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Abstract

This paper contains a numerical stability analysis of factorization algorithms for com-
puting the Cholesky decomposition of symmetric positive de�nite matrices of displacement
rank 2. The algorithms in the class can be expressed as sequences of elementary downdating

steps. The stability of the factorization algorithms follows directly from the numerical prop-
erties of algorithms for realizing elementary downdating operations. It is shown that the
Bareiss algorithm for factorizing a symmetric positive de�nite Toeplitz matrix is in the class
and hence the Bareiss algorithm is stable. Some numerical experiments that compare behav-
ior of the Bareiss algorithm and the Levinson algorithm are presented. These experiments
indicate that in general (when the re
ection coe�cients are not all positive) the Levinson
algorithm can give much larger residuals than the Bareiss algorithm.

1 Introduction

We consider the numerical stability of algorithms for solving a linear system

Tx = b; (1:1)

where T is an n� n positive de�nite Toeplitz matrix and b is an n� 1 vector. We assume that
the system is solved in 
oating point arithmetic with relative precision � by �rst computing the
Cholesky factor of T . Hence the emphasis of the paper is on factorization algorithms for the

matrix T .
Roundo� error analyses of Toeplitz systems solvers have been given by Cybenko [10] and

Sweet [22]. Cybenko showed that the Levinson-Durbin algorithm produces a residual which,

under the condition that all re
ection coe�cients are positive, is of comparable size to that
produced by the well behaved Cholesky method. He hypothesised that the same is true even
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if the re
ection coe�cients are not all positive. If correct, this would indicate that numerical

quality of the Levinson-Durbin algorithm is comparable to that of the Cholesky method.

In his PhD thesis [22], Sweet presented a roundo� error analysis of a variant of the Bareiss
algorithm [2], and concluded that the algorithm is numerically stable (in the sense speci�ed in
Section 7). In this paper we strengthen and generalize these early results on the stability of

the Bareiss algorithm. In particular, our approach via elementary downdating greatly simpli�es
roundo� error analysis and makes it applicable to a larger-than-Toeplitz class of matrices.

After introducing the notation and the concept of elementary downdating in Sections 2 and 3,

in Section 4 we derive matrix factorization algorithms as a sequence of elementary downdating
operations (see also [4]). In Section 5 we present a �rst order analysis by bounding the �rst
term in an asymptotic expansion for the error in powers of �. By analyzing the propagation of
�rst order error in the sequence of downdatings that de�ne the algorithms, we obtain bounds

on the perturbations of the factors in the decompositions. We show that the computed upper
triangular factor ~U of a positive de�nite Toeplitz matrix T satis�es

T = ~UT ~U +�T ; jj�T jj � c(n)�jjT jj ;

where c(n) is a low order polynomial in n and is independent of the condition number of T .
Many of the results of Sections 2{5 were �rst reported in [5], which also contains some results

on the stability of Levinson's algorithm.
In Section 6 we discuss the connection with the Bareiss algorithm and conclude that the

Bareiss algorithm is stable for the class of symmetric positive de�nite matrices. Finally, in

Section 7 we report some interesting numerical examples that contrast the behaviour of the

Bareiss algorithm with that of the Levinson algorithm. We show numerically that, in cases
where the re
ection coe�cients are not all positive, the Levinson algorithm can give much
larger residuals than the Bareiss or Cholesky algorithms.

2 Notation

Unless it is clear from the context, all vectors are real and of dimension n. Likewise, all matrices
are real and their default dimension is n� n. If a 2 <n, kak denotes the usual Euclidean norm,
and if T 2 <n�n, kTk denotes the induced matrix norm:

kTk = max
kak=1

kTak :

Our primary interest is in a symmetric positive de�nite Toeplitz matrix T whose i; jth entry
is

tij = tji�jj:

We denote by ek, k = 1; : : : ; n, the unit vector whose kth element is 1 and whose other
elements are 0. We use the following special matrices:

Z �
n�1X
i=1

ei+1e
T
i =

0
BBBBBBB@

0 � � � � � � 0
1 0 � � � 0 0

0
. . .

...
...

...
. . . 0 0

0 � � � 0 1 0

1
CCCCCCCA
;
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J �
nX
i=1

en�i+1e
T
i =

0
BBBBBBBB@

0 � � � � � � 0 1
... � 1 0
... � � � ...

0 1 � ...
1 0 � � � � � � 0

1
CCCCCCCCA

:

The matrix Z is known as a shift-down matrix. We also make use of powers of the matrix Z,
for which we introduce the following notation:

Zk =

(
I if k = 0,

Zk if k > 0.

The antidiagonal matrix J is called a reversal matrix, because the e�ect of applying J to a
vector is to reverse the order of components of the vector:

J

2
66664
x1
x2
...

xn

3
77775 =

2
66664

xn
xn�1
...

x1

3
77775 :

The hyperbolic rotation matrix H(�) 2 <2�2 is de�ned by

H(�) =
1

cos �

"
1 � sin �

� sin � 1

#
: (2:1)

The matrix H(�) satis�es the relation

H(�)

"
1 0
0 �1

#
H(�) =

"
1 0
0 �1

#
;

and it has eigenvalues �1(�), �2(�) given by

�1(�) = ��1
2 (�) = sec � � tan �: (2:2)

For a given pair of real numbers a and b with jaj > jbj, there exists a hyperbolic rotation matrix
H(�) such that

H(�)

"
a
b

#
=

" p
a2 � b2

0

#
: (2:3)

The angle of rotation � is determined by

sin � =
b

a
; cos � =

p
a2 � b2

a
: (2:4)

3 Elementary Downdating

In this section we introduce the concept of elementary downdating. The elementary downdating

problem is a special case of a more general downdating problem that arises in Cholesky factor-
ization of a positive de�nite di�erence of two outer product matrices [1, 6, 7, 12]. In Section 4,
factorization algorithms are derived in terms of a sequence of downdating steps. The numerical

properties of the algorithms are then related to the properties of the sequence of elementary
downdating steps.
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Let uk, vk 2 <n have the following form:

k

#
uTk = [0 : : : 0 � � � : : : � ] ;
vTk = [0 : : : 0 0 � � : : : � ] ;

"
k + 1

that is:
eTj uk = 0 ; j < k ; and eTj vk = 0 ; j � k :

Applying the shift-down matrix Z to uk, we have

k + 1
#

uTkZ
T = [0 : : : 0 0 � � : : : �] ,

vTk = [0 : : : 0 0 � � : : : �] .
"

k + 1

Suppose that we wish to �nd uk+1, vk+1 2 <n to satisfy

uk+1u
T
k+1 � vk+1v

T
k+1 = Zuku

T
k Z

T � vkv
T
k ; (3:1)

where

k + 1
#

uTk+1 = [0 : : : 0 0 � � : : : �] ,
vTk+1 = [0 : : : 0 0 0 � : : : �] ,

"
k + 2

that is
eTj uk+1 = 0 ; j < k + 1 ; and eTj vk+1 = 0 ; j � k + 1 : (3:2)

We refer to the problem of �nding uk+1 and vk+1 to satisfy (3.1), given uk and vk, as the
elementary downdating problem. It can be rewritten as follows:

[uk+1 vk+1]

"
1 0
0 �1

# "
uTk+1

vTk+1

#
= [Zuk vk]

"
1 0
0 �1

# "
uTk Z

T

vTk

#
:

From (2.1), (2.3) and (2.4), it is clear that the vectors uk+1 and vk+1 can be found by using a
hyperbolic rotation H (�k) de�ned by the following relations:

sin �k = eTk+1vk=e
T
k uk ; (3.3a)

cos �k =
q
1� sin2 �k ; (3.3b)

and "
uTk+1

vTk+1

#
= H (�k)

"
uTkZ

T

vTk

#
: (3:4)

The elementary downdating problem has a unique solution (up to obvious sign changes) if

jeTk ukj > jeTk+1vkj :
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The calculation of uk+1, vk+1 via (3.4) can be performed in the obvious manner. Following

common usage, algorithms which perform downdating in this manner will be referred to as

hyperbolic downdating algorithms.
Some computational advantages may be obtained by rewriting (3.1) as follows:

[uk+1 vk]

"
uTk+1

vTk

#
= [Zuk vk+1]

"
uTk Z

T

vTk+1

#
:

Consider now an orthogonal rotation matrix G(�k),

G(�k) =

"
cos �k sin �k
� sin �k cos �k

#
;

where cos �k and sin �k are de�ned by (3.3b) and (3.3a), respectively. Then it is easy to check
that

G(�k)

"
uTk+1

vTk

#
=

"
uTkZ

T

vTk+1

#
; (3:5)

or, equivalently, "
uTk+1

vTk

#
= G(�k)

T

"
uTkZ

T

vTk+1

#
: (3:6)

Thus, we may rewrite (3.6) as

vk+1 = (vk � sin �kZuk)= cos �k ; (3.7a)

uk+1 = � sin �kvk+1 + cos �kZuk : (3.7b)

Note that equation (3.7a) is the same as the second component of (3.4). However, (3.7b) di�ers
from the �rst component of (3.4) as it uses vk+1 in place of vk to de�ne uk+1. It is possible to

construct an alternative algorithm by using the �rst component of (3.5) to de�ne uk+1. This
leads to the following formulas:

uk+1 = (Zuk � sin �kvk)= cos �k ; (3.8a)

vk+1 = � sin �kuk+1 + cos �kvk : (3.8b)

We call algorithms based on (3.7a){(3.7b) or (3.8a){(3.8b) mixed elementary downdating al-
gorithms. The reason for considering mixed algorithms is that they have superior stability

properties to hyperbolic algorithms in the following sense.

Let ~uk, ~vk be the values of uk, vk that are computed in 
oating point arithmetic with relative
machine precision �. The computed values ~uk, ~vk satisfy a perturbed version of (3.1), that is,

~uk+1~u
T
k+1 � ~vk+1~v

T
k+1 = Z~uk ~u

T
k Z

T � ~vk~v
T
k + �Gk + O(�2) ; (3:9)

where the second order termO(�2) should be understood as a matrix whose elements are bounded
by a constant multiple of �2jjGkjj. The norm of the perturbation Gk depends on the precise
speci�cation of the algorithm used. It can be shown [6] that the term Gk satis�es

kGkk � cm
�
kZukk2 + kvkk2 + kuk+1k2 + kvk+1k2

�
(3:10)

when a mixed downdating strategy is used (here cm is a positive constant). When hyperbolic
downdating is used the term Gk satis�es

kGkk � chkH(�k)k (kZukk+ kvkk) (kuk+1k+ kvk+1k) ; (3:11)
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where ch is a positive constant [6]. (The constants cm and ch are dependent on implementation

details, but are of order unity and independent of n.) Note the presence of the multiplier kH(�k)k
in the bound (3.11) but not in (3.10). In view of (2.2), kH(�k)k could be large. The signi�cance
of the multiplier kH(�k)k depends on the context in which the downdating arises. We consider
the implications of the bounds (3.10) and (3.11) in Section 5 after we make a connection between

downdating and the factorization of Toeplitz matrices.
It is easily seen that a single step of the hyperbolic or mixed downdating algorithm requires

4(n�k)+O(1) multiplications. A substantial increase in e�ciency can be achieved by considering

the following modi�ed downdating problem. Given �k, �k 2 < and wk, xk 2 <n that satisfy

eTj wk = 0 ; j < k and eTj xk = 0 ; j � k ;

�nd �k+1, �k+1 and wk+1, xk+1 2 <n that satisfy

�2
k+1wk+1w

T
k+1 � �2k+1xk+1x

T
k+1 = �2

kZwkw
T
k Z

T � �2kxkx
T
k ;

with
eTj wk = 0 ; j < k and eTj xk = 0 ; j � k :

If we make the identi�cation

uk = �kwk and vk = �kxk ;

then we �nd that the modi�ed elementary downdating problem is equivalent to the elementary

downdating problem. However, the extra parameters can be chosen judiciously to eliminate
some multiplications. For example, if we take �k = �k, �k+1 = �k+1, then from (3.3a), (3.3b)
and (3.4),

sin �k = eTk+1xk=e
T
kwk ; (3.12a)

�k+1 = �k= cos �k ; (3.12b)

and

wk+1 = Zwk � sin �kxk ; (3.13a)

xk+1 = � sin �kZwk + xk : (3.13b)

Equations (3.12a){(3.13b) form a basis for a scaled hyperbolic elementary downdating algorithm
which requires 2(n � k) + O(1) multiplications. This is about half the number required by the
unscaled algorithm based on (3.4). (The price is an increased likelihood of under
ow or over
ow,
but this can be avoided if suitable precautions are taken in the code.)

Similarly, from (3.7a) and (3.7b) we can obtain a scaled mixed elementary downdating algo-
rithm via

sin �k = �ke
T
k+1xk=�ke

T
kwk ;

�k+1 = �k cos �k ;

�k+1 = �k= cos �k ;

and

xk+1 = xk � sin �k�k
�k

Zwk ;

wk+1 = �sin �k�k+1

�k+1
xk+1 + Zwk :

The stability properties of scaled mixed algorithms are similar to those of the corresponding
unscaled algorithms [12].
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4 Symmetric Factorization

We adopt the following de�nition from [18].
De�nition 4.1: An n � n symmetric matrix T has displacement rank 2 i� there exist vectors
u, v 2 <n such that

T � ZTZT = uuT � vvT : (4:1)

2

The vectors u and v are called the generators of T and determine the matrix T uniquely.
Whenever we want to stress the dependence of T on u and v we write T = T (u ; v).

In the sequel we will be concerned with a subset T of all matrices satisfying (4.1). The
subset is de�ned as follows.
De�nition 4.2: A matrix T is in T i�

(a) T is positive de�nite,

(b) T satis�es (4.1) with generators u and v,

(c) vT e1 = 0, i.e., the �rst component of v is zero.

2

It is well known that positive de�nite n� n Toeplitz matrices form a subset of T . Indeed, if
T = (tji�jj)

n�1
i;j=0, then

T � ZTZT = uuT � vvT ;

where

uT = (t0 ; t1 ; : : : ; tn�1) =
p
t0 ;

vT = (0 ; t1 ; : : : ; tn�1) =
p
t0 :

The set T also contains matrices which are not Toeplitz, as the following example shows.
Example: Let

T =

2
64 25 20 15
20 32 29
15 29 40

3
75 ; u =

2
64 5
4
3

3
75 and v =

2
64 0
3
1

3
75 :

It is easy to check that T is positive de�nite. Moreover,

T � ZTZT =

2
64 25 20 15
20 7 9
15 9 8

3
75 =

2
64 25 20 15
20 16 12
15 12 9

3
75�

2
64 0 0 0
0 9 3
0 3 1

3
75 = uuT � vvT :

Hence T = T (u ; v) 2 T , but T is not Toeplitz.
2

We now establish a connection between the elementary downdating problem and symmetric
factorizations of a matrix from the set T .

Let T = T (u ; v) 2 T . Set
u1 = u; v1 = v

and, for k = 1; : : : ; n� 1; solve the elementary downdating problem de�ned by (3.1),

uk+1u
T
k+1 � vk+1v

T
k+1 = Zuku

T
kZ

T � vkv
T
k ;
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which we assume for the moment has a solution for each k. On summing over k = 1; : : : ; n� 1

we obtain
n�1X
k=1

uk+1u
T
k+1 �

n�1X
k=1

vk+1v
T
k+1 =

n�1X
k=1

Zuku
T
kZ

T �
n�1X
k=1

vkv
T
k :

If we now observe that, from (3.2),

Zun = vn = 0 ;

we arrive at the following relation:

nX
k=1

uku
T
k � Z

 
nX

k=1

uku
T
k

!
ZT = u1u

T
1 � v1v

T
1 ; (4:2)

which implies that
Pn

k=1 uku
T
k 2 T . Moreover, as matrices having the same generators are

identical, we obtain

T =
nX

k=1

uku
T
k = UTU ;

where

U =
nX

k=1

eku
T
k

is upper triangular, and hence is the Cholesky factor of T . We have derived, albeit in a rather

indirect manner, the basis of an algorithm for calculating the Cholesky decomposition of a matrix
from the set T .

We now return to the question of existence of a solution to the elementary downdating
problem for each k = 1; : : : ; n � 1. It is easy to verify that, if T 2 T , then jeT1 u1j > jeT2 v1j.
Using (4.2) and (3.1), it can be shown by induction on k that

jeTk ukj > jeTk+1vkj; k = 2; : : : ; n� 1:

Consequently, j sin �kj < 1 in (3.3a), and the elementary downdating problem has a solution for

each k = 1; : : : ; n� 1.

To summarize, we have the following algorithm for factorizing a matrix T = T (u ; v) 2 T .
Algorithm FACTOR(T ):
Set u1 = u, v1 = v.
For k = 1; : : : ; n� 1 calculate uk+1, vk+1 such that

uk+1u
T
k+1 � vk+1v

T
k+1 = Zuku

T
k Z

T � vkv
T
k ;

eTk+1vk+1 = 0 :

Then T = UTU; where U =
Pn

k=1 eku
T
k .

2

In fact we have not one algorithm but a class of factorization algorithms, where each al-
gorithm corresponds to a particular way of realizing the elementary downdating steps. For

example, the connection with the scaled elementary downdating problem is straightforward. On
making the identi�cation

uk = �kwk and vk = �kxk ; (4:3)

we obtain

T =WTD2W ;
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where

W =
nX

k=1

ekw
T
k ;

D =
nX

k=1

�keke
T
k :

It is clear from Section 3 that Algorithm FACTOR(T ) requires 2n2 + O(n) multiplications

when the unscaled version of elementary downdating is used, and n2 + O(n) multiplications
when the scaled version of elementary downdating is used. However, in the sequel we do not
dwell on the precise details of algorithms. Using (4.3), we can relate algorithms based on the
scaled elementary downdating problem to those based on the unscaled elementary downdating

problem. Thus, for simplicity, we consider only the unscaled elementary downdating algorithms.

5 Analysis of Factorization Algorithms

In this section we present a numerical stability analysis of the factorization of T 2 T via

Algorithm FACTOR(T ). The result of the analysis is applied to the case when the matrix T is
Toeplitz.

Let ~uk, ~vk be the values of uk, vk that are computed in 
oating point arithmetic with relative
machine relative precision �. The computed quantities ~uk and ~vk satisfy the relations

~uk = uk + O(�); ~vk = vk + O(�); (5:1)

and the aim of this section is to provide a �rst order analysis of the error. By a �rst order analysis

we mean that the error can be bounded by a function which has an asymptotic expansion in
powers of �, but we only consider the �rst term of this asymptotic expansion. One should think
of �! 0+ while the problem remains �xed [19]. Thus, in this section (except for Corollary 5.1)
we omit functions of n from the \O" terms in relations such as (5.1) and (5.2).

The computed vectors ~uk, ~vk satisfy a perturbed version (3.9) of (3.1). On summing (3.9)

over k = 1; : : : ; n� 1 we obtain

~T � Z ~TZT = ~u1~u
T
1 � ~v1~v

T
1 � (Z~un~u

T
nZ

T � ~vn~v
T
n ) + �

n�1X
k=1

Gk + O(�2) ;

where

~T = ~UT ~U ;

~U =
nX

k=1

ek~u
T
k :

Since
Z~un = O(�); ~vn = O(�) ;

we �nd that

~T � Z ~TZT = ~u1~u
T
1 � ~v1~v

T
1 + �

n�1X
k=1

Gk +O(�2) : (5:2)

Now de�ne
~E = ~T � T: (5:3)
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Then, using (4.1), (5.2) and (5.3),

~E � Z ~EZT = ~u1~u
T
1 � uuT + ~v1~v

T
1 � vvT + �

n�1X
k=1

Gk + O(�2) :

In a similar manner we obtain expressions for Zj
~EZT

j �Zj+1
~EZT

j+1, j = 0; : : : ; n� 1. Summing

over j gives

~E =
n�1X
j=0

Zj

�
(~u1~u

T
1 � u1u

T
1 ) + (~v1~v

T
1 � v1v

T
1 )
�
ZT
j + �

n�1X
j=0

n�1X
k=1

ZjGkZ
T
j +O(�2) : (5:4)

We see from (5.4) that the error consists of two parts { the �rst associated with initial errors
and the second associated with the fact that (5.2) contains an inhomogeneous term. Now

k~u1~uT1 � uuT k � 2kuk k~u1 � uk+O(�2) ;

k~v1~vT1 � vvTk � 2kvk k~v1 � vk+O(�2) :

Furthermore, from (4.1),

Tr(T )� Tr(ZTZT ) = kuk2 � kvk2 > 0 ;

and hence




n�1X
j=0

Zj(~u1~u
T
1 � uuT + ~v1~v

T
1 � vvT )ZT

j




 � 2nkuk
�
k~u1 � uk+ k~v1 � vk

�
+ O(�2) : (5:5)

This demonstrates that initial errors do not propagate unduly. To investigate the double sum
in (5.4) we require a preliminary result.

Lemma 5.1 For k = 1; 2; : : : ; n� 1 and j = 0; 1; 2; : : : ;

kZjvkk � kZj+1ukk :

2

Proof Let

Tk = T �
kX
l=1

ulu
T
l =

nX
l=k+1

ulu
T
l :

It is easy to verify that
Tk � ZTkZ

T = Zuku
T
kZ

T � vkv
T
k

and, since Tk is positive semi-de�nite,

Tr
�
ZjTkZ

T
j � Zj+1TkZ

T
j+1

�
= kZj+1ukk2 � kZjvkk2 � 0 :

2

We now demonstrate stability when the mixed version of elementary downdating is used in
Algorithm FACTOR(T ). In this case the inhomogeneous term Gk satis�es a shifted version
of (3.10), that is

kZjGkZ
T
j k � cm

�
kZj+1ukk2 + kZjvkk2 + kZjuk+1k2 + kZjvk+1k2

�
; (5:6)

where cm is a positive constant.
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Theorem 5.1 Assume that (3.9) and (5.6) hold. Then

kT � ~UT ~Uk � 2nkuk
�
k~u1 � uk+ k~v1 � vk

�
+ 4�cm

n�1X
j=0

Tr(ZjTZ
T
j ) +O(�2) :

2

Proof Using Lemma 5.1,

kZjGkZ
T
j k � 2cm

�
kZj+1ukk2 + kZjuk+1k2

�
:

Furthermore, since

Tr(ZjTZ
T
j ) =

nX
k=1

kZjukk2;

it follows that 


n�1X
j=0

nX
k=1

ZjGkZ
T
j




 � 4cm

n�1X
j=0

Tr(ZjTZ
T
j ) : (5:7)

The result now follows from (5.4), (5.5) and (5.7).
2

For the hyperbolic version of the elementary downdating algorithms a shifted version of the

weaker bound (3.11) on Gk holds (see [6]), namely

kZjGkZ
T
j k � chkH(�k)k(kZj+1ukk+ kZjvkk)(kZjuk+1k+ kZjvk+1k) : (5:8)

By Lemma 5.1, this simpli�es to

kZjGkZ
T
j k � 4chkH(�k)k kZj+1ukk kZjuk+1k : (5:9)

The essential di�erence between (3.10) and (3.11) is the occurence of the multiplier kH(�k)k
which can be quite large. This term explains numerical di�culties in applications such as the
downdating of a Cholesky decomposition [6]. However, because of the special structure of the
matrix T , it is of lesser importance here, in view of the following result.

Lemma 5.2 For k = 1; 2; : : : ; n� 1 and j = 0; 1; : : : ; n� k,

kH(�k)k kZjuk+1k � 2(n� k � j)kZj+1ukk:
2

Proof It is easy to verify from (3.4) that

1� sin �k
cos �k

(uk+1 � vk+1) = Zuk � vk ;

and from (2.1) that

kH(�k)k = 1 + j sin �j
cos �

:

Thus,

kH(�k)k kZjuk+1k � kH(�k)k kZjvk+1k+ kZj+1ukk+ kZjvkk
� kH(�k)k kZj+1uk+1k+ 2kZj+1ukk ;

where the last inequality was obtained using Lemma 5.1. Thus

kH(�k)k kZjuk+1k � 2
n�kX
l=j+1

kZlukk ;

and the result follows. 2
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Remark Lemma 5.2 does not hold for the computed quantities unless we introduce an O(�)

term. However in a �rst order analysis we only need it to hold for the exact quantities.

Theorem 5.2 Assume that (3.9) and (5.8) hold. Then

kT � ~UT ~Uk � 2nkuk(k~u1 � uk+ k~v1 � vk) + 8�ch

n�1X
j=1

(n� j)Tr(ZjTZ
T
j ) + O(�2) :

2

Proof Applying Lemma 5.2 to (5.9) gives

kZjGkZ
T
j k � 8ch(n� j � 1)kZj+1ukk2 ;

and hence




n�1X
j=0

n�1X
k=1

ZjGkZ
T
j




 � 8ch

n�1X
j=1

n�1X
k=1

(n� j)kZjukk2

� 8ch

n�1X
j=1

(n� j)Tr(ZjTZ
T
j ) : (5.10)

The result now follows from (5.4), (5.5) and (5.10).

2

Note that, when T is Toeplitz,

Tr(ZjTZ
T
j ) = (n� j)t0 :

Hence, from Theorems 5.1 and 5.2, we obtain our main result on the stability of the factorization
algorithms based on Algorithm FACTOR(T ) for a symmetric positive de�nite Toeplitz matrix:

Corollary 5.1 The factorization algorithm FACTOR(T ) applied to a symmetric positive

de�nite Toeplitz matrix T produces an upper triangular matrix ~U such that

T = ~UT ~U +�T ;

where k�Tk = O(�t0n
2) when mixed downdating is used, and k�Tk = O(�t0n

3) when hyperbolic

downdating is used.
2

6 The Connection with the Bareiss algorithm

In his 1969 paper [2], Bareiss proposed an O(n2) algorithm for solving Toeplitz linear systems.
For a symmetric Toeplitz matrix T , the algorithm, called a symmetric Bareiss algorithm in [22],
can be expressed as follows. Start with a matrix A(0) := T and partition it in two ways:

A(0) =

 
U (0)

T (1)

!
; A(0) =

 
T (�1)

L(0)

!
;

where U (0) is the �rst row of T and L(0) is the last row of T . Now, starting from A(0), compute
successively two matrix sequences fA(i)g and fA(�i)g, i = 1; : : : ; n�1; according to the relations

A(i) = A(i�1) � �i�1ZiA
(�i+1) ; A(�i) = A(�i+1) � ��i+1Z

T
i A

(i�1) : (6:1)

For 1 � i � n� 1; partition A(i) and A(�i) as follows:

A(i) =

 
U (i)

T (i+1)

!
; A(�i) =

 
T (�i�1)

L(i)

!
;
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where U (i) denotes the �rst i+ 1 rows of A(i), and L(i) denotes the last i + 1 rows of A(�i). It

is shown in [2] that

(a) T (i+1) and T (�i�1) are Toeplitz,

(b) for a proper choice of �i�1 and ��i+1, the matrices L(i) and U (i) are lower and upper
trapezoidal, respectively, and

(c) with the choice of �i�1 and ��i+1 as in (b), the Toeplitz matrix T (�i�1) has zero elements

in positions 2; : : : ; i+ 1 of its �rst row, while the Toeplitz matrix T (i+1) has zero elements
in positions n� 1; : : : ; n� i of its last row.

Pictorially,

A(i) =

 
U (i)

T (i+1)

!
=

0
BBBBBBBBBBBBBBB@

� � � � � � � � � � � � � � � � � � � �
0 � �
...

. . . � � ...

0 � � � 0 � � � � � � � � � � �
� 0 � � � 0 � � � � � � � �
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
� � � � � � � � 0 � � � 0 �

1
CCCCCCCCCCCCCCCA

A(�i) =

 
T (�i�1)

L(i)

!
=

0
BBBBBBBBBBBBBBBB@

� 0 � � � 0 � � � � � � � �
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

� � � � � � � � 0 � � � 0 �
� � � � � � � � � 0 � � � 0
...

. . .
. . .

...
...

. . . 0
� � � � � � � � � � � � � � � � � �

1
CCCCCCCCCCCCCCCCA

After n � 1 steps, the matrices A(n�1) and A(�n+1) are lower and upper triangular, respec-

tively. At step i only rows i+ 1; : : : ; n of A(i) and rows 1; 2; : : : ; n� i of A(�i) are modi�ed; the
remaining rows stay unchanged. Moreover, Bareiss [2] noticed that, because of the symmetry
of T ,

T (i+1) = Ji+1T
(�i�1)Jn and �i�1 = ��i+1 ; (6:2)

Here Ji+1 and Jn are the reversal matrices of dimension (i+1)� (i+ 1) and n� n respectively.

Now, taking into account (6.2), it can be seen that the essential part of a step of the Bareiss
algorithm (6.1) can be written as follows:

 
t
(i+1)
i+2 t

(i+1)
i+3 : : : t

(i+1)
n

0 t
(�i�1)
i+3 : : : t

(�i�1)
n

!
=

 
1 ��i�1

��i�1 1

! 
t
(i)
i+2 t

(i)
i+3 : : : t

(i)
n

t
(�i)
i+2 t

(�i)
i+3 : : : t

(�i)
n

!
; (6:3)

where (t
(�i)
i+2 ; t

(�i)
i+2 ; : : : ; t

(�i)
n ) are the last (n � i � 1) components of the �rst row of T (�i), and

(t
(i)
i+2; t

(i)
i+3; : : : ; t

(i)
n ) are the last (n� i� 1) components of the �rst row of T (i).

Note that (6.3) has the same form as (3.13a){(3.13b), and hence a connection between the

Bareiss algorithm and algorithm FACTOR(T ) is evident. That such a connection exists was
observed by Sweet [22], and later by Delosme and Ipsen [11]. Sweet [22] related a step of the
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Bareiss algorithm (6.3) to a step of Bennett's downdating procedure [3]. Next, he derived the

LU factorization of a Toeplitz matrix as a sequence of Bennett's downdating steps. Finally, he

estimated the forward error in the decomposition using Fletcher and Powell's methodology [12].
This paper generalizes and presents new derivations of the results obtained in [22].

7 Numerical examples

We adopt from [17] the following de�nitions of forward and backward stability.
De�nition 7.1: An algorithm for solving the equation (1.1) is forward stable if the computed

solution ~x satis�es
jjx� ~xjj � c1(n)�cond(T )jj~xjj ;

where cond(T ) = jjT jj jjT�1jj is the condition number of T , and c1(n) may grow at most as fast
as a polynomial in n, the dimension of the system.

De�nition 7.2: An algorithm for solving the equation (1.1) is backward stable if the com-
puted solution ~x satis�es

jjT ~x� bjj � c2(n)�jjT jj jj~xjj ;
where c2(n) may grow at most as fast as a polynomial in n, the dimension of the system.

It is known that an algorithm (for solving a system of linear equations) is backward stable

i� there exists a matrix �T such that

(T +�T )~x = b ; jj�T jj � c3(n)�jjT jj ;

where c3(n) may grow at most as fast as a polynomial in n.
Note that our de�nitions do not require the perturbation �T to be Toeplitz, even if the

matrix T is Toeplitz. The case that �T is Toeplitz is discussed in [13, 24]. The reader is

referred to [9, 14, 19] for a detailed treatment of roundo� analysis for general matrix algorithms.
It is easy to see that backward stability implies forward stability, but not vice versa. This is

manifested by the size of the residual vector.

Cybenko [10] showed that the L1 norm of the inverse of a n� n symmetric positive de�nite
Toeplitz matrix Tn is bounded by

max
n 1Qn�1

i=1 cos
2 �i

;
1Qn�1

i=1 (1 + sin �i)

o
� kT�1

n k1 �
n�1Y
i=1

1 + j sin �ij
1� j sin �ij ;

where f� sin �ign�1
i=1 are quantities called re
ection coe�cients. It is not di�cult to pick the

re
ection coe�cients in such a way that the corresponding Toeplitz matrix Tn satis�es

cond(Tn) � 1=� :

One possible way of constructing a Toeplitz matrix with given re
ection coe�cients f� sin �ign�1
i=1

is by tracing the elementary downdating steps backwards.
An example of a symmetric positive de�nite Toeplitz matrix that can be made poorly con-

ditioned by suitable choice of parameters is the Prolate matrix [21, 23], de�ned by

tk =

(
2! if k = 0,
sin(2�!k)

�k
otherwise;

where 0 � ! � 1
2 . For small ! the eigenvalues of the Prolate matrix cluster around 0 and 1.

We performed numerical tests in which we solved systems of Toeplitz linear equations using

variants of the Bareiss and Levinson algorithms, and (for comparison) the standard Cholesky
method. The relative machine precision was � = 2�53 � 10�16: We varied the dimension of the
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system from 10 to 100, the condition number of the matrix from 1 to ��1, the signs of re
ection

coe�cients, and the right hand side so the magnitude of the norm of the solution vector varied

from 1 to ��1. In each test we monitored the errors in the decomposition, in the solution vector,
and the size of the residual vector.

Let xB and xL denote the solutions computed by the Bareiss and Levinson algorithms. Also,

let rB = TxB � b and rL = TxL � b. Then for the Bareiss algorithms we always observed that
the scaled residual

sB � krBk
�kxBkkTk

was of order unity, as small as would be expected for a backward stable method. However, we

were not able to �nd an example which would demonstrate the superiority of the Bareiss algo-
rithm based on mixed downdating over the Bareiss algorithm based on hyperbolic downdating.
In fact, the Bareiss algorithm based on hyperbolic downdating often gave slightly smaller errors
than the Bareiss algorithm based on mixed downdating. In our experiments with Bareiss algo-

rithms, neither the norm of the error matrix in the decomposition of T nor the residual error in
the solution seemed to depend in any clear way on n, although a quadratic or cubic dependence
would be expected from the worst-case error bounds of Theorems 5.1{5.2 and Corollary 5.1.

For well conditioned systems the Bareiss and Levinson algorithms behaved similarly, and

gave results comparable to results produced by a general stable method (the Cholesky method).
Di�erences between the Bareiss and Levinson algorithms were noticeable only for very ill-
conditioned systems and special right-hand side vectors.

For the Levinson algorithm, when the matrix was very ill-conditioned and the norm of the
solution vector was of order unity (that is, when the norm of the solution vector did not re
ect
the ill-conditioning of the matrix), we often observed that the scaled residual

sL � krLk
�kxLkkTk ;

was as large as 105. Varah [23] was the �rst to observe this behavior of the Levinson algorithm on
the Prolate matrix. Higham and Pickering [16] used a search method proposed in [15] to generate
Toeplitz matrices for which the Levinson algorithm yields large residual errors. However, the

search never produced sL larger than 5 � 105. It plausible that sL is a slowly increasing function
of n and 1=�.

Tables 7.1{7.3 show typical behavior of the Cholesky, Bareiss and Levinson algorithms for
ill-conditioned Toeplitz systems of linear equations when the norm of the solution vectors is of

order unity. The decomposition error was measured for the Cholesky and Bareiss algorithms by

the quotient jjT �L �LT jj=(� � jjT jj), where L was the computed factor of T . The solution error
was measured by the quotient jjxcomp�xjj=jjxjj, where xcomp was the computed solution vector.

Finally, the residual error was measured by the quotient jjT � xcomp � bjj=(jjT jj � jjxcompjj � �).

decomp. error soln. error resid. error

Cholesky 5:09 � 10�1 7:67 � 10�3 1:25 � 100
Bareiss(hyp) 3:45 � 100 1:40 � 10�2 8:72 � 10�1

Bareiss(mixed) 2:73 � 100 1:41 � 100 1:09 � 100
Levinson 5:30 � 100 4:57 � 103
Table 7.1: Prolate matrix, n = 21, ! = 0:25, cond = 3:19 � 1014
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decomp. error soln. error resid. error

Cholesky 1:72 � 10�1 6:84 � 10�2 3:11 � 10�1

Bareiss(hyp) 2:91 � 100 2:19 � 10�1 1:15 � 10�1

Bareiss(mixed) 3:63 � 100 2:48 � 10�1 2:47 � 10�1

Levinson 5:27 � 10�1 1:47 � 105
Table 7.2: Re
ection coe�cients j sin �ij of the same magnitude jKj but
alternating signs, jKj = 0:8956680108101296, n = 41, cond = 8:5 � 1015

decomp. error soln. error resid. error

Cholesky 8:51 � 10�1 3:21 � 10�2 4:28 � 10�1

Bareiss(hyp) 8:06 � 100 1:13 � 10�1 2:28 � 10�1

Bareiss(mixed) 6:71 � 100 1:16 � 10�1 3:20 � 10�1

Levinson 2:60 � 10�1 1:06 � 105
Table 7.3: Re
ection coe�cients j sin �ij of the same magnitude but

alternating signs, jKj = 0:9795872473975045, n = 92, cond = 2:77 � 1015

8 Conclusions

This paper generalizes and presents new derivations of results obtained earlier by Sweet [22].

The bound in Corollary 5.1 for the case of mixed downdating is stronger than that given in [22].
The applicability of the Bareiss algorithms based on elementary downdating steps is extended to
a class of matrices, satisfying De�nition 4.2, which includes symmetric positive de�nite Toeplitz
matrices. The approach via elementary downdating greatly simpli�es roundo� error analysis.

Lemmas 5.1 and 5.2 appear to be new. The stability of the Bareiss algorithms follows directly
from these Lemmas and the results on the roundo� error analysis for elementary downdating
steps given in [6].

The approach via downdating can be extended to the symmetric factorization of positive

de�nite matrices of displacement rank k � 2 (satisfying additional conditions similar to those
listed in De�nition 4.2); see [18]. For matrices of displacement rank k the factorization algo-
rithm uses elementary rank-k downdating via hyperbolic Householder or mixed Householder

re
ections [8, 20].
We conclude by noting that the Bariess algorithms guarantee small residual errors in the

sense of De�nition 7.2, but the Levinson algorithm can yield residuals at least �ve orders of
magnitude larger than those expected for a backward stable method. This result suggests that,

if the Levinson algorithm is used in applications where the re
ection coe�cients are not known
in advance to be positive, the residuals should be computed to see if they are acceptably small.
This can be done in O(n log n) arithmetic operations (using the FFT).

It is an interesting open question whether the Levinson algorithm can give scaled residual

errors which are arbitrarily large (for matrices which are numerically nonsingular). A related
question is whether the Levinson algorithm, for positive de�nite Toeplitz matrices T without a
restriction on the re
ection coe�cients, is stable in the sense of De�nitions 7.1 or 7.2.
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