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Abstract

In this paper, we present a new load balancing technique, called panel scattering, which is gen-
erally applicable for parallel block-partitioned dense linear algebra algorithms, such as matrix fac-
torization. Here, the panels formed in such computation are divided across their length, and evenly
(re-)distributed among all processors. It is shown how this technique can be eÆciently implemented
for the general block-cyclic matrix distribution, requiring only the collective communication primi-
tives that required for block-cyclic parallel BLAS. In most situations, panel scattering yields optimal
load balance and cell computation speed across all stages of the computation. It has also advantages
in naturally yielding good memory access patterns.

Compared with traditional methods which minimize communication costs at the expense of load
balance, it has a small (in some situations negative) increase in communication volume costs. It
however incurs extra communication startup costs, but only by a factor not exceeding 2. To maximize
load balance and minimize the cost of panel re-distribution, storage block sizes should be kept small;
furthermore, in many situations of interest, there will be no signi�cant communication startup penalty
for doing so.

Results will be given on the Fujitsu AP+ parallel computer, which will compare the performance
of panel scattering with previously established methods, for LU, LLT and QR factorization. These are
consistent with a detailed performance model for LU factorization for each method that is developed
here.

Keywords: dense linear algebra, block cyclic decomposition, storage blocking, algorithmic blocking,
physically based matrix distribution.

1 Introduction

Dense linear algebra computations such as LU, LLT (Cholesky) and QR factorization require the technique
of `block-partitioned algorithms' for their eÆcient implementation on memory-hierarchy processors. Here,
the rows and/or columns of a matrix are partitioned into panels, ie. block row/columns of width ! � 1,
and by performing matrix-vector or matrix-matrix operations on these panels. Once these panels are
formed, the remainder of the computation typically involves `Level 3' or matrix-matrix operations, which
can run at optimal speed.

In the distributed memory multiprocessor context, most, if not all, communication occurs within
the panel formation stage. Once the optimal panel width ! = !m is achieved for the matrix-matrix
operations, the most scope for the acceleration of the overall computation is in the optimization of the
panel formation stages.

In this paper, we will consider the r�s block-cyclic matrix distribution over a P �Q logical processor
grid (see Figure 1) [5], where, for an N � N global matrix A, block (i; j) of A will be on processor
(i mod P; j mod Q). We will now review two established techniques for parallel panel formation, known
as storage blocking, where ! = r = s, and algorithmic blocking [6, 13, 9, 10], where ! � !m; r � s � 1.
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Storage blocking su�ers from load imbalance on the panel formation stage, in that only one row or
column of processors of the grid will be involved in this stage, which is an O(!=N) fraction of the overall
computation. Furthermore, there is an O(N2(r=Q + s=P )) load imbalance on the Level 3 computation,
since the cell owning the last block row and column will have more overall work to do than the others
in these stages [3, 10]. For small to moderate N , these imbalances can be signi�cant, so that a value of
! < !m may be optimal. It is widely believed that storage blocking minimizes communication startup
and volume overheads.

Algorithmic blocking (also known as `distributed panels' [13]) achieves better load balancing properties
by distributing the panel across all processors, at the expense of some increased communication overhead,
both in startup and volume. It generally achieves very high load balance. Whether a multiprocessor favors
algorithmic blocking over storage blocking depends of whether !m is large, and, to a lesser extent, whether
the ratio of communication to 
oating point speed is relatively high [13].

However, the load balance in panel formation is not perfect, being about 81% for ! = 32; r = 1
and P = 8, but diminishing for larger P=! ratios [13]. Furthermore, since algorithmic blocking involves
distributing a panel across its narrowest dimension, this can degrade cell computation speed. This
is because each processor's portion of the panel has a small local width, which can be thought of as
reducing a Level 3 (or Level 2) sub-computation into a `Level 2.5' (or `Level 1.5') sub-computation.

Algorithmic blocking has been shown to have a 15{30% performance gain over storage blocking on LU
and LLT factorizations on the Fujitsu AP1000 and AP+ multicomputers, even using implementations
which have redundant communications, which can increase the communication volume associated with
panel formation by as much as 100% [13, 17]. If one is prepared to pay such a cost in extra communication
volume, some of the load balance and cell computation speed de�ciencies of algorithmic blocking can be
overcome.

Consider again the storage blocking scheme with ! = r = s for the formation of a vertical panel L
of size M � !, with M � !. L is a sub-matrix of the matrix being factorized; it is initially contained
in processor column q; 0 � q < Q. In each cell in column q, L could be sliced (vertically) into Q pieces
along the shortest dimension: this would create a similar situation as for algorithmic blocking. However,
instead L could be sliced (horizontally) into Q pieces along the longest dimension, and scattered to each of
the Q cells across that row. The panel formation can then proceed with near-perfect load balance. Once
L is formed, it is replicated in all processor columns, and the original part of the matrix corresponding
to L is updated on cell column q.

This technique we call panel scattering, although ! = r = s is not required. Unlike algorithmic block-
ing, it obeys the general parallel computing principle of making the local cell portion of the (scattered)
panel as near as possible to square, thereby gaining a greater volume to surface area (which in turn, tends
to reduce memory hierarchy traÆc).

The extra communication overhead occurs on the scatter of the panel, which, because it involves only
point-to-point sends, is at least as eÆcient as a broadcast operation. However, pipelined communication
is lost, and one-dimensional reduction and broadcasting operations are replaced by two-dimensional
operations, which may well be slower.

This paper is organized as follows. Section 1.1 describes recent related work, based on the Physically
Based Matrix Distribution [18]. The Fujitsu AP+ multicomputer is described in Section 1.2. Key ideas
in panel scattering for block-cyclic decompositions are developed in Section 2. The implementation of
panel scattering for the matrix factorizations is described in Section 3. The performance on the AP+
of panel scattering, algorithmic blocking and storage blocking is given in Section 4. Section 5 gives an
analysis of the various methods for LU factorization, resulting in a performance model which veri�es that
our implementations behave much as expected for these methods. Conclusions are given in Section 6.

1.1 Related Work

In [15], the idea of panel scattering was introduced as an alternate load balancing technique of parallel
matrix factorization, with a qualitative comparison of its computational and communication performance
against algorithmic and storage blocking being given. As no implementation or results for panel scattering
were given there, this paper is a follow-up for that work.

Very recently, a similar technique has been proposed in [1] for matrix factorizations using the Physically-
Based Matrix Distribution (PBMD), which forms the basis for the PLAPACK project [18]. In PBMD, a
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vector is typically decomposed into blocks of size r which, on a P �Q grid, are cyclically distributed over
PQ cells in column-major order, ie. by assigning block i to cell (p; q) where i � (p+ qP ) modulo PQ. A
matrix distribution is then induced by making its rows and columns `conformal' to this vector [18]. This
distribution amounts to a special case of the block-cyclic distribution where:

s = Pr (1)

Thus, to implement the PBMD equivalent of panel scattering, the lower panel L, initially distributed
over a column of cells, is transformed into a multivector L0 distributed over all cells via a scatter operation.
Once this panel is factored, it is gathered back again into the original matrix, before replicating it for
subsequent (parallel BLAS) operations [1].

In [1], PLAPACK algorithms for LLT, LU and QR factorizations are given. Some performance
comparisons with the corresponding ScaLAPACK routines [2], which use storage blocking, were given on
a 4� 4 Cray T3E, for which the version of cell BLAS used at that time had !m = 128. Results were only
given for ! = !m = 128; r = !=2, which was presumably the best combination for the implementation of
PLAPACK at that time. However there was no detailed performance analysis given to compare the two
methods.

One claim of [1] is that the high level of abstraction within PLAPACK was important in developing a
more complex but (arguably) more eÆcient algorithm than storage blocking. We believe that this claim
this applies equally our development of panel scattering for the more general block-cyclic distribution,
especially with our aim to investigate both small and large block sizes in order to seek maximal load
balance.

1.2 The Fujitsu AP+

The Fujitsu AP+ [7] is a SPARC 10-based multiprocessor; it's cells have a theoretical peak speed of 50
MFLOPs (double precision). The AP+ uses a physical torus communication network using wormhole
routing, with each link being capable of 25 MBs�1 in either direction. A useful feature of this network
is the ability to perform a row or column broadcast for the cost of a normal point-to-point message (ie.
�bc = 1 in the notation of [4]); such a broadcast will be referred to as a unit-cost broadcast. On the AP+,
these do not require any synchronization, in that the sender does not have to wait till the other cells post
the corresponding receive calls.

Unit-cost broadcasts are very easy to implement in hardware: with wormhole routing, they only
require the communication routers to be able to forward the packets of a broadcast message to both the
next node in the network, and to the adjacent processor. Given that row and column broadcasts are so
widely used in dense linear algebra (and other applications), it is surprising that other vendors have not
emulated this capability.

The AP+ cells have a set-associative write-through 16 KB data cache, and a set-associative 20 KB
instruction cache. There is no second-level cache; this reduces level-3 and especially level-2 computation
performance. The optimal logical blocking factor is !m � 32. Virtual memory is implemented on the AP+
cells; thus attention has to be given to memory access patterns when optimizing program performance.

On the AP+, benchmark programs have yielded the following parameters that will be used in Section
5 for (a slightly extended version [16, 10] of) the Distributed Linear Algebra Model (DLAM) of [4]. The
communication startup cost is � = 12�s, the communication transmission cost per word is � = 0:64�s
(corresponding to 12.5MBs), the level-2 computation cost per 
oating point operation is 
2 = 0:12�s and

the computation speed for a triangular matrix update operation (eg. LT�1 or T�1U) is 
43 = 0:083�s.

3(16) = :035�s and 
3(64) = :030�s (this corresponds to 33 MFLOPs), where 
3(!) is the cost per

oating point operation in a local matrix multiply having input operands of width !.

The AP+ has also two mechanisms for global broadcasts, which are required in the lower panel
formation of LU and QR factorization. The �rst uses a special broadcast network, which can attain a
speed of 50 MBs, but with a latency much higher than the row broadcast, which makes it too slow for
small messages. The second is by the same mechanism as the row and column broadcasts. While in
principle this should also be of unit-cost, which would make it ideal for panel scattering, in practice the
latency is � 2:0�. This is due to an implicit synchronization, which is apparently required to ensure the
safety of this operation on the AP+.
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l0;0 l0;1
l3;0 l3;1
: : : : : :
l24;0 l24;1
l1;0 l1;1
l4;0 l4;1
: : : : : :
l22;0 l22;1
l2;0 l2;1
l5;0 l5;1
: : : : : :
l23;0 l23;1

l0;0 l0;1 l3;0 l3;1 l6;0 l6;1 l9;0 l9;1
l12;0 l12;1 l15;0 l15;1 l18;0 l18;1 l21;0 l21;1
l24;0 l24;1

l1;0 l1;1 l4;0 l4;1 l7;0 l7;1 l10;0 l10;1
l13;0 l13;1 l16;0 l16;1 l19;0 l19;1 l22;0 l22;1

l2;0 l2;1 l5;0 l5;1 l8;0 l8;1 l11;0 l11;1
l14;0 l14;1 l17;0 l17;1 l20;0 l20;1 l23;0 l23;1

(a) before scatter (b) after scatter

Figure 1: Scattering of the blocks of a 25r� 2s block-cyclic panel L, whose leading block is in cell (0; 0),
on a 3� 4 grid

2 Panel Scattering on Block-Cyclic Decompositions

In this section, it will be shown how communication operations that are required in any case for a block-
cyclic parallel BLAS implementation, namely transpose and spread (a form of multicast), can be used to
implement panel scattering. It will also be shown that the resulting scattered panel obeys a block-cyclic
distribution on a linear virtual grid (or communication context). Both of these allow an easy and elegant
implementation of panel scattering using an existing block-cyclic parallel BLAS library.

Consider again the M � ! vertical panel L. Figure 1 illustrates the scattering of such a panel. The
scattered panel L0 in Figure 1(b) can be regarded as an M � ! block-cyclic matrix over the PQ� 1 grid
formed by assigning processor ids in a column-major order.

Now consider Lp and L0p, the portions of L and L0 respectively across grid row p; 0 � p < P . Denoting
mp as the length of Lp, we can also regard Lp as an mp � !, and L0p as an ! �mp, matrix distributed
across a 1 � Q sub-grid (imagine that the local portions of L0p are stored in a transposed layout from
that shown in Figure 1(b)). From this observation, one can derive the central result for panel scattering:

Result 1 L0 is an r � s block-cyclic distributed matrix over a PQ� 1 grid, where L0 is formed from the
concatenation of L0p, 0 � p < P , and L0p = (Lp)T .

Proof:

Assume, without loss of generality, that the leading block of L is on cell (0; 0). Then global
block (i; j) of L, where i = i0P + p and 0 � p < P , forms part of Lp. After the row-wise
transposition (Lp)T , this block ends up on cell (p; i0%Q), by the defn. of transposition on a
1�Q sub-grid. This is cell (p+ (i0%Q)P; 1) of the grid of L0.

By induction on i0, it can be easily proved that p+(i0%Q)P = i%(PQ), and hence that block
(i; j) of L0 resides on cell (i%(PQ); 1). Hence L0 obeys a block-cyclic distribution over the
PQ� 1 grid beginning at cell (0; 0). 2

Once the panel L0 is formed, and then appropriately updated for a matrix factorization, it needs to be
replicated row-wise across the original P �Q grid. Denoting spreadr(L) (spreadc(L)) to be the row-wise
(column-wise) replication of L [14], the following result applies to the combined `gather-replication' of L0:

Result 2 (spreadr(L))
p = spreadr((L

0p)T ).

Proof:

This follows immediately by noting that for a purely row-wise operation, (spreadr(L))
p =

(spreadr(L
p)), and using Lp = (L0p)T from Result 1. 2
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14 2 6 10
15 3 7 11
12 0 4 8
13 1 5 9

11 8 9 10
15 12 13 14
3 0 1 2
7 4 5 6

(a) vertical panel L (PQ� 1 grid) (b) horizontal panel U (1� PQ grid)

Figure 2: Processor ids in the communication contexts for scattered panels having leading block in cell
(2,1) of a 4� 4 grid.

However, the main signi�cance of this result is that the combined transposed-spread, spreadr((L
0p)T ),

which occurs over a 1 �Q grid, can be performed for the cost of an ordinary spread operation. Indeed
the same communication operation which forms spreadr((L

0p)T ) from spreadc(L
0p) in a symmetric rank-k

update A  A � (L0p)TL0p (as is used in LLT factorization), can be used here, by simply setting the
vertical grid size to unity, for which L0p = spreadc(L

0p).
The corresponding results apply to a horizontal ! �N panel U with a row-major 1� PQ grid. The

above results also apply for L (or U) having their leading block at an arbitrary cell (p; q) in the original
P � Q grid, since we can always de�ne a virtual P � Q grid with an origin at this cell. However,
practicalities arise for p; q > 0 that an implementation of panel scattering must take into account.

Figure 2 shows such a situation for (p; q) = (2; 1). For the lower panel, the �rst 4 cells in the grid of
L0 remain in the original column q. Cell (p0; 0) in the grid for L0 maps to cell ((p0 + p)%P; p0%Q) in that
of L. This leads to the following result, which is suÆcient to implement the communication context for
L0:

Result 3 The co-ordinates of relative cell (Æ; 0); 0 � Æ < PQ, in the grid of L0 is that of the relative cell
(Æ%P; Æ+pP ) in the original P �Q grid.

This result may be proved by simple arithmetic. It also implies that p must be `remembered' when
the context for L0 is formed.

3 Implementation of Panel Scattering

The DBLAS block-cyclic distributed BLAS library [14, 16] was used to implement these algorithms. This
implementation requires block alignment in all but one of the common matrix dimensions in the operands
of a DBLAS call. This enables non-square block sizes to be handled in many situations.

In a DBLAS call, distributed matrix operands are represented by DistMat data objects. These contain
information about the block sizes and also the processor grid size for that operand. If an underlying P�Q
grid is being used, input operands can be speci�ed to be on 1�Q, P �1, or 1�1 sub-grids, corresponding
to row-replicated, column-replicated and row-and-column replicated matrices.

In terms of functionality, a DBLAS call has the same e�ect on a global matrix as its ordinary BLAS
counterpart; note however that the BLAS side and transposition speci�ers, as well as local matrix storage
information, are hidden inside DistMat data objects. Local matrix storage may be either column-major,
or row-major.

This high level of abstraction enables one DBLAS-based coding of an algorithm to transparently
handle a variety of block sizes and storage schemes, which can potentially a�ect performance.

To support panel scattering, the DBLAS only had to be extended in the following ways:

� implementing the contexts for the scattered panels (eg. L0; U 0). Result 3 implies these must be
created dynamically, as the context depends on which cell contains the leading block of the panel
(eg. L;U).

While the DBLAS has a BLACS interface [14], to avoid the typical overhead of dynamic context
creation in the BLACS, these contexts were implemented directly in the DBLAS communication
interface module.
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for(j = 0; j < min(M;N); j+=!)
L0= PanelScatter(ROW;M � j; !; Aj;j); // L0

 Aj::M0 ;j::j0!
(on a PQ� 1 grid)

DGETF2(M � j; !;L0; p); // level-2 LU fact'n of L0, with pivot vector p0::!0

~L= ScatterSpread(ROW;M � j; !; Aj;j ; L
0); // ~L L0 (column-replicated, on a P �Q grid)

DLASWP("Fwd"; j; !; AT
j;0; p); // Aj::j0!; 0::j

0  P (!0; p!0) : : : P (0; p0)Aj::j0!; 0::j
0

DLASWP("Fwd"; j; !; AT
j;j! ; p); // Aj::j0!; j! ::N

0  P (!0; p!0) : : : P (0; p0)Aj::j0!; ;j!::N
0

~~T= SpreadCopy(COL; !; !; ~L); // ~~T  ~L0::!0 ;: (replicated on all cells)
U 0= PanelScatter(COL; !;N � j!; Aj;j! ); // U 0

 Aj::j0
!
;j! ::N0 , (on a 1� PQ grid

DTRSM("Lower"; "Unit"; !;N � j!; 1:0;
~~T ; U 0); // U 0

 
~~T
�1

U 0, ~~T is lower tri., unit diag.
~U= ScatterSpread(COL; !;N � j! ; Aj;j! ; U

0); // ~U  U 0 (row-replicated, on a P �Q grid)

DGEMM(M � j!; N � j! ; !; �1:0; ~L!;0; ~U; 1:0; Aj! ;j! ); // Aj!::M0; j! ::N0 -= ~L!;0 ~U

DCOPY(M � j; !; ~L; Aj;j); DCOPY(!;N � j!; ~U; Aj;j! ); // Aj::M0 ;j::j0!
 ~L, Aj::j0! ;j0! :N

0  ~U

<dispose L0; ~L; ~~T ; U 0; ~U>;

Figure 3: DBLAS-based LU Factorization algorithm of anM �N matrix A (P (i; j) is the idenity matrix
with rows i and j permuted)

� implementing the panel scattering routine PanelScatter(). This required `forging' 1�Q sub-grids
in the data objects representing L and L0, and a call to the internal DBLAS parallel transpose
routine. Here, each cell packs together all blocks to be sent to another cell, sends this as a con-
tiguous message, and the receives and unpacks any messages from other cells. The block-cyclic
packing/unpacking routines are optimized for both small and large block sizes.

A further issue is the local storage of L0, which can be either unit stride along the length of the
panel (column-major for L0), which is likely to yield the best memory access patterns, or along its
width, which can avoid packing and unpacking overheads when the rows of L0 are communicated.
Since both are easy to implement using the DBLAS, both options will be tried.

� implementing the combined `gather-replication' of L0 routine, ScatterSpread(). This similarly
required the forging of 1�Q sub-grids in the data objects representing L0 and ~L, followed by a call
the internal DBLAS spread routine.

The following algorithms are presented in DBLAS-based pseudocode. Matrices (eg. A) are represented
by DistMat descriptors. To simplify the presentation, sub-matrix references Ai;j represents the function
call SubMat(A, i, j), and AT represents the function call Trans(A). The latter does not perform any
data movement; it merely toggles a bit in the DistMat descriptor to signify that the operand is globally
transposed from its `normal' sense. For integer expressions, the shorthand i0 denotes i � 1. j! denotes
j + !. The pre�x D in front of a BLAS or LAPACK procedure name signi�es the DBLAS distributed
equivalent, on the appropriate precision (eg. double precision). Apart from these, and some other mainly
syntactic simpli�cations, the pseudocode corresponds closely to the actual DBLAS code.

Figure 3 gives the algorithm for panel scattered LU factorization. The actual code keeps the pivot
vector for all of A replicated on all cells; this was omitted to simplify the presentation. Note that the
level-2 factorization code DGETF2() did not require any modi�cation from that developed for algorithmic
blocking (see [16]). This was also the case for LLT and QR.

In general, for each panel, there are 4 extra calls to be made: to scatter the panel, to `gather-replicate'
the panel, to copy the replicated panel back into the original matrix and to dispose of the panels. Also,

note that triangular factors (eg. ~~T ) are replicated across all cells before being applied to a scattered panel.
The panel-scattered LLT algorithm is given in Figure 4. The portion of the matrix for level-2 factor-

ization, Aj::j0
!
;j::j0

!
, is small; for this reason, it is not scattered before factorization, as this will achieve

no load balance advantage.
For LLT factorization, with r 6= s, alignment problems occur in the call to DSYRK(), where block

alignment is required for the eÆcient selection of the rows of ~L that will contribute to (~L)T for the current
processor column. For this reason, mixed block sizes could not be implemented for LLT.

The panel-scattered QR algorithm is given in Figure 5. As is done for the ScaLAPACK QR routine
[5], the calls to DGEMM() introduce redundant 
oating point operations with the above-diagonal part
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for(j = 0; j < N ; j+=!)
DPOTF2(!;Aj;j); // level-2 LLT fact'n of Aj::j0! ;j::j0!
~T= SpreadCopy(COL; !; !; Aj;j); // ~T  Aj::j0

!
;j::j0

!
(row-replicated)

~~T= SpreadCopy(ROW; !; !; ~T ); // ~~T  ~T (replicated on all cells)
L0= PanelScatter(ROW; N � j!; !; Aj! ;j); // L0

 Aj!::N0 ;j::j0!
(on a PQ� 1 grid)

DTRSM("Lower"; "NonUnit"; !;N � j!; 1:0;
~~T ; (L0)T ); // L0

 L0 ~~T
�T

, ~~T is lower tri., non-unit diag.
~L= ScatterSpread(ROW; N � j!; !; Ajj!;j ; L

0); // ~L L0 (column-replicated, on a P �Q grid)

DSYRK(Lower; N � j!; !; �1:0; ~L; 1:0; Aj! ;j! ); // Aj!::N0; j!::N0 -= ~L~LT (only lower tri. part of A updated)

DCOPY(N � j!; !; ~L; Aj!;j); // Aj!::N0 ;j::j0
!
 ~L

<dispose L0; ~L; ~T ; ~~T>;

Figure 4: DBLAS-based LLT Factorization algorithm of an N �N matrix A

for(j = 0; j < min(M;N); j+=!)
V 0= PanelScatter(ROW;M � j; !; Aj;j); // V 0

 Aj::M0 ;j::j0
!
(on a PQ� 1 grid)

DGEQR2(M � j; !; V 0; T 0); // level-2 QR fact'n of V 0, with tri. re
ector T 0 st.
// T 0

i;0:i0 = ��j(V
0
i::M0;i)

T (V 0
i::M0;0::i0); T

0
i;i = �i

~V= ScatterSpread(ROW;M � j; !; Aj;j ; V
0); // ~V  V 0 (column-replicated, on a P �Q grid)

DCOPY(M � j; !; ~V ; Aj;j) // Aj::M0; j::j0!
 ~V

~T= ScatterSpread(ROW; !; !; Aj;j ; T
0); // ~T  T 0 (column-replicated, on a P �Q grid)

FormTriRefl(!; ~T ); // ~T 0
i;0:i0  

~T i ~T 0
i;0:i0 ,

~T i = ~T 0
0::i0; 0:i0 is lower tri.

~~T= SpreadCopy(ROW; !; !; ~T ); // ~~T  ~T (replicated on all cells)

ClearUpperTri(!; ~V ); // ~Vi;i  1; ~Vi;i+1::!  0
W = DNewMat(!;N � j!; Aj;jw ; NULL); // create new ! �N � j! matrix aligned with Aj;jw

DGEMM(!;N � j!;M � j; 1:0; ( ~V )
T ; Aj;jw ; 0:0;W ); // W  ~V 0

T
Aj::M0; j! ::N0

W 0 = PanelScatter(COL; !;N � j!;W ); // W 0
 W (on a 1� PQ grid)

DTRMM("Lower"; "NonUnit"; !;N � j!; 1:0;
~~T ; W 0); // W 0

 
~~TW 0, ~~T is lower tri., non-unit diag.

~W= ScatterSpread(COL; !;N � j!; Aj;j! ; W
0); // ~W  W 0 (row-replicated, on a P �Q grid)

DGEMM(M � j;N � j!; !; �1:0; ~V ; ~W; 1:0; Aj;j!); // Aj::M0; j! ::N0 -= ~V ~U

<dispose V 0; T 0; ~V ;W;W 0; ~W; ~T ; ~~T>;

Figure 5: DBLAS-based QR Factorization algorithm of an M �N matrix A

of the V 0 being padded by zeroes. The alternative would be use the triangular matrices (V 00::!0; :)
T and

V 00::!0; : to update Aj::j0
!
; j! ::N 0 , as is done in LAPACK. The former is computationally superior for ! = 32

on the AP+, as 
3(32) � 2
43 (see Section 1.2). Furthermore, it greatly simpli�es the algorithm, and
reduces software and communication overheads. However, this decision should be re-evaluated on other
machines, especially those with large !.

A new optimization for parallel QR in the formation of the triangular re
ector T 0 is also made here.
The vector-matrix multiply to form T 0i;0::i0 is merged with the vector-matrix multiply with V 0i;i::M�j

required in the level 2 factorization. This reduces communication startup and software overheads sub-
stantially, and also is likely to yield better computation speed.

The above algorithms are developed for the general block-cyclic distribution. If the assumption
of PBMD (Equation 1) is made, the only signi�cant implementation di�erence, potentially a�ecting
performance, is that one can form ~LT directly from L0 for the same cost as for ~L. In this case, whether
L0 is oriented row-wise or column-wise is irrelevant1. Note that all cells in a column will hold part of
L0 that will be broadcast to form ~LT . This is useful in the symmetric rank-k update in LLT [1]. Our
implementation instead, internal to the DSYRK() procedure, forms ~LT from ~L, with only GCD(P;Q)

1Eg. in a PBMD QR implementation,W 0 could have the same orientation as V 0 without any extra communication cost,

whereas in our implementation, it must have the opposite orientation.
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cells holding part of ~L to be re-broadcast. On machines with unit-cost broadcasting, such as the AP+,
there will be no di�erence between the two ways of forming ~LT . On other machines, the way exploiting
PBMD will have half the communication volume cost for large L0 when GCD(P;Q) = 1 [8].

3.1 Reducing Communication Startup Costs for the Triangular Factors

For small block sizes, ie. r; s < !, O(N) extra communication startup overheads can be introduced
in the formation of the triangular factors, eg. DPOTF2(Aj;j) and FormTriRefl(!; ~T ). Stanley [10] has
shown in that in corresponding parts of the symmetric tridiagonal reduction algorithm, it is possible
to reduce communication overheads by performing redundant computations, and has suggested that a
similar scheme should be possible for LLT [11].

One way that this could be done is by replicating the factor across all cells, and (redundantly) forming

the factor on each, eg.DPOTF2(!; ~T ) (or even DPOTF2(!; ~~T )) and FormTriRefl(!; ~~T ). In the case of LLT,

~T (or ~~T ) must be copied back into Aj::j0
!
; j::j0

!
after this step.

As the amount of computation in forming these factors is small (O(!3)), this will be an optimization
on most multicomputers. This means that provided ! is reasonably large compared with P , there need
be no signi�cant communication startup overhead penalty in choosing small r; s.

3.2 Implications for Library Design

Matrix factorizations using storage or algorithmic blocking methods can be eÆciently coded in terms of
parallel BLAS operations, with little or no explicit references to local array, block or grid sizes [4, 14, 16].

It can be seen that this also applies to panel scattering (see also [1]). As compared with algorithmic or
storage blocking counterparts, our implementation of panel scattering required only 4{6 extra procedure
calls (all very simple) per panel, which makes it relatively easy to implement2. As an example, the parallel
QR algorithm was coded, tested and debugged, with the results generated, all within a single day.

As panel scattering does not use pipelined communication, it can be more easily implemented on all
message passing multicomputers.

Finally, in terms of applicability, panel scattering can be applied in block-partitioned dense linear
algebra algorithms (including bi- and tri-diagonal reductions) to improved load balance in the panel
formation stage, as can algorithmic blocking.

4 Results

The DBLAS distributed BLAS library has been very highly tuned for the Fujitsu AP+ machines, in
terms of computation and communication speed, memory copy overheads and software overheads [14, 16].
Even for storage blocking, it compares favorably with ScaLAPACK codes running on the AP+, where
the ScaLAPACK and DBLAS codes use the same BLAS and BLACS (computation and communication)
libraries [12]. As the algorithms described in the previous section should be optimal with respect to
communication performance, we believe the results of this section represent the full potential of the panel
scattering technique on the AP+.

In this section, the performance of crucial components of the PanelScatter() routine will be exam-
ined, followed by a comparison of panel scattering, algorithmic blocking and storage blocking. In both
cases, the e�ect of varying the block size on performance will be examined.

4.1 Performance of Component Computations

Table 1 indicates the computational speeds of triangular update corresponding to the formation of the
upper panel in LU and QR factorizations. The 8�8 grid case corresponds to algorithmic blocking, which
runs at approximately half the speed of that of the 1 � 64 grid, which corresponds to panel scattering.
Part of this is due to imperfect load balance by a factor Ed(32; 1; 8) � 0:8 [13], the rest is due to degraded
computation speed due to the local length of U being reduced by a factor of P (ie. reducing it to a `Level

2One can `recover' the algorithmic or storage blocking versions of these codes simply by removing these calls and replacing

the references to
~~T ; ~L etc with the corresponding sub-matrix of A.
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P �Q 8� 8 1� 64

U  ~T�1U 5.1 (6.4) 11.7

U  ~TU 6.4 (8.0) 11.5

Table 1: Computational speeds in MFLOPs/cell of triangular update operations on a 32� 4096 matrix
U with r = s = 1 on a 64-node AP+

r : 1 2 4 8 16 32
speed (MBs): 36 34 36 29 22 13

Table 2: Speeds in MBs of the panel scattering operation (matrix transpose) on a 512� 32 matrix with
r � r blocks on a 1� 8 AP+

2.5' rather than a `Level 3' computation). The resulting e�ective cell computation speed for algorithmic

blocking, denoted 
42:5, is indicated in parentheses in Table 1.
The overall speed of the panel scattering operation, essentially a block-cyclic matrix transpose over a

row or column of cells, is given in Table 2. This shows a strong dependence on block size. For r = 32,
the matrix is initially only on one cell, and the transposition bandwidth RT

r is limited by the memory
copy speed Rc (in the packing stage) and the message sending speed Rs in this cell. For r � Q

! , the
panel is initially distributed equally across all cells, and thus the bandwidth is limited by the packing
and unpacking speeds on an 1

Q portion of the matrix, and the saturation bandwidth of the 1�Q network

Rh, ie.:

RT
r =

�
( 1
Rc +

1
Rs )

�1 , if r � !
( 1
RcQ + 1

Rh
+ 1

RcQ )
�1 , if r � !

Q
(2)

Note that the communication startup cost is (Q� 1)�, independent of r.
On the AP+, Rc = 27MBs, Rs = 25MBs, and as the network is a bi-directional torus, Rh =

2 � 2 � 25MBs. At Q = 8; ! = 32, Equation 2 yields RT
32 = 13MBs and RT

1 = 52MBs, in reasonable
agreement with Table 2. RT

1 is considerably faster than the bandwidth for the replication of the panel,
which is 8=� = 12:5MBs.

4.2 Performance of the Matrix Factorizations

Figures 6, 7, and 8 give a comparison of the actual performance of panel scattering, algorithmic blocking
and storage blocking on the Fujitsu AP+. Part (a) of these Figures give the optimal combination
of parameters and matrix-storage for each method (with `r-m' (`c-m') signifying row- (column) major
storage). Part(b) gives variations of panel scattering, examining the e�ect of block sizes in particular.

Square processor con�gurations were chosen, as these have been found to be optimal for such machines;
a value of P = 8 was the largest available. For such grid sizes, the range 512 � N � 8192 was
chosen. The lower bound of N = 512 is the largest size where software overheads, in a distributed BLAS
implementation speci�cally optimized for this purpose, should have an e�ect of less than 25% on overall
performance [16]. For the AP+ machine used for these experiments, N = 8192 represents the limit of
available memory.

For all 3 factorizations, the local storage for the scattered panels, eg. L0, was unit stride along the
panel length: this was slightly faster for N � 3072, and used for the above plots. However, the di�erence
in performance of the opposite storage was never large enough to have made a discernible di�erence
on the above plots; this is because in either case the panels are packed, which ensures reasonably good
memory access performance.

Unlike algorithmic and storage blocking, which strongly favor column-major storage for the main
matrix in all cases, this packed storage meant that the performance of panel scattering was relatively
independent of the local storage of A. An exception was LU, where row-major storage yields a signi�cant
advantage in row swapping, as row packing and unpacking (with a large memory stride) is not required.
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In Figure 6(a), this enabled panel scattering to out-perform algorithmic blocking by as much as 10%,
in the middle of the range. Elsewhere, in the upper half of the range, panel scattering was slightly
faster than algorithmic blocking, partly due to its advantage in panel formation speed, partly due to
its better memory access patterns. In the lower half of the range, algorithmic blocking was somewhat
faster, especially for LU and QR, due to several reasons. Firstly, there are O(N) communications along
the panel, which have double cost for panel scattering. Secondly, for N < 2048 = !PQ, the local
panel length of L0 becomes less than its local width (= !), which e�ectively means greater loop startup
overheads in the computational routines. Also, for N < rPQ, load imbalance will occur in the formation
of L0. Thirdly, panel scattering has extra memory copying, communication and software overheads, which
degraded performance for small N .

Both panel scattering and algorithmic blocking out-performed storage blocking by about 25{30% for
moderate to large N .
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Figure 6: Speed in MFLOPs/cell of panel scattering for LU factorization of an N �N matrix A on an
8� 8 AP+

A comparison of the row-major plots in Figure 6(b) gives an indication of e�ect of parallelization of
row-swapping for r = 1 and the load imbalance due to block size in the calls to DDGEMM(). For the latter,
the mixed block sizes fr; sg = f1; 32g should be the same as each other, and half that of r = s = 32. From
this, we can see that the parallelization of row-swapping has a considerably larger impact on performance.

For LLT and QR, load imbalance due to block size takes on a more noticeable e�ect. For LLT, a
processor on the lower left corner of the grid will have an extra row, column and diagonal of blocks
than one on the upper right corner, on each call to DSYRK(), which has only half the operations of a
corresponding DGEMM(). Hence we would expect this e�ect to have approximately 3 times the impact
as it does for LU. Note that for r = s = 16 in Figure 7(b), the load imbalance should be half that for
r = s = 32.

For QR, this load imbalance has also a relatively greater impact than in LU. This is because, for
r � !, the processor row `owning' W normally has an extra block row to multiply, and the subsequent
reduction on the �rst call to DGEMM() means that all cells must wait at that point for this to complete.

The plots for LU and QR with r = 16; s = 128 = Pr correspond to PBMD with r = !=2, ie. correspond
to the choice of block sizes used in [1]. These indicate a considerably larger degree of imbalance overheads
than for the r = s = 32 plots.

For r = s = 1 on LLT, it was found to be slightly faster not to replicate the triangular factor before
performing the level-2 factorization. This is because of the relatively low overheads of the row and column
broadcasts on the AP+. However, for QR, it was faster to fully replicate ~T before calling FormTriRefl(),
by as much as 20% at N = 512. This is because the communications in FormTriRefl(~T), being a column
transpose and summation, are more expensive on the AP+.
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Figure 7: Speed in MFLOPs/cell of panel scattering for LLT factorization of an N �N matrix A on an
8� 8 AP+

5 Analysis of the Techniques for LU Factorization

In this section, a detailed performance model will be developed for LU factorization, which can be applied
to all of the methods used in the preceding section. This model can also be applied to other machines
too. The model will then be validated on AP+.

The model used is an extension of the DLAM model [4], using parameters introduced in Section 1.2.
For simplicity of presentation, it will be assumed that N � ! � 1 and P � 1 � P , and Q � 1 � Q. It

will be assumed that ! exceeds P;Q by a factor of 2 or more, so that the ( 3(Q�1)! + 2(P�1)
! )N commu-

nication startups introduced by panel scattering (algorithmic blocking introduces similar overheads) can
be neglected when compared with the total startup costs.

As previously mentioned, �bc is the cost of a broadcast where pipelining can be used; �0bc(P ) will
denote the cost of a broadcast across P cells where pipelining cannot be used; thus �0bc(P ) = 1 if unit-
cost broadcasts are available (but a value of �0bc(PQ) � 2 must be used for the AP+), and �0bc(P ) = lg2(P )
otherwise.

The model will be developed �rst for the case of storage blocking (! = r = s); the subscripts for
the t variables re
ect the steps in Figure 3, with the total time for storage blocking being given by
tsb = (tf2;�(P ) + tf2;
2(P )) + tsw;1 + t4(Q) + tL + tU + tmm, where:

tf2;�(P ) = (lg2(P ) + 2�0bc(P ) + 2)N�; tf2;
2(P ) =
N!
2 rd NPr e
2; tsw;1 = 4N�+ N2

Q �0

t4(Q) =
N!
2 sd NQse


4

3 ; tL = �bc
N2

2P �; tU = �0bc(Q)
N2

2Q�; tmm = 2N3

3PQ
3 +
N2

2 ( rQ + s
P )
3

Note that �0 is � modi�ed to take into account 2 extra memory copies if column major storage is
used, and that the last term in tmm is the load imbalance term due to the block-cyclic distribution block
sizes. The terms tf2;
2(P ) and t4(Q) partially take into account load imbalances when the number of
blocks along a panel is of comparable size (or less) than the number of processors along that dimension.
The coeÆcient �0bc(Q) for tU assumes that a tree broadcast is used, as does [4, 3]; it is a little pessimistic
for large N , as by using other methods, it could be reduced to 2 [8].

For algorithmic blocking, the following terms are changed:

tabf2;
2 = tf2;
2(P )=(Ed(!; s;Q)Q); tabL = (�bc + 1)N�+ tL + N2

2P �

tab
4

= N!
2 sd NQse


4

2:5=(Ed(!; r; P )P ) + �bcN�; tabU = �bc
N2

2Q�
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Figure 8: Speed in MFLOPs/cell of panel scattering for QR factorization of an N �N matrix A on an
8� 8 AP+

Note that the upper panel U can be broadcast row by row using a ring broadcast in the call to DTRSM(),
and Ed(!; r; P ) 2 [0; 1] is the load balance eÆciency factor of a triangular update of width ! with a block
size r distributed over P cells [13].

The �rst term in tabL is due to the broadcast of the pivot pj followed by that of the column Aj+1::M 0; j

(in DGETF2()). As these originate from the same cell column, the pipeline `bubble' from pj is hidden
by that of Aj+1::M 0; j for the case of �bc = 2. The third term is due to L having to be re-broadcast in
DGEMM(); provided that ! � rQ this can be achieved most eÆciently by Q � 1 ring shift operations of
messages of local size N

P d
!
Qe [8].

Thus, the execution time for algorithmic blocking can be modelled by:
tab = (tf2;�(P ) + tabf2;
2(P )) + tsw;!=r + tab

4
+ tabL + tabU + tmm, where the modi�ed row swap term for r < !

is:
tsw;!=r = tsw;1=	�0;!;r;P

Here, note that 	�0;!;r;P � 1 is the degree of parallelization possible with ! row swaps with the row indices
equally distributed over min(!=r; P ) processors, taking into account that the e�ective communication cost
�0 is generally several times that due only to the hardware. The estimation of 	�0;!=r;P is complicated, but
is based on similar arguments to that for RT

r given previously. For the AP+, the value of 	�0;32;1;8 = 2:3
is consistent with experiments.

If panel scattering is used, the terms for the communication of L and U must be modi�ed:

tpsL =
N2

2P
�(

1

RT
r

+ 1); tpsU =
N2

2Q
�(

1

RT
s

+ 1)

noting again that the ring-shifts can be used to broadcast the panels here also. Hence the total time for
panel scattering can be given by tps = (tf2;�(PQ) + tf2;
2(PQ)) + tsw;!=r + t4(PQ) + tpsL + tpsU + tmm.

The above performance model (without most of the simplifying assumptions used above, has been
implemented in a computer program; the % di�erence between the model and the actual is given in Table
3. Here, a selection of values of N likely to have smaller cache miss e�ects was chosen.

For N � 1024, the bulk of the error is due to software overheads, which are not incorporated in
this model (although it is possible to do so [10]). For N > 2048, the model accurately, ie. within 5%,
re
ects the actual performance for all but storage blocking. This is because the model does not take fully
into account the cache and TLB misses in calls to DLASWP() and to a lesser extent DTRSM(), for which
column-major storage with storage blocking presents the worst case situation.

The model is less accurate for panel scattering forN < 2048, mainly due to increased software (eg. loop
startup) overheads, as mentioned in Section 4. For large r, performance is degraded by load imbalance
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N 512 1024 1536 2560 3584 5120 7168
ab; c-m; ! = 32; r = s = 1 +25 +9 +3 +2 +1 +0 �1
sb; c-m; ! = r = s = 32 +23 +22 +15 +13 +12 +7 +5
ps; c-m; ! = 32; r = s = 1 +28 +15 +9 +3 +1 +0 �2
ps; r-m; ! = 32; r = s = 1 +35 +17 +10 +3 +1 �1 �1
ps; r-m; ! = 32; r = s = 32 +30 +19 +4 +1 +0 �3 �2

Table 3: Percentage error between the performance model and the actual LU computation on an 8� 8
AP+

LU LLT QR
AP+ �0bc = 6 AP+ �0bc = 6 AP+ �0bc = 6

s-b; ! = r = s 11N 15N 0 0 8N 12N
a-b;r=s=1 12N 18N N 2N 10N 15N
p-s;r=s=1 13N 22N 0 0 16N 24N

Table 4: Dominant communication startup terms for LU, LLT and QR factorizations for storage blocking,
algorithmic blocking and panel scattering, for P = Q = 8 and assuming ! � max(P;Q) and 	(!; 1; P ) =
2.

in the panel formation. For example, at N = 1024; r = 32, only half the processors can hold a block of
the scattered panel.

At N = 512, the model predicts that communication startup costs account for 21% (:074s), 37%
(:084s) and 43% (:11s) of the total execution time for storage blocking, algorithmic blocking, and panel
scattering, respectively, on the Fujitsu AP+. For multiprocessors with higher �=
3, the di�erences in
communication startup costs for the three methods will have a larger impact on total performance,
especially since for most of these, �0bc > 1.

Table 4 gives the dominant startup coeÆcients for these methods, applying the above model for LU,
and a using similar analysis for LLT and QR (for QR, the startups are due to reductions/broadcasts
when forming V ; using the optimization described in Section 3, there need only be two of these). For
r = s = 1, it is assumed that the triangular factors for LLT and QR are fully replicated, as explained in
Section 3.1, which minimizes this term. Algorithmic blocking introduces `across-panel' communications,
which can be pipelined to reduce this term. Panel-scattering, on the other hand, tends to amplify the
`along-panel' communications, by a factor of approximately 2 for either the AP+ or other machines
with �0bc(P ) = lg2 P . For LU and QR, there are more `along-panel' communications, which means that
panel-scattering will have slightly higher overheads.

6 Conclusions

Panel scattering is general technique for dense parallel linear algebra algorithms that can achieve maximal
load balance and cell computation speed in most situations. We have shown that it can be easily imple-
mented using the existing building blocks of a parallel BLAS library for the block-cyclic distribution, with
a reasonably concise and elegant expression of the matrix factorization algorithms possible. However,
panel scattering has extra communication startup and software overheads which somewhat reduce its
performance for small N .

While the scattering of the panels appears to incur extra communication volume costs, this can be
relatively small compared with the panel broadcasts. For suÆciently large N , this cost can be regained
(on machines without unit-cost row and column broadcasts) from a faster panel broadcast, since here,
as opposed to storage blocking, all cells hold part of the panel to be broadcast (this applies in most
situations to algorithmic blocking also).

However, a rather surprising performance advantage of panel scattering lies in its natural optimization
of memory access patterns, due to the packing of the panels. While such e�ects are hard to estimate, they
are likely to be signi�cant on most modern memory-hierarchy multiprocessors, which also have virtual
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memory. This means that there was little or negative cost in using row-major storage for LLT and QR
factorization, which runs against conventional wisdom. Furthermore, for LU, panel scattering's ability to
use row-major storage gave it a decisive advantage in row swapping speed over algorithmic and storage
blocking.

To achieve the best load balance, a minimal block size of r; s � 1 should be chosen. This also achieves
the best communication bandwidth for the panel scattering operation. Furthermore, we have shown
that with full replication of the triangular factors in LLT and QR, the minimal block size introduces no
signi�cant communication startup costs. Finally, r = 1 enables a limited parallelization of row swapping
in LU, which will in most situations reduce its communication startup (and volume) overheads by a factor
of at least 2. Choosing a minimal r is thus especially important for PBMD, where the block width is
constrained by s = Pr.

Compared with algorithmic blocking, which also can achieve high load balance, panel scattering will
normally have greater startup overheads, except in the case of LLT. In the event, this was true even on the
AP+, which has unit-cost for row and column broadcasts, but not for global broadcasts. However, this
would not apply to a machine which could perform a global broadcast for the same cost as a row or column
broadcast. For ! > 2max(P;Q), both have suÆciently good load balance and their performance will be
very similar, and likely to be signi�cantly better than that of storage blocking. For ! � 2max(P;Q),
panel scattering should have an advantage in load balance.
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