 since it does not need a copy
reserve for long-lived objects and at larger heaps this advantage is

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

5000

10000

15000

20000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(a) GC time

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

10000

11000

12000

13000

14000

15000

16000

17000

18000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(b) Mutator time

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

15000

20000

25000

30000

35000

40000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(c) Total time

Figure 2: Full Heap Collectors

less important. Asymptotically at large heap sizes, the MS collec-
tor outperforms SS by 40% and SS outperforms VC-MS by about
15%. At the other extreme with heap sizes around 2, the MS collec-
tor is twice as fast as either SS and VC-MS due to lower collection
frequency.

On the other hand, Figure 2(b) shows that both SS and VC-MS
have faster mutation time than MS by about 20-30%. The advan-
tage is consistent across all heap sizes. Bump-pointer allocation

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

12000

14000

16000

18000

20000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
SS

Figure 3: Generational versus Full Heap Collectors

is simply the fastest possible at execution time. Finding the right
size block, and updating the inuse and free list clearly has a non-
trivial cost. There is a modest degradation in mutator performance
of about 3% for SS and VC-MS as we move from a heap size of 2 to
6 for 227 mtrt, 202 jess, and 222 mpegaudio (see Figure 6).
The large heap size is degrading locality.

Finally, we consider overall performance time in Figure 2(c).
On the whole SS and VC-MS are similar with the latter having
an advantage at the smallest heap size and the former an advantage
that grows to 5% at large heap sizes. For instance, VC-MS per-
forms much better in the smallest heap on 209 db, 213 javac,
and 205 raytrace as shown in Figure 7. The difference between
SS and MS is more significant. Below a heap size of about 2.75,
the time spent in GC dominates and MS is arbitrarily faster since
the survival rate in a full heap collection is low. As the heap size
varies from 3 to 6 though, SS’s advantage grows from 3% to 9%
over MS because its faster allocation time starts to dominate total
performance.

The tradeoff between SS and MS is between better locality and
less frequent garbage collections. Since the effect of garbage col-
lection time depends on heap sizes, the overall advantage goes to
MS at small heaps and to SS at larger heaps. Overall, VC-MS does
not outperform either SS nor MS.

When we look at the collection times of the individual bench-
marks, the geometric mean predicts individual program performance.
The lone exception is pseudojbb where SS is occasionally faster
than VC-MS. Unlike collection time, the effect of collector pol-
icy on mutator times is dramatic on all but 201 compress and
222 mpegaudio which mainly allocate large objects. Of the re-

maining benchmarks, MS is worse than SS and VC-MS by about
15% to 35%. Finally, when we look at total time, the collector
policy has little effect on 201 compress, 222 mpegaudio, and
213 javac. Unusually, for the 209 db benchmark, VC-MS, which

is usually like SS, behaves like MS. The advantage of SS and VC-
MS over MS is most significant in 202 jess and 227 mtrt at
20%.

9. Generational Collector Bakeoff
Before comparing the generational collectors in detail, we confirm
that generational collectors, in general, outperform the full-heap
collectors. For this comparison consider Figure 3 which compares
SS and VG-SS. Across the whole range of heap sizes, VG-SS out-
perform SS (the overall non-generational winner) by 20% In par-
ticular, VG-SS wins in every benchmark except for 209 db where
it is worse by up to 5% when the heap size is over 4 times the min-
imum and both collectors perform very few collections.

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

500

1000

1500

2000

2500

3000

3500

4000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(a) GC time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

9500

10000

10500

11000

11500

12000

12500

13000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(b) Mutator time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

10500

11000

11500

12000

12500

13000

13500

14000

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(c) Total time

Figure 4: Generational Heap Collectors

This section compares four generational collectors: VG-SS, FG-
SS, VG-MS, and FG-MS. All collectors use a copying nursery but
the mature spaces are either copying (VG-SS and FG-SS) or mark-
sweep (VG-MS and FG-MS). Within each pair, the first one uses a
variable-size nursery while the second uses a fixed-size nursery.

Figure 4(a) compares collection time for the four generational
collectors. The collection times are stable with the VG-SS and VG-
MS outperforming their fixed-size counterparts. Other research has

established that for these benchmarks, neither a third generation nor
another nursery size changes the relative performance of VG and
FG [16, 38], and we believe the same trend will hold for VG-MS
and FG-MS on different nursery sizes.

On collection time, VG-SS does better than VG-MS when the
heap size is over 3. As usual, the purely copying collectors suffer
from more frequent collections at tight heap sizes due to the space
overhead of a copy reserve (see Section 8). When we examine the
collection times for the individual benchmarks in Figure 8, they
are in agreement with the geometric mean. In some cases, such as
201 compress, there is a distinct staircase effect stemming from

the discrete nature of garbage collection. A few unusual cases are
worth mentioning. In 209 db, the fixed-size nursery spends less
time in collection and the variable-size collectors actually spend
more overall time in collection as the heap size increases. In pseu-
dojbb, the advantage of VG over FG is unusually large at a factor
of four.

Figure 4(b) shows the geometric mean of the mutator time for
the various collectors, and Figure 4(c) shows the total time. These
graphs have spikes that do not really exist for FG-SS and FG-MS,
as shown by the the individual program data in Figures 9 and 10
but result from missing data points that defeat our geometric mean
calculation. We will fix this problem in the final paper.

We see greater variations for mutator time from the different
generational collectors, than for the collection time. No collec-
tor always dominates mutator time as shown in Figure 9. Since all
the collectors use bump-pointer allocation, the variations in muta-
tor time are usually small, as expected. For 209 db, the copying
variants have a 15% advantage over the MS variants which we be-
lieve is due to improved locality with copying. 209 db is very
sensitive to changes in its data layout. This effect is clear but less
pronounced in 227 mtrt at 5%. In 222 mpegaudio, the FG vari-
ants win by 5%. Curiously, in 213 javac, FG-SS is the worst but
FG-MS is the best. Again we see degradations in mutator time as
the heap grows for 213 javac, 222 mpegaudio, and 227 mtrt
when there are not enough collections to pack the live data in the
old space well.

The generational collectors’ overall performance as a function
of heap size (Figure 10) for each benchmark is mainly dictated by
collector time. VG-SS is often the best in large heaps, but VG-MS
does better in tight heaps. The overall results are not encouraging
for constrained memory. Even with generational collectors, mem-
ory management costs are prohibitive. Garbage collection algo-
rithms still trade space for time, and that tradeoff needs to be better
balanced.

10. Future Work
While JMTk has met its initial design goals, there are several areas
where further work is necessary. First, the portability of JMTk has
yet to be tested and the work to port it to another system is ongo-
ing. Second, the parallelism of JMTk is not tested and preliminary
evidence shows that, at least in some cases, the scalability is notice-
ably worse than for the Watson collectors. Third, while the design
of JMTk is general, the code is somewhat immature and further
tuning, including the incorporation of the one-word object model,
is necessary.

11. Conclusion
JMTk is a portable, extensible, composable memory management
toolkit for Java in which similar collector algorithms have perfor-
mance comparable to that of monolithic, hand-tuned collectors.
The flexible design of JMTk makes it simple to perform fair com-
parisons of competing algorithms because they share implemen-

tations of all common components. Once the basic mechanisms
are in place, a collector is easy to implement. We confirm exhaus-
tively, across a range of heap sizes and benchmarks, several empiri-
cal facts that are mostly but not universally held by the community.
First, a copying collector has better locality than a mark-sweep col-
lector so that when the mutator time is dominant (when the heap
size is 2.5 times the minimum heap size), the copying collector
provides better overall performance. Second, generational collec-
tors outperform full-heap collectors by 20% on average and, in the
rare cases (one out of nine benchmark) loses by 2% when the heap
size is larger than 4 times the minimum heap size. Third, among
the generational collectors, the variable-size nursery collectors out-
performs the fixed-size nursery variants by 2%.

12. REFERENCES
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith,

T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and
M. Mergen. Implementing Jalapeño in Java. In Proceedings
of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications, OOPSLA
’99, Denver, Colorado, November 1-5, 1999, volume 34(10)
of ACM SIGPLAN Notices, pages 314–324, Oct. 1999.

[2] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P. Cheng,
J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R.
Russell, V. Sarkar, M. J. Serrano, J. Shepherd, S. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño
virtual machine. IBM System Journal, 39(1):211–238,
February 2000.

[3] A. W. Appel. Simple generational garbage collection and fast
allocation. Software Practice and Experience,
19(2):171–183, 1989.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalapeño JVM. In OOPSLA’00
ACM Conference on Object-Oriented Systems, Languages
and Applications, Minneapolis, MN, USA, October 15-19,
2000, volume 35(10) of ACM SIGPLAN Notices, pages
47–65, October 2000.

[5] C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A
comparative evaluation of parallel garbage collectors. In
Languages and Compilers for Parallel Computing, 14th
International Workshop, LCPC 2001, Cumberland Falls, KY,
USA, August 1-3, 2001, Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[6] G. Attardi and T. Flagella. A customizable memory
management framework. In Proceedings of the USENIX
C++ Conference, Cambridge, Massachussetts, 1994.

[7] G. Attardi, T. Flagella, and P. Iglio. A customizable memory
management framework for C++. Software Practice &
Experience, 28(11):1143–1183, 1998.

[8] H. Azatchi and E. Petrank. Integrating generations with
advanced reference counting garbage collectors. In
International Conference on Compiler Construction,
Warsaw, Poland, Apr. 2003. To Appear.

[9] D. Bacon, S. Fink, and D. Grove. Space- and time-efficient
implementations of the java object model. In Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP), pages 111–132. ACM Press, June 2002.

[10] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and
S. Smith. Java without the coffee breaks: A nonintrusive
multiprocessor garbage collector. In Proceedings of the ACM
SIGPLAN’01 Conference on Programming Languages

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

1000

2000

3000

4000

5000

6000

7000
10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(a) 201 compress

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

1000

2000

3000

4000

5000

6000

7000

8000

9000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(b) 202 jess

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

2000

4000

6000

8000

10000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(c) 205 raytrace

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

2000

4000

6000

8000

10000

12000

14000

16000

20MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB100MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(d) 209 db

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

10000

20000

30000

40000

50000

60000

70000
20MB30MB40MB50MB60MB70MB80MB90MB100MB110MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(e) 213 javac

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

500

1000

1500

2000

2500

3000

3500

10MB 15MB 20MB 25MB 30MB 35MB 40MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(f) 222 mpegaudio

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

2000

4000

6000

8000

10000

12000

14000

20MB 40MB 60MB 80MB 100MB 120MB 140MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(g) 227 mtrt

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

2000

4000

6000

8000

10000

12000

10MB 20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(h) 228 jack

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

5000

10000

15000

20000

25000

40MB60MB80MB100MB120MB140MB160MB180MB200MB220MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(i) pseudojbb

Figure 5: GC Time for Full Heap Collectors

Design and Implementation (PLDI), Snowbird, Utah, May,
2001, volume 36(5), June 2001.

[11] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In
Proceedings of the Thirtith Annual ACM Symposium on the
Principles of Programming Languages, pages 285–294, New
Orleans, LA, Jan. 2003.

[12] D. F. Bacon and V. T. Rajan. Concurrent cycle collection in
reference counted systems. In J. L. Knudsen, editor,
Proceedings of 15th European Conference on
Object-Oriented Programming, ECOOP 2001, Budapest,
Hungary, June 18-22, volume 2072 of Lecture Notes in
Computer Science, pages 207–235. Springer-Verlag, 2001.

[13] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A scalable memory allocator for
multithreaded applications. In Proceedings of the Ninth

International Conference on Architectural Support for
Programming Languages and Operating Systems,
Cambridge, MA, Nov. 2000.

[14] E. D. Berger, B. G. Zorn, and K. S. McKinley. Building
high-performance custom and general-purpose memory
allocators. In Proceedings of the SIGPLAN 2001 Conference
on Programming Language Design and Implementation,
pages 114–124, Salt Lake City, UT, June 2001.

[15] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
custom memory allocation. In ACM Conference Proceedings
on Object–Oriented Programming Systems, Languages, and
Applications, pages 1–12, Seattle, WA, Nov. 2002.

[16] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B.
Moss. Beltway: Getting around garbage collection gridlock.
In Proceedings of SIGPLAN 2002 Conference on
Programming Languages Design and Implementation,

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

10000

11000

12000

13000

14000

15000

16000

17000

18000

10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(a) 201 compress

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

7000

8000

9000

10000

11000

12000
10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(b) 202 jess

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

6000

7000

8000

9000

10000

11000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(c) 205 raytrace

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6
18000

20000

22000

24000

26000

28000

30000

32000

34000

20MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB100MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(d) 209 db

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6
12000

14000

16000

18000

20000

22000

20MB30MB40MB50MB60MB70MB80MB90MB100MB110MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(e) 213 javac

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

12000

14000

16000

18000

20000

10MB 15MB 20MB 25MB 30MB 35MB 40MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(f) 222 mpegaudio

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

7000

8000

9000

10000

11000

12000

20MB 40MB 60MB 80MB 100MB 120MB 140MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(g) 227 mtrt

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6

7000

8000

9000

10000

11000

12000

10MB 20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(h) 228 jack

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6
20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

40MB60MB80MB100MB120MB140MB160MB180MB200MB220MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(i) pseudojbb

Figure 6: Mutator Time for Full Heap Collectors

PLDI’02, Berlin, June, 2002, volume 37(5) of ACM
SIGPLAN Notices, Berlin, Germany, June 2002.

[17] S. M. Blackburn and K. S. McKinley. In or out? Putting
write barriers in their place. In Proceedings of the Third
International Symposium on Memory Management, ISMM
’02, Berlin, Germany, volume 37 of ACM SIGPLAN Notices.
ACM Press, June 2002.

[18] S. M. Blackburn, S. Singhai, M. Hertz, , K. S. McKinley, and
J. E. B. Moss. Pretenuring for java. In ACM Conference
Proceedings on Object–Oriented Programming Systems,
Languages, and Applications, pages 342–352, Tampa, FL,
Oct. 2001. ACM.

[19] H.-J. Boehm. Space efficient conservative garbage collection.
In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 197–206, 1993.

[20] G. Bracha and W. Cook. Mixin-based inheritance. In

N. Meyrowitz, editor, Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages, and
Applications (OOPSLA) / Proceedings of the European
Conference on Object-Oriented Programming (ECOOP),
pages 303–311, Ottawa, Canada, 1990. ACM Press.

[21] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling
garbage collection and heap growth to reduce the execution
time of Java applications. In Proceedings of the 2001 ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2001,
volume 36(11) of ACM SIGPLAN Notices, Tampa, Florida,
USA, Nov. 2001.

[22] C. J. Cheney. A non-recursive list compacting algorithm.
Communications of the ACM, 13(11):677–8, Nov. 1970.

[23] J. Dean, G. DeFouw, D. Grove, V. Litinov, and C. Chambers.
Vortex: An optimizing compiler for object-oriented

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6
10000

15000

20000

25000

30000

35000

40000
10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(a) 201 compress

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

10000

15000

20000

25000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(b) 202 jess

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6
6000

8000

10000

12000

14000

16000

18000

20000

22000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(c) 205 raytrace

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6
20000

30000

40000

50000

60000

70000

20MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB100MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(d) 209 db

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

15000

20000

25000

30000

35000

40000

45000

50000

55000
20MB30MB40MB50MB60MB70MB80MB90MB100MB110MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(e) 213 javac

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

15000

20000

25000

30000

35000

40000

10MB 15MB 20MB 25MB 30MB 35MB 40MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(f) 222 mpegaudio

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

8000

10000

12000

14000

16000

18000

20000

22000

24000

20MB 40MB 60MB 80MB 100MB 120MB 140MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(g) 227 mtrt

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

10000

15000

20000

25000

10MB 20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(h) 228 jack

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

30000

40000

50000

60000

70000

80000

40MB60MB80MB100MB120MB140MB160MB180MB200MB220MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VC-MS
MS
RC
SS

(i) pseudojbb

Figure 7: Total Time for Full Heap Collectors

languages. In ACM Conference Proceedings on
Object–Oriented Programming Systems, Languages, and
Applications, pages 83–100, San Jose, CA, Oct. 1996.

[24] D. L. Detlefs, A. Dosser, and B. Zorn. Memory allocation
costs in large C and C++ programs. Software Practice &
Experience, 24(6):527–542, June 1994.

[25] L. P. Deutsch and D. G. Bobrow. An efficient incremental
automatic garbage collector. Communications of the ACM,
19(9):522–526, September 1976.

[26] E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and
E. Steffens. On-thefly garbage collection: An exercise in
cooperation. Communications of the ACM, 21(11):966–975,
September 1976.

[27] A. Diwan, J. E. B. Moss, and R. L. Hudson. Compiler
support for garbage collection in a statically typed language.
In Proceedings of the SIGPLAN ’92 Conference on

Programming Language Design and Implementation, pages
273–282, San Francisco, California, June 1992.

[28] R. Fitzgerald and D. Tarditi. The case for profile-directed
selection of garbage collectors. In T. Hosking, editor, ISMM
2000 Proceedings of the Second International Symposium on
Memory Management, pages 111–120, Minneapolis, MN,
Oct. 2000.

[29] M. W. Hicks, J. T. Moore, and S. Nettles. The measured cost
of copying garbage collection mechanisms. In International
Conference on Functional Programming, pages 292–305,
1997.

[30] A. L. Hosking and R. L. Hudson. Remembered sets can also
play cards, Oct. 1993. Position paper for OOPSLA ’93
Workshop on Memory Management and Garbage Collection.

[31] R. E. Jones and R. D. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley, July

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

200

400

600

800

1000

1200

1400
10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(a) 201 compress

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

200

400

600

800

1000

1200

1400

1600

1800

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(b) 202 jess

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

500

1000

1500

2000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(c) 205 raytrace

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

500

1000

1500

2000

2500

3000

20MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB100MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(d) 209 db

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

2000

4000

6000

8000

10000

12000

14000
20MB30MB40MB50MB60MB70MB80MB90MB100MB110MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(e) 213 javac

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

100

200

300

400

500

600

700

10MB 15MB 20MB 25MB 30MB 35MB 40MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(f) 222 mpegaudio

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

500

1000

1500

2000

2500

3000
20MB 40MB 60MB 80MB 100MB 120MB 140MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(g) 227 mtrt

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

500

1000

1500

2000

2500
10MB 20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(h) 228 jack

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

40MB 60MB 80MB100MB120MB140MB160MB180MB200MB220MB

N
or

m
al

iz
ed

 g
ct

im
e

gc
tim

e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(i) pseudojbb

Figure 8: GC Time for Generational Collectors

1996.
[32] J. Kim and Y. Hsu. Memory system behavior of Java

programs: methodology and analysis. In Proceedings of the
ACM SIGMETRICS Conference on Measurement &
Modeling Computer Systems, Santa Clara, California, June
2000.

[33] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

[34] Y. Levanoni and E. Petrank. An on-the-fly reference counting
garbage collector for Java. In ACM Conference Proceedings
on Object–Oriented Programming Systems, Languages, and
Applications, pages 367–380, Tampa, FL, Oct. 2001.

[35] H. Lieberman and C. E. Hewitt. A real time garbage
collector based on the lifetimes of objects. Communications
of the ACM, 26(6):419–429, 1983.

[36] Standard Performance Evaluation Corporation. SPECjvm98

Documentation, release 1.03 edition, March 1999.
[37] Standard Performance Evaluation Corporation.

SPECjbb2000 (Java Business Benchmark) Documentation,
release 1.01 edition, 2001.

[38] D. Stefanović. Properties of Age-Based Automatic Memory
Reclamation Algorithms. PhD thesis, University of
Massachusetts, 1999.

[39] D. Stefanović, M. Hertz, S. M. Blackburn, K. McKinley, and
J. Moss. Older-first garbage collection in practice:
Evaluation in a java virtual machine. In Memory System
Performance, Berlin, Germany, June 2002.

[40] D. Stefanović, K. McKinley, and J. Moss. Age-based
garbage collection. In ACM Conference Proceedings on
Object–Oriented Programming Systems, Languages, and
Applications, Denver, CO, Nov. 1999.

[41] D. M. Ungar. Generation scavenging: A non-disruptive high

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

9500

10000

10500

11000

11500

12000

12500

13000

10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(a) 201 compress

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

6500

7000

7500

8000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(b) 202 jess

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

6000

6500

7000

7500

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(c) 205 raytrace

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

18000

19000

20000

21000

22000

23000

24000

20MB30MB40MB50MB60MB70MB80MB90MB100MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(d) 209 db

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6
12000

12500

13000

13500

14000

14500

15000

15500

16000

16500

20MB30MB40MB50MB60MB70MB80MB90MB100MB110MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(e) 213 javac

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

11000

11500

12000

12500

13000

13500

14000

14500

15000

10MB 15MB 20MB 25MB 30MB 35MB 40MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(f) 222 mpegaudio

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

6500

7000

7500

8000

8500
20MB 40MB 60MB 80MB 100MB 120MB 140MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(g) 227 mtrt

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

6500

7000

7500

8000

8500

9000
10MB 20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(h) 228 jack

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6
20000

21000

22000

23000

24000

25000

26000

27000

40MB60MB80MB100MB120MB140MB160MB180MB200MB220MB

N
or

m
al

iz
ed

 m
ut

at
or

tim
e

m
ut

at
or

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(i) pseudojbb

Figure 9: Mutator Time for Generational Collectors

performance storage reclamation algorithm. ACM SIGPLAN
Notices, 19(5):157–167, April 1984.

[42] K.-P. Vo. Vmalloc: A general and efficient memory allocator.
Software Practice & Experience, 26(3):1–18, 1996.

[43] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles.
Dynamic storage allocation: A survey and critical review. In
H. Baker, editor, Proceedings of International Workshop on
Memory Management, IWMM’95, Kinross, Scotland, volume
986 of Lecture Notes in Computer Science. Springer-Verlag,
Sept. 1995.

[44] B. G. Zorn. The measured cost of conservative garbage
collection. Software Practice & Experience, 23(7):733–756,
1993.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

10500

11000

11500

12000

12500

13000

13500

14000
10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(a) 201 compress

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

7500

8000

8500

9000

9500

10000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(b) 202 jess

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

6000

6500

7000

7500

8000

10MB 20MB 30MB 40MB 50MB 60MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(c) 205 raytrace

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6
19000

20000

21000

22000

23000

24000

25000

26000

20MB30MB40MB50MB60MB70MB80MB90MB100MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(d) 209 db

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6
14000

15000

16000

17000

18000

19000

20MB30MB40MB50MB60MB70MB80MB90MB100MB110MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(e) 213 javac

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

11500

12000

12500

13000

13500

14000

14500

15000

15500
10MB 15MB 20MB 25MB 30MB 35MB 40MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(f) 222 mpegaudio

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

6500

7000

7500

8000

8500

20MB 40MB 60MB 80MB 100MB 120MB 140MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(g) 227 mtrt

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

7500

8000

8500

9000

9500

10MB 20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(h) 228 jack

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

22000

23000

24000

25000

26000

27000

28000

29000

30000
40MB60MB80MB100MB120MB140MB160MB180MB200MB220MB

N
or

m
al

iz
ed

 ti
m

e

tim
e

Heap size relative to minimum heap size

Heap size

VG
FG

VG-MS
FG-MS

(i) pseudojbb

Figure 10: Total Time for Generational Collectors

