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Abstract

Recombination within the bulk and at the surfaces of crystalline silicon has been

investigated in this thesis.  Special attention has been paid to the surface passivation achievable

with plasma enhanced chemical vapour deposited (PECVD) silicon nitride (SiN) films due to

their potential for widespread use in silicon solar cells. The passivation obtained with thermally

grown silicon oxide (SiO2) layers has also been extensively investigated for comparison.

Injection-level dependent lifetime measurements have been used throughout this thesis to

quantify the different recombination rates in silicon. New techniques for interpreting the

effective lifetime in terms of device characteristics have been introduced, based on the physical

concept of a net photogeneration rate. The converse relationships for determining the effective

lifetime from measurements of the open-circuit voltage (Voc) under arbitrary illumination have

also been introduced, thus establishing the equivalency of the photoconductance and voltage

techniques, both quasi-static and transient, by allowing similar possibilities for all of them.

The rate of intrinsic recombination in silicon is of fundamental importance. It has been

investigated as a function of injection level for both n-type and p-type silicon, for dopant

densities up to ~5x1016cm-3. Record high effective lifetimes, up to 32ms for high resistivity

silicon, have been measured. Importantly, the wafers where commercially sourced and had

undergone significant high temperature processing. A new, general parameterisation has been

proposed for the rate of band-to-band Auger recombination in crystalline silicon, which

accurately fits the experimental lifetime data for arbitrary injection level and arbitrary dopant

density. The limiting efficiency of crystalline silicon solar cells has been re-evaluated using this

new parameterisation, with the effects of photon recycling included.

Surface recombination processes in silicon solar cells are becoming progressively more

important as industry drives towards thinner substrates and higher cell efficiencies. The surface

recombination properties of well-passivating SiN films on p-type and n-type silicon have been

comprehensively studied, with Seff values as low as 1cm/s being unambiguously determined.

The well-passivating SiN films optimised in this thesis are unique in that they are stoichiometric

in composition, rather than being silicon rich, a property which is attributed to the use of dilute

silane as a process gas. A simple physical model, based on recombination at the Si/SiN interface

being determined by a high fixed charge density within the SiN film (even under illumination),

has been proposed to explain the injection-level dependent Seff for a variety of differently doped

wafers. The passivation obtained with the optimised SiN films has been compared to that

obtained with high temperature thermal oxides (FGA and alnealed) and the limits imposed by

surface recombination on the efficiency of SiN passivated solar cells investigated. It is shown

that the optimised SiN films show little absorption of UV photons from the solar spectrum and

can be easily patterned by photolithography and wet chemical etching.



The recombination properties of n+ and p+ emitters passivated with optimised SiN films

and thermal SiO2 have been extensively studied over a large range of emitter sheet resistances.

Both planar and random pyramid textured surfaces were studied for n+ emitters, where the

optimised SiN films were again found to be stoichiometric in composition. The optimised SiN

films provided good passivation of the heavily doped n+-Si/SiN interface, with the surface

recombination velocity increasing from 1400cm/s to 25000cm/s as the surface concentration of

electrically active phosphorus atoms increased from 7.5x1018cm-3 to 1.8x1020cm-3. The

optimised SiN films also provided reasonable passivation of industrial n+ emitters formed in a

belt-line furnace. It was found that the surface recombination properties of SiN passivated p+

emitters was poor and was worst for sheet resistances of ~150Ω/ . The hypothesis that

recombination at the Si/SiN interface is determined by a high fixed charge density within the

SiN films was extended to explain this dependence on sheet resistance. The efficiency potential

of SiN passivated n+p cells has been investigated, with a sheet resistance of 80-100Ω/  and a

base resistivity of 1-2Ωcm found to be optimal. Open-circuit voltages of 670-680mV and

efficiencies up to ~20% and ~23% appear possible for SiN passivated planar and textured cells

respectively. The recombination properties measured for emitters passivated with SiO2, both n+

and p+, were consistent with other studies and found to be superior to those obtained with SiN

passivation.

Stoichiometric SiN films were used to passivate the front and rear surfaces of various

solar cell structures. Simplified PERC cells fabricated on 0.3Ωcm p-type silicon, with either a

planar or random pyramid textured front surface, produced high Voc’s of 665-670mV and

conversion efficiencies up to 19.7%, which are amongst the highest obtained for SiN passivated

solar cells. Bifacial solar cells fabricated on planar, high resistivity n-type substrates (20Ωcm)

demonstrated Voc’s up to 675mV, the highest ever reported for an all-SiN passivated cell, and

excellent bifaciality factors. Planar PERC cells fabricated on gettered 0.2Ωcm multicrystalline

silicon have also demonstrated very high Voc’s of 655-659mV and conversion efficiencies up to

17.3% using a single layer anti-reflection coating. Short-wavelength internal quantum efficiency

measurements confirmed the excellent passivation achieved with the optimised stoichiometric

SiN films on n+ emitters, while long-wavelength measurements show that there is a loss of

short-circuit current at the rear surface of SiN passivated p-type cells. The latter loss is

attributed to parasitic shunting, which arises from an inversion layer at the rear surface due to

the high fixed charge (positive) density in the SiN layers. It has been demonstrated that that a

simple way to reduce the impact of the parasitic shunt is to etch away some of the silicon from

the rear contact dots. An alternative is to have locally diffused p+ regions under the rear

contacts, and a novel method to form a rear structure consisting of a local Al-BSF with SiN

passivation elsewhere, without using photolithography, has been demonstrated.
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CHAPTER 1

Introduction

olar cells convert sunlight directly into electricity using the photovoltaic effect. They are a

promising technology for satisfying current and future energy demands in a sustainable and

environmentally friendly way. The first commercial use of solar cells was in space applications

for powering satellites in the late 1950’s. Today, the terrestrial market for solar cells greatly

exceeds that for space applications, with a variety of end uses including grid connected systems,

consumer products and for remote area power supply. This rapidly expanding market calls for

advanced technologies and devices capable of yielding a higher performance at lower cost.

1.1 Market Overview

The market for solar cells has benefited significantly from government based subsidy

programs over recent years.  Figure 1.1 shows the annual worldwide shipments of photovoltaic

(PV) modules over the last 25 years [1, 2]. Worldwide production at the end of 2000 was 288

MW of which 287.3 MW was for terrestrial applications. In the period from 1977-1983 the

market was operating from a very small base and grew at a very high rate. The following decade

was characterised by a relatively constant growth rate of around 12%pa. In the last four years,
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 the above growth rates, projections of the future market size for PV modules

ure 1.2 for the period up to 2010. A growth rate of 25%pa is included, as it has

rically, although some experts are now considering it to be a conservative

owth over the next two decades [3]. It can been seen that the landmark

a market size exceeding 1GW/Yr is expected to occur during the period 2005-

ner [4]. Indeed, market growth is expected to be at the higher rates over at least

rs on the basis of capacity expansions already announced [5, 6].

determinant of increased market growth will be reduced costs. The cost of

cell modules is presently US$3.5-6/Wp [7], resulting in an energy cost of

 depending of the available solar insolation for a grid-connected system [8].
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at the industrial scale include the laser grooved buried grid (LGBG) cells produced by BPSolar

under the Saturn name, HIT cells from Sanyo and OECO cells from ASE.

• Reduced material costs – Green has argued that as a cell technology matures, the constituent

materials dominate the costs [10]. This is particularly true for silicon wafer based technologies

where the cost of the starting wafer is currently about one half of the final module cost. Thin

film and silicon based ribbon technologies (sometimes referred to as second generation

technologies) avoid the cost of the silicon ingot and associated wafering and therefore offer

potential savings. Indeed, the study of Bruton et al. [9] found that a ribbon based process would

offer the lowest cost/Wp for this reason. Extrapolating, the cost assessment of Bruton et al. for

modules based on thin ribbon substrates (<100µm) suggests that module costs close to

US$0.50/Wp are feasible.

A transition in the PV market from silicon wafer based technologies to thin film

approaches has been predicted since the mid 1980’s [11]. Thin film technologies currently at the

pilot plant or industrial scale include cadmium telluride (CdTe), copper indium diselenide

(CIS), amorphous silicon (a-Si), thin-film polycrystalline silicon (eg Pacific Power [11]), thin-

film crystalline silicon (eg Astropower [12]), and silicon based ribbon technologies such as the

edge-defined film-fed growth (EFG) and dendritic web. It would appear however that bulk

crystalline silicon (single-crystal and multicrystalline) has actually increased its market share

during the last decade. Figure 1.3 shows the market share by technology for both 1990 [13] and

2000 [2]. Over this period the total market size increased by a factor of more than six.

Significantly, the market share for bulk crystalline silicon has actually increased from 67.9% to

85.4%, contrary to the perceived thin film revolution. While shipments of a-Si cells have grown
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in absolute terms, the relative market share has reduced from 31.6% to 9.6%. The major

benefactor of the reduced market share for a-Si has been multicrystalline silicon, which is now

the dominant technology with a share of 48.1%. Ribbon and/or sheet silicon technologies have

developed a reasonable market share of 4.3%. Thin film CdTe and CIS cells also now have a

small market share (<0.5%). However, doubts are rising over the potential for these non-silicon

based technologies to significantly displace silicon in large volumes due to toxicity (mainly for

cadmium) and resource depletion issues (telluride and indium are relatively rare elements),

problems that are not associated with silicon [14].

It appears there has been expanding diversity in cell fabrication technologies over recent

years. Even for cells made from single crystal Czochralski (CZ) silicon wafers there are a

number of approaches from simple screen-printed cells to more complicated LGBG and HIT

cells. What does seem clear is that bulk crystalline silicon technologies are strongly placed to

dominate the industry for at least the next decade and quite possible longer. Reductions in cost

will require that progressively thinner wafers of higher bulk quality be used in combination with

higher efficiency cell structures.

 In the longer-term thin film cells are likely to dominate. Exactly what the nature of the

thin film technology will be is unclear, particularly if a large scale PV industry based on silicon

wafers with large amounts of invested capital becomes established, as would seem likely. There

is a natural transition from thin wafer based silicon substrates to the various ribbon and sheet

based technologies, or possibly other processes currently at the laboratory scale, such as the
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epitaxial growth of thin crystalline silicon films [15, 16]. There are thus significant prospects for

crystalline silicon to remain dominant, even in a thin film era.

A third generation of high efficiency, thin film PV technology is now being proposed

[10]. This approach aims to overcome the fundamental efficiency limits associated with

crystalline silicon solar cells due to thermalisation, transmission and intrinsic recombination,

which account for more than 70% of the energy incident on a cell. Through band-gap

engineering, it aims to achieve energy efficiencies much greater than the 15-20% currently

obtained. Third generation PV is based on novel device structures such as tandem cells, hot

carrier cells and multi-band cells, many of which are still at an embryonic stage of development

[10].

1.2 Thesis Motivation

From the above overview, the short to medium term future for industrial solar cells

appears to be based on single crystal (CZ) and multicrystalline silicon wafers. For costs reasons

the substrates will have to be progressively thinner over time while simultaneously maintaining,

but preferably increasing cell efficiency. Surface recombination losses thus become more

significant and can indeed be the dominant mode of recombination losses for a high quality

substrate, where the whole cell volume is electronically active. The minimisation of surface

recombination losses, known as surface passivation, is a core topic of this thesis.

The current state of the art method for the surface passivation of silicon is thermal

oxidation at high temperature (900°C-1100°C), and as such, silicon dioxide (SiO2) passivation

layers have been used for reference throughout this work. An emerging technology that offers

high quality passivation layers at low temperature is plasma enhanced chemical vapour

deposited (PECVD) silicon nitride (SiN) films, and these form the main theme investigated in

this thesis. PECVD SiN films where transferred to the PV field by Hezel and co-workers in the

early 1980’s [17]. Due to the high hydrogen content of the films, they also offer the potential for

bulk passivation, which is of special interest for lower quality starting material such as

multicrystalline and ribbon silicon. Furthermore, their optical properties make them nearly ideal

as a single layer anti-reflection coating for encapsulated solar cells. Therefore, SiN films offer

great potential for increasing the efficiency of industrial crystalline silicon solar cells without

increasing the fabrication cost, as they can simultaneously passivate the surfaces and the bulk as

well as reduce surface reflection.
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The surfaces of solar cells can be physically quite diverse. The surface may simply be the

doped silicon wafer, or it may be diffused to form an emitter region. It can be planar or textured,

and may or may not be contacted with metal. The degree of surface passivation provided by SiN

and SiO2 films has been investigated in this thesis for a variety of these different surface

conditions. Importantly, accurate studies of surface recombination processes rely on accurate

knowledge of the bulk recombination rate and on having simple, yet versatile techniques for

quantifying the recombination rate. Therefore, the limits imposed on bulk recombination due to

intrinsic processes (Auger recombination and radiative recombination) have also been studied,

and new techniques for interpreting the recombination lifetime in terms of device characteristics

have been introduced. Finally, it is important to demonstrate that the separate constituents can

be put together to produce advanced solar cells. Consequently, the SiN films developed in this

thesis where used to fabricate solar cells with high open-circuit voltages and high conversion

efficiencies, thus demonstrating their excellent passivation properties in real devices. From a

broader perspective, the data provided in this thesis for surface, emitter and bulk recombination

in silicon, while useful for modeling silicon solar cells, is also of general interest for silicon

semiconductor device modeling and analysis.

1.3 Thesis Outline

This thesis starts with the development of novel tools to investigate recombination losses

in silicon and goes through to a detailed study of recombination in the two major regions that

constitute a solar cell, the base and the emitter. Special attention is paid to their respective

surfaces and an emphasis is placed on the passivation achieved using PECVD SiN technologies.

Finally, the separately optimised elements are brought together to fabricate advanced solar cell

devices based on the application of PECVD SiN.

Chapter 2 discusses the basic recombination mechanisms that occur within crystalline

silicon. The recombination components within specific test structures of interest for this thesis

are analysed and the photoconductance based methods used throughout this thesis for measuring

the carrier lifetimes are described. New techniques for interpreting the effective lifetime in

terms of device characteristics are introduced. Methods for determining the effective lifetime by

measuring the open-circuit voltage of a device under arbitrary illumination are also described,

and the equivalency of the photoconductance and voltage techniques, both quasi-static and

transient, demonstrated.
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Chapter 3 investigates the limits imposed on the bulk lifetime of crystalline silicon due

to intrinsic recombination processes. The injection-level dependence and doping dependence is

investigated for both n-type and p-type silicon of various doping densities, allowing a new

general parameterisation for the intrinsic recombination rate in silicon of arbitrary injection

level and dopant density to be developed. This new parameterisation is then used to re-evaluate

the limiting efficiency of crystalline silicon solar cells as a function of cell thickness, dopant

density and dopant type.

Chapter 4 presents a systematic study of the surface recombination properties of PECVD

SiN films, fabricated using dilute silane gas, and thermal SiO2 layers (FGA and alnealed) on n-

type and p-type silicon wafers. The effects of the PECVD deposition parameters on the surface

recombination velocity are investigated, and it is found that the SiN films optimised in this

thesis are unique because they are stoichiometric in composition, where it was previously

thought that well-passivating SiN films had to be silicon rich. The surface recombination

velocity at the Si/SiN interface and at the Si/SiO2 interface is reported as a function of injection

level and dopant density. The limits imposed on the efficiency of SiN passivated solar cells due

to surface recombination process is then determined. Finally, a characterisation of relevant non-

electrical properties of the optimised stoichiometric SiN film is presented, where it is

demonstrated that apart from their excellent surface passivation, they also show no absorption in

the UV portion of the solar spectrum and that they can be easily patterned using

photolithography and wet chemical etching

Chapter 5 investigates the recombination of n+ and p+ emitters passivated with optimised

SiN films and thermal SiO2 layers over a large range of sheet resistances. The role of the

PECVD deposition parameters is investigated for passivating n+ emitters, and again, the

optimised SiN films are shown to be stoichiometric in composition. Device simulation is used

to determine the surface recombination velocity as a function of the surface phosphorus

concentration at the heavily doped n+-Si surface when passivated with SiN or SiO2. It is shown

that the recombination properties of SiN passivated p+ emitters is relatively poor compared to

SiO2 passivation and is worst for sheet resistances of ~150Ω/ . The efficiency potential of SiN

passivated n+p solar cells is also investigated.

Chapter 6 reports on the performance of experimental silicon solar cells passivated with

stoichiometric SiN films. A variety of cell designs have been investigated, incorporating n-type

and p-type float-zone silicon and p-type multicrystalline silicon. High open-circuit voltages are

demonstrated for the different substrate types (up to 675mV for float-zone cells and up to

659mV for multicrystalline cells). The performance of large area cells, where the n+ emitter was
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formed in an industrial belt-line furnace, is also discussed. Finally, the research of this thesis is

briefly summarized in Chapter 7 and areas for future work are outlined.
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