
The Australian National University

TR-CS-95-02

Scheduling Issues in Partitioned
Temporal Join

Jeffrey X. Yu and Kian-Lee Tan

May 1995

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports
Department of Computer Science
Faculty of Engineering and Information Technology
The Australian National University
Canberra ACT 0200
Australia

or send email to:

techreports@cs.anu.edu.au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

file://dcssoft.anu.edu.au/pub/www/dcs/techreports/

Recent reports in this series:

TR-CS-95-01 Craig Eldershaw and Richard P. Brent. Factorization of large
integers on some vector and parallel computers. January 1995.

TR-CS-94-10 John N. Zigman and Peiyi Tang. Implementing global address
space in distributed local memories. October 1994.

TR-CS-94-09 Nianshu Gao and Peiyi Tang. Vectorization using reversible
data dependencies. October 1994.

TR-CS-94-08 David Sitsky. Implementation of MPI on the Fujitsu AP1000:
Technical details release 1.1. September 1994.

TR-CS-94-07 Markus Hegland. Real and complex fast fourier transformations
on the Fujitsu VPP500. June 1994.

TR-CS-94-06 Richard P. Brent. Uses of randomness in computation. June
1994.

Scheduling Issues in Partitioned Temporal Join

Je�rey X. Yu

Department of Computer Science

Australian National University

Canberra, ACT 0200, Australia

email: yu@cs.anu.edu.au

Kian-Lee Tan

Dept. of Information Systems & Computer Science

National University of Singapore

Kent Ridge, Singapore

email: tankl@iscs.nus.sg

Abstract

One of the major problems of temporal databases is to develop e�cient algorithms for
operations that involves the time attributes. An operation that has received much attention
in recent years is the temporal join which matches records from two temporal relations
whose time intervals overlap. Under a partition-based algorithm, temporal data are split
into partitions. During the join process, a partition in one relation only needs to join with
some, but not all, partitions of the other relation. In this paper, we address scheduling issues
in such an algorithm. Depending on the orders in which partitions are read, the number
of I/Os incurred varies. We propose a three-phase scheduling framework to minimize the
number of I/Os incurred. From the framework, a large number of scheduling strategies
can be derived. We also study several representative scheduling strategies and report our
�ndings in this paper.

1. Introduction

Temporal join matches records from two temporal relations whose time intervals overlap. It is

frequently used in applications that �nd events that happen at the same time. Some example

queries include \Retrieve the employees who work on the same department or project in a

company database"; \Retrieve the nodes being connected (disconnected) during certain period

of time in a communication network" and \Retrieve the suspects that appeared at the same

location at the same time in a criminal database system of the police department". To answer

such queries requires computing the overlap among the time intervals of di�erent records in

the temporal relations. Unlike joins in traditional relational database systems where equi-joins

are the commonest form, joins on time intervals are non-equijoins and are more expensive to

process.

1

Among the three basic join algorithms { nested-loops, sort-merged and partition-based {

the partition-based algorithms pose interesting challenge. Under a partition-based algorithm,

temporal data are split into partitions. During the join process, a partition in one relation only

needs to join with some, but not all, partitions of the other relation. However, as pointed out in

[6], the performance bottleneck of partition-based temporal join method is that those partitions

containing so-called \long-lived" records (records whose time intervals span over a long period)

need to be compared with almost all the other partitions. As a result, the savings obtained

from the reduction of comparisons among partitions may not be able to o�set the overhead of

partition-based methods { the cost of partitioning. To solve the problem, Lu, et. al. [6] avoided

the partitioning phase by clustering records into partitions based on the time attributes. To

facilitate direct access to the partitions, a \spatial" index is built on the set of partitions.

In this paper, we address a subproblem in designing partition-based temporal joins { the

scheduling of partitions to be processed. Depending on the orders in which partitions are

read, the number of I/Os incurred varies. We propose a three-phase scheduling framework to

minimize the number of I/Os incurred. From the framework, a large number of scheduling

strategies can be derived. We also study several representative scheduling strategies and report

our �ndings in this paper. To study the scheduling strategies, we adopt the partition-based

algorithm proposed in [6] as the join algorithm.

The rest of this paper is organized as follows. Section 2 provides the background infor-

mation to our study. We also review existing work on partition-based temporal joins, and

discuss scheduling issues. In Section 3, we present the scheduling strategies. Section 4 presents

the results of a performance study on the scheduling algorithms. Finally, we summarize our

conclusions in Section 5 with discussions on possible extensions of the current work.

2. Preliminaries

In this section, we present some terminologies on temporal databases. We will also review

related work on partition-based temporal join. A more in-depth discussion on the spatially

partitioned join algorithm [6] is presented. Finally, we discuss and introduce the scheduling

issues.

2.1. Terminologies

Attributes of a temporal relation can be non-time varying attributes (such as employee id, name,

sex), time-varying attributes (such as salary, quali�cations) and time attributes that indicate the

time interval that the given values of the time-varying attributes are valid. The time interval,

denoted [TS;TE], TE > TS , where TS is the start time and TE the end time, semantically

represents the lifespan of the record in question. The time dimension is represented as a time

2

interval [0, Tnow], where 0 represents the starting time of the application and Tnow refers to

the current time which is continuously increasing. Moreover, all relations are assumed to be

in �rst temporal normal form [10]. As such, there are no two intersecting time intervals for a

given surrogate instance. We say that two records, r and s, intersects if and only if their time

intervals overlap, i.e. r:TS � s:TE ^ r:TE � s:Ts. We also say that an interval [TS ; TE] contains

another interval [ts; te] if and only if TS � ts ^ te � TE .

A time join, denoted 1T on two temporal relations R and S, consists of the concatenation

of all records r 2 R and s 2 S such that the time attribute values in r and s intersect. The

start and end times of a resulting record, say z, are given as follows:

z:TS = max(r:TS ; s:TS) and z:TE = min(r:TE ; s:TE)

For ease of reference in sequel, we use the term \join" to refer exclusively to the time join,

and the term \relation" to mean temporal relation, unless otherwise stated.

2.2. Partitioned-based Temporal Joins

Initial work on temporal joins focused on re�nements of the conventional nested-loops algorithm

[2, 3, 9]. These algorithms exploit the sort order of the relations to avoid full scan of the inner

and/or outer relations.

Partition-based algorithms for temporal join proposed in the literature can be classi�ed into

the following three types:

Static Partitioning [4]

In this method, R and S are range-partitioned into n non-overlapping intervals Ii, 1 � i � n that

covers completely the time line. A record of R appear in the ith partition if its start timestamp

is in the interval Ii. However, a record of S will appear in partition Si if its temporal interval

intersects with Ii. In other words, records of S may be replicated across several partitions. The

advantage of replicating S is that each partition of R needs to be joined with the corresponding

partition of S only. However, both storage and processing cost may be high.

Dynamic Partitioning [12]

In this case, relation R is also range-partitioned into n non-overlapping intervals Ii , 1 � i � n

that covers completely the time line. To avoid replicating records of R and S into multiple

partitions, Soo, et. al., keeps each record in the last partition that the record overlaps [12]. The

join computation is performed backward by processing partition n �rst, followed by partition

n � 1, and so on. To compute the join results correctly, those records whose time intervals

3

intersect more than one partition range will be retained in memory to be combined with records

in the next partition. For example, a record tR whose time interval intersects partitions k and

k � 1, is stored in partition k. After partition k of R has been joined with partition k of S,

records whose time intervals are contained in the interval of partition k are swapped out to

prepare for the join of partitions Rk�1 and Sk�1. However, tR will be kept in memory so that

it can be joined with records in Sk�1. In other words, the partitions are dynamically adjusted

during the join computation. This method avoids replication of records at the expense of more

sophisticated memory management during join computation.

Spatial Partitioning [6]

For the spatial partitioning technique, records in a temporal relation are mapped into discrete

data points in a two-dimensional space using the function

f : I ! N �N where f([a; b]) = (a; b� a)

Applying the function f on records of a temporal relation results in a spatial rendition. Pictori-

ally (see Figure 1(a)), the spatial rendition at Tnow is a triangle formed by the lines x = 0, y = 0

and x+ y = Tnow. The temporal relation can then be partitioned as illustrated in Figure 1(a):

(1) The spatial rendition is split into n diagonal strips. The ith strip is bounded by the lines

x = 0, y = 0, x+ y = Ti�1, x+ y = Ti, where T0 = 0 and Tn � Tnow.

(2) The strips obtained are split into partitions by the lines x = 0, x = T1, : : : ; x = Tn. Thus,

each partition is bounded by four lines: x = Ti, x = Ti+1, x+y = Tj , x+y = Tj+1, where

n � i � 0 and n � j � i � 0. Given n strips, there will be a total of
Pn

i=1 i = n � (n+1)=2

partitions. In the �gure, we have n = 4 and hence 10 partitions. For simplicity, we assume

that the partitioning interval is the same for all partitions, that is Ti�Ti�1 = Ti�1�Ti�2

for all i.

Unlike the other partition-based join where only those corresponding partition pairs Ri

and Si need to be compared to �nd matching records (with replication either statically or

dynamically), partition Ri in a spatially partitioned join needs to join with more than one

partition of S. Let Figure 1(a) and (b) represent the partitions of two relations R and S.

Partition 5 in R, R5, needs to be compared with all the partitions in the shaded region of

Figure 1(b), i.e. partitions S2; S3; S4; S5; S6; S8; S9 and S10. More general, Figure 1(c) shows

the set of partitions of S that must be compared with partitions of R, indicated by shadowed

and black squares. For example, R1 has to join with S1; S3; S6 and S10.

To cut down the cost of partitioning, records are clustered into buckets based on the mapping

function, i.e. the records belonging to the same partition in the spatial rendition are stored

4

1 2

3

4

5

6

7

8

9

10

1 2 3

4

5

6

7 8

9

10

1

2

3

4 5 6

7

8

9 10

t

2t

3t

t 2t 3t
0

4t(now)

4t(now)

(a) Partitions of a spatial rendition.

(c) Join Processing of two partitioned renditions.

now−partitions

1 2

3

4

5

6

7

8

9

10

t

2t

3t

t 2t 3t
0

4t(now)

4t(now)

(b) Region to be joined for partition 5.

Relation R Relation S

Figure 1: Partition-based Join Algorithm.

5

together as a bucket, and a bucket may have one or more pages. Furthermore, to facilitate

direct access, a spatial index on the buckets is built.

The join can then be performed as follows: (1) traverse the index of relation R to read some

of its partitions into memory, (2) traverse the index of S to read those partitions that should

be joined with the partitions of R in memory, (3) perform the join, (4) repeat the process until

all partitions of R are read.

2.3. Scheduling Issues

The performance of the spatially partitioned join method depends on two factors: (a) the index

structure used, and (b) the ordering in which partitions are read. While the paper demonstrates

that for a large class of indexes, the algorithm is e�ective, the latter issue has not been addressed.

The ordering in which partitions are read a�ects the performance of the algorithm. To

illustrate, suppose all the buckets in Figure 1 are of the same size, and equal 1/4 that of the

memory. Then the join can be processed in three iterations. If we read buckets 1-4 �rst, then

5-8, and �nally 9-10, we require reading a total of 29 buckets of S. On the other hand, if we

read buckets 1,3,6,10 �rst, then 2,5,9,4 and �nally 7,8 we need to read only 26 buckets of S.

Hence, depending on the order in which the partitions are read, the cost of the join varies.

A straightforward solution is to try all combinations to �nd the optimal solution. However,

this can be avoided by either of the following ways:

(1) Static Join Index. In this method, we can build a join-index-like structure on the par-

titions. Unlike the traditional join-index [13] where each record in the index is a pair

representing matching record pairs, the join index for partitions stores pairs of matching

partitions. A similar structure has also been proposed in [5], and is shown to be e�ective

in terms of join processing as well as maintenance cost.

(2) Dynamic Join Index. Instead of building a join index, one can be created dynamically

when needed. This can be done by traversing the indexes and generates the matching

partition pairs.

In this paper, we focus on the scheduling problem. For simplicity, we assume the following:

� The matching pairs are available as input to the scheduler, whose output is the sequence

in which the partitions should be read. This is not unreasonable since we can apply either

the dynamic or static join indexing techniques described above.

� Each partition �ts in memory. This is also reasonable since a partition that is larger than

the memory can be split into smaller partitions that �t in memory.

This work is similar to the problem of �nding an optimal schedule for page fetches in

6

relational join operations [7, 8]. However, our work is di�erent in several ways. First, the

number of pages for the partitions of a temporal relation may be di�erent. In [7, 8], all pages

are of the same size.1 Second, these work look at the case of a two-page memory constraint

only. Relaxing the constraints to a �xed bu�er size greater than two requires more novel

algorithms. Finally, and more importantly, there is no predetermined relationship between

records and pages in relational join. On the other hand, the way partitions are generated are

predetermined. Exploiting such knowledge may lead to more e�ective heuristics.

To minimize the number of disk I/Os by ordering the buckets subjected to the constraints

imposed by the memory available is an NP problem [7]. In the next section, we shall describe

formally several heuristics to achieve this.

3. Scheduling Strategies

In this section, we present formally the scheduling strategies. We �rst describe our basic frame-

work which essentially decomposes the problem into three subproblems. This has the advantage

of pruning the search space. Subsequent subsections present strategies for the subproblems.

From the strategies to the subproblems, we can derive a large set of scheduling algorithms.

Finally, we describe how a schedule is evaluated under di�erent scheduling strategies.

3.1. Basic Framework

Before we looked at the basic framework, let us look at some de�nitions and observations that

we made.

De�nition 1. Bipartite Graph: Let Nr and Ns be sets of nodes. A labelled bipartite graph

is de�ned as B(N;E;L; f). It consists a set of nodes N = Nr [Ns where Nr \Ns = �, a set of

edges E � Nr �Ns, and a function f : N ! L where L is a set of labels.

Intuitively, Nr and Ns represent a set of partitions for relations R and S, respectively. Each

node in N needs multiple pages to store data in that partition. Therefore, in the labelled

bipartite graph, if f(ni) is 5 and ni 2 Nr, then it implies �ve pages are used to keep data in

the partition of ni in relation R. Each edge ei = (nj; nk) represents the relationship between

nj and nk that all the pages held by nj must join all the pages held by nk. Given a node ni,

let �(ni) denote a set of nodes it has to join, i.e.

�(ni) =

(
fnj j (ni; nj) 2 Eg; if ni 2 Nr

fnj j (nj; ni) 2 Eg; if ni 2 Ns

1Of course, we can map our problem into theirs by splitting a partition into multiple pages.

7

Example 1. Let B(N;E;L; f) be a bipartite graph. Here, N = Nr [Ns, Nr = fn1; n2g and

Ns = fn3; n4g. E = f(n1; n3);(n1; n4);(n2; n3)g. L = f1; 2; 3g. And f = f(n1; 2);(n2; 1);(n3; 3);

(n4; 1)g. A bipartite graph is shown in Figure 2.

n2

n3 3

11

n1

n4

2

Figure 2: A simple labelled bipartite graph.

A labelled bipartite graph B(N;E;L; f) is a simpli�ed form of an unlabelled bipartite graph

B0(N 0; E0) where N 0 is a set of pages rather than a set of partitions of pages. As a matter of

fact, any labelled bipartite graph B(N;E;L; f) can be converted into an unlabelled bipartite

graph B0(N 0; E0). For example, the labelled bipartite graph in Example 1 can be converted

into an unlabelled bipartite graph B0(N 0; E0). Here, N 0 = N 0

r[N
0

s, N
0

r = fn1;n2;n3g and N 0

s =

fn4;n5;n6;n7g. E
0 = f(n1;n4);(n1;n5);(n1;n6);(n2;n4);(n2;n5);(n2;n6);(n3;n4);(n3;n5);(n3;n6);

(n3;n7)g. In other words, an unlabelled bipartite graph is a special case of a labelled bipartite

graph B00 = (N 00; E00; L; f). For example, B0(N 0; E0) = B00(N 00; E00; F; f) if the following holds.

N 0 = N 00, E0 = E00, L = f1g and f(ni) = 1 for all ni 2 N 00. Obviously, a labelled bipartite

graph has its advantages due to the fact that it needs smaller search space compared with that

used in an unlabelled bipartite graph.

De�nition 2. A rooted subgraph: Let B(N;E;L; f) be a bipartite graph. A rooted sub-

graph of B on node ni, denoted by Bi(Ni; Ei; L; f), is de�ned as follows. Ni = �(ni) [fnig.

Ei = f(ni; nj) j ni 2 (Nr \ Ni) ^ nj 2 (Ns \ Ni)g. For simplicity, we also refer to Bi(ni) as

the rooted subgraph on ni.

The cost of page accesses for a given rooted subgraph Bi(ni) is given by a function fp(ni).

If all f(ni) pages held by ni can be kept in bu�er, we have

fp(ni) = f(ni) +
X

nk2�(ni)

f(nk)

In Example 1, the cost for evaluating the rooted graph n1 is 2 + 4 page accesses under the

condition that bu�er size is bigger than 4 pages. In this case, two pages are used to keep f(n1)

pages held by node n1. One page is used to read each of those pages that are held by both

n3 and n4. Finally, one page is needed for writing the results of joins to secondary storage.

For simplicity, in the following discussion, we ignore the page used for output when we refer to

bu�er.

8

De�nition 3. A subgraph: Let B(N;E;L; f) be a bipartite graph. A subgraph of B is

de�ned as Bc =
S
ni2G

Bi(ni) � B where G = fng1 ; ng2 ; :::; ngkg(� N). For any ngi 2 G,

Bgi(ngi) must overlap with some Bgj (ngj), for j 6= i.

For simplicity, in the following discussion, we also use G, a set of nodes, to identify a

subgraph. The motivation for introducing the concept of subgraph is described as follows.

Given a subgraph G = fng1 ; ng2 ; :::g. And let G indicates that
P

ngi2G
f(ngi) can �t into bu�er.

Then, the cost of evaluating a subgraph G is as follows.

gp(G) =
X

ngi2G

f(ngi) +
X
nl2K

f(nl)

where K =
S
ngi2G

�(ngi). As can be seen below, gp(G) can be less than the cost of evaluating

rooted graphs separately.

gp(G) �
X

ngi2G

fp(ngi)

For example, in Example 1, if G = fn1; n2g and a four page bu�er is available for keeping

f(n1) + f(n2) pages in bu�er, then its cost of page accesses is 7(= 3 + 4). It is less then the

cost of fp(n1) + fp(n2) which needs 10 page accesses. In the latter case, we need less pages

to keep either f(n1) or f(n2) in bu�er. Nevertheless, it still needs more than 7 page accesses.

Suppose that we have a four page bu�er for reading pages from secondary storage. Then, when

evaluating the rooted graph n1, we need two pages for holding all f(n1) pages. The cost of

evaluating the rooted graph n1 is 6. After evaluating the rooted graph n1, two pages held by

n3 and/or n4 can remain in bu�er. Hence, the cost for evaluating the next rooted graph n2 is

3 page accesses. In total, it costs 9 page accesses which is greater than 7 page accesses.

Observation 1. (Minimal Groups) Let G be a set of nodes. Here, G = G1 [G2 and

G1 \G2 = �. Suppose that (
S
ni2G1

�(ni)) \ (
S
nj2G2

�(nj)) 6= �. Then

gp(G) � gp(G1) + gp(G2)

Using Example 1, let G = G1 [G2, G1 = fn1g and G2 = fn2g. As mentioned above, the

cost for evaluating G is 7 page accesses, whereas the cost for evaluating G1 and G2 is at least

9 page accesses. As a consequence of Observation 1, if bu�er size is big enough, the optimal

evaluation of a bipartite graph can be de�ned in the following observation.

De�nition 4. (Maximum and Minimum Conditions on G) Let B and G be a bipartite

graph and a subgraph, respectively.

9

� maximum condition: B �
S
ni2G

Bi(ni).

� minimum condition: B �=
S
ni2G0 Bi(ni) if G

0 � G.

Observation 2. (Optimal Group) Let B and G be a bipartite graph and a subgraph, re-

spectively. If G satisfy the maximum and the minimum conditions, then it results in an optimal

scheduling under the two conditions.

It is obvious because the formula gp(G) implies that all pages only need to be read from the

disk once. Note that no other scheduling can reduce more page accesses than the optimal

scheduling. As a matter of fact, for a bipartite graph B, given two G1 and G2 that satisfy the

maximum and the minimum conditions given in De�nition 4, the cost of evaluating G1 is the

same as the cost of evaluating G2. Under the constraints imposed on bu�er size, any set of

subgraphs W = fG1; G2; :::g, where jW j > 1, cannot be an optimal scheduling. A suboptimal

scheduling, Wopt, can only be de�ned in terms of all possible sets of subgraphs W1;W2; :::;Wm.

The strategy of evaluating a bipartite graph can start from dividing nodes into sets of

subgraphs Wk = fGk1 ; Gk2 ; :::Gkmg, for k = 1; 2; :::, under the condition that all pages held by

nodes in any Gki can �t into bu�er. In addition, Wk must satisfy the following conditions.

�
S
Gki

2Wk
Gki must satisfy the maximum and the minimum conditions given in De�nition

4.

� Let Gkl be a set of nodes. Gki \Gkj = � for any i and j(6= i).

The cost of evaluating such a Wk is as follows.

hp(Wk) =
X

Gki
2Wk

gp(Gki)

The following formula always holds.

hp(Wk) �
X
ni2N 0

fp(ni)

where N 0 =
S
Gki

2Wk
Gki . For example, we can divide all Nr, into a set of subgraphs Wr =

fGr1 ;Gr2 ; :::; Grmg where Nr =
S
Gri

2Wr
Gri and Gri \Grj = � for any i and j(6= i).

Observation 3. (Group Ordering) Given a set of subgraphs W = fG1; G2; :::; Gmg. The

ordering of evaluating such a set of subgraphs must be speci�ed also. Then a list of W 0 =

[Gg1 ; Gg2 ; :::; Ggm] can be generated based on W . Here, a 1:1 mapping exists between W and

W 0. Let A, B and C are sublists of W 0. Then

hp([A;Ggi ; B;Ggj ; C]) � hp([A;Ggi ; Ggj ; B;C])

10

on the condition that the overlap between Ggi and Ggj is larger than that between Ggi and any

Ggk 2 B.

As can be seen, all the observations are based on an assumption that all subgraphs Gi in

a W must be Gi. In other words, the bu�er must be larger than f(nij) pages for any rooted

graph nij (2 Gi). Under this assumption and the observations, it is possible to �nd an optimal

scheduling by searching all combinations. However, as the problem is NP-complete, we adopt

a three-phase optimization strategy. A suboptimal schedule can be obtained by the following

three phases.

(1) (Ordering Nodes)

All necessary nodes are sorted somehow into a sequence. And the following two phases

generate a suboptimal schedule based on the sequence of nodes.

(2) (Grouping Nodes)

Based on the sequence of nodes, �nd groups on the following two conditions. First, each

group Gk = fnk1 ; nk2 ; :::g should be able to keep all pages held by nodes nki(2 Gk) in

bu�er. Secondly, the overlap between pairs of f�(nk1);�(nk2); :::g must be large. This

phase results in a sequence of groups.

(3) (Reordering Sequence)

Based on the sequence of groups generated in the second phase, reorder the sequence of

groups. The sequence [:::; G1; G2; G3; :::] can perform better than [:::;G1;G3;G2;

:::], if G1 overlaps more nodes in G2 than those in G3.

3.2. Ordering Nodes

Among the three phases, ordering nodes is the most important phase because the other two

phases depend on this order. The major advantage of using a prede�ned ordering is that it

enables applications to provide its own strategy and therefore the applications can have more

control over the scheduling. This phase comprises the following two steps:

� Given a bipartite graph B(N;E;L; f), a subset of nodes G = fng1 ; ng2 ; :::; ngkg(� N)

must be decided under the condition that the corresponding subgraph G satis�es the

maximum and the minimum conditions. We call it minimum set condition from now

on.

� Order nodes in G.

As shown in Figure 1, a partition may be assigned a number. A total ordering among all

partitions may then be prede�ned. When two relations have to be joined, the system implicitly

11

uses this ordering to join one partition in one relation with those matching partitions in the

other relation. In general, the �rst diagonal strip joins fewer partitions than those in the last

diagonal strip. Example 2 shows a bipartite graph for a join between two relations. Each of

the two relations has three diagonal strips and a total of six partitions.

Example 2. LetB(N;E;L; f) be a bipartite graph. Here, N = Nr[Ns, Nr = fn1; n2; n3; n4; n5;

n6; n7g andNs = fn8; n9; n10; n11; n12g. E = f(n1; n7);(n1; n9);(n1; n12);(n2; n8);(n2; n9);(n2; n11);

(n2;n12);(n3; n7);(n3;n8);(n3; n9); (n3; n11); (n3; n12);(n4; n10);(n4; n11); (n4; n12); (n5; n8); (n5; n9);

(n5; n10); (n5; n11); (n5; n12); (n6; n7); (n6; n8); (n6; n9); (n6; n10);(n6; n11);(n6; n12)g. L =

f1; 3; 5;10; 11;12; 13;30; 8g. f = f(n1; 1);(n2; 3);(n3; 5); (n4; 10);(n5; 11);(n6; 12);(n7; 13);(n8; 30);

(n9; 8);(n10; 1);(n11; 3);(n12; 5)g.

Let B(N;E;L; f) be a bipartite graph. Two basic strategies are available.

� Strategy 1: First, �nd a subset of nodes, G � N , which satis�es the minimum set

condition. Then, sort nodes in G by some means.

� Strategy 2: First, sort all nodes in N by some means, then �nd a subset G of N that

satis�es the minimum set condition.

In the �rst strategy, we have to �nd a subset G which satis�es the minimum set condition.

For example, in Example 2, we can see thatNr andNs represent partitions belonging to relations

R and S, respectively. And both Nr and Nr satisfy the minimum set condition. In order to

evaluate the bipartite graph, we can simply evaluate either all the rooted graphs ni(2 Nr) or

all the rooted graphs nj(2 Ns) instead. Suppose that we choose all nodes in Nr in order to

evaluate the bipartite graph. Three possible orderings are available for the �rst strategy.

� Forward Ordering: Order nodes in Nr by sorting the number assigned to each partition

in an ascending order. Referring to Figure 1, this means that partition 1 will be processed

�rst, followed by partition 2 and so on.

� Backward Ordering: Similar with the forward ordering, order nodes in Nr by sorting

the number assigned to each partition in a descending order. In this case, partition 10

will be processed �rst, followed by partition 9, and so on.

� Sort Ordering: The total number of pages a node nri 2 Nr has to join is given byP
nk2�(nri)

f(nk). Sort all nodes nri 2 Nr in a descending order based on
P

nk2�(nri)
f(nk).

The partition are then joined in this order.

The second strategy is speci�ed by the following Probe Ordering.

12

� Probe Ordering: Given a bipartite graph B(N;E;L; f). The total number of pages a

node ni 2 N has to join is given by
P

nk2�(ni)
f(nk). Sort all nodes into a descending

order based on
P

nk2�(ni)
f(nk). Let P be such a sequence, [np1 ; np2 ; :::; npm]. P does not

satisfy the minimum set condition. Hence, we need to remove nodes from the tail of P

until P satisfy the minimum set condition. The algorithm for removing nodes is given

below.

Algorithm 1. Let i(P) be the i-th element in the sequence P . Function rest(P; i) returns a

sequence that removes the i-th element from P . Function length(P) returns the length of P .

Input: a sequence of nodes P .

Output: a sequence of nodes P 0 which satis�es the minimum condition.

Procedure:

(1) Let l = length(P), nl = l(P) and Ptmp = rest(P; l).

(2) If Bl(nl) �
S
ni2Ptmp

Bi(ni), then

begin

P = Ptmp; l = length(P); goto step 4;

end

(3) l = l � 1.

(4) If l > 0 then begin nl = l(P); Ptmp = rest(P; l); goto step 2; end

(5) P 0 = P .

3.3. Grouping Nodes and Reordering Sequence

The previous phase generates a sequence of groups, P = [np1 ; np2 ; :::]. In this phase, we need

to obtain a sequence of subgraphs W = [G1; G2; :::;] based on the sequence P .

Let i(P) be the i-th element in the sequence P . Let length(P) be a function that returns the

length of P , and rest(P; i) be a function that returns a sequence by removing the i-th element

from P . There are several heuristic strategies available. We illustrate two such strategies here.

Suppose that bu�er size is X.

Algorithm 2. First-Fit:

Input: A sequence P = [np1 ; np2 ; :::].

Output: A sequence W = [G1; G2; :::].

Procedure:

(1) Let W be an empty sequence.

13

(2) Let l = 1, nl = l(P) and G be an empty set.

(3) G = G [fnlg; P = rest(P; l).

(4) For k = 1 until length(P) do

begin

nk = k(P).

If
P

ni2G
f(ni) + f(nk) � X and Bk(nk) \

S
nj2G

Bj(nj) 6= � then

Append nk at the end of G;

end

P = P �G; Append G at the end of W .

(5) If length(P) > 0 then goto step 2.

Algorithm 3. Better-Fit/Best Fit:

Input: A sequence P = [np1 ; np2 ; :::].

Output: A sequence W = [G1; G2; :::].

Procedure:

(1) Let W be an empty sequence.

(2) Let l = 1, nl = l(P) and G be an empty set.

(3) G = G [fnlg; P = rest(P; l).

(4) For k = 1 until length(P) do

begin

nt = k(P); m1 =
P

ni2G
f(ni); M1 =

S
ni2G

Bi(ni).

If m1 + f(nk) � X and Bt(nt) \M1 6= � then

begin

For j = k + 1 until length(P) do

If m1 + f(nj) � X and Bj(nj) \M1 6= � and

(f(nj) > f(nk) logic-op jBj(nj) \M1j > jBt(nt) \M1j) then

nt = nj.

Append nt at the end of G;

end

end

P = P �G; Append G at the end of W .

(5) If length(P) > 0 then goto step 2.

Where the 'logic-op' can be either 'and' or 'or'. When the logic-op is 'and', we call it \best-�t"

algorithm, whereas when the logic-op is 'or', we call it \better-�t" algorithm.

14

Reordering the sequence of subgraphs W = [G1; G2; :::] can be done by using a similar

algorithm like Algorithm 2. As such, we shall not discuss it here.

3.4. Evaluation of Schedule

The execution of a subgraph Gk = fnk1 ; nk2 ; :::g can be done by �rst fetching pages from �(nj)

which does not have any overlap with any node used in Gj where j = k+1. Following this, the

remaining pages (that overlapped) are read. This allows us to keep these pages in memory (if

memory is available) for reuse when processing nj+1.

If the �rst strategy in Section 3.2 is adopted. the evaluation of a sequence of subgraphs

W = [G1; G2; :::] generated is simple. The evaluation strategy is given in the following Algorithm

4.

Algorithm 4. Standard Evaluation

Input: A sequence W = [G1; G2; :::].

Output: A result relation for a temporal join.

Procedure:

(1) Let i = 1.

(2) Gcurr = Gi; Fetch all f(ni) pages from all node ni 2 Gcurr into bu�er.

(3) Let Ntmp =
S
nj2Gi

�(nj) and Nnext =
S
nk2Gi+1

(�(nk) [fnkg).

Then, Nfirst = Ntmp �Nnext and Nsecond = Ntmp �Nfirst.

(4) Evaluate all rooted graphs ni 2 Nfirst.

(5) Evaluate all rooted graphs ni 2 Nsecond.

(6) Let i = i+ 1.

(7) If i � length(W), then goto step 2.

If the second strategy in Section 3.2 is adopted, the situation is slightly di�erent. For

example, if we use Probe-ordering against the bipartite graph given in Example 1, W can be

[G1; G2] where G1 = fn2g and G2 = fn3g. Suppose that we evaluate the rooted graph n2 �rst,

then when we need to evaluate the rooted graph n3, we don't need to evaluate the edge (n2; n3)

again. We should evaluate only the edge (n3; n1) when evaluating the rooted graph n3. One

possible evaluation can be described in Algorithm 5.

Algorithm 5. Partial-Evaluation

Input: A sequence W = [G1; G2; :::].

15

Output: A result relation for a temporal join.

Procedure:

(1) Let i = 1 and E be an empty set.

(2) Gcurr = Gi; Fetch all f(ni) pages from all node ni 2 Gcurr into bu�er.

(3) Let Ntmp =
S
nj2Gi

�(nj) and Nnext =
S
nk2Gi+1

(�(nk) [fnkg).

Then, Nfirst = Ntmp �Nnext and Nsecond = Ntmp �Nfirst.

(4) For each rooted graph Bi(ni) 2 Nfirst do

begin

evaluate the edges in Bi(ni)�E only.

E = E [Bi(ni).

end

(5) For each rooted graph Bi(ni) 2 Nsecond do

begin

evaluate the edges in Bi(ni)�E only.

E = E [Bi(ni).

end

(6) Let i = i+ 1.

(7) If i � length(W), then goto step 2.

Obviously, Algorithm 5 adopts the same evaluation strategy as Algorithm 4, except that Algo-

rithm 5 needs to maintain a set of edges, E, and check an edge (ni; nj) whether it belongs to

E or not each time.

4. A Performance Study

In this section, we describe the performance study conducted to evaluate some representative

scheduling techniques. For each algorithm, we simulate its join execution on a SPARCstatic 2

to obtain the number of I/Os needed. Since the result size is the same for all algorithms, we

ignore the I/Os for writing the result size to disks. All the algorithms are compared on the

basis of the number of I/Os required for the join execution.

Table 1 shows the parameters used and their default settings. Most of the parameters are

self-explanatory. Each relation begins at time 0 unit, and the current time is 10,000 time units.

Each relation has 20,000 objects. The start time of each object follows a Poisson distribution.

Each object has an average of 5 versions, the duration of each of which is determined by an

exponential distribution, i.e. the lifespan of each record is exponentially distributed. Thus,

16

each relation has 100,000 records. The partitioning interval at which the relations are to be

partitioned is �xed at 200 time units, and hence each relation has a maximum of 1275 buckets.

Each page is assumed to contain at most 20 objects.

Parameter Default

Lifespan of relation [0, 10,000]
Number of objects per relation 10,000
Average number of versions per object 5
Number of records per relation 100,000
Page size 20 objects
Partitioning interval 200 time units
Number of buckets (50� 51)/2 = 1,275

Table 1: Parameters used and their default settings.

We have conducted a large set of experiments, and can only present some of the more

interesting and representative ones here. The algorithms we studied and the notations are:

� SO denotes the strategy that employs sort ordering;

� FO denotes the strategy that employs forward ordering;

� BO denotes the strategy that employs backward ordering;

� PO denotes the strategy that employs probe ordering.

Moreover, all the four strategies used the �rst-�t grouping technique.

4.1. Experiment 1: E�ect of Memory Size

Partition-based algorithms are sensitive to memory size [1, 11]. In this section, we study how

sensitive the various algorithms are to the amount of memory available. We vary the memory

size from 10% to 100% of the size of R. As lifespan of a record will a�ect the performance of

a join to a large extent, two tests were conducted,

(1) The lifespan of each record is small with the mean value set to 100 time units. In this

case, most of the records overlap one other bucket.

(2) The lifespan of each record is large with the mean value set to 800 time units, which

means that on average, each record will overlap 4 buckets.

Figure 3 shows the results when the mean lifespan is 100 time unit. Generally, all the

algorithms perform in a similar manner for large memory. However, when the memory is small,

17

we observed several interesting points. First, we observe that strategy SO performs poorly

compared to the other strategies. This is because though the buckets are sorted in descending

order of the total size of the matching partitions of S, it has two \weaknesses" { (1) it does

not mean that the partitions to be read for bucket Ri is a superset of bucket Ri+1, (2) it does

not mean that the partitions to be read overlapped. On the other hand, strategies BO and

FO almost always ensure that the set of partitions of S for the next partition of R to be read

in memory overlapped those that correspond to the partitions already in memory. Second, we

�nd that strategy PO is not e�ective. When the mean record lifespan is short, most of the

buckets at the higher end of the spatial rendition is empty, while those at the lower half of the

spatial rendition are occupied. In other words, there are fewer non-empty partitions with each

partition containing larger number of records than average. Moreover, because of the same

data distribution, whenever a partition of R is read, the corresponding partition of S will be

the next to be read. With small memory size and large partition size, this frequent toggling

leads to the poor performance.

0

10000

20000

0 20 40 60 80 100

Number
of
I/O

Memory (in % of R)

SO ?

?

?
?

?
?

?

FO b

b

b

b
b b

b

BO 3

3

3

3
3 3

3

PO �
�

�

� � � �

Figure 3: E�ects of varying memory (mean lifespan = 100 units).

When the mean lifespan is 800 units, the relative performance of the algorithms is almost the

same except for strategy PO. The result is shown in Figure 4. Again we see that SO performs

poorly. Howsever, we see that strategy PO is superior to all strategies at small memory. This

is because with a longer mean lifespan, more records stored at partitions that are higher up

in the spatial rendition. Moreover, the number of partitions that contains data increases and

hence the average number of records per bucket also decreases. Thus, the bene�ts of toggling

between partitions of R and S increases.

18

0

10000

20000

30000

40000

50000

0 20 40 60 80 100

Number
of
I/O

Memory (in % of R)

SO ??

?

?

? ?

?

FO b

b

b

b

b
b

b

BO 3

3

3

3
3 3

3

PO �

�
�

� � �
�

Figure 4: E�ects of varying memory (mean lifespan = 800 units).

4.2. Experiment 2: E�ect of Varying Lifespan

Since strategy SO performs poorly, we will focus our attention on the other three strategies

for this and subsequent studies. In this experiment, we vary the mean lifespan of records in

relation S from 100 time units to 1600 time units. The mean lifespan of records in relation R

is �xed at 200 time units. Figure 5 shows the results under di�erent memory availability.

As expected, the number of disk I/O's required for the various scheduling strategies increases

as the mean lifespan increases. This is because with increasing lifespan, each partition overlaps

more partitions and hence the amount of work to be done for the join processing increases. As

in the earlier experiments, PO is superior at small and large memory size but performed poorly

at medium memory size. It is also interesting to note that when both relations have the same

mean record lifespan, PO did not perform well. This is because of the e�ect of toggling as

described earlier. With di�erent mean record lifespan, the e�ect of toggling becomes bene�cial.

4.3. Experiment 3: Vary number of buckets

For partition-based algorithms, the granularity of the bucket may a�ect the performance of the

algorithm. Recall that when the partitioning interval is t, we have N = Tnow=t diagonal strips,

and there are a total of N � (N + 1)=2 buckets. With �ner partitions, the number of S buckets

to be read for each R bucket is controlled more closely. That is, fewer of the S buckets read

are wasteful or unnecessary. In this experiment, we study this tradeo� by varying the number

of buckets. Both the relations have the same number of buckets.

19

12000

16000

20000

0 2 4 6 8 10 12 14 16

Number
of
I/O

Mean lifespan (x 100 time units)

FO b

b

b

b

b

b

b

BO 3

3
3

3

3

3

3

PO �

�

�

� � � �

(a) Small Memory (10% R)

8000

10000

12000

14000

0 2 4 6 8 10 12 14 16

Number
of
I/O

Mean lifespan (x 100 time units)

FO b

b
b

b

b

b

b

BO 3

3 3 3
3

3
3

PO �

�

�

�

� � �

(b) Medium Memory (40% R)

8000

9000

10000

11000

12000

0 2 4 6 8 10 12 14 16

Number
of
I/O

Mean lifespan (x 100 time units)

FO b

b b
b

b

b

b

BO 3

3 3 3 3 3 3

PO �

� �
� � � �

(c) Large Memory (80% R)

Figure 5: Vary the life span of records in one relation.

20

10000

15000

20000

10 20 30 40 50

Number
of
I/O

N

FO b

b

b

b
b

b

BO 3

3 3

3

PO �

�

�

�

�

�

(a) Number of partitions = N(N+1)/2 (memory = 10% R)

8000

10000

12000

10 20 30 40 50

Number
of
I/O

N

FO b

b
b

b
b

b

BO 3

3 3
3 3 3

PO �

� � � � �

(b) Number of partitions = N(N+1)/2 (memory = 80% R)

Figure 6: E�ect of number of partitions.

21

Figure 6 shows the results of the experiments with mean lifespan 200 units for small and

large memory. We observe that for strategies BO and FO, increasing the number of buckets

generally reduces the I/O cost. For PO, there is a certain optimal number of partitions that

will lead to superior performance (N = 30 in this experiment). Finally, as expected, for large

memory size, the various strategies are not sensitive to the number of partitions.

5. Conclusions

In this paper, we have discussed scheduling issues in partition-based temporal join algorithms.

Depending on the orders in which partitions are read, the number of I/Os incurred varies.

We have studied the problem formally and proposed a three-phase scheduling framework to

minimize the number of I/Os incurred. From the framework, a large number of scheduling

strategies can be derived. An experimental study was also used to evaluate the performance

of some representative strategies. While our results showed that no single strategy dominates

performance, it also demonstrated that the choice of strategy is critical to performance (i.e.

the di�erence in performance between strategies could be signi�cant). We plan to extend this

work in the following ways. First, we plan to automate the process of choosing the appropriate

strategy at runtime. Second, we plan to study how the strategies proposed be used in other

scheduling problems, for example scheduling of operations from multiple queries.

References

[1] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood. Implementation tech-
niques for main memory database systems. In Proceedings of the 1984 ACM-SIGMOD International

Conference on Management of Data, Boston, NY, June 1984.

[2] H. Gunadhi and A. Segev. Query processing algorithms for temporal intersection joins. In Proceed-

ings of the Seventh International Conference on Data Engineering, pages 336{344, Kobe, Japan,
April 1991.

[3] T. Leung and R. Muntz. Query processing for temporal databases. In Proceedings of the Sixth

International Conference on Data Engineering, pages 200{208, Los Angeles, CA, April 1990.

[4] T. Leung and R. Muntz. Temporal query processing and optimization in multiprocessor database
machines. In Proceedings of the 18th International Conference on Very Large Data Bases, pages
383{394, Vancouver, Canada, August 1992.

[5] H. Lu, R.-H. Luo, and B. Ooi. Spatial joins by precomputation of approximations. In Proceedings of

the 6th Australasian Database Conference, pages 132{143, Glenelg, South Australia, January 1995.

[6] H. Lu, B. Ooi, and K. Tan. On spatially partitioned temporal joins. In Proceedings of the 20th

International Conference on Very Large Data Bases, pages 546{557, Santiago, Chile, August 1994.

[7] T. Merrett, Y. Kambayashi, and H. Yasuura. Scheduling of page fetches in join operations. In Pro-

ceedings of the 7th International Conference on Very Large Data Bases, pages 488{497, Barcelona,
Spain, August 1981.

[8] S. Pramanik and D. Ittner. Use of graph-theoretic models for optimal relational database accesses
to perform join. ACM Transactions on Database Systems, 10(1):57{74, March 1985.

22

[9] S. Rana and F. Fotouhi. E�cient processing of time-joins in temporal data bases. In Proceedings of

the 3rd International Symposium on Database Systems for Advanced Applications, pages 427{432,
Taejon, Korea, April 1993.

[10] A. Segev and A. Shoshani. The representation of a temporal data model in the relational environ-
ment. Lecture Notes in Computer Science, 339:39{61, 1988.

[11] L. Shapiro. Join processing in database systems with large main memories. ACM Transactions on

Database Systems, 11(3):239{264, September 1986.

[12] M. Soo, R. Snodgrass, and C. Jenson. E�cient evaluation of the valid-time natural join. In
Proceedings of the 10th International Conference on Data Engineering, pages 282{292, February
1994.

[13] P. Valduriez. Join indices. ACM Transactions on Database Systems, 12(2):218{246, June 1987.

23

