Modelling Climate – Surface Hydrology Interactions in Data Sparse Areas

Jason Peter Evans

September, 2000

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University The IHACRES rainfall-runoff model, which formed the basis of the rainfall-runoff model developed within, was originally developed by Prof. Anthony Jakeman. This work has not previously been submitted for a degree or diploma in any institution of higher education.

Some of the work presented in Chapter 4 has previously been published in Evans and Jakeman (1997, 1998); some of the work from Chapter 8 has been published in Evans et al. (1999); and some of the work from Chapter 9 has been published in Evans et al. (2000). Any contributions made by co-authors are indicated in the text.

Jason Evans

Sep. 27, 2000

Acknowledgments

Firstly, I would like to thank Tony Jakeman for his invaluable guidance, supervision and general support throughout my PhD. Thanks also to Bob Oglesby for his similarly invaluable guidance and support, even at long distance. I am also grateful to John Taylor for his guidance early in the course and to Sergei Schreider for many valuable discussions throughout my program of study.

The National Center for Atmospheric Research (NCAR), USA, also receives my gratitude for adopting me for several weeks. Special thanks to Dr. Christine Shields who taught me to use the regional climate model, RegCM2, also to Dr. Bill Lapenta for his assistance by performing the MM5 model runs. I am also grateful to Sue Cuddy and Chengchao Xu for providing the streamflow data used in the Perth study. I would also like to thank Neil Viney for provision of the stochastic weather generator scenarios and patiently answering my many questions.

I also extend my thanks to the staff and students of the Centre for Resource and Environmental Studies. It has been a lot of fun working here.

Thanks to everyone who made the PhD process so much fun, especially: Kus, John, Age, Jase, Jen, Steve, Eug, Matt, Jen, Andre, Fayen, Phil, Jon, Heidi, Su, Anthea, Big D, Eamonn, Mike (Mick?), Jase and Terese and all those I met in my travels.

My deepest and most heartfelt thanks go to my parents and family, who have always encouraged me to be the best that I can be.

Abstract

The interaction between climate and land-surface hydrology is extremely important in relation to long term water resource planning. This is especially so in the presence of global warming and massive land use change, issues which seem likely to have a disproportionate impact on developing countries. This thesis develops tools aimed at the study and prediction of climate effects on land-surface hydrology (in particular streamflow), which require a minimum amount of site specific data. This minimum data requirement allows studies to be performed in areas that are data sparse, such as the developing world.

A simple lumped dynamics-encapsulating conceptual rainfall-runoff model, which explicitly calculates the evaporative feedback to the atmosphere, was developed. It uses the linear streamflow routing module of the rainfall-runoff model IHACRES, with a new non-linear loss module based on the Catchment Moisture Deficit accounting scheme, and is referred to as CMD-IHACRES. In this model, evaporation can be calculated using a number of techniques depending on the data available, as a minimum, one to two years of precipitation, temperature and streamflow data are required. The model was tested on catchments covering a large range of hydroclimatologies and shown to estimate streamflow well. When tested against evaporation data the simplest technique was found to capture the medium to long term average well but had difficulty reproducing the short-term variations. A comparison of the performance of three limited area climate models (MM5/BATS, MM5/SHEELS and RegCM2) was conducted in order to quantify their ability to reproduce near surface variables. Components of the energy and water balance over the land surface display considerable variation among the models, with no model performing consistently better than the other two. However, several conclusions can be made. The MM5 longwave radiation scheme performed worse than the scheme implemented in RegCM2. Estimates of runoff displayed the largest variations and differed from observations by as much as 100%. The climate models exhibited greater variance than the observations for almost all the energy and water related fluxes investigated.

An investigation into improving these streamflow predictions by utilizing CMD-IHACRES was conducted. Using CMD-IHACRES in an "offline" mode greatly improved the streamflow estimates while the simplest evaporation technique reproduced the evaporative time series to an accuracy comparable to that obtained from the limited area models alone. The ability to conduct a climate change impact study using CMD-IHACRES and a stochastic weather generator is also demonstrated. These results warrant further investigation into incorporating the rainfall-runoff model CMD-IHACRES into a limited area climate model in a fully coupled "online" approach.

Table of Contents

Acknowledgements	V
Abstract	vii
List of Tables	xvii
List of Figures	xix
List of Symbols	xxvii
List of Acronyms	xxxvii

Introd	<i>uction</i> 1
1.1	Rationale2
1.2	Background4
1.3	Chapter Outline7

Part I: Streamflow Modelling	9
------------------------------	---

Rainfall-Ru	noff Modelling Review	11
2.1 What	t physical processes are involved in convertin	g
rain	Ifall to runoff?	12
2.1.1	Non-streamflow losses from a catchment	13
2.1.2	Movement of water through a catchment	14
2.1.3	Snow processes	14
2.1.4	Spatial and temporal heterogeneity	14
2.2 Mode	elling approaches	15
2.2.1	Metric (Empirical) Models	16
2.2.2	Conceptual Models	16
2.2.3	Physically-based Models	17
2.2.4	Lumped vs Distributed	18
2.3 Previ	ious reviews and model comparisons	18
2.4 Scale	e Issues in Hydrological Modelling	22
2.5 Regio	onalisation	25
2.6 Selec	tion of a rainfall-runoff model	27
2.7 The I	HACRES rainfall-runoff model	29

Evapotranspiration: Modelling and Measurement	33
3.1 Introduction	34
3.2 Modelling evapotranspiration	35
3.2.1 The water budget approach	35
3.2.2 The energy budget approach	36
3.2.3 The aerodynamic approach	37
3.2.4 Methods for potential evapotranspiration	38

3.2.4.2 Equilibrium evaporation413.2.5 Methods for Actual Evapotranspiration433.2.6 Empirical approaches493.2.7 Comparisons of ET formulations513.3 Measuring Evapotranspiration52	3.2.4.1	The Penman combination equation	
 3.2.5 Methods for Actual Evapotranspiration	3.2.4.2	Equilibrium evaporation	41
3.2.6 Empirical approaches	3.2.5 Met	hods for Actual Evapotranspiration	43
3.2.7 Comparisons of ET formulations51 3.3 Measuring Evapotranspiration52	3.2.6 Em	pirical approaches	49
3.3 Measuring Evapotranspiration52	3.2.7 Con	nparisons of ET formulations	51
	3.3 Measurin	g Evapotranspiration	52

Development of CMD-IHACRES	55
4.1 Model Description	56
4.1.1 Performance assessment criteria and calibration	
procedure	61
4.2 Testing the ET formulation	62
4.2.1 Site description	63
4.2.2 Application of the ET formulations	64
4.2.3 Results and discussion	65
4.3 Description of catchments	68
4.4 Streamflow modelling results	70
4.5 Discussion and conclusions	74

Part II: Climate Modelling.	79
-----------------------------	----

Review of Climate Models	81
5.1 Introduction	82
5.2 The climate system	84
5.3 Global Climate Models	86
5.3.1 Dynamics in GCMs	87

5.3.2 Physics in GCMs) 1
5.3.3 Other components of a GCM	73
5.3.3.1 Ocean circulation models) 3
5.3.3.2 Cryosphere models) 3
5.3.3.3 Land surface/Biosphere models	₹4
5.3.3.4 Atmospheric chemistry models	? 5
5.3.4 Uncertainties in GCM model structure	₹5
5.4 Limited area models	7 7
5.4.1 Description of the MM5 Limited Area Model	? 9
5.4.1.1 MM5 Model Physics	100
5.4.1.1.1 Atmospheric Radiation1	00
5.4.1.1.2 Precipitation1	03
5.4.1.1.3 Planetary Boundary Layer1	80
5.4.1.2 Land Surface Parameterization	110
5.4.1.2.1 Biosphere-Atmosphere Transfer Scheme (BATS) 1	11
5.4.1.2.2 Simulator for Hydrology and Energy Exchange at the	
Land Surface (SHEELS) 1	23
E 4.2 Description of the RegCM2 Limited Area Model	
5.4.2 Description of the Regeniz Limited Area model	125
5.4.2.1 RegCM2 Model Physics	125 126
5.4.2.1 RegCM2 Model Physics	125 126 26
5.4.2.1 RegCM2 Model Physics	125 1 26 31
5.4.2.1 RegCM2 Model Physics	125 1 26 131 133
5.4.2.1 RegCM2 Model Physics	125 126 131 133 134
5.4.2.1 RegCM2 Model Physics	125 126 131 133 134 135
5.4.2.1 RegCM2 Model Physics	 125 126 131 133 134 135 135
5.4.2 Description of the RegCM2 Limited Area Model 5.4.2.1 RegCM2 Model Physics	125 126 131 133 134 135 135 135
5.4.2 Description of the RegCM2 Limited Area Model	125 126 131 133 134 135 135 135 135
5.4.2 Description of the RegCiviz Limited Area Model	125 126 131 133 135 135 135 135 136
 5.4.2 Description of the RegCivit Limited Area Model	125 126 126 131 133 135 135 135 135 136 137
 5.4.2 Description of the RegCiviz Limited Area Model	125 126 131 133 134 135 135 135 136 137 137
5.4.2 Description of the RegCM2 Limited Area Model 5.4.2.1 RegCM2 Model Physics	 125 126 131 133 135 135 135 136 137 137 138 139
5.4.2 Description of the RegCM2 Limited Area Model 5.4.2.1 RegCM2 Model Physics 5.4.2.1.1 Atmospheric Radiation 5.4.2.1.2 Precipitation 5.4.2.1.3 Planetary boundary layer 5.4.2.2 Land Surface Parameterization 5.4.3 Basic methodology 5.4.3.1 Types of simulation 5.4.3.2 Nesting procedures 5.4.3.3 Initialization 5.4.3.4 Choice of domain size 5.4.4 Limited area model simulations 5.4.5 Issues in regional climate modelling 5.5.1 Validation	 125 126 131 133 134 135 135 136 137 137 138 139 141

5.5.1.2 Intensive field experiment validation14	3
5.5.2 Intercomparison14	15
5.5.2.1 Project to Intercompare Regional Climate	
Simulations (PIRCS)14	6
5.5.2.2 Atmospheric Model Intercomparison Project (AMIP) 14	6
5.5.2.3 Project for Intercomparison of Land Surface	
Parameterization Schemes (PILPS)14	8
5.5.2.4 Other intercomparison studies15	2
5.5.2.5 Conclusions	4

Regional Climate Model Performance Analysis and

Comparison: the Energy Budget	155
6.1 Introduction	156
6.2 Experiment Design	157
6.2.1 LAM setup	157
6.2.2 Observations	158
6.3 Results	159
6.3.1 Net Incident Radiation	159
6.3.1.1 Clear Sky Radiation	159
6.3.1.2 Total Net Incident Radiation	166
6.3.2 Latent Heat	169
6.3.3 Sensible Heat	172
6.3.4 Net Surface Heating	175
6.3.5 Near Surface Temperature and Wind	179
6.3.6 Surface Energy Balance	180
6.4 Conclusions	186

Regional Climate Model Performance Analysis and	
Comparison: the Water Budget	.189

7.1 Introduction	190
7.2 Experiment Design	191
7.3 Results and Discussion	191
7.3.1 Precipitation	191
7.3.1.1 Convective precipitation	191
7.3.1.2 Stable precipitation	195
7.3.1.3 Total precipitation	
7.3.2 Evapotranspiration	201
7.3.3 Runoff	207
7.3.4 Soil Moisture	210
7.3.5 Surface Water Balance	214
7.4 Conclusions	220

Part III: Climate – Surface Hydrology

nteractions

Chapter 8

Improving Streamflow Prediction in Regional Climate

Models	.225
8.1 Introduction	.226
8.1.1 Climate model simulated river runoff studies	.227
8.1.2 Past attempts to combine hydrological and climate	
models	.228
8.2 Experiment design	.229
8.3 Results	.231
8.3.1 CMD-IHACRES calibration	.231
8.3.2 Stand-alone model results	.234
8.3.3 Offline simulation results	.241
8.3.4 Interplay between ET and runoff formulations	.248

8.3.5 Runoff or Effective Rainfall?	251
8.4 Conclusions	253

Hydrological Impacts of Climate Change on Inflows to	
257	
258	
260	
262	
265	
268	
271	
272	
279	
288	

Conclusions	291
10.1 Streamflow Modelling	293
10.2 Climate modelling	295
10.3 Climate - Surface hydrology interactions	297
10.4 Future work	298

References	1
------------	---

List of Tables

• •

. .

~

....

. . .

~

Table 3.1 Definitions of potential evaporation
Table 4.1 Hydrometeorological characteristics of catchments investigated 69
Table 4.2 Calibration results for the three catchments
Table 4.3 Simulation results for the three catchments. 70
Table 5.1 Summary description of the LAMs 89
Table 5.2 Large-scale data sets that can be used to validate surface-related GCM results
Table 5.3 Recent field experiments that collected data suitable for use in the validation of climate model parameterisations
Table 6.1 Means and standard deviations of daily daily net incident radiation over the common observation period; 27 May to 19 September. 167
Table 6.2 Means and standard deviations of daily sensible heat over the common observation period; 27 May to 19 September

Table 6.3 Standard deviations of daily net surface heating over the common
observation period; 27 May to 19 September 177
Table 7.1 Means and standard deviations over the common observation period;
27 May to 19 September
Table 8.1 CMD-IHACRES calibration and validation results 232
Table 8.2 Means and standard deviations of ET over the common observation
period; 27 May to 19 September 238
Table 8.3 Derived values of $\langle \beta \rangle$ (dimensionless) and f_R (dimensionless) for
the observations, CMD-IHACRES and the three LAMs
Table 9.1 Calibration results for the Jamieson River catchment
Table 9.2 Description of catchments used in this study
Table 9.3 Calibration results for the six catchments

List of Figures

Figure 2.1 Scales in hydrology 23
Figure 2.2 Structure of the IHACRES model
Figure 3.1 Sketch illustrating Bouchet's (1963) hypothesis; <i>E</i> and <i>Ep</i>
are plotted versus E/Ep such that $E + Ep$ = constant as given in 3.19. From Brutsaert (1982)
Figure 4.1 Structure of the rainfall-ET-runoff model 58
Figure 4.2 Illustration of the modelled relationship between evapotranspiration (ET) and catchment moisture deficit (CMD) 59
Figure 4.3 Illustration of the modelled relationship between discharge (D) and catchment moisture deficit (CMD)60
Figure 4.4 FIFE site showing approximate location of King's Creek
catchment in the North-West corner(shaded area), ground
measurement stations and the elevation
Figure 4.5 Performance of alternate formulations of ET over FIFE, 1987 66
Figure 4.6 ET predicted by CMD-IHACRES using the modified
temperature approach, when calibrated using: both ET and

streamflow data; streamflow data alone	67
Figure 4.7 Streamflow predicted by CMD-IHACRES using the mod	dified
temperature approach, when calibrated using: streamflow data	alone; both
ET and streamflow data	67
Figure 4.8 a) Simulation model fit for Coweeta watershed 34	
b) Simulation model fit for Coweeta watershed 36	
c) Simulation model fit for Scott Creek	71-
Figure 4.9 Catchment moisture deficit in the Scott Catchment	76
Figure 4.10 Evapotranspiration in the Scott catchment	76
Figure 4.11 Mean monthly precipitation and Evapotranspiration: 19	961 – 1990 78
Figure 5.1 Schematic illustration of the components of the climate s	system. Full
arrows are examples of external processes and dashed arrows	are examples
of internal processes (GARP 1975)	
Figure 5.2 The construction of (a) a cartesian grid GCM and ; (b) a	spectral
GCM. In a cartesian grid GCM horizontal and vertical exchan	ges are
handled in a straightforward manner between adjacent column	is and layers.
In a spectral GCM vertical exchanges are computed in grid-po	oint space,
while horizontal flow is computed in spectral space. The meth	od of transfer
between spectral and grid-point space can be seen reading arou	und Figure
2.3(b) from point 1 to 4. From Henderson-Sellers and McGuff 90	ie (1987) 89-

Figure 5.4 Conceptual diagram of convection parameterised in Grell scheme.

Adopted from Grell et al. (1994)		106
----------------------------------	--	-----

Figure 5.5 Schematic diagram showing the major features of BATS. Adapted
from Dickinson et al. (1993) 113
Figure 6.1 Three hour average net longwave radiation at the surface on
rain-free summer days. a) 9/5/87; b) 10/5/87; c) 4/6/87; d) 5/6/87;
e) 6/6/87; f) 7/6/87; g) 13/5/88; h) 16/5/88 and i) 13/6/88 160
Figure 6.2 Three hour average net shortwave radiation at the surface on
rain-free summer days. a) 9/5/87; b) 10/5/87; c) 4/6/87; d) 5/6/87;
e) 6/6/87; f) 7/6/87; g) 13/5/88; h) 16/5/88 and i) 13/6/88 162
Figure 6.3 Three hour average net incident radiation at the surface on rain-free
summer days. a) 9/5/87; b) 10/5/87; c) 4/6/87; d) 5/6/87; e) 6/6/87;
f) 7/6/87; g) 13/5/88; h) 16/5/88 and i) 13/6/88
Figure 6.4 Daily net incident radiation for all three LAMs
Figure 6.5 Cummulative net incident radiation for all three LAMs during the
observation period in a) 1987 and b) 1988
Figure 6.6 Daily latent heat simulated by all three LAMs
Figure 6.7 Evaporative fraction simulated by all three LAMs during the
observation period in a) 1987 and b) 1988 171
Figure 6.8 Daily sensible heat flux simulated by all three LAMs during the
observation period in \mathbf{a}) 1987 and \mathbf{b}) 1988
Figure 6.9 Daily Bowen ratio for the three LAMs during the observation period
In a) 1987 and b) 1988

Figure 6.10 Daily net surface heating simulated by all three LAMs during
observation periods in a) 1987 and b) 1988 176
Figure 6.11 Cummulative surface heating during the observation period ina) 1987 and b) 1988
Figure 6.12 Daily near surface air temperature
Figure 6.13 Mean monthly near surface wind speed
Figure 6.14 Cummulative energy balance during the 1987 observation period:a) Observations; b) MM5/BATS; c) MM5/SHEELS and d) RegCM2 181-182
Figure 6.15 Cummulative energy balance during the 1988 observation period:a) Observations; b) MM5/BATS; c) MM5/SHEELS and d) RegCM2 184-185
Figure 7.1 Daily convective precipitation simulated by the three LAMs 192
Figure 7.2 Comparative histogram of convective precipitation events
Figure 7.3 Monthly convective precipitation totals
Figure 7.4 Cummulative convective precipitation for all three LAMs 195
Figure 7.5 Daily stable precipitation simulated by the three LAMs 196
Figure 7.6 Comparative histogram of stable precipitation events
Figure 7.7 Monthly stable precipitation totals
Figure 7.8 Cummulative stable precipitation for all three LAMs

Figure 7.9 Contribution of convective and stable precipitation to the annual total . 199
Figure 7.10 Cummulative total precipitation for all three LAMs
Figure 7.11 Monthly total ET simulated by all three LAMs
Figure 7.12 Daily ET simulated by the three LAMs a) during the 1987 observation period and b) during the 1988 observation period 204
Figure 7.13 Cummulative ET for all three LAMs during the observation period in a) 1987 and b) 1988
Figure 7.14 Monthly total runoff simulated by all three LAMs
Figure 7.15 Daily runoff simulated by all three LAMs
Figure 7.16 Cummulative runoff simulated by all three LAMs
Figure 7.17 Soil moisture simulated in 1987 by all three LAMs in thea) surface layer and b) root zone
Figure 7.17 Soil moisture simulated in 1988 by all three LAMs in the
a) surface layer and b) root zone $\dots \dots \dots$
Figure 7.18 Cummulative water balance during the 1987 observation period:a) Observations; b) MM5/BATS; c) MM5/SHEELS and d) RegCM2 215-216
Figure 7.19 Cummulative water balance during the 1988 observation period:a) Observations; b) MM5/BATS; c) MM5/SHEELS and d) RegCM2 218-219
Figure 8.1 CMD-IHACRES calibration results
Figure 8.2 CMD-IHACRES validation results

Figure 8.3 Daily runoff simulated by the models
Figure 8.4 Flow duration curves simulated by the models
Figure 8.5 Double mass plots simulated by the models
Figure 8.6 Daily ET simulated by the models
Figure 8.7 Daily ET simulated by the models during the observation period ina) 1987 and b) 1988 239
Figure 8.8 Total monthly ET simulated by the models
Figure 8.9 Runoff simulated by CMD-IHACRES when run offline with output from each of the three LAMs. MM5/B, MM5/S, Reg and C-I refer to MM5/BATS, MM5/SHEELS, RegCM2 and CMD-IHACRES respectively242
Figure 8.10 Flow duration curves simulated by MM5/BATS alone and by CMD-IHACRES run offline with MM5/BATS 243
Figure 8.11 Flow duration curves simulated by MM5/SHEELS alone and by CMD-IHACRES run offline with MM5/SHEELS
Figure 8.12 Flow duration curves simulated by RegCM2 alone and by CMD-IHACRES run offline with RegCM2 244
Figure 8.13 Average daily runoff each month simulated by each of the models in stand alone mode
Figure 8.14 Average daily runoff each month simulated by each of the LAMs in offline mode

Figure 8.15 Daily streamflow simulated in offline simulations where
CMD-IHACRES is driven by precipitation and temperature (P&T)
time series or by precipitation and ET (P&ET) time series simulated
by the LAMs
Figure 8.16 Daily runoff simulated using the runoff simulated by each LAM as
the effective rainfall to drive the linear component of CMD-IHACRES 252
Figure 9.1 Calibration results for the Jamieson River catchment267-268
Figure 9.2 Schematic of study area
Figure 9.3 Observed and Modelled streamflow for the calibration period for
the: a) Avon River; b) Brockman River; c) Wooroolo Brook;
d) Susannah Brook; e) Jane Brook; and f) Helena River
Figure 9.4 Variation in ET with Catchment Moisture Deficit given a unit
temperature input
Figure 9.5 Temperature duration curves for $1 \times CO_2$, $1.5 \times CO_2$ and $2 \times CO_2$
Conditions
Figure 9.6 Precipitation under $1 \times CO_2$, $1.5 \times CO_2$ and $2 \times CO_2$ conditions.
a) precipitation duration curve; b) average recurrence interval 280
Figure 9.7 Flow duration curves for the three CO ₂ scenarios: a) Avon River;
b) Brockman River; c) Wooroolo Brook; d) Susannah Brook;
e) Jane Brook; and f) Helena River
Figure 9.8 ARI curves for: a) Avon River; b) Brockman River;
c) Wooroolo Brook; d) Susannah Brook; e) Jane Brook; and
f) Helena River

Figure 9.9 Average recurrence interval for flood events in the upper Swan River . 289

List of Symbols

Symbol	Meaning	Units
~	denotes an environmental value	-
α	represents an arbitrary variable; also absorptivity	-
$lpha_c$	cloud water radiation absorption coefficient	m^2g^{-1}
$lpha_{cd}$	cloud water downward radiation absorption coefficient	m^2g^{-1}
$lpha_{cu}$	cloud water upward radiation absorption coefficient	m^2g^{-1}
$lpha_i$	cloud ice radiation absorption coefficient	m^2g^{-1}
$lpha_p$	radiation absorption coefficient for precipitation	m^2g^{-1}
β	fraction of updraft condensate that re-evaporates in the	-
	downdraft	
$\delta heta$	soil moisture	mm
$\Delta = \frac{de^*}{dT}$	slope of the saturation water vapour pressure curve	mbK ⁻¹
Δs	model gridpoint spacing	m
Δt	model time step	S
\mathcal{E}_d	downward emissivity function	-
\mathcal{E}_{tot}	total emissivity	-
\mathcal{E}_{u}	upward emissivity function	-
\mathcal{E}_{vapour}	water vapour emissivity	-
φ ₀	soil water suction for saturated soil	m
ϕ_m	wind profile function	-
γ	psychrometric constant	mbK^{-1}
γξ	correction to the local gradient that incorporates the	-
	contribution of large scale eddies to the total flux	

η	fraction of transpiration from the top soil layer	-
μ	cosine of the zenith angle	-
\widetilde{V}	wavenumber	m^{-1}
\mathbf{v}_a	annual frequency	s ⁻¹
ν_d	diurnal frequency	s ⁻¹
θ	potential temperature	Κ
θ_s	appropriate near surface temperature	Κ
θ_{v}	virtual potential temperature	Κ
θ_{va}	virtual potential temperature at the lowest model level	Κ
ρ	density	kgm ⁻³
$ ho_a$	density of surface air	kgm ⁻³
ρ_r	particle density	kgm ⁻³
ρ_s	density of the subsurface soil layer	kgkg⁻¹
$ ho_{\scriptscriptstyle W}$	soil water density	kgkg⁻¹
$ ho_{wsat}$	saturated soil water density	kgkg⁻¹
σ	terrain following vertical coordinate	
σ_{f}	fractional foliage cover for each grid point	-
$\sigma_{\scriptscriptstyle SB}$	Stefan-Boltzmann constant	$Wm^{-2}K^{-4}$
$ au_c$	cloud extinction optical depth	m
$ au_q$	quickflow time constant	days
$ au_s$	slowflow time constant	days
ω	particle single scattering albedo	
$arOmega_{r0}$	maximum transpiration that can be sustained	kgm ⁻² s ⁻¹
ξ	represents a prognostic variable	-
ψ_{w1}	diffusion of water from rooting zone to surface soil layer	mms ⁻¹
ψ_{w2}	diffusion of water from total column to rooting zone	mms ⁻¹
Ψ_w	rate of transfer of water by diffusion to the upper soil	mms ⁻¹
	layer	
a	Marshall-Palmer distribution parameter	-
Α	surface area	m^2

$A_{\widetilde{ u}}$	absorptivity due to a given gas	-
ABE	buoyant energy available	J
ABE″	production of available buoyant energy by large scale	J
	motions during the time Δt	
b	Marshall-Palmer distribution parameter	-
В	Plank function; also Clapp and Hornberger exponent	-
В	bias	mm/day
B_0	Bowen ration	-
C_D	aerodynamic drag coefficient over land	-
C_{DN}	drag coefficient for neutral stability	-
CMD	catchment moisture deficit	mm
C_p	specific heat of air	Jkg ⁻¹ K ⁻¹
C_s	specific heat of the subsurface soil layer	Jkg ⁻¹ K ⁻¹
C _{SOILC}	transfer coefficient between canopy air and underlying	-
	soil	
D	diameter of droplet; relative drying power; also	m; - ;
	discharge from catchment	mm
D_{db}	diurnal penetration depth	m
D_{f}	characteristic dimension of the leaves in the direction of	-
	wind flow	
D_s	water diffusivity in the soil	$m^2 s^{-1}$
D_w	rate of excess water dripping from leaves per unit land	$mm m^{-2}$
	area	
Ε	evapotranspiration	mm
e_a	vapour pressure in near surface atmosphere	mb
E_a	total evaporative flux from the surface to the atmosphere	kgm ⁻² s ⁻¹
E_A	drying power of the air	mm
E_{f}	evaporative flux from foliage	kgm ⁻² s ⁻¹
$E_{f}^{\scriptscriptstyle W\!ET}$	evaporation from wet foliage per unit wetted area	kgm ⁻² s ⁻¹
E_g	evaporative flux from the ground	kgm ⁻² s ⁻¹
E_p	potential evapotranspiration	mm
E_{p0}	evapotranspiration rate at which $E_p = E$	mm

E_{PT}	Priestly & Taylor potential evapotranspiration	mm
e_s^*	saturation vapour pressure at the surface temperature	mb
E_{tr}	transpiration	mm
E_{trmax}	maximum transpiration	kgm ⁻² s ⁻¹
F^{\uparrow}	upward long wave radiation flux	Wm ⁻²
F^{\downarrow}	downward long wave radiation flux	Wm ⁻²
f_{cld}	probability of a cloud existing in a given atmospheric	-
	layer	
fclear	clear sky fraction of atmospheric column	-
F_{clr}^{\downarrow}	clear sky downward longwave radiation	Wm ⁻²
F_{clr}^{\uparrow}	clear sky upward longwave radiation	Wm ⁻²
f_g	wetness factor	-
F_H	horizontal diffusion effects	
F_q	moisture flux from ground to atmosphere	kgm ⁻² s ⁻¹
F_{qm}	maximum moisture flux through the wet surface that the	kgm ⁻² s ⁻¹
	soil can sustain	
F_{qp}	potential evaporation	kgm ⁻² s ⁻¹
<i>F</i> _{rr}	the unfrozen soil water	mm
F_s	atmospheric sensible heat flux	Wm ⁻²
F_V	vertical turbulent mixing effects	
g	gravity (ms ⁻²); also asymmetry parameter	-
G	net water applied to the surface in the absence of	mm;
	vegetation; also specific flux of heat into the ground	Wm ⁻²
h	moist static energy; also height of PBL (m)	-
H_a	total sensible heat flux from the surface to the atmosphere	Wm ⁻²
H_{f}	sensible heat flux from foliage	Wm ⁻²
H_g	sensible heat flux from the ground	Wm ⁻²
h_l	meridionally varying, empirically derived local liquid	-
	water scale	
h_s	surface heating	Wm ⁻²
I_1	amount of condensation integrated over the whole depth	-

	of the updraft normalised by the updraft mass flux	
I_2	evaporation in the downdraft normalised by the	-
	downdraft mass flux	
J	relative evaporation; also Thornthwaite heat index	-
k	von Karman constant	-
K_{ξ}	the eddy diffusivity coefficient	m^2s^{-1}
k _{sb}	thermal diffusivity of soil for diurnal wave	$m^2 s^{-1}$
K_{w0}	saturated hydraulic conductivity	ms ⁻¹
K_{zm}	momentum diffusivity coefficient at height z above the	m^2s^{-1}
	surface	
K_{zm}	eddy diffusivity for moisture at height z above the surface	m^2s^{-1}
<i>K</i> _{zt}	eddy diffusivity for temperature at height z above the	m^2s^{-1}
	surface	
L	latent heat; Monin-Obukhov length scale; also	Wm ⁻² ; - ;
	daytime hours	12 hrs
L _{AI}	leaf area index	-
L_d	fraction of foliage surface free to transpire	-
L_e	latent heat of evaporation	Wm ⁻²
L_{f}	latent heat of fusion	Jkg ⁻¹
L_s	latent heat of sublimation	Jkg ⁻¹
LS	denotes the large scale tendency	-
L_v	latent heat of vaporisation	Jkg ⁻¹
L_w	fractional area of leaves and stems covered by water	-
Μ	moisture availability parameter	-
m_0	mass flux at the downdraft originating level	kgm ⁻² s ⁻¹
m_b	mass flux at the updraft originating level	kgm ⁻² s ⁻¹
МС	denotes the model calculated tendency	-
m_d	mass flux of the downdraft	kgm ⁻² s ⁻¹
M_{f}	stomatal resistance dependence on soil moisture	-
m_u	mass flux of the updraft	kgm ⁻² s ⁻¹
n	the displacement from the nearest boundary	grid points
N_0	Marshall-Palmer distribution parameter	m ⁻⁴

NA	rate of change of available buoyant energy per unit of	Js^{-1}
	mass flux	
NSE	Nash-Sutcliffe efficiency	-
p	pressure	Pa
Р	precipitation	mm
p^{*}	$p_s - p_{top}$	Ра
p_{clbk}	pressure level of the cloud base at k	Pa
P_{CON}	condensation of water vapour into cloud	kgkg ⁻¹ s ⁻¹
P _{ID}	sublimation/deposition of cloud ice	kgkg ⁻¹ s ⁻¹
P_{II}	initiation of ice crystals	kgkg ⁻¹ s ⁻¹
P_{MF}	melting (freezing) of snow or ice (rain or cloud) due to	kgkg ⁻¹ s ⁻¹
	atmospheric advection	
Pr	Prandtl number	-
P_r	precipitation falling as rain	mm
P_{RA}	accretion of cloud by rain	kgkg ⁻¹ s ⁻¹
P_{RC}	conversion of cloud to rain	kgkg ⁻¹ s ⁻¹
P_{RE}	evaporation of rain	kgkg ⁻¹ s ⁻¹
P_{RM}	snow melting to become rain	kgkg ⁻¹ s ⁻¹
p_s	prognostic surface pressure	Pa
p_{top}	pressure specified to be the model top	Pa
q	specific humidity; also	kgkg ⁻¹ ;
	streamflow (observed)	mm
\hat{q}	modelled streamflow	mm
q_a	specific humidity of the lowest model level	-
$q_{a\!f}$	water vapour specific humidity of the air within the	-
	foliage	
q_c	mixing ratio of cloud water	-
q_g	saturated specific humidity at the temperature of the	-
	surface	
Q_g	net outflow of ground water	mm
$q_{g,s}$	saturated specific humidity at soil surface temperatures	-
Q_n	available energy flux density	Wm ⁻²

q_r	mixing ratio of rain water	-
Q_s	net outflow of surface water	mm
q_v	mixing ratio of water vapour	-
\mathcal{R}	residual of water balance	mm
r _e	effective of cloud droplets	m
R_{f}	stomatal resistance dependence on solar radiation	-
R_g	groundwater runoff	mm
Ri_B	surface bulk Richardson number	-
<i>Rib</i> _{cr}	critical bulk Richardson number	-
<i>r_{la}</i>	aerodynamic resistance to moisture and heat flux	sm^{-1}
R _{net}	net incident radiation at the surface	Wm ⁻²
r_s	stomatal resistance	sm ⁻¹
R_s	surface runoff	mm
r _{smin}	minimum stomatal resistance	sm ⁻¹
R_{ti}	fraction of roots in soil layer i	-
S	volume of water divided by volume of water at saturation	-
S	sources and sinks; also water volume stored in the system	- ; mm
S_0	solar constant	Wm ⁻²
S_a	clear air absorption of shortwave radiation flux	Wm ⁻²
S _{AI}	stem area index	-
S_{ca}	cloud absorption of shortwave radiation flux	Wm ⁻²
S_{cs}	cloud scattering of shortwave radiation flux	Wm ⁻²
S_d	downward shortwave radiation flux	Wm ⁻²
S_f	stomatal resistance dependence on temperature	-
S_g	solar flux absorbed over bare ground	Wm ⁻²
S _i	soil water in layer i	-
S_m	rate of snow melt	kgm ⁻² s ⁻¹
SM	soil moisture	mm
S_{rw}	rooting zone soil water	mm
S _{rwmax}	maximum rooting zone soil water	mm
S_s	clear air scattering of shortwave radiation flux	Wm ⁻²
S_{sw}	surface soil water (upper layer)	mm

S _{swmax}	maximum upper soil water	mm
S_{tw}	total water in the soil	mm
S _{twmax}	maximum water in total soil column	mm
S_W	soil water for which transpiration essentially goes to zero	-
t	time	S
Т	Temperature	K
T_a	air temperature of lowest model layer	Κ
T_{af}	temperature within the foliage layer	Κ
T_c	cloud water transmissivity	-
T_f	temperature of foliage	Κ
T_{gl}	surface soil temperature	Κ
T_{g2}	subsurface temperature	Κ
T_{g3}	deep soil temperature	Κ
T_p	precipitation transmissivity	-
T_{v}	water vapour transmissivity	-
и	cross front wind velocity	ms ⁻¹
U	horizontal wind speed; also	ms⁻¹;
	effective rainfall	mm
\overline{u}	mean wind speed	ms ⁻¹
${\cal U}_*$	surface frictional velocity scale	ms ⁻¹
U_a	horizontal wind above the canopy	ms ⁻¹
U_{af}	wind velocity within foliage layer	ms ⁻¹
u_c	cloud water path	gm ⁻²
<i>u</i> _g	geostrophic wind	ms ⁻¹
u_p	effective water path	gm ⁻²
v	along front wind velocity	ms ⁻¹
V_{f}	fall speed of rain or snow (ms ⁻¹); also stomatal resistance	-
	dependence on vapour pressure deficit	
V_q	relative volume of flow that travels through as quickflow	-
V_s	relative volume of flow that travels through as slowflow	-
W	vertically integrated cloud water path length; also a	gm ⁻²
	weighting function for the lateral boundary conditions	

W_{dew}	total water stored by canopy per unit land area	$mm m^{-2}$
W _{DMAX}	maximum water the canopy can hold	$mm m^{-2}$
W_{LT}	soil dryness (or plant wilting) factor	-
Ws	mixed layer velocity scale	-
$x^{(q)}$	quickflow	mm
$x^{(s)}$	slowflow	mm
Z.	height above the surface	m
<i>Z.</i> 0	originating level of downdraft; also the roughness length	m
<i>Z.</i> 1	height of lowest model level	m
Zb	originating level of updraft	m
Z_r	depth of soil rooting layer	m

List of Acronyms

Acronyms	Meaning
ABRACOS	Anglo-Brazilian Climate Observation Study
AMIP	Atmospheric Model Intercomparison Project
ARI	Average Recurrence Interval
ARPE	Average Relative Parameter Error
ASCE	American Society of Civil Engineers
BALTEX	Baltic Sea Experiment
BATS	Biosphere-Atmosphere Transfer Scheme
BOREAS	Boreal Ecosystem-Atmosphere Study
CMD	Catchment Moisture Deficit
CSIRO	Commonwealth Scientific and Industrial Research
	Organisation
ECMWF	European Centre for Medium Range Weather Forecasts
EF	Evaporative Fraction
EFEDA	ECHIVAL Field Experiment in Desertification threatened
	Areas
ET	evapotranspiration
FIFE	First ISLSCP Field Experiment
GARP	Global Atmospheric Research Program
GCM	Global Climate Model
GFDL	Geophysical Fluid Dynamics Laboratories
GISS	Goddard Institute for Space Studies
GMT	Greenwich Mean Time
HAPEX	Hydrological and Atmospheric Pilot Experiment
HEIFE	Hei Ho River basin Field Experiment
IFC	Intensive Field Campaign

MACKES	Identification of Hydrographs And Components from
	Rainfall, Evaporation and Streamflow data
IPCC	Intergovernmental Panel on Climate Change
ISLSCP	International Satellite Land Surface Climatology Project
IUH	Instantaneous Unit Hydrograph
LAM	Limited Area (climate) Model
LTER	Long Term Ecological Reserve
MM5	Penn State/NCAR Mesoscale Model version 5
MOBILHY	Modelisation du Bilan Hydrique
NASA	National Aeronautics and Space Administration
NCAR	National Center for Atmospheric Research, USA
NCEP	National Center for Environmental Prediction, USA.
NOAA	National Oceanic and Atmospheric Administration
NOPEX	Northern Hemisphere Climate Processes Land Surface
	Experiment
	1
NSE	Nash-Sutcliffe Efficiency
NSE PAM	Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations
NSE PAM PBL	Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer
NSE PAM PBL PET	Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer Potential evapotranspiration
NSE PAM PBL PET PILPS	Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer Potential evapotranspiration Project for Intercomparison of Land-surface
NSE PAM PBL PET PILPS	Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer Potential evapotranspiration Project for Intercomparison of Land-surface Parameterisation Schemes
NSE PAM PBL PET PILPS PIRCS	Nash-Sutcliffe EfficiencyPortable Automatic Mesonet stationsPlanetary Boundary LayerPotential evapotranspirationProject for Intercomparison of Land-surfaceParameterisation SchemesProject to Intercompare Regional Climate Models
NSE PAM PBL PET PILPS PIRCS RegCM2	 Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer Potential evapotranspiration Project for Intercomparison of Land-surface Parameterisation Schemes Project to Intercompare Regional Climate Models NCAR Regional Climate Model version 2
NSE PAM PBL PET PILPS PIRCS RegCM2 SHEELS	 Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer Potential evapotranspiration Project for Intercomparison of Land-surface Parameterisation Schemes Project to Intercompare Regional Climate Models NCAR Regional Climate Model version 2 Simulator for Hydrology & Energy Exchange at the Land
NSE PAM PBL PET PILPS PIRCS RegCM2 SHEELS	 Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer Potential evapotranspiration Project for Intercomparison of Land-surface Parameterisation Schemes Project to Intercompare Regional Climate Models NCAR Regional Climate Model version 2 Simulator for Hydrology & Energy Exchange at the Land Surface
NSE PAM PBL PET PILPS PIRCS RegCM2 SHEELS SRIV	 Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer Potential evapotranspiration Project for Intercomparison of Land-surface Parameterisation Schemes Project to Intercompare Regional Climate Models NCAR Regional Climate Model version 2 Simulator for Hydrology & Energy Exchange at the Land Surface Simple Refined Instrumental Variable technique
NSE PAM PBL PET PILPS PIRCS RegCM2 SHEELS SRIV SVAT	 Nash-Sutcliffe Efficiency Portable Automatic Mesonet stations Planetary Boundary Layer Potential evapotranspiration Project for Intercomparison of Land-surface Parameterisation Schemes Project to Intercompare Regional Climate Models NCAR Regional Climate Model version 2 Simulator for Hydrology & Energy Exchange at the Land Surface Simple Refined Instrumental Variable technique Soil-Vegetation-Atmosphere Transfer scheme