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Abstract 

Vector error -correction models (VECMs) have become increasingly popular in their 

applications to financial markets. Standard VECM models assume that the 

cointegrating vectors are of full rank such that they contain no zero elements. 

However, applications of VECM models to financial market data have revealed that 

zero entries are indeed possible. The existence of zero entries has not been fully 

discussed in cointegration theory. In such cases, the use of standard VECM models 

may lead to incorrect inferences. Specifically, if the underlying true VECM and the 

associated cointegrating and loading vectors contain zero entries, the resultant 

specificat ions can produce different conclusions concerning the cointegrating 

relationships among the variables. In this paper, we provide a new efficient and 

effective algorithm to select cointegrating and loading vectors that can contain zero 

entries in the context of a VECM framework for time-series of integrated order I(2). 

We employ two case studies to demonstrate the usefulness of the algorithm in tests of 

purchasing power parity and a three-variable system concerning the stock market. 
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1. INTRODUCTION 

The use of vector autoregressive (VAR) models with unit roots and the associated vector 

error correction models (VECMs) for analysing possible cointegrating relations among 

economic variables has become common in the literature [eg. Granger (1981), Granger 

and Lee (1989)]. The advantage utilization of these models provides a device which has 

proved to be a more efficient tool than conventional time-series approaches.  

 

The concept of cointegrated variables was first introduced by Granger (1981) and 

Granger and Weiss (1983). Engle and Granger (1987) show that, if cointegrating 

relations exist between the variables, then an I(1) system may be more usefully specified 

as a VECM. Johansen (1988), (1991) derives the maximum likelihood estimator of the 

space of cointegrat ing vectors. Stock and Watson (1993) propose a simple computational 

procedure for the estimation of cointegrating vectors which is asymptotically efficient. 

Granger and Lee (1989) suggest multi-cointegration to improve short- and long-term 

forecasts. Further, Engle and Yoo (1991) propose an I(2) cointegration system which 

coincides with Granger’s multi-cointegration. 

 

The VECM supports hypotheses which imply the presence of zero entries in the optimal 

specification. An optimal VECM specification with zero entries suggests that the 

cointegrating vectors and the loading vectors may also contain zero entries. However, the 

estimation of model specification with zero entries has not been fully discussed in 

cointegration theory. 1 This issue becomes problematic if the underlying true VECM and 

the associated cointegrating and loading vectors have zero entries, as different model 

specifications can produce different cointegrating relationships, thus leading to different 

and incorrect inferences. 

                                                                 
1 Johansen (1991) undertakes hypothesis testing for specific zero-non-zero patterned a and ß.  However, 

that approach depends on a priori  hypotheses on the zero-non-zero patterns of a and ß.  It is difficult to use 

Johansen's method to obtain the correct zero-non-zero patterns for the cointegrating and loading vectors 

when the number of possible hypotheses is large. This is especially the case if the number of the 

cointegrating vectors in the system and the number of variables involved in the cointegrating relations are 

high. 
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Penm et al (1997) have developed an effective and efficient search algorithm to select zero-

non-zero (ZNZ) patterned cointegrating and loading vectors in a subset VECM with zero 

entries for an I(1) system. However that paper did not deal with the application to a higher 

order integrated system. Several financial variables typically display properties consistent 

with an I(2) process. Hence, there is a lack of guidance on how to deal with zero entries in 

an I(2) system. In this paper we provide an appropriate algorithm to select ZNZ patterned 

cointegrating and loading vectors in a subset VECM with zero entries for an I(2) system. 

Thus, the contribution of the paper is to specify procedures for analyzing financial 

variables of order I(2). 

 

The paper is constructed as follows. First, to begin the algorithm we identify the optimal 

specification for a subset VECM with zero entries using appropriate model selection 

criteria. After the optimal subset VECM with zero entries is identified, the rank of the long-

term impact matrix is then computed using the singular value decomposition (SVD) method 

such that the number of cointegrating vectors in the system is known, with allowance for 

possible zero entries in the impact matrix. Once the ZNZ pattern of the impact matrix has 

been determined, along with the number of cointegrating vectors in the system, a tree-

pruning algorithm is then proposed for the search of all acceptable ZNZ patterns of the 

cointegrating and loading vectors. The acceptable ZNZ patterns of these vectors are 

discussed in detail in Section 3. The estimation of the associated candidates for the ZNZ 

patterned loading vectors in the VECM framework can be carried out by the regression 

method with linear restrictions as proposed in Penm et al (1997). Section 4 presents two 

applications of the procedure to financial markets. The first application deals with a 

three-variable system concerning the stock market while the second application examines 

purchasing power parity (PPP). Concluding remarks are presented in Section 5.  
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2. VECM MODELLING FOR AN I(2) SYSTEM 

We begin by considering the general VAR(q) model of the form: 

 

 y t B y t t
q

( ) ( ) ( )+ − =
=

∑ τ
τ

τ ε
1

,  (1) 

 

where ε( )t  is a sx1 I(0) vector process with E t{ ( )}ε = 0  and: 

 

 E t t{ ( ) ' ( )}ε ε τ−  = G, τ  = 0, 

                = 0,  τ  > 0. 

 

B qτ τ, ,2,...,= 1  are sxs parameter matrices,  

 

 q

=1

q

B (L) =  I +  B L ,
τ

τ
τ∑    

 

where it is assumed that the roots of |B (L)|  =  0q  lie outside or on the unit circle, and L 

denotes the lag operator.  

 

Further, y(t) is integrated of order d, I(d), if it contains at least one element which must be 

differenced d times before it becomes I(0). We also call y(t) cointegrated with the 

cointegrating vector, β, of order g, if β'y(t) is integrated of order (d-g), where y(t) has to 

contain at least two I(d) variables.2  

 

Under this I(2) assumption, we have: 

 

 B L B L I L B Lq q q( ) ( ) ( ) ( )= + − −1 1  

  )L(B)LI(L)1(BL)1(BL)1(B 2q221q1qq −−− −+−+=  

                                                                 
2 In this paper, we consider only the case d=2, although the procedure can be generally applied to models with 
d>2. 
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Following Engle and Yoo (1991), the associated VECM for (1) can be expressed as: 

 

 [ ] )t()t(y)L(B
)1t(y

)1t(y
)1(B,)1(B 22q1qq ε=∆+








−∆

− −− , (2) 

 

 

where y(t) contains variables of three types, namely I(0), I(1) and I(2) and ∆ = −( )I L . We 

can rewrite (2) as: 

 

 ),t()t(y)L(B
)1t(y

)1t(y
*B 22q ε=∆+








−∆

− −  (3) 

 

where [ ])1(B,)1(B*B 1qq −=  and 







−∆

−
)1t(y

)1t(y
*B  is stationary and the first term in (3) is 

the error correction term. We call the term B L y tq −2 2( ) ( )∆  the vector autoregressive part of 

the VECM. 

 

Because y(t) is cointegrated of order 2, the long-term impact matrix, B* , must be singular. 

As a result, B* = αβ' and β' 







−∆

−
)1t(y

)1t(y
is stationary, where the rank of B*  is r and α is a 

matrix of (s x r) and β' is (r x 2s). The columns of β are the cointegrating vectors and the 

rows of α are the loading vectors. 

 

Model development is more convenient using VECMs, rather than the equivalent VARs, if 

the systems under study include cointegrated time series. Engle and Granger (1987) note 

that, for I(1) systems, the VARs in first difference will be mis-specified and the VARs in 

levels will ignore important constraints on the coefficient matrices. Although these 

constraints may be satisfied asymptotically, efficiency gains and improvements in forecasts 

are likely to result by imposing them. The analogous conclusion applies to I(2) systems. 
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Comparisons of forecasting performance of the VECMs versus VARs for cointegrated 

systems have been reported in studies such as Engle and Yoo (1987) and LeSage (1990). 

The results of these studies indicate that, while in the short-run there may be gains in using 

unrestricted VAR models, the VECMs produce long-run forecasts with smaller errors when 

the variables used in the models satisfy the test for cointegration.  

 

3. SEARCH ALGORITHM 

In the proposed algorithm for an I(2) system, the identification of ZNZ patterned B*  and 

the determination of ZNZ patterned α and β are carried out in the following way. First, 

model selection criteria are used to select the optimal subset VECM with zero entries to 

determine the ZNZ patterned B* . Penm and Terrell (1984) have proposed a search method 

in conjunction with model selection criteria to select the optimal subset VAR with zero 

entries. This method is now extended to select the optimal subset VECM with zero entries 

for an I(2) system. 

 

Second, after the ZNZ patterned B*  is determined, the rank of the matrix B*  is then 

computed using the singular value decomposition (SVD) method, and the number of 

cointegrating vectors in the system will be known.  

 

Third, given the ZNZ patterned B*  has been determined and the rank of B*  has been 

computed, we then proceed with the tree-pruning algorithm as adapted for an I(2) system to 

obtain all acceptable ZNZ patterned αs and βs which are consistent with the ZNZ patterned 

B* . Let ap and ßp denote a ZNZ pattern of a and ß respectively and Bp the ZNZ pattern of 

B*. If the (i,j)-th entry of the product, apßp’ is zero, and the corresponding (i,j)-th entry of Bp 

is also zero, then both ap and ßp are acceptable. This tree-pruning algorithm, which avoids 

the need to evaluate all possible ZNZ patterned αs and βs, is discussed in the Appendix.  

 

The ZNZ patterns of acceptable αs and βs depend on the pattern of B*  determined earlier 

by model selection criteria. Of note, the imposition of zero entries on β does not preclude a 

similar restriction on α. One example is that if the determined B*  contains a zero row, such 

as: 
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 B* =
0 0 0 0
1 1 0 1







, 

 

where 1 denotes a non-zero entry.  

 

In this case zero restrictions will have to be imposed on the first row of α. This is because 

the pattern of B*  implies that the cointegrating relations in the system have no influence on 

the first variable in the system. Noting that the number of zeros in α and β are not fixed 

even with a given ZNZ patterned B* , many differently patterned αs and βs can be obtained 

using the tree-pruning algorithm. A simple example can be used for demonstration.  

 

Let B* ,=
















1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0

 where the rank of B*  is 2. 

 

At least three candidate sets of α and β can be obtained, which are: 

 

 α =
















0 1
0 1
1 1

 and β =






0 1 1 0 0 0
1 1 0 0 0 0

 (4) 

 α =
















0 1
0 1
1 1

 and β = 





1 0 1 0 0 0

1 1 0 0 0 0
 (5) 

 α =
















0 1
0 1
1 1

 and β =






0 0 1 0 0 0
1 1 0 0 0 0

 (6) 

 

The cointegrating relationships implied by (4), (5) and (6) are different. While (4) and (5) 

imply that y1, y2 and y3 are cointegrated, (6) indicates that y1 and y2 are cointegrated and y3 

is an I(0) series. It is obvious that we cannot take the zero-maximising approach of choosing 
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the β with the maximum number of zero entries to determine the ZNZ patterns of α and β. 

If we do, then we will select (6), not (4) nor (5), while the true model could be either (4) or 

(5). As a result we again utilise model selection criteria to determine the optimal ZNZ 

patterns for α and β. Although (4) and (5), in theory, both indicate that y1, y2 and y3 are 

cointegrated, in practice different forecasting performance will result from (4) and (5). 

Using model selection criteria in this situation will aid in the selection between (4) and (5) 

in terms of forecasting performance. 

 

To obtain the correct specification for α and β, we next check to see whether α and β can be 

uniquely obtained by factorising B* . If this is possible, the factorisation can be carried out. 

If it is not possible, we employ the efficient estimation of I(2) cointegrated systems based 

on a triangular ECM representation [see Stock and Watson (1993)] to estimate β. Since any 

non-zero entry in β could be normalised as unity, we repeat the estimation procedure with 

all possible normalisations. Again different normalisations in practice may result in 

different forecasting performances for the model. The normalisation, which produces the 

smallest value for model selection, is then selected as the candidate β.  After the optimal 

normalisation is determined for every candidate β, we then estimate the associated 

acceptable ZNZ patterned αs in the VECM framework and employ model selection criteria 

again to determine the optimal α and β. 

 

There are two reasons for employing model selection criteria again to determine the optimal 

α and β.  In the example given above, model selection criteria will help to select between 

(4), (5) and (6), since the approach of zero-maximisation cannot be used to determine β. In 

addition, Engle and Granger (1987) have demonstrated that efficiency gains could be 

obtained in such estimation.  
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4. APPLICATIONS 

In this section, two applications to financial market data are presented to demonstrate the 

usefulness of the proposed procedure.  

 

4.1 The Three-Variable Stock Market System 

The first application examines the relationships among the stock market, money supply 

and inflation. Prior research has shown that these three variables are linked. First, despite 

the Fisher effect, inflation has generally been shown to exhibit a negative relationship with 

the stock market [see Fama and Schwert (1981) and DeFina (1991)]. The reasons that have 

been advanced to explain the relationship include inflationary expectations, fixed price 

nominal contracts and the tax shield effects associated with depreciable fixed assets.3 

However as Stulz (1986) argues this relationship is dependent also on money growth. 

 

Second, announcements of the money supply have been shown to convey a valuable 

information signal to the stock market. While there is some conjecture as to the sign of the 

relationship, it is generally accepted that a negative relationship exists between the money 

supply and stock returns. The general theory advanced is that the linkage between the money 

supply and interest rates affects economic activity and corporate profits. However, there are 

questions over whether the real rate of interest is affected. Two main hypotheses have 

emerged. First, changes in the money supply may alter expectations about monetary policy. 

An increase in the money supply may signal a future tightening of monetary policy from the 

Central Bank resulting in expectations of higher interest rates, which in turn act to depress 

stock prices through both a rise in the real rate and a reduction in economic activity. Second, 

an increase in the money supply may raise expectations of higher inflation which in turn 

leads to higher interest rates through the inflation premium in nominal interest rates. As 

discussed above, higher expected inflation decreases stock prices. Both of these hypotheses 

suggest a negative sign on the relationship between money supply and the stock market 

which is generally supported by the evidence. Hardouvelis (1988) shows that increases in the 

money supply induce rises in interest rates. Moreover, Pearce and Roley (1985) and Jain 

                                                                 
3 DeFina (1991) provides a good overview of the various arguments. 
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(1988) find evidence of a significant negative relationship between unexpected money supply 

signals and stock market movements. 

 

Finally, the third interaction in the system is the linkage between inflation and the money 

supply. This relationship is well-known and rooted in monetary theory [eg. Mishkin (1992)]. 

Despite arguments over the influence of lags and the money multiplier, the economic 

relationship is well established. Of note, the purpose here is not to test in detail hypotheses 

surrounding these variables, but rather to illustrate how relationships in the financial markets 

can be tested. 

 

The following data are used in the test. We focus on the Australian market due to the 

ease of data availability and the lack of previous research in this area in the Australian 

market.4 The All Ordinaries Index (AOI) is used as the stock market indicator. The AOI 

is a broad market indicator with coverage of around 320 stocks representing about 90-

95% of total market capitalisation. The index is value-weighted and calculated on the 

basis of market capitalisation of the constituent stocks traded on the Australian Stock 

Exchange. Money supply is measured by the standard stock of money (M3).5 Inflation is 

measured as the seasonally adjusted consumer price indices for Australia (CPIAUS). The 

CPI measures the aggregate price behaviour of all consumer goods and services and is 

commonly used by government and industry in Australia to adjust for the cost-of-living 

allowances in wage and benefit contracts. Data are collected from DataStream™ over the 

period June 1981 through December 1999. While money supply and the stock market 

index are available over shorter frequencies, the CPI figures are produced on a quarterly 

basis, and hence this forms the sampling frequency.  

 

The Dickey and Pantula (1987) procedure is used to test for the presence of more than 

one unit root. The procedure rejects the hypothesis of three unit roots for both 

                                                                 
4 The three variable system examined here could be tested in any other market. 
5 M3 is a common measure of the money supply and is used in Reserve Bank targeting. While an 
alternative measure of M2 comprises money that can be spent immediately and assets invested for the short 
term, M3 consists of the sum of M2 plus large deposits. These deposits include institutional money-market 
funds and agreements among banks. Since M3 comprises M2, we employ M3 in the test. 
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log(CPIAUS) and log(M3) at the 5 percent level, and the hypothesis of two unit roots for 

log(AOI). Subsequently, the procedure accepts the hypothesis that both log(CPIAUS) and 

log(M3) have two unit roots and log(AOI) has one unit root.6  

 

We then make use of the procedure described in Section 3 to identify the specification 

for the VECM formed by these variables. For brevity only the results using Hannan-

Quinn Information Criterion (HQC) [see Hannan and Quinn (1979)] are presented in 

Table 1.7 In addition, to make certain of this selected specification, we also apply HQC 

to the residual vector. The results support the conclusion that the residual vector is a 

white noise process. 

 

Given the determined specification of this VECM, the SVD method is then applied to the 

estimated matrix B* . The estimated singular values indicate that the rank of the matrix 

B*  is 2. We then utilise the tree-pruning algorithm to select all acceptable ZNZ patterns 

of α and β which are consistent with the ZNZ pattern of the matrix B* . The proposed 

estimated procedures for α and β in conjunction with HQC are conducted to select the 

optimal α and β. To select all acceptable ZNZ patterns of a and ß which are consistent with 

the ZNZ pattern of the matrix B* , the tree-pruning algorithm described in the Appendix is 

utilised.  The results indicate that only three sets of a and ß are acceptable.  Subsequently 

we utilise the factorisation method which is now available to estimate each acceptable ß.  

After this, we then estimate each a in the VECM framework. HQC is again utilised to 

finally select the optimal zero-non-zero patterns of a and ß as presented in Table 1. 

 

Despite the relatively small sample size, the results are generally consistent with economic 

intuition and prior evidence. The causality identified in the selected ZNZ patterned VECM 

confirms that M3 is an independent source of financial and economic disturbance, and an 

indirect causality exists from M3 through CPIAUS to AOI. This result supports the impact 

                                                                 
6 For simplicity, and to keep the paper to a reasonable size, the relevant test results are not presented, but 
can be supplied to readers upon request. 
 
7 The results are obtained using GLS estimation on a SUN 7800 running Unix.  
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that money supply has on stock prices through inflationary pressures. Among CPIAUS, M3 

and AOI, two cointegrating vectors are found. The first selected cointegrating vector 

supports that ∆log(AOI) is stationary. The second selected coin tegrating vector confirms 

that log(CPIAUS), log(AOI) and ∆log(AOI)  are cointegrated with log(M3). This indicates 

that both log(CPIAUS) and log(M3) are CI(2,1) processes, not CI(2,2) processes as 

described in Engle and Granger (1987). The positive sign between log(M3) and 

log(CPIAUS) and the negative sign between log(M3) and log(AOI) is consistent with the 

hypothesis discussed above that increases in the money supply leading to an increase in 

inflation thereby exhibiting a negative effect on the stock marke t. 

 

4.2 Purchasing Power Parity  

The second application concerns testing of purchasing power parity (PPP) using the 

bilateral exchange rate between the Australian and the US dollar. Formally the PPP 

condition can be expressed as ,P/PE *
ttt =  where tE  denotes units of domestic currency 

per unit of foreign currency, tP  domestic price level and *
tP  foreign price level. 

 

Recently the theory of cointegration has been utilised to test for PPP in an I(1) system. 

Following Engle and Granger (1987), )Eln( t and )P/Pln( *
tt  are characterised as 

integrated of order 1. If there is a long-term cointegrating relationship between them, 

where t
'*

ttt21t ))P/Pln(),E)(ln(,(X ε=ββ=β′  with tε  as stationary, then it can be 

concluded that in the I(1) system the necessary condition of the PPP hypothesis is 

acceptable in the long-term. If )1,1( −=β′ , then both sufficient and necessary conditions 

of PPP are acceptable [see Corbae and Ouliaris (1990) and Oh (1996)]. Dutt and Ghosh 

(1995) adopt the Phillips-Hansen Fully Modified Ordinary Least Squares procedure to 

regress ln(Et) against ln(Pt/Pt*). The Phillips-Hansen procedure corrects for both 

endogeneity in the data and asymptotic bias in the coefficient estimates. The Phillips and 

Ouliaris (1990) test is then applied to determine the order of integration of the residuals 

for the necessary condition. 
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Following early work on PPP relationships such as Gailliott (1971), cointegration theory 

has been used in recent years to test for PPP. Fisher and Park (1991) have tested bilateral 

exchange rates for the currencies of 10 major industrial economies and found support for 

the necessary condition of PPP in the exchange-rate behaviour of many of them. Conejo 

and Shields (1993) test for PPP in Latin American exchange rates and find that the 

necessary condition of PPP holds for Brazil and Mexico.  

 

Typically, the ratio ln(P/ P*) is treated as one variable, which does not necessarily have the 

same integration order as lnP and lnP* [see Corbae and Ouliaris (1990) and Oh (1996)]. 

However, the three variables, (lnE, lnP and lnP*), in one model do not necessarily result in 

the same order of integration of each variable. For instance, lnE is well-known to be I(1) , 

but both lnP and lnP* are often found to be I(2). These results imply a need for an I(2) 

model, rather than I(1).  

 

For illustration, the quarterly seasonally-adjusted consumer price indices for Australia 

(CPIAUS) and the United States (CPIUS), and the exchange rates (EXCH) per US dollar 

from March 1972 through December 1998 are used. The data are obtained from 

DataStream™. 8 The y vector comprises log(CPIAUS), log(CPIUS), as well as log(EXCH), 

measured as the values of Australian dollars in US dollars. The unit root tests indicate 

that both log(CPIAUS) and log(CPIUS) are I(2) while log(EXCH) is I(1). The results 

identified by HQC are presented in Table 2. 

 

The selected pattern of the cointegrating vector demonstrates some interesting findings. The 

first selected cointegrating vector indicates that ∆log(EXCH) is stationary. The second 

selected cointegrating vector confirms that both log(CPIAUS) and log(CPIUS) are 

cointegrated with log(EXCH). The same sign occurring in log(EXCH) and log(CPIAUS), 

as shown in Table 2, indicates that, ceteris paribus, an increase in CPIAUS leads to an 

increase in an appreciation in the US dollar, and the opposite sign occurring in 

log(EXCH) and log(CPIUS) indicates that, ceteris paribus, an increase in CPIUS leads to a 

                                                                 
8 The calculation of the CPI in the USA changed after 1 January 1999, hence the fourth quarter of 1998 is 

chosen as the end period.  
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depreciation in the US dollar. The presence of the long-term cointegrating relationships 

is consistent with PPP holding within the I(2) system and across the Australian and US 

exchange market. 

 

Since a sophisticated lag structure is determined for the VAR part of the selected VECM, 

this VECM is useful in explaining the short -term dynamics between the nominal 

exchange rate, domestic and foreign price levels. The causal relations detected by the 

optimal VECM show an indirect causality from CPIUS through CPIAUS to the exchange rate. 

This in turn offers some insight into the short-term deviations from PPP which have been 

observed despite PPP holding in the long-run [see Abuaf and Jorion (1990)]. 

 

5.  CONCLUSIONS 

The use of cointegration to examine relationships among financial variables is common. 

However, current techniques do not explicitly allow for restrictions of zero entries 

whereas applications of VECM models to financial market data have revealed that zero 

entries are indeed possible. In such cases, the use of standard VECM models may lead to 

incorrect inferences. In this paper we have developed an effective and efficient algorithm 

to select the optimal ZNZ patterned cointegrating and loading vectors in a subset VECM 

with zero entries for an I(2) system. Many financ ial series are of order I(2) and hence the 

procedure developed in the paper has substantial applicability.  

 

Two case studies are analysed to demonstrate the usefulness of this algorithm. The first 

case study deals with the inter-relationships between the stock market, money supply and 

inflation and the results are generally consistent with both theory and prior evidence. In 

the second case study, we examine PPP and confirm support for the necessary condition of 

the PPP hypothesis for the bilateral exchange rate between the Australian and US dollar. 

These case studies are not complete in any sense and as detailed studies they represent 

major pieces of research in their own right. Even so, they demonstrate that the proposed 

algorithm is effective and leads to an efficient analysis of the cointegrating relationships 

for an I(2) system. 
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APPENDIX: TREE-PRUNING ALGORITHM 

The tree-pruning algorithm presented here provides us with a means of finding all 

acceptable patterns for a and ß without evaluating all possible patterns that arise from the 

relation B* = aß'. This algorithm is an extension of the tree-pruning algorithm proposed in 

Penm et al (1997) for the I(1) system.  

 

To begin this tree-pruning algorithm we first construct an inverse tree for ß, where each 

node of the tree represents a pattern for ß. The ß tree is then traversed in binary order.  

Furthermore there is an a inverse tree embedded in each node of the ß tree, with the nodes 

of this inverse tree representing all possible patterns of a. The a tree is also traversed in 

binary order. This tree traversal method is simple to implement and efficient in terms of 

computing time and storage requirements. 

 

Suitable tree-pruning rules are then set up in the algorithm for restricting the search to the 

acceptable patterns of a and ß only. Since these rules avoid searching along unfavourable 

branches, a complete search through all possible patterns of a and ß is not required. Thus a 

considerable saving of computation time and storage can be achieved. After this tree-

pruning algorithm is conducted, all acceptable possible patterns of a and ß will be found. 

 

The procedure for constructing inverse trees consists of two stages as follows. 

  

A. A t-entry inverse tree for ß 

 

The first step is to decide the size of an inverse tree for ß. As noted in Section 3, ap, ßp and 

Bp denote a ZNZ pattern of a, ß and B* respectively. For instance, when a = 










 0  0  0.2 

 0.1  0  0 
, then ap can be expressed as 









 0  0  1 

 1  0  0 
, where 1 represents a non-

zero entry and 0 a zero entry. Analogously both ßp and Bp can be constructed.  

 

Assuming that the v-th entry of ßp is zero and the other entries are non-zero, we test the 

matrix apßp'(v).  If for every ap there exists a zero entry of apßp'(v), but the corresponding 
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entry of Bp is non-zero, then this represents a contradiction.  This means that the v-th entry 

of ßp must be set to non-zero.  On the other hand if the corresponding entry of Bp is zero, the 

v-th entry of ßp is undetermined. 

 

If there are t undetermined entries in ßp after testing all k entries of ßp, then a t-entry inverse 

tree for ß needs to be constructed. 

 

The root of the tree represents a pattern with all t undetermined entries. The n-th generation, 

n=1, 2, ..., t-1, is taken by interior nodes, of which there are Ct
n nodes in the n-th generation.  

Those nodes represent the possible ßp patterns in which the t entries have n zero entries. 

 

To move from one generation to the next we make use of the rule that the a-th offspring in 

generation n has a-1 offspring in generation n+1 (the next generation down the tree).  In 

setting up the second and later generations, the ordering of the nodes from left to right is 

controlled by natural ordering.  For instance in the 4-entry case we would have in the 

second generation the 2 zero entry subsets, i.e. 12, 13, 14, 23, 24, 34.  Therefore, a node 

describes a pattern in terms of the zero entries, as indicated in Figure A.1. 

 

Figure A.1 A four variable inverse tree 

Root Null 

  

 1 2 3 4 

 

 12 13 23 14 24  34 

 

 123 124 134 234 

 

 1234 
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It is noted that the amount of both computation time and storage increases exponentially as t 

becomes larger. We therefore propose the following pruning principles to avoid travelling 

along unfavourable branches during the search. 

 

Pruning principles 

 

After the inverse tree is constructed we start with the pruning. This is undertaken using the 

following criteria: 

 

Let S be a set of zero entries of ßp and U a superset of S.  

 

1) If ßp'(S) has one or more zero rows, the node representing S or U can be pruned because 

both the ranks of ß'(S) and ß'(U) are not full, and they need to be.  

 

2) If the nonzero entries of a row of  ßp' correspond to either of the following conditions, 

then the node associated with ßp can be ignored. 

 

 a) only one I(2) variable 

 b)  no I(2) variable and only one I(1) variable. 

 

3) If there are r cointegrating vectors in the system, but only N components of y(t) are 

involved in these cointegrating relationships (N ≤  r), then the node associated with ßp can be 

ignored.  For instance, if  

,
00
00

 = 
43

21








ββ
ββ

β′  

       

then this means that the first two components of y(t) are cointegrated by two cointegrating 

vectors.  This contradicts cointegration theory. 

     

4) If a ßp is examined, then any node represented by Pßp, where P is a rxr row permutation 

matrix, can be ignored.  This is because both Pßp and ßp represent the same cointegrating 
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relation.  For instance, consider 















=β′

001000
000010
000101

p . In this example there are 3! ßp 

patterns  representing the same cointegrating relation. 

 

5) For a given ßp(S) if there exists a non-zero entry of Bp, but  the corresponding entry of  

apßp'(S) is zero for all possible ap, then this ßp(S) is not acceptable. The node representing 

ßp(S) can be pruned and so can the node representing ßp(U).  

 

(B) An m-entry inverse tree for a 

 

In the second step we decide the size of the inverse tree for a using the algorithm similar to 

that for ß.  For a given ßp we test the matrix a p(k1)ßp', where the k1-th entry of ap is zero and 

the other entries are non-zero. If there exists a zero entry in the matrix ap(k1)ßp', but the 

corresponding entry of Bp is non-zero, then this represents a contradiction. This means that 

the k1-th entry of ap must be a non-zero entry.  Thus this k1-th entry of ap is determined and 

must be set to non-zero.  On the other hand if the corresponding entry of Bp is also zero, the 

k1-th entry of ap remains undetermined. This can be demonstrated by the following 

example.  Consider 

 

,
11
10

 =   ,
1111
1111

 = B pp 







α








 and ,

1110
1101

 = p 







β′   

 

where k1=(1,1).  The (1,1)-th entry of apßp' in this example is zero, but the (1,1)-th entry of 

Bp is in fact non-zero. Therefore the (1,1)-th entry of ap must be set to non-zero. 

 

Assuming that there are m undetermined entries of ap after testing all k entries of ap, an m-

entry inverse tree for ap needs to be constructed.  The procedure for constructing the inverse 

tree for a is similar to that for ß. 
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Pruning principles 
 

The pruning is performed using the following criteria 9: 

 

Let E be a set of zero entries of ap and denote the ap(E) node as the node representing the 

ap(E) pattern. Also let R be a superset of E and the ap(R) node represent the ap(R) pattern. 

 

1) If there exists a zero entry of ap(E)ßp' but the corresponding entry of Bp is non-zero, then 

the node representing ap(E) can be pruned and so can the node representing ap(R).  For 

instance, consider 

 

,
1100
1111

=  ,
11
10

 = (E) pp 







β′








α  and Bp = 








1110
1110

. 

 

In this example, the (1,2)-th entry of ap(E)ßp' is zero, but the (1,2)-th entry of Bp is non-zero. 

This represents a contradiction and the  (E)pα node can be pruned. Any ap(R) whose zero 

entry set is a superset of E will also fail the test, and, therefore these ap(R) nodes can also be 

pruned. 

 

2) If ap(E) has one or more zero columns then these  (E)pα and ap(R)  nodes can be pruned.  

This is because the rank of the loading vectors a(E) is not full, and neither is a(R). 

 

3) If an entry of ap(E)ßp' is non-zero but the corresponding entry of Bp is zero, then this 

entry of ap(E)ßp' has to be restricted to zero.  If either of the following two conditions is met, 

the  (E)pα node can be ignored: 

 

                                                                 
9 The amount of computation time and storage increases exponentially with m. The tree-pruning principles are 

required to reduce these amounts by avoiding travelling along unfavourable branches. 
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(a) If the number of non-zero entries of ap(E) involved is less than the number of 

restrictions then there will be no acceptable solution for a(E).  For instance, 

consider  

 

,
0

=  ,
0

 = (E)
232221

14131211

2221

11








βββ

ββββ
β′








αα

α
α  and Bp = 








1000
1110

. 

 

In this example we have the following three restrictions: 

,0k222k121 =βα+βα     k=1,2,3. 

Although β′ can be estimated by using the estimation method proposed in 

Section 3, there will be no solution for 21α  and 22α  because we have only tow 

unknowns, 21α  and 22α . 

 

(b)  If any non-zero entry of ap(E) has to be zero to satisfy restrictions then the given 

ap(E) is unacceptable. For instance, consider 

 

,
00
000

=  ,
0

 = (E)
2321

12

2221

11








ββ

β
β′








αα

α
α  and Bp = 








0110
0010

. 

 

Now we have the restriction: 

.02122 =βα  

This indicates that 22α =0. Thus ap(E) is unacceptable. 

 

4) If the (i,j)-th entry of ap(E) is the only non-zero entry of the ith row, then the zero-non-

zero pattern of the jth row of ßp' should be identical to that of the ith row of Bp.  If this is not 

true then the  (E)pα node can be ignored. 

 

5) If the (i,j) -th entry of ßp' is the only non-zero entry of the jth column, then the zero-non-

zero pattern of the ith column of ap(E) should be identical to that of the jth column of Bp.  If 

this is not the case then the ap(E) node can be ignored.  
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Table 1. The VECM for the Relationship, Linking Money Supply, Inflation and 
Stock Market Indicator for Australia Selected by HQC Using the GLS Procedure  
Variables: y t

1  = log(M3), y t
2  = log(CPI AUS), y t

3  = log(AOI).  
Sample Period: 1981.II to 1999.IV 
 
The VECM: 
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Long-term Cointegrating Relationship Identified: 

1) ∆log(AOI) is stationary   

2) log(M3) = 8.433log(CPIAUS) – 2.278log(AOI) + 4.789∆log(AOI)  

Short-term Causalitya and Long-term Cointegration Pattern Recognised: 

CPI AUS 

 

 

M3                  AOI 

The short-term causality pattern is detected from the vector autoregressive part of the VECM  
T-values in parentheses. ∆ denotes first difference 
a) x Granger-causes y: (Notation : x              y) 
     x and y are cointegrated in the long-term:   (Notation : x             y). 
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Table 2. The VECM for the Relationship, Linking Exchange Rates and Consumer 
Price Indices, between Australia and the USA Selected by HQC Using the GLS 
Procedure  
 
Variables: y t

1  = log(CPI AUS),   y t
2  = log(CPI US),   y t

3  = log(EXCH AUS/US)    
Sample Period: 1972.I  to 1998.IV 
 
The VECM: 
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Long-term Cointegrating Relationship Identified: 

1) A stationary ∆log(EXCH AUS/US) 

2) log(EXCH AUS/US) = 0.210log(CPIAUS) - 0.533log(CPIUS) 

Short-term Causalitya and Long-term Cointegration Pattern Recognised: 
CPIAUS 

 

 

 
CPI US                   EXCH 

 
b) The short -term causality pattern is detected from the vector autoregressive part of the VECM  
c) T-values in parentheses. ∆ denotes first difference 
d) x Granger-causes y: (Notation : x              y) 
     x and y are cointegrated in the long-term:   (Notation : x           y). 


