
AN IMPLEMENTATION OF A
GENERAL-PURPOSE PARALLEL SORTING

ALGORITHM

Andrew Tridgell and Richard P. Brent

Computer Sciences Laboratory
Australian National University

TR-CS-93-01
February 1993

Abstract: A parallel sorting algorithm is presented for general purpose internal sorting on
MIMD machines. The algorithm initially sorts the elements within each node using a serial
sorting algorithm, then proceeds with a two phase parallel merge. The algorithm is
comparison-based and requires additional storage of order the square root of the number
of elements in each node. Performance of the algorithm is examined on two MIMD
machines, the Fujitsu AP1000 and the Thinking Machines CM5.

Table of Contents

1 THE PARALLEL SORTING TASK 1

1.1 Introduction 1

1.2 Nomenclature 1

1.3 Aims of the Algorithm 1

1.4 Hardware 2

2 OVERVIEW OF THE ALGORITHM 3

2.1 Pre-Balancing 3

2.2 Serial Sorting 3

2.3 Primary Merging 4

2.4 Cleanup 4

2.5 Merge-Exchange 4

3 IMPLEMENTATION DETAILS 5

3.1 Infinity Padding 5

3.2 Balancing 6

3.3 Serial Sorting 7

3.4 Primary Merge 8

3.5 Merge-Exchange Operation 9

3.5.1 Find-Exact Algorithm 10

3.5.2 Transferring Elements 11

3.5.3 Unbalanced Merging 11

3.5.4 Blockwise Merging 12

3.6 Cleanup 13

4 PERFORMANCE 14

4.1 Estimating the Speedup 14

4.2 Timing Results 14

4.3 Scalability 16

4.4 Where Does The Time Go? 17

4.5 CM5 vs AP1000 19

4.6 Optimisations 20

5 CONCLUSIONS 21

5.1 What Has Been Achieved? 21

5.2 Availability Of Code 21

6 REFERENCES 22

1 THE PARALLEL SORTING TASK

1.1 Introduction

Many papers have discussed the task of sorting on parallel computers. Most of these have dealt with
the problem from a theoretical point of view, neglecting many issues which are important in a practical
implementation of a parallel sorting algorithm [6]. This report introduces a practical parallel sorting
algorithm which is suitable for efficient general-purpose internal sorting.

An overview of the algorithm is given in Section 2. Considerably more details are given in Section 3.
Finally, the performance of our implementations on two MIMD parallel machines is discussed in
Section 4.

1.2 Nomenclature

P is the number of nodes (also called cells or processors) available on the parallel machine, and N is
the total number of elements to be sorted. Np is the number of elements in a particular node p
(0 ≤ p < P). To avoid double subscripts we abbreviate Npj to Nj where no confusion should arise.

Elements within each node of the machine are referred to as Ep,i, for 0 ≤ i < Np and 0 ≤ p < P. We may
write Ej,i instead of Epj,i if no confusion will arise.

When giving “big O” time bounds we usually assume that P is fixed. Thus, we do not usually distinguish
between O(N) and O(N⁄P).

The only operation assumed for elements is binary comparison, written with the usual comparison
symbols. For example, A < B means that element A precedes element B. The elements are considered
sorted when they are in non-decreasing order in each node, and non-decreasing order between nodes.
More precisely, this means that Ep,i ≤ Ep,j for all relevant i < j and p, and that Ep,i ≤ Eq,j for

0 ≤ p < q < P and all relevant i,j.

The speedup offered by a parallel algorithm for sorting N elements is defined as the ratio of the time
to sort N elements with the fastest known serial algorithm (on one node of the parallel machine) to the
time taken by the parallel algorithm on the parallel machine.

1.3 Aims of the Algorithm

In designing the algorithm we had several aims.

• Speed

• Good memory utilisation. The number of elements that can be sorted should closely
approach the physical limits of the machine.

1

• Flexibility, so that no restrictions are placed on N and P. In particular N should not
need to be a multiple of P or a power of 2, which are common restrictions in parallel
sorting algorithms [1].

In order for the algorithm to be truly general purpose we restricted ourselves to algorithms which relied
only on binary comparisons between elements. This rules out methods such as radix sorting, which
can be very fast when they are applicable, but are dependent on a short key length and good data
distribution [7].

We restricted ourselves to algorithms for sorting elements of a fixed size, because of the difficulties
of pointer representations between nodes in a MIMD machine. In short, we were aiming to produce a
parallel equivalent of the Unix qsort() C library function.

To obtain good memory utilisation when sorting small elements, we avoided representations using
linked lists. Thus, the lists of elements referred to below are implemented using arrays, without any
storage overhead for pointers.

The algorithm starts with a number of elements N assumed to be distributed over P processing nodes.
No particular distribution of elements is assumed and the only restrictions on the size of N and P are
the physical constraints of the machine.

The algorithm presented here is similar in many respects to parallel shellsort [2], but contains a number
of new features. For example, the memory overhead of the algorithm is considerably reduced.

1.4 Hardware

For purposes of illustration we examine the performance of implementations of the parallel sorting
algorithm on two parallel MIMD computers.

The first machine is a 128-node AP1000 produced by Fujitsu [3]. This machine contains 128 Sparc
scalar nodes connected on an 8 by 16 torus. Node to node communication is performed by hardware,
using wormhole routing. Each node has 16Mb of local memory and all are connected to a host
workstation via a relatively slow connection.

The second machine is a 32-node CM5 produced by Thinking Machines Corporation [8]. This machine
contains 32 Sparc scalar nodes connected by a communication network that has the topology of a tree.
Each Sparc node has two vector processors which are time-sliced to emulate four virtual vector
processors. Each virtual vector processor controls a bank of 8Mb of memory, giving the Sparc node
access to a total of 32 Mb of memory. In our algorithm no use is made of the vector processors other
than as memory controllers.

Both machines support a general message-passing model as well as a wealth of broadcast and other
communications primitives. Our implementation of parallel sorting only uses a subset of message
passing primitives common to both machines, and for this reason it should be relatively easy to port
to other MIMD machines.

There are a number of small implementation differences in the individual nodes of the two machines
which are significant for our algorithm.

• The clock speed is 32 Mhz on the CM5, and 25 Mhz on the AP1000.

2

• The cache line size is 32 bytes on the CM5, and 16 bytes on the AP1000.

• The cache size is 64Kb on the CM5, and 128Kb on the AP1000.

It will be apparent from the description below that our algorithm is ideally suited to a machine with a
hypercube topology. Neither the CM5 nor the AP1000 has this topology, so communication patterns
which would not cause network contention on a hypercube may cause contention on the CM5 or the
AP1000. It turns out that this does not have a serious impact on performance (see Section 4.5).

2 OVERVIEW OF THE ALGORITHM

The algorithm has four distinct phases (pre-balancing, serial sorting, primary merging, and cleanup).
The primary merging and cleanup phases both use the merge-exchange operation. In 2.1 to 2.5 below,
we outline the purpose and implementation of each phase, and of the merge-exchange operation.

The pre-balancing and primary merging phases are logically unnecessary, and could in principle be
omitted. They are included to improve the performance. Without them, the algorithm would still sort,
but much more slowly.

2.1 Pre-Balancing

The pre-balancing phase moves elements between the nodes so as to achieve as close to an even
distribution as possible. This phase is desirable to minimise the load imbalance between nodes in later
phases of the algorithm. The balancing is achieved by exchanging elements between pairs of nodes.
The communication pattern corresponds to the edges of a hypercube in the case that the number of
nodes is a power of 2. This method produces approximately N⁄P elements in each node, with an error
of order logP for each node if the number of nodes is a power of 2.

The details of the pre-balance are discussed in Section 3.1, along with a method for reducing the cost
of this process by tokenising the movement of the elements. In practice, the pre-balancing phase usually
consumes only a small proportion of the overall sorting time.

2.2 Serial Sorting

In the serial sorting phase there is no communication between nodes, but a fast comparison-based serial
sorting algorithm is applied to the elements in each of the nodes. At the end of this phase the data is
in the form of P sorted lists of elements, with approximately N⁄P elements in each list.

3

After some experimentation, the serial sorting method chosen was a combination of quicksort and
insertion sort. The implementation is a highly optimised adaptation of code written by the Free Software
Foundation for the GNU project. It was found to perform up to twice as fast as the standard C library
function qsort().

2.3 Primary Merging

The aim of the primary merging phase of the algorithm is to almost completely sort the data in a very
efficient manner. The data is considered almost sorted if it is possible to complete the sorting process
in a small proportion of the overall time for the algorithm. This phase maintains the balancing of the
lists between the nodes, and each of the lists remains sorted.

The communication pattern of the primary merging phase is similar to that of the pre-balancing phase.
A merge-exchange operation is performed between nodes in a pattern that reduces to the edges of a
hypercube if P is a power of 2. This means that each node must perform logP merge-exchange
operations. The use of this hypercube pattern of merging guarantees that each node has about the same
amount of work to do at each step. In practice this reduces the load imbalance between the nodes to
almost nil and allows the algorithm to achieve a high parallel efficiency.

It is possible to omit the primary merging phase, but it has been found that this increases the overall
sorting time.

2.4 Cleanup

The aim of the cleanup phase is to guarantee that the data is completely sorted, while consuming very
little time for data that is almost sorted. The algorithm chosen was Batcher’s merge-exchange algorithm
[4] (not to be confused with Batcher’s bitonic sorting algorithm). The algorithm is actually a
generalisation of Batcher’s merge-exchange algorithm (as usually described), in that it operates on lists
of elements rather than on single elements. The generalisation is straightforward, and the proof of its
correctness is given in [5]. The algorithm defines a pattern of merge-exchange operations which will

merge already-sorted lists of elements into completely sorted order. The algorithm takes O((logP)2)
steps on each of the nodes, and uses the same merge-exchange algorithm that is used for the primary
merging phase.

For reasons described in Section 3.6, the algorithm is very efficient if the data is almost sorted. Thus,
in practice the cleanup is found to take only a small proportion of the total time (see Section 4.4).

2.5 Merge-Exchange

Suppose that p1 < p2. A merge-exchange between nodes p1 and p2 results in node p1 having all its
elements less than those in the node p2, while maintaining the ordering of elements within the nodes.
The efficiency of the merge-exchange algorithm has a large influence on the overall efficiency of the
parallel sorting algorithm.

The number of elements in each of the nodes must be controlled for the algorithm to function correctly.
The number is determined by a method called “infinity padding” (Section 3.1), which in practice leads

4

to only minor changes to the distribution produced by the pre-balancing phase.

It is important that the merge-exchange algorithm should not use an excessive amount of temporary
storage, which would severely limit the number of elements that could be sorted on a given hardware
configuration. Our algorithm requires 3√N⁄P elements of temporary storage, which is a trivial amount
in practice.

The first part of the merge-exchange algorithm is to determine exactly how many elements from node
p2 will be required by node p1 and vice versa. This is completed in at most log(N⁄P) steps, where each
step requires one comparison and the transfer of one element from node p2 to p1.

The next part is to transfer the elements between the nodes. This must be done so that the space freed
by moving elements from p1 to p2 can be used to contain the elements coming from p2. The results of
the first part allow this to be performed without the allocation of additional memory.

Finally, the merge itself is performed. Although it is a trivial matter to merge two sorted lists into one
if a generous amount of additional storage is assumed, it is more difficult to merge them with minimal
additional storage. We developed an algorithm which operates on lists of blocks of elements. This
algorithm requires approximately N⁄P memory movements and 3√N⁄P elements of additional storage.
An important special case occurs when the sizes of the two lists are very different. Our algorithm is
designed to be particularly fast in this case. Details of this algorithm are discussed in Section 3.5.

3 IMPLEMENTATION DETAILS

In this Section we describe in more detail the implementation of each phase of the algorithm.

3.1 Infinity Padding

In order for a parallel sorting algorithm to be useful as a general-purpose routine, arbitrary restrictions
on the number of elements that can be sorted must be removed. It is unreasonable to expect that the
number of elements N should be a multiple of the number of nodes P.

The proof given in [5] shows that sorting networks will correctly sort lists of elements provided the
number of elements in each list is equal, and the comparison-exchange operation is replaced with a
merge-exchange operation. The restriction to equal-sized lists is necessary, as simple examples show.
However, a simple extension of the algorithm, which we call infinity padding, can remove this
restriction.

First let us define M to be the maximum number of elements in any one node. It is clear that it would

5

be possible to pad each node with M−Np dummy elements so that the total number of elements would

become M×P. This would mean that each node has M elements after padding which presents no
problems to sorting networks. After sorting is complete these padding elements could be found and
removed in the resulting sorted list.

Infinity padding is a variation on this theme. We notionally pad each node with M−Np “infinity”
elements. These elements are assumed to have the property that they compare greater than any elements
in any possible data set. If we now consider one particular step in the sorting algorithm then we shall
see that these infinity elements need only be represented implicitly.

Say nodes p1 and p2 have N1 and N2 elements respectively before being merged in our algorithm, with
node p1 receiving the smaller elements. Then the addition of infinity padding elements will result in

M−N1 and M−N2 infinity elements being added to nodes p1 and p2 respectively. We know that, after
the merge, node p2 must contain the largest M elements, so we can be sure that it will contain all of
the infinity elements up to a maximum of M. From this we can calculate the number of real elements
which each node must contain after merging. If we designate the number of real elements after merging
as N′1 and N′2 then we find that

N′2 = MAX(0, N1 + N2 − M) and

N′1 = N1 + N2 − N′2

This means that if at each merge phase we give node p1 the first N′1 elements and node p2 the remaining
elements, we have implicitly performed padding of the nodes with infinity elements, thus guaranteeing
the correct behavior of the algorithm.

3.2 Balancing

The aim of the balancing phase of the algorithm is to produce a distribution of the elements on the
nodes that approaches as closely as possible N⁄P elements per node.

The algorithm chosen for this task is one which reduces to a hypercube for values of P which are a

subroutine hypercube_balance(integer base, integer num)

if num = 1 stop

for all i in [0..num/2)
call pair_balance(base+i,base+i+(num+1)/2)

call hypercube_balance(base+num/2,(num+1)/2)
call hypercube_balance(base,num - (num+1)/2)

endsubroutine

Figure 1. Pseudo-code for load balancing phase

6

power of 2. The pseudo-code for the algorithm is shown in Figure 1. When the algorithm is called, the
base is initially set to the index of the smallest node in the system and num is set to the number of
nodes, P. The algorithm operates recursively and takes logP steps to complete. When the number of
nodes is not a power of 2, the effect is to have one of the nodes idle in some phases of the algorithm.
Because the node which remains idle changes with each step, all nodes take part in a pair-balance with
another node.

As can be seen from the code for the algorithm, the actual work of the balance is performed by another
routine called pair_balance. This routine is designed to exchange elements between a pair of nodes so
that both nodes end up with the same number of elements, or as close as possible. If the total number
of elements shared by the two nodes is odd then the node with the lower node number gets the extra
element. Consequently if the total number of elements N is less than the number of nodes P, then the
elements tend to gather in the lower numbered nodes.

A slight modification can be made to the balancing algorithm in order to improve the performance of
the merge-exchange phase of the sorting algorithm. As discussed in Section 3.1, infinity padding is
used to determine the number of elements to remain in each node after each merge-exchange operation.
If this results in a node having less elements after a merge than before then this can lead to complications
in the merge-exchange operation and a loss of efficiency.

To ensure that this never happens we can take advantage of the fact that all merge operations in the
primary merge and in the cleanup phase are performed in a direction such that the node with the smaller
index receives the smaller elements, a property of the sorting algorithm used. If the node with the
smaller index has more elements than the other node, then the virtual infinity elements are all required
in the other node, and no transfer of real elements is required. This means that if a final balancing phase
is introduced where elements are drawn from the last node to fill the lower numbered nodes equal to
the node with the most elements, then the infinity padding method is not required and the number of
elements on any one node need not change.

As the number of elements in a node can be changed by the pair_balance routine it must be possible
for the node to extend the size of the allocated memory block holding the elements. This leads to a
restriction in the current implementation to the sorting of blocks of elements that have been allocated
using the standard memory allocation procedures. It would be possible to remove this restriction by
allowing elements within one node to exist as two non-contiguous blocks of elements, and applying
an un-balancing phase at the end of the algorithm. This idea has not been implemented because its
complexity outweighs its relatively minor advantages.

In the current version of the algorithm elements may have to move up to logP times before reaching
their destination. It might be possible to improve the algorithm by arranging that elements move only
once in reaching their destination. Instead of moving elements between the nodes, tokens would be
sent to represent blocks of elements along with their original source. When this virtual balancing was
completed, the elements could then be dispatched directly to their final destinations. This tokenised
balance has not been implemented, primarily because the balancing is sufficiently fast without it.

3.3 Serial Sorting

The aim of the serial sorting phase is to order the elements in each node in minimum time. For this
task, the best available serial sorting algorithm has been used, subject to the restriction that the algorithm

7

must be comparison based.

If the number of nodes is large then another factor must be taken into consideration in the selection of
the most appropriate serial sorting algorithm. A serial sorting algorithm is normally evaluated using
its average case performance, or sometimes its worst case performance. The worst case for algorithms
such as quicksort is very rare, so the average case is more relevant in practice. However, if there is a
large variance, then the serial average case can give an over-optimistic estimate of the performance of
a parallel algorithm. This is because a delay in any one of the nodes may cause other nodes to be idle
while they wait for the delayed node to catch up.

This suggests that it may be safest to choose a serial sorting algorithm such as heapsort, which has
worst case equal to average case performance. However, we found that the parallel algorithm performed
better on average when the serial sort was quicksort (for which the average performance is good and
the variance small) than when the serial sort was heapsort.

Our final choice is a combination of quicksort and insertion sort. The basis for this selection was a
number of tests carried out on implementations of several algorithms. The care with which the
algorithm was implemented was at least as important as the choice of abstract algorithm.

Our implementation is based on code written by the Free Software Foundation for the GNU project.
Several modifications were made to give improved performance For example, the insertion sort
threshold was tuned to provide the best possible performance for the Sparc architecture.

3.4 Primary Merge

The aim of the primary merge phase of the algorithm is to almost sort the data in minimum time. For
this purpose an algorithm with a very high parallel efficiency was chosen to control merge-exchange
operations between the nodes. This led to significant performance improvements over the use of an
algorithm with lower parallel efficiency that is guaranteed to completely sort the data (for example,
Batcher’s algorithm as used in the cleanup phase).

The pattern of merge-exchange operations in the primary merge is identical to that used in the

subroutine primary_merge(integer base, integer num)

if num = 1 stop

for all i in [0..num/2)
call merge_exchange(base+i,base+i+(num+1)/2)

call primary_merge(base+num/2,(num+1)/2)
call primary_merge(base,num - (num+1)/2)

endsubroutine

Figure 2. Pseudo-code for primary merge phase

8

pre-balancing phase of the algorithm. The pseudo-code for the algorithm is given in Figure 2. When
the algorithm is called the base is initially set to the index of the smallest node in the system and num
is set to the number of nodes, P.

This algorithm completes in logP steps per node, with each step consisting of a merge-exchange
operation. As with the load balancing algorithm, if P is not a power of 2 then a single node may be left
idle at each step of the algorithm, with the same node never being left idle twice in a row.

If P is a power of 2 and the initial distribution of the elements is random, then at each step of the
algorithm each node has about the same amount of work to perform as the other nodes. In other words,
the load balance between the nodes is very good. The symmetry is only broken due to an unusual
distribution of the original data, or if P is not a power of 2. In both these cases load imbalances may
occur.

3.5 Merge-Exchange Operation

The aim of the merge-exchange algorithm is to exchange elements between two nodes so that we end
up with one node containing elements which are all smaller than all the elements in the other node,
while maintaining the order of the elements in the nodes. In our implementation of parallel sorting we
always require the node with the smaller node number to receive the smaller elements. This would not
be possible if we used Batcher’s bitonic algorithm instead of his merge-exchange algorithm.

Secondary aims of the merge-exchange operation are that it should be very fast for data that is almost
sorted already, and that the memory overhead should be minimised.

subroutine merge(list destination, list source1, list source2)

while (source1 not empty) and (source2 not empty)
if (top_of_source1 < top_of_source_2)

put top_of_source1 into destination
else

put top_of_source2 into destination
endif

endwhile

while (source1 not empty)
put top_of_source1 into destination

endwhile

while (source2 not empty)
put top_of_source2 into destination

endwhile

endsubroutine

Figure 3. Pseudo-code for a simple merge

9

Suppose that a merge operation is needed between two nodes, p1 and p2, which initially contain N1
and N2 elements respectively. We assume that the smaller elements are required in node p1 after the
merge.

In principle, merging two already sorted lists of elements to obtain a new sorted list is a very simple
process. The pseudo-code for the most natural implementation is shown in Figure 3. This algorithm
completes in N1+N2 steps, with each step requiring one copy and one comparison operation. The
problem with this algorithm is the storage requirements implied by the presence of the destination
array. This means that the use of this algorithm as part of a parallel sorting algorithm would restrict
the number of elements that can be sorted to the number that can fit in half the available memory of
the machine. The question then arises as to whether an algorithm can be developed that does not require
this destination array.

In order to achieve this, it is clear that the algorithm must re-use the space that is freed by moving
elements from the two source lists. We now describe how this can be done. The algorithm has several
parts, each of which is described separately.

The principle of infinity padding is used to determine how many elements will be required in each of
the nodes at the completion of the merge operation. If the complete balance operation has been
performed at the start of the whole algorithm then the result of this operation must be that the nodes
end up with the same number of elements after the merge-exchange as before. We assume that infinity
padding tells us that we require N′1 and N′2 elements to be in nodes p1 and p2 respectively after the
merge.

3.5.1 Find-Exact Algorithm

When a node takes part in a merge-exchange with another node, it will need to be able to access the
other nodes elements as well as its own. The simplest method for doing this is for each node to receive
a copy of all of the other nodes elements before the merge begins.

A much better approach is to first determine exactly how many elements from each node will be
required to complete the merge, and to transfer only those elements. This reduces the communications
cost by minimising the number of elements transferred, and at the same time reduces the memory
overhead of the merge.

The find-exact algorithm allows each node to determine exactly how many elements are required from
another node in order to produce the correct number of elements in a merged list.

When a comparison is made between element E1,A−1 and E2,N′1−A then the result of the comparison
determines whether node p1 will require more or less than A of its own elements in the merge. If
E1,A−1 is greater than E2,N′1−A then the maximum number of elements that could be required to be kept

by node p1 is A−1, otherwise the minimum number of elements that could be required to be kept by
node p1 is A.

The proof that this is correct relies on counting the number of elements that could be less than
E1,A−1. If E1,A−1 is greater than E2,N′1−A then we know that there are at least N′1−A+1 elements in node

p2 that are less than E1,A−1. If these are combined with the A−1 elements in node p1 that are less than

E1,A−1, then we have at least N′1 elements less than E1,A−1. This means that the number of elements

10

that must be kept by node p1 must be at most A−1.

A similar argument can be used to show that if E1,A−1 is less than or equal to E2,N′1−A then the number
of elements to be kept by node p1 must be at least A. Combining these two results leads to an algorithm
that can find the exact number of elements required in at most logN1 steps by successively halving the
range of possible values for the number of elements required to be kept by node p1.

Once this result is determined it is a simple matter to derive from this the number of elements that must
be sent from node p1 to node p2 and from node p2 to node p1.

On a machine with a high message latency, this algorithm could be costly, as a relatively large number
of small messages are transferred. The cost of the algorithm can be reduced, but with a penalty of
increased message size and algorithm complexity. To do this the nodes must exchange more than a
single element at each step, sending a tree of elements with each leaf of the tree corresponding to a
result of the next several possible comparison operations. This method has not been implemented as
the practical cost of the find-exact algorithm was found to be very small on the CM5 and AP1000.

We assume for the remainder of the discussion on the merge-exchange algorithm that after the find
exact algorithm has completed it has been determined that node p1 must retain L1 elements and must
transfer L2 elements from node p2.

3.5.2 Transferring Elements

After the exact number of elements to be transferred has been determined, the actual transfer of elements
can begin. The transfer takes the form of an exchange of elements between the two nodes. The elements
that are sent from node p1 leave behind them spaces which must be filled with the incoming elements
from node p2. The reverse happens on node p2 so the transfer process must be careful not to overwrite
elements that have not yet been sent.

The implementation of the transfer process was straightforward on the CM5 and AP1000 because of
appropriate hardware/operating system support. On the CM5 a routine called CMMD_send_and_re-
ceive does just the type of transfer required, in a very efficient manner. On the AP1000 the fact that a
non-blocking message send is available allows for blocks of elements to be sent simultaneously on the
two nodes, which also leads to a fast implementation.

If this routine were to be implemented on a machine without a non-blocking send then each element
on one of the nodes would have to be copied to a temporary buffer before being sent. The relative
overhead that this would generate would depend on the ratio of the speeds of data transfer within nodes
and between nodes.

After the transfer is complete, the elements on node p1 are in two contiguous sorted lists, of lengths

L1 and N′1−L1. In the remaining steps of the merge-exchange algorithm we merge these two lists so
that all the elements are in order.

3.5.3 Unbalanced Merging

Before considering the algorithm that has been devised for minimum memory merging, it is worth
considering a special case where the result of the find-exact algorithm determines that the number of
elements to be kept on node p1 is much larger than the number of elements to be transferred from node

11

p2.

In this case the task which node p1 must undertake is to merge two lists of very different sizes. There
is a very efficient algorithm for this special case.

Suppose that L1 is much greater than L2. This may occur if the data is almost sorted, for example, near
the end of the cleanup phase. We proceed as follows.

First we determine, for each of the L2 elements that have been transferred from p1, where it belongs
in the list of length L1. This can be done with at most L2 logL1 comparisons using a method similar to
the find-exact algorithm. As L2 is small, this number of comparisons is small, and the results take only

O(L2) storage.

Once this is done we can copy all the elements in list 2 to a temporary storage area and begin the process
of slotting elements from list 1 and list 2 into their proper destinations. This takes at most L1+L2 element
copies, but in practice it often takes only about 2L2 copies. This is explained by the fact that when only
a small number of elements are transferred between nodes there is often only a small overlap between
the ranges of elements in the two nodes, and only the elements in the overlap region have to be moved.
Thus the unbalanced merge performs very quickly in practice, and the overall performance of the
sorting procedure is significantly better than it would be if we did not take advantage of this special
case.

3.5.4 Blockwise Merging

The blockwise merge is a solution to the problem of merging two sorted lists of elements into one,
while using only a small amount of additional storage. The first phase in the operation is to break the
two lists into blocks of an equal size B. The exact size of B is unimportant for the functioning of the
algorithm and only makes a difference to the efficiency and memory usage of the algorithm. We assume
that B is O(√L1+L2), which is small relative to the memory available on each node. To simplify the
exposition we also assume, for the time being, that L1 and L2 are multiples of B.

The merge takes place by merging from the two blocked lists of elements into a destination list of
blocks. The destination list is initially primed with two empty blocks which comprise a temporary
storage area. As each block in the destination list becomes full the algorithm moves on to a new, empty
block, choosing the next one in the destination list. As each block in either of the two source lists
becomes empty they are added to the destination list.

As the merge proceeds there are always exactly 2B free spaces in the three lists. This means that there
must always be at least one free block for the algorithm to have on the destination list, whenever a new
destination block is required. Thus the elements are merged completely with them ending up in a
blocked list format controlled by the destination list.

The algorithm actually takes no more steps than the simple merge outlined earlier. Each element moves
only once. The drawback, however, is that the algorithm results in the elements ending up in a blocked
list structure rather than in a simple linear array.

The simplest method for resolving this problem is to go through a re-arrangement phase of the blocks
to put them back in the standard form. This is what has been done in the implementation of our parallel
sorting algorithm. It would be possible, however, to modify the whole algorithm so that all references

12

to elements are performed with the elements in this block list format. At this stage the gain from doing
this has not warranted the additional complexity, but if the sorting algorithm is to attain its true potential
then this would become necessary.

As mentioned earlier, it was assumed that L1 and L2 were both multiples of B. In general this is not
the case. If L1 is not a multiple of B then this introduces the problem that the initial breakdown of list
2 into blocks of size B will not produce blocks that are aligned on multiples of B relative to the first
element in list 1. To overcome this problem we must make a copy of the L1 mod B elements on the
tail of list 1 and use this copy as a final source block. Then we must offset the blocks when transferring
them from source list 2 to the destination list so that they end up aligned on the proper boundaries.
Finally we must increase the amount of temporary storage to 3B and prime the destination list with
three blocks to account for the fact that we cannot use the partial block from the tail of list 1 as a
destination block.

Consideration must finally be given to the fact that infinity padding may result in a gap between the
elements in list 1 and list 2. This can come about if a node is keeping the larger elements and needs to
send more elements than it receives. Handling of this gap turns out to be a trivial extension of the
method for handling the fact that L1 may not be a multiple of B. We just add an additional offset to the
destination blocks equal to the gap size and the problem is solved.

3.6 Cleanup

The cleanup phase of the algorithm is similar to the primary merge phase, but it must be guaranteed
to complete the sorting process. The method that has been chosen to achieve this is Batcher’s
merge-exchange algorithm. This algorithm has some useful properties which make it ideal for a cleanup
operation.

The pseudo-code for Batcher’s merge-exchange algorithm is given in [4]. The algorithm defines a
pattern of comparison-exchange operations which will sort a list of elements of any length. The way
the algorithm is normally described, the comparison-exchange operation operates on two elements and
exchanges the elements if the first element is greater than the second. In the application of the algorithm
to the cleanup operation we generalise the notion of an element to include all elements in a node. This
means that the comparison-exchange operation must make all elements in the first node greater than
all elements in the second. This is identical to the operation of the merge-exchange algorithm. A proof
that it is possible to make this generalisation while maintaining the correctness of the algorithm is given
in [5].

Batcher’s merge-exchange algorithm is ideal for the cleanup phase because it is very fast for almost
sorted data. This is a consequence of a unidirectional merging property: the merge operations always
operate in a direction so that the lower numbered node receives the smaller elements. This is not the
case for some other fixed sorting networks, such as the bitonic algorithm [2]. Algorithms that do not
have the unidirectional merging property are a poor choice for the cleanup phase as they tend to unsort
the data (undoing the work done by the primary merge phase), before sorting it. In practice the cleanup
time is of the order of 1 or 2 percent of the total sort time if Batcher’s merge-exchange algorithm is
used and the merge-exchange operation is implemented efficiently.

13

4 PERFORMANCE

4.1 Estimating the Speedup

An important characteristic of any parallel algorithm is how much faster the algorithm performs than
an algorithm on a serial machine. Which serial algorithm should be chosen for the comparison ? Should
it be the same as the parallel algorithm (running on a single node), or the best known algorithm ?

The first choice gives what which we call the parallel efficiency of the algorithm. This is a measure of
the degree to which the algorithm can take advantage of the parallel resources available to it.

The second choice gives the fairest picture of the effectiveness of the algorithm itself. It measures the
advantage to be gained by using a parallel approach to the problem. Ideally a parallel algorithm running
on P nodes should complete a task P times faster than the best serial algorithm running on a single
node of the same machine. It is even conceivable, and sometimes realisable, that caching effects could
give a speedup of more than P.

A problem with both these choices is apparent when we attempt to time the serial algorithm on a single
node. If we wish to consider problems of a size for which a the use of a large parallel machine is
worthwhile, then it is likely that a single node cannot complete the task, because of memory or other
constraints.

This is the case for our sorting task. The parallel algorithm only performs at its best for values of N
which are far beyond that which a single node on the CM5 or AP1000 can hold. To overcome this
problem we have extrapolated the timing results of the serial algorithm to larger N.

The quicksort/insertion-sort algorithm which we have found to perform best on a serial machine is
known to have an asymptotic average run time of order NlogN. There are, however, contributions to
the run time that are of order 1, N and logN. To estimate these contributions we have performed a least
squares fit of the form:

time(N) = a + blogN + cN + dNlogN

The results of this fit are used in the discussion of the performance of the algorithm to estimate the
speedup that has been achieved over the use of a serial algorithm.

4.2 Timing Results

Several runs have been made on the AP1000 and CM5 to examine the performance of the sorting
algorithm under a variety of conditions. The aim of these runs is to determine the practical performance
of the algorithm and to determine what degree of parallel speedup can be achieved on current parallel
computers.

The results of the first of these runs are shown in Figure 4. This figure shows the performance of the
algorithm on the 128-node AP1000 as N spans a wide range of values, from values which would be
easily dealt with on a workstation, to those at the limit of the AP1000s memory capacity (2 Gbyte).
The elements are 32-bit random integers. The comparison function has been put inline in the code,
allowing the function call cost (which is significant on the Sparc) to be avoided.

14

Sorting 16-byte strings on the 128 node AP1000

E
le

m
en

ts
 p

er
 s

ec
on

d
(X

 1
06)

Number of Elements
105 106 107 108 1090.0

0.8

0.6

0.4

0.2

1.2

1.0

128 times serial sorting rate

projected serial sorting rate

parallel sorting rate

Figure 4. Sorting 16-byte strings on the AP1000

Sorting 32-bit integers on the 128 node AP1000
E

le
m

en
ts

 p
er

 s
ec

on
d

(X
 1

06)

Number of Elements
105 106 107 108 1090.0

8.0

6.0

4.0

2.0

128 times serial sorting rate

projected serial sorting rate

parallel sorting rate

Figure 5. Sorting 32-bit integers on the AP1000

15

The results give the number of elements that can be sorted per second of real time. This time includes
all phases of the algorithm, and gives an overall indication of performance.

Shown on the same graph is the performance of a hypothetical serial computer that operates P times
as fast as the P individual nodes of the parallel computer. This performance is calculated by sorting
the elements on a single node and multiplying the resulting elements per second result by P. An
extrapolation of this result to larger values of N is also shown using the least squares method described
in Section 4.1.

The graph shows that the performance of the sorting algorithm increases quickly as the number of
elements approaches 4 million, after which a slow falloff occurs which closely follows the profile of
the ideal parallel speedup. The rolloff point of 4 million elements corresponds to the number of elements
that can be held in the 128Kb cache of each node. This indicates the importance of caching to the
performance of the algorithm.

It is encouraging to note how close the algorithm comes to the ideal speedup of P for a P-node machine.
The algorithm achieves 75% of the ideal performance for a 128-node machine.

A similar result for sorting of 16-byte random strings is shown in Figure 5. In this case the comparison
function is the C library function strcmp(). The roll-off point for best performance in terms of elements
per second is observed to be 1 million elements, again corresponding to the cache size on the nodes.

The performance for 16-byte strings is approximately 6 times worse than for 32-bit integers. This is
because each data item is 4 times larger, and the cost of the function call to the strcmp() function is
much higher than an inline integer comparison. The parallel speedup, however, is higher than that
achieved for the integer sorting. The algorithm achieves 85% of the (theoretically optimal) P times
speedup over the serial algorithm for large N.

4.3 Scalability

An important aspect of a parallel algorithm is its scalability, which depends on the ability of the
algorithm to utilise additional nodes.

Shown in Figure 6 is the result of sorting 100,000 16-byte strings per node on the AP1000 as the number
of nodes is varied. The percentages refer to the proportion of the ideal speedup P that is achieved. The
number of elements per node is kept constant to ensure that caching factors do not influence the result.

The left-most data point shows the speedup for a single node. This is equal to 1 as the algorithm reduces
to our optimised quicksort when only a single node is used. As the number of nodes increases, the
proportion of the ideal speedup decreases, as communication costs and load imbalances begin to appear.
The graph flattens out for larger numbers of nodes, which indicates that the algorithm should have a
good efficiency when the number of nodes is large.

The two curves in the graph show the trend when all configurations are included and when only
configurations with P a power of 2 are included. The difference between these two curves clearly shows
the preference for powers of two in the algorithm. Also clear is that certain values for P are preferred
to others. In particular even numbers of nodes perform better than odd numbers. Sums of adjacent
powers of two also seem to be preferred, so that when P takes on values of 24, 48 and 96 the efficiency
is quite high.

16

4.4 Where Does The Time Go?

In evaluating the performance of a parallel sorting algorithm it is interesting to look at the proportion
of the total time spent in each of the phases of the sort. In Figure 7 this is done over a wide range of
values of N for sorting 16-byte strings on the AP1000. The three phases that are examined are the initial
serial sort, the primary merging and the cleanup phase.

This graph shows that as N increases to a significant proportion of the memory of the machine the
dominating time is the initial serial sort of the elements in each cell. This is the case because this phase
of the algorithm is O(NlogN) whereas all other phases of the algorithm are O(N) or lower. It is the fact
that this component of the algorithm is able to dominate the time while N is still a relatively small
proportion of the capacity of the machine which leads to the practical efficiency of the algorithm. Many
sorting algorithms are asymptotically optimal in the sense that their speedup approaches P for large
N, but few can get close to this speedup for values of N which are of of interest in practice [6].

It is interesting to note the small impact that the cleanup phase has for larger values of N. This
demonstrates the fact that the primary merge does produce an almost sorted data set, and that the cleanup
algorithm can take advantage of this.

A second way of splitting the time taken for the parallel sort to complete is by task. In this case we
look at what kind of operation each of the nodes is performing, which provided a finer division of the
time.

Figure 8 shows the result of this kind of split for the sorting of 16-byte strings on the 128-node AP1000,
over a wide range of values of N. Again it is clear that the serial sorting dominates for large values of
N, for the same reasons as before. What is more interesting is that the proportion of time spent idling
while waiting for messages and in actually communicating decreases steadily as N increases. From the

Sorting 105 16-byte strings per node on the AP1000
P

ro
po

rt
io

n
of

 P
ot

en
tia

l S
pe

ed
up

Number of Nodes
1 40 80 120

0%

60%

40%

20%

100%

80%

Figure 6. Scalability of sorting on the AP1000

17

Sorting 16-byte strings on the 128 node AP1000
P

er
ce

nt
ag

e
of

 T
ot

al
 T

im
e

Number of Elements
105 106 107 1080%

60%

40%

20%

Serial Sort

Cleanup

Primary Merge

Figure 7. Timing breakdown by phase

Sorting 16-byte strings on the 128 node AP1000

P
er

ce
nt

ag
e

of
 T

ot
al

 T
im

e

Number of Elements
105 106 107 1080%

60%

40%

20%

Serial Sorting

Communicating

Merging

Idle
Rearranging

Figure 8. Timing breakdown by task

18

point of view of the parallel speedup of the algorithm these tasks are wasted time and need to be kept
to a minimum.

4.5 CM5 vs AP1000

The results presented so far are for the 128-node AP1000. It is interesting to compare this machine
with the CM5 to see if the relative performance is as expected. To make the comparison fairer, we
compare the 32-node CM5 with a 32-node AP1000 (the other 96 nodes are physically present but not
used). Since the CM5 vector units are not used (except as memory controllers), we effectively have
two rather similar machines. The same C compiler was used on both machines.

The AP1000 is a single-user machine and the timing results obtained on it are very consistent. However,
it is difficult to obtain accurate timing information on the CM5. This is a consequence of the
time-sharing capabilities of the CM5 nodes. Communication-intensive operations produce timing
results which vary by a large factor from run to run. To overcome this problem, the times reported here
are for runs with a very long time quantum for the time sharing, and with only one process on the
machine at one time. Even so, we have ignored occasional anomalous results which take much longer
than usual. This means that the results are not representative of results that are regularly achieved in a
real application. It is hoped that, with improvements in the CM5 operating system, the times shown
here would be achieved as a matter of course.

In Figure 9 the speed of the various parts of the sorting algorithm are shown for the 32-node AP1000
and CM5. In this example we are sorting 8 million 32-bit integers.

For the communications operations the machines both achieve very similar timing results. For each of
the computationally intensive parts of the sorting algorithm, however, the CM5 achieves times which
are between 60% and 70% of the times achieved on the AP1000.

An obvious reason for the difference between the two machines is the difference in clock speeds of
the individual scalar nodes. There is a ratio of 32 to 25 in favor of the CM5 in the clock speeds. This
explains most of the performance difference, but not all. The remainder of the difference is due to the
fact that sorting a large number of elements is a very memory-intensive operation.

A major bottleneck in the sorting procedure is the memory bandwidth of the nodes. When operating
on blocks which are much larger than the cache size, this results in a high dependency on how often a

Task CM5 Time (seconds) AP1000 time (seconds)

IDLE 0.22 0.23
COMMUNICATING 0.97 0.99
MERGING 0.75 1.24
SERIAL SORTING 3.17 4.57
REARRANGING 0.38 0.59
TOTAL TIME 5.48 7.62

Figure 9. Comparison of CM5 and AP1000 times

19

cache line must be refilled from memory and how costly the operation is. Thus, the remainder of the
difference between the two machines may be explained by the fact that cache lines on the CM5 consist
of 32 bytes whereas they consist of 16 bytes on the AP1000. This means a cache line load must occur
only half as often on the CM5 as on the AP1000.

The results illustrate how important minor architectural differences can be for the performance of
complex algorithms. At the same time the vastly different network structures on the two machines are
not reflected in significantly different communication times. This suggests that the parallel sorting
algorithm presented here can perform well on a variety of parallel machine architectures with different
communication topologies.

4.6 Optimisations

Several optimisation “tricks” have been used to obtain faster performance. It was found that these
optimisations played a surprisingly large role in the speed of the algorithm, producing an overall speed
difference of about 50%.

The first optimisation was to replace the standard C library routine memcpy() with a much faster
version. At first a faster version written in C was used, but this was eventually replaced by a version
written in Sparc assembler.

The second optimisation was the tuning of the block size of sends performed when elements are
exchanged between nodes. This optimisation is hidden on the CM5 in the CMMD_send_and_receive()
routine, but is under the programmer’s control on the AP1000.

The value of the B parameter in the blockwise_merge routine is important. If it is too small then
overheads slow down the program, but if it is too large then too many copies must be performed and
the system might run out of memory. The value finally chosen was 4√L1+L2.

The method of rearranging blocks in the blockwise_merge routine can have a big influence on the
performance as a small change in the algorithm can mean that data is far more likely to be in cache
when referenced, thus giving a large performance boost.

A very tight kernel for the merging routine is important for good performance. With loop unrolling
and good use of registers this routine can be improved enormously over the obvious simple implemen-
tation.

It is quite conceivable that further optimisations to the code are possible and would lead to further
improvements in performance.

20

5 CONCLUSIONS

5.1 What Has Been Achieved?

We have presented a practical general-purpose parallel internal sorting algorithm that comes close to
achieving the best possible speedup over an optimised serial algorithm. An implementation of the
algorithm on two real machines has been discussed.

The algorithm derives its generality from the fact that it is comparison-based, and allows for a
user-supplied comparison function. This corresponds to the commonly available serial sorting proce-
dures that are the mainstay of internal sorting on serial computers.

The algorithm is frugal in its memory requirements, which allows data to be sorted almost to the limit
of a parallel machine’s memory. This is important because it is unreasonable to expect data sets being
sorted on a parallel machine to be only a small fraction of the machine’s capacity.

5.2 Availability Of Code

The source code for the algorithm presented in this report is available via anonymous ftp from
andosl.anu.edu.au in the directory pub/tridge/sorting/par_sort.

21

6 REFERENCES

[1] S. G. Akl, Parallel Sorting Algorithms, Academic Press, Orlando, 1985.

[2] G. Fox et al, Solving Problems on Concurrent Processors, Volume 1: General Tech-
niques and Regular Problems, Prentice-Hall, New Jersey, 1988.

[3] H. Ishihata, T. Horie, S. Inano, T. Shimizu and S. Kato, “CAP-II Architecture”, Pro-
ceedings of the First Fujitsu-ANU CAP Workshop, Fujitsu Research Laboratories,
Kawasaki, Japan, November 1990.

[4] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching
(second edition), Addison-Wesley, Menlo Park, 1981, 112-113.

[5] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching
(second edition), Addison-Wesley, Menlo Park, 1981, solution to problem 5.3.4 (38).

[6] L. Natvig, “Logarithmic Time Cost Optimal Parallel Sorting is Not Yet Fast in Prac-
tice!”, Proc Supercomputing 90, IEEE Press, 1990, 486-494.

[7] K. Thurling and S. Smith, “An Improved Supercomputing Sorting Benchmark”, Proc
Supercomputing 92, IEEE Press, 1992, 14-19.

[8] CM-5 Technical Summary, Thinking Machines Corporation, October 1991.

22

