
Vectorization Using Reversible

Data Dependences

Peiyi Tang and Nianshu Gao

Technical Report
ANU-TR-CS-94-08
October 21, 1994

Vectorization Using Reversible Data

Dependences �

Peiyi Tang

Department of Computer Science
The Australian National University

Canberra ACT 0200 Australia

Nianshu Gao

Institute of Computing Technology
Academia Sinica

Beijing 100080 China

October 21, 1994

Abstract

Data dependences between statements have long been used for detecting
parallelism and converting sequential programs into parallel forms. However,
some data dependences can be reversed and the transformed program still
produces the same results. In this paper, we revisit vectorization and propose
a new vectorization algorithm using reversible data dependences. The new
algorithm can generate more or thicker vector statements than traditional
algorithm. The techniques presented in this paper can be incorporated in all
the existing vectorizing compilers for supercomputers.

�This work was supported in part by the Australian Research Council under Grant No.
A49232251

ii

1 Introduction

Data dependences between statements have long been used by vectorizing and paralleliz-

ing compilers to detect parallelism and convert sequential programs into parallel forms [1,

2]. Two statement instances1 are said to be data dependent if they access the same data

element and at least one of the accesses is a write. The direction of the data dependence

is determined by the order of sequential execution of the program.

Enforcing all the data dependences between dependent statement instances when

parallelizing the program will keep the original orders of de�nitions and uses of data

elements and, thus, guarantee that the parallelized program will produce the same results.

However, to produce the same results does not necessarily require all the de�nition and

use orders to be maintained. For example, there are n instances of statement s in the

following loop: s(1); � � � ; s(n).

do i = 1, n

...

s: x = x + a(i)

enddo

Assume that statement s is the only statement that accesses variable x in the loop. The

variable x is de�ned and used by all instances of s. The original order of de�nitions and

uses of x is such that its value de�ned by s(i � 1) is used by s(i) (2 � i � n) and any

data dependence test will indicate that there are
ow, anti and output dependences from

s(i�1) to s(i) caused by variable x. However, the statement instances s(1); � � � ; s(n) can

be executed in any order as long as they are executed one after another [3].

The statements like s in the above example are called accumulative statements. A

program can have many accumulative statements on the same variable and the variables

accessed by the statements can also be array elements. For instance, both statements s1

and s2 in the following loop

do i = 1, n

1A statement instance is an execution of the statement in loops for particular loop iteration. A
statement not enclosed in any loops has only one instance.

1

s1: x(2i) = x(2i) + a(i)

s2: x(i+3) = x(i+3) - b(i)

END

are accumulative statements. The values of the subscript functions are shown in the

following table:

i 1 2 3 4 5

2i 2 4 6 8 10

i+3 4 5 6 7 8

The dependences between the statement instances are shown in Figure 1(a), where each

node is a statement instance and the label of an edge is the data element that causes the

dependence. For instance, both s1(2) and s2(1) access x(4) and there are
ow, anti and

output dependences from s2(1) to s1(2) (these three dependences are represented by a

single edge). The data dependence graph between the statements of the loop is shown

in Figure 1(b). Due to the dependence cycle involving s1 and s2, the loop cannot be

distributed over the statements and none of them can be vectorized by the traditional

vectorization algorithm [1,4].

s1

s2

x(4) x(6) x(8)

i=1 i=2 i=3 i=4 i=5

(a)

s1

s2

(b)

Figure 1. dependences of An Example

However, s1(2) can be executed before s2(1) even though there are data dependences

from s2(1) to s1(2). The �nal value of x(4) will still be the same: x0(4)�b(1)+a(2), where

x0(4) is the initial value of x(4) before the loop starts. This indicates that the dependence

from s2 to s1 in Figure 1(b) can be reversed and then the loop can be vectorized as follows:

2

s1: x(2:10:2) = x(2:10:2) + a(1:5:1)

s2: x(6:10:1) = x(6:10:1) - b(1:5:1)

The dependence from s2 to s1 is called reversible dependence. In fact, the dependence

from s1 to s2 is also a reversible dependence.

Reversible dependences can be reversed to vectorize and parallelize some parts of

the programs that cannot not be vectorized or parallelized otherwise. In this paper,

we revisit vectorization and propose a new vectorization algorithm which can generate

more or thicker vector statements than the traditional algorithm. Our algorithm can be

incorporated in any existing vectorizing compilers for supercomputers.

The paper is structured as follows. In section 2, we provide de�nitions of many impor-

tant concepts needed for vectorization and the de�nition of reversible data dependences.

In section 3, we present and prove the new vectorization algorithm extended from the

traditional algorithm. Section 4 concludes the paper with a short discussion and a brief

summary.

2 Reversible Dependences

In this section, we introduce the basic concepts of data dependence and data dependence

graph used by compiler vectorization and parallelization algorithms. More detailed de-

scriptions can be found in [1,4]. We then de�ne a special type of data dependences called

reversible dependences.

Data Dependence

Given a statement s enclosed in n loops with index variables i1; � � � ; in, a statement

instance of s for a particular loop index ~i = (i1; � � � ; in), denoted by s(~i), is an execution

of s in the loop iteration of ~i. The sets of data elements de�ned and used by s(~i) are

denoted by def(s(~i)) and use(s(~i)), respectively.

3

De�nition 1 Given two statements s and s0 in a program2, there is a data dependence

from s(~i) to s0(~i0), denoted by s(~i)�s0(~i0), if

1. s(~i) is executed before s0(~i0) (this relation is denoted by s(~i) � s0(~i0)), and

2. at least one of the following sets is non-empty:

(a) def(s(~i)) \ use(s0(~i0))

(b) use(s(~i)) \ def(s0(~i0))

(c) def(s(~i)) \ def(s0(~i0))

If s(~i)�s0(~i0), and ~ijk�1 = ~i0jk�1 and ~i(k) < ~i0(k) where k is the level of one of their

common loops, we say S 0(~i0) is dependent on S(~i) at level k. Here, ~ijk�1 is the subvector

of ~i that consists of the �rst k � 1 elements and ~i(k) is the k-th element of ~i. This data

dependence is denoted by S(~i)�kS
0(~i0) and is also called loop-carried dependence. If the

corresponding indices of~i and ~i0 for all the common loops are the same, the dependence is

called loop-independent dependence, and is denoted by S(~i)�1S
0(~i0). Loop-independent

dependences are also called dependences at level 1.

Let us have a look the program in Figure 2(a) which is extended from the example

in Section 1. We can see that there are data dependences from s3(1; k) to s1(2; k� 1) for

2 � k � 5 because both access data element x(4; k � 1) and s3(1; k) is executed before

s1(2; k � 1) (i.e. s3(1; k) � s1(2; k � 1)). This dependence is carried by loop I of level 1.

Table 1 lists all the data dependences between the statement instances of the program

in Figure 2(a).

Note that our de�nition of dependence does include indirect dependences [5]. That

is, if there is a statement instance s00(~i00) such that s(~i) � s00(~i00) � s0(~i0) and def(s00(~i00))

includes a data element in one of the three intersections of def and use sets of s(~i)

and s0(~i0) in (2) of the de�nition above, we still say S(~i)�S 0(~i0) and this dependence is

called indirect dependence. If there is no such s00(~i00) exits, the dependence is called direct

dependence. For instance, the data dependences from s3(1; k) to s2(2; k� 1) (2 � k � 5)

in our example are indirect dependences, because we can �nd s1(2; k� 1) that s3(1; k) �

2For the sake of simplicity, a program in this paper is de�ned as a general loop nest with the outermost
loop encloses all the assignment statement.

4

do i = 1, 5

do j = 1, 5

s1: x(2i,j) = x(2i,j) + a(i,j)

s2: y(i,j) = x(2i,j) + c(i,j)

s3: x(i+3,j-1) = x(i+3,j-1) - b(i,j)

enddo

s4: z(i) = y(i-1,1) + d(i)

enddo

(a) program

1

1

1(R)

1

1,2(R)

s1

s2

s3

s4

1,2

(b) DD Graph

Figure 2. Vectorization Example

s1(2; k � 1) � s2(2; k � 1) and it de�nes the same data element (x(4; k � 1)) as s3(1; k)

and s2(2; k � 1) access. The reason to include indirect dependences is to make data

dependence tests simple and e�cient. The compiler only needs to examine the pair-wise

relations between statements. This kind of dependence information is accurate enough

for vectorization. As will be shown later, these indirect dependences can become direct

dependences after the directions of reversible dependences are changed.

The dependence information between statement instances is too detailed to be rep-

resented in the form of graphs. dependences between statements, de�ned as follows, are

summaries of dependences between statement instances and used by vectorizing compilers

for vectorization.

De�nition 2 There is a data dependence from s to s0 at level k 2 Z [f1g, denoted by

S�kS
0, if there are statements instance s(~i) and s0(~i0) such that s(~i)�ks

0(~i0).

Accumulative Statements

We are interested in a special class of assignment statements in loops that are called

accumulative statements and de�ned as follows:

5

Stmt Pair From To Constraint level

s3(1; k) s1(2; k � 1) 2 � k � 5 1
s1; s3 s1(3; k) s3(3; k + 1) 1 � k � 4 2

s1(4; k) s3(5; k + 1) 1 � k � 4 1

s1; s2 s1(q; k) s2(q; k) 1 � q � 5 1
1 � k � 5

s3(1; k) s2(2; k � 1) 2 � k � 5 1
s2; s3 s2(3; k) s3(3; k + 1) 1 � k � 4 2

s2(4; k) s3(5; k + 1) 1 � k � 4 1

s2; s4 s2(q; 1) s4(q + 1) 1 � q � 4 1

Table 1. Data dependences Between Statement Instances

De�nition 3 An assignment statement is an accumulative statement for variable x if it

is of the following form:

x(f(~i)) = x(f(~i)) � exp(~i)

where x is an array or scalar variable, ~i the index vector of the enclosing loops, f the

subscript function3, � an arithmetic binary operator and exp(~i) an expression that does

not use data elements of x.

Let x(~s) be an element of x accessed by the statement and

I~s = f~i : f(~i) = ~sg

be the set of index vectors that access x(~s). Let I~s = f~i1; � � � ;~ipg. The contribution of

the statement to the value of x(~s) is

exp(~i1)� � � � � exp(~ip)

assuming that � is commutative and associative. The order between ~i1; � � � ;~ip is not

important. In our example of Figure 2, statements s1 and s3 are accumulative statements

and statements s2 and s4 are not.

3If x is a scalar, f is a function that maps all the index vectors to 0 and x is interpreted as an array
with only one element x(0).

6

Interchangeable Operators

Two accumulative statements that access the same array may use di�erent binary oper-

ators.

De�nition 4 An unordered pair of binary commutative and associative operators,

f�;	g, de�ned on a real number �eld R is said to be interchangeable if and only if

8a; b; c 2 R; (a� b)	 c = (a 	 c)� b:

Operator pairs f+;+g, f+;�g, f�;�g, f�; �g, f�; =g and f=; =g are all interchange-

able, where +,-,* and/ are binary operators of addition, subtraction, multiplication and

division of real numbers, respectively. On the other hand, operator pairs f+; �g, f�; �g,

f+; =g and f�; =g are not interchangeable.

Reversible Data dependences

Suppose that there are two accumulative statements s and s0 for the same variable x as

follows:

s : x(f(~i)) = x(f(~i))� exp(~i)

s0 : x(g(~i0)) = x(g(~i0)) 	 exp0(~i0)

where f�;	g is interchangeable. The two statements may access the same data elements

of x causing data dependences between them. However, because the operators � and 	

are interchangeable, the orders they update the data elements are not important. Let

x(~b) be a particular element of x and

I~b = f~i : f(~i) = ~bg = f~i1; � � �~ipg

and

I 0~b = f~i0 : g(~i0) = ~bg = f~i01; � � � ~i0qg

7

be the index sets of s and s0 that access x(~b), respectively. The total contribution of s

and s0 to the value of x(~b) is

(exp(~i1)� � � � � exp(~ip))	 (exp(~i01)	 � � � 	 exp(~i0q))

The order between the elements of I~b and I 0~b is not important because f�;	g are inter-

changeable. The data dependences between these statement instances can be reversed

without changing this total contribution. Data dependences between the statements like

s and s0 are called reversible dependences and de�ned as follows:

De�nition 5 Given two accumulative statements for the same variable that use a pair

of interchangeable operators, data dependences between, if any, are called reversible de-

pendences.

Reversible dependences are not di�cult to detect during data dependence tests. All we

need to do is to check whether the two statements are accumulative for the same variable

and whether they use interchangeable operators.

Data Dependence Graph

The dependences between statements are represented by data dependence graph G =

(N;E), where the set of nodes N is the set of statements and the set of edges E represents

the data dependences between the statements. The data dependence graph in this paper

is constructed as follows:

1. There is an edge e = (s; s0) 2 E labeled with Le = fl1; � � � ; lpg if and only if there is

at least one data dependence from statement s to statement s0 at level lr 2 Z[f1g

for each r such that 1 � r � p. Le is called the set of levels associated with edge e.

2. The edge e = (s; s0) 2 E is marked as \reversible"(R) if and only if both s and

s0 are accumulative statements for the same variable and they use a pair of inter-

changeable operators.

The data dependence graph of our example is shown in Figure 2(b).

8

3 Vectorization

In this section, we provide a new vectorization algorithm extended from original Allen-

Kennedy algorithm. This algorithm takes advantage of reversible dependences and pro-

duces more and thicker vector statements than the original algorithm.

A program is vectorized by calling a recursive procedure \vectorize" as follows:

vectorize(STAT; 1)

where STAT is the set of all assignment statements in the program.

The new algorithm for procedure \vectorize" is shown in Figure 3. To explain what

is happening and why this algorithm can generate more and thicker vector statements,

we need to go back the basic theory of vectorization and have a close look at the original

Allen-Kennedy Algorithm [1,4].

Original Algorithm

Given a statement s enclosed by n loops, statement instances s(~i) and s(~i0) are said to be

di�erent at level k if ~ijk�1 = ~i0jk�1 and ~i(i) 6= ~i0(k). The central question in vectorization

is whether two di�erent instances of a statement at certain levels can be executed in

parallel.

Given a path in the data dependence graph s1 !e1 s2 !e2 � � � !er sr+1, denoted as

� = (e1; � � � ; er), the level of the path is de�ned by

levels(�) = fk 2 Z [f1g : (8q 2 [1; r]; k � max(Leq)) ^ (9q 2 [1; r] s:t: k 2 Leq)g

where [1; r] is the set of integers between 1 and r. Recall that Leq is the set of levels of

all data dependences associated with eq. It can be shown that for each level l 2 levels(�)

we have 1 � l � mineq2�(max(Leq)). If there is a cycle path C from s to s in the data

dependence graph such that k 2 levels(C), cannot be safely executed in parallel because

it is possible that there are direct or indirect data dependences between them. On the

other hand, if for every cycle C from s to s we have k 62 levels(C), the di�erent instances

of s at level k can be executed in parallel.

9

procedure vectorize(R; k);
/* R is a set of assignment statements */
/* k is a level */
(1) Dk := constrain(D; k)
(2) DD := DkjR
(3) G0 = (N 0; E 0) := AC(DD)
(4) for every n0 2 N 0 in topological order do
(5) if n0 is a non-trivial SCC, Gi = (Ni; Ei), of DD
(6) done := false
(7) for each reversible edge ei 2 Ei do

(8) reverse ei of Gi to form a new graph G0

i

(9) GG = (NN;EE) := AC(G0

i)
(10) if there is only one SCC in GG (i.e. NN=fGig and EE=�)
(11) discard GG
(12) continue /* with loop for ei */
(13) else

(14) for each nn 2 NN in topological order do
(15) if nn is a non-trivial SCC Gj = (Nj ; Ej) of GG
(16) generate level k DO statement
(17) vectorize(Nj ; k + 1)
(18) generate level k ENDDO statement
(19) else /* nn is a trivial node without cycles */
(20) generate vector statement for nn
(21) endif

(22) endfor /* loop for nn */
(23) done = true
(24) break /* with loop for ei */
(25) endif

(26) endfor /* loop for ei */
(27) if not done
(28) generate level k DO statement
(29) vectorize(Ni; k + 1)
(30) generate level k ENDDO statement;
(31) endif

(32) else /* n0 is a trivial node without cycles */
(33) generate vector statement for n0

(32) endif

(34) endfor /* loop for n0 */
(35) endprocedure

Figure 3. Recursive Procedure \vectorize"

10

The original algorithm can be obtained from the algorithm in Figure 3 by removing

lines (6)-(27) and (31). The algorithm works recursively starting from level 1. Given a

dependence graph D = (N;E), function constrain(D; k) at line (1) returns a graph Dk

with the same set of nodes N , but only with those edges e 2 E such that k � max(Le).

Given Dk = (Nk; Ek) and R � Nk, DkjR in line (2) gives the subgraph of DD = (R;ER)

such that ER = f(s; s0) 2 Ek : s 2 R^s0 2 Rg. The function AC(DD) in line (3) gives the

acyclic condensation (AC) after �nding out all the strongly connected components (SCC)

using Tarjan's algorithm. The acyclic condensation AC(DD) is a graph Gi = (Ni; Ei)

whose nodes are SCCs of DD and there is an edge between two SCCs if there are edges

between the nodes in these SCCs. The algorithm follows a topological order of the acyclic

condensation and distributes the loops over the SCCs. When processing each SCCs at

level k, the algorithm tests if the node n0 2 Ni is an non-trivial SCC or a single node

without cycles.

It can be proved that node n0 is an non-trivial SCC if and only if every node of the

SCC is in a cycle in the original data dependence graph going through all the nodes of

the SCC and the levels of the cycle l satisfy k � l � mine2C(max(Le)).

Vectorization at level k is armed at parallelizing the instances of statements at all

levels equal to and greater than k. When processing a non-trivial SCC, none of its

statements can be vectorized because they are in a cycle with levels l satisfying k � l �

mine2C(max(Le)). The algorithm generates the sequential DO loop at level k for this

SCC (see lines (28) and (30)) to enforce the data dependences at level k and recursively

calls \vectorize" at the next level k + 1.

If node n0 is a single node without cycle, for any cycle C in the original data depen-

dence graph going through node n0, we must have mine2C(max(Le)) < k. These cycle

data dependences must have been enforced at the previous levels and we can vectorize

n0 from level k through the innermost level.

Note that dependences not in cycles (i.e., dependences between SCCs of the acyclic

condensation) are enforced by the loop distribution following the topological order. Since

all the data dependences of the program are enforced, the vectorized program will produce

the same results for all data elements as the original program.

To vectorize the program of our example in Figure 2, we �rst obtain the acyclic

11

S1

1

1

1(R)

f

1,2(R)S2

S3

S4

n1’

n2’

1,2

(a)

S1

f

1,2(R)S2

S3

n1’

1,2

(b)

S1

1

1

1(R)

f

1,2(R)S2

S3

S4

nn2

n2’

n1’nn1

1,2

(c)

Figure 4. Vectorization

condensation of the entire program as shown in Figure 4(a). There are two SCCs in the

acyclic condensation: n01 is a non-trivial SCC and n02 is a single statement without cycle.

n02 which is s4 is vectorized and the sequential loop I is generated for n01. Figure 4(b)

shows the acyclic condensation of n01 at level 2. All of s1, s2 and s3 can be vectorized at

level 2. The vectorized program is as follows:

do i = 1, 5

s1: x(2i,1:5) = x(2i,1:5) + a(i,1:5)

s2: y(i,1:5) = x(2i,1:5) + c(i,1:5)

s3: x(i+3,0:4) = x(i+3,0:4) - b(i,1:5)

enddo

s4: z(1:5) = y(0:4,1) + d(1:5)

Extended Algorithm

We extended the original vectorization algorithm by adding lines (6)-(26) and if statement

in line (27) and (31). What the added lines do is to try to reverse reversible data

dependence edges one at a time to see if the non-trivial SCC can be broken into smaller

SCCs. If it is successful, the algorithm proceeds to process these smaller SCCs following

the topological order between them. If none of the reversible edges can break the SCC,

the algorithm proceeds to generate a sequential loop as in the original algorithm.

12

In our example, when processing the SCC for s1, s2 and s3 at level 1, we change the

direction of the reversible data dependence edge e = (s3; s1). The original SCC n01 is now

broken into two smaller SCCs: nn1 and nn2. This situation is shown in Figure 4(c). Our

algorithm proceeds to vectorize s1 at level 1 and further process nn2, resulting in the

following vector program:

s1: x(2:10:2,1:5) = x(2:10:2,1:5) + a(1:5,1:5)

do i = 1, 5

s2: y(i,1:5) = x(2i,1:5) + c(i,1:5)

s3: x(i+3,0:4) = x(i+3,0:4) - b(i,1:5)

enddo

s4: z(1:5) = y(0:4,1) + d(1:5)

We can see that our algorithm vectorizes s1 at level 1 instead of level 2 and generates a

thicker vector statement for s1 than the original algorithm.

Reversing data dependence edges changes the original data dependence graph. Re-

versible edges may be reversed at di�erent times. In general, reversing an edges might

create new cycles that does not exist in the original data dependence graph. To establish

the correctness and e�ectiveness of our algorithm we need to show that

1. The extended algorithm generates at least as many vector statements as the original

algorithm.

2. The vector program generated by the extended algorithm produces the same results

for all the data elements as the original sequential program.

These two points are summarized in Theorem 1 and Theorem 2. In order to prove

these theorems, we need the following lemmas.

Lemma 1 If reversing a reversible ei 2 Ei can break the non-trivial SCC, Gi = (Ni; Ei),

into smaller SCCs (i.e. the control goes to line (14)), then ei must be included in any

cycle that goes through all nodes of Ni.

Proof: If there is a cycle that goes through all nodes of Ni does not include ei, this

cycle would still exist after ei is reversed. This means that reversing ei cannot break the

13

SCC into smaller SCCs. 2

Lemma 2 If reversing a reversible ei = (s; s0) 2 Ei (s 6= s0) can break the non-trivial

SCC, Gi = (Ni; Ei), into smaller SCCs (i.e. the control goes to line (14)), then the

reversed edge e0i = (s0; s) must be an edge between di�erent SCCs of GG (see line (9) for

the de�nition of GG).

Proof: Assume that s and s0 are still in the same strongly-connected component, nn,

of GG after ei = (s; s0) is reversed. Then there is a cycle going through s and s0 in nn

that does not use ei. This means that there is a path p from s to s0 in Gi that does not

include ei. Given a cycle C of Gi going through all the nodes in Ni, if it includes ei we

can replace it with p and obtain a cycle that contains all nodes but does include ei. It is

contradictory to Lemma 1. 2

Lemma 3 Each reversible dependence edge may be reversed only once and the reversed

dependences are always enforced by loop distribution.

Proof: From Lemma 2, after a reversible dependence edge is reversed, it will become

an edge between the SCCs. It is enforced by the loop distribution following the topolog-

ical order and will never appear in the any graphs of recursive calls at deeper levels. 2

Theorem 1 The extended algorithm will not generate more sequential DO loops than

the original algorithm.

Proof: The extended algorithm generate sequential DO loops at line (28) and (16).

According to Lemma 3, a reversible edge can be reversed only once and the reversed edge

is across between di�erent SCCs. Therefore, the non-trivial SCC found in line (15) only

contains the original dependence edges. It is obvious that the non-trivial SCC processed

by lines (28)-(30) also contains the original dependence edges only. It follows that there

must be a cycle C in the original data dependence graph that goes through all the nodes

14

of the SCC and has a level l satisfying k � l � mine2C(max(Le)). Therefore, the sequen-

tial DO loops generated by the extended algorithm would be also be generated by the

original algorithm. 2

Now let us show the correctness of the extended algorithm.

Lemma 4 If a SCC, nn, is found to be a single node without cycle in the acyclic con-

densation (see line (19)) after the reversible edge ei is reversed, then any cycle originally

in Gi going through nn must include ei.

Proof: If there is a cycle going through nn does not include ei, then this cycle still

exists after ei is reversed. Then nn would not be single node. 2

Theorem 2 The vector program generated by the extended algorithm produces the same

results for all the data elements as the original sequential program.

Proof: The extended algorithm generates vector statements at lines (33) and (20).

From Lemma 3, when \vectorize(R; k)" is called, all edges in the graph DD (see lines

(1) and (2)) are original. When the SCC, n0, is found to be a single node without cycle,

it can be guaranteed that there is no cycle C going through n with levels l satisfying

k � l � mine2C(max(Le)). The statement can be safely parallelized in the levels from k

to the innermost level (see line (30)). The cycles going through n0 with levels l < k are

either enforced by the sequential loops generated in previous levels or by loop distribution.

If a statement is found to be single node without cycle nn at line (19), it is possible

to have a cycle C going through nn with level l satisfying k � l � mine2C(max(Le)).

However, according to Lemma 4, this cycle must include the reversible edge ei. The

di�erent instances of nn at level l can be executed in parallel because after ei is reversed

the cycle does not exist anymore. All the other data dependences in the cycle are enforced

by the loop distribution. The vectorization at line (20) only change the order of the

statement instances connected by ei and all the other data dependences in the cycle are

enforced.

15

The original data dependence graph include explicitly all the indirect data depen-

dences between the statements. Since all the data dependences are enforced except some

reversible data dependences, the �nal result for all the data elements of the program is

the same as original sequential program. 2

It is important to note that the correctness of the new algorithm relies on the fact

that original data dependence graph includes all indirect dependences. In our example in

Figure 2, the dependence s3�1s2 is indirect. After the reversible dependence from s3�1s1

is reversed, s3�1s2 becomes a direct dependence. The presence of indirect dependences

in the data dependence graph guarantees that reversing reversible dependences will not

have side e�ects on other data dependences.

4 Discussion and Conclusion

Almost all automatic parallelization or vectorization schemes are based on enforcing the

data dependences detected in programs. In this paper, we pointed out that enforcing all

the data dependences is su�cient to generate parallel programs that produce the same

results, but it is not necessary. We de�ned a special type of data dependences whose di-

rections can be reversed. By reversing this type of data dependences in a controllable way,

we can generate parallel programs with more parallelism than the traditional schemes

of parallelization. This paper is the �rst attempt to explore parallelism for automatic

parallelization beyond the limit of data dependences.

While this paper only concentrates on vectorization, the idea should be extended to

parallelization to generate parallel Doall and Doacross loops. M. Wolfe suggested to

include another kind of parallel loop called Doany loop in parallel languages [6]. Doany

is a parallel loop whose iterations can be executed in any order and can be used to express

the parallelism that cannot be expressed by Doall or Doacross loops. The idea to

exploiting reversible dependences in this paper should be used to generate Doany loops

from sequential programs. We are going to research on these problems in the future.

16

References

[1] R. Allen and K. Kennedy, \Automatic Translation of Fortran Programs to Vector Form,"

ACM Transactions on Programming Languages and Systems,, vol. 9, no. 4, pp. 491{

541, October 1987.

[2] M. Wolfe, Optimizing Compilers for Supercomputers. Cambridge, MA, MIT Press,

1989.

[3] R. Eigenmann, J. Hoe
inger, Z. Li and D. Padua, \Experience in the Automatic Par-

allelization of Four Perfect-Benchmark Programs," in Proceedings of the 4th (1991)

of Workshop on Languages and Compilers for Parallel Computing, Lecture Notes in

Computer Science, No. 589 , Santa Clara, California, USA, August, 1991, pp. 65{83.

[4] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers. New

York, NY, ACM Press, 1990.

[5] W. Pugh and D. Wonnacott, \Eliminating False Data Dependences Using the Omega

Test," in Proceedings of the 1992 ACM SIGPLAN Conference on Programming

Language Design and Implementation, San Francisco, California, June 17-19, 1992,

pp. 140{151.

[6] M. Wolfe, \Doany: Not Just Another Parallel Loop," in Proceedings of the 5th Work-

shop on Languages and Compilers for Parallel Computing , New Haven, August 1992,

pp. 277{282.

17

