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Abstract

The interaction between climate and land-surface hydrology is extremely important in
relation to long term water resource planning. Thisis especially so in the presence of
global warming and massive land use change, issues which seem likely to have a
disproportionate impact on developing countries. This thesis develops tools aimed at the
study and prediction of climate effects on land-surface hydrology (in particular
streamflow), which require a minimum amount of site specific data. This minimum data
requirement allows studies to be performed in areas that are data sparse, such asthe
developing world.

A simple lumped dynamics-encapsulating conceptua rainfall-runoff model, which
explicitly calcul ates the evaporative feedback to the atmosphere, was developed. It uses
the linear streamflow routing module of the rainfall-runoff model IHACRES, with a
new non-linear 1oss module based on the Catchment Moisture Deficit accounting
scheme, and isreferred to as CMD-IHACRES. In this model, evaporation can be
calculated using a number of techniques depending on the data available, as a
minimum, one to two years of precipitation, temperature and streamflow data are
required. The model was tested on catchments covering alarge range of

hydroclimatol ogies and shown to estimate streamflow well. When tested against
evaporation data the simplest technique was found to capture the medium to long term

average well but had difficulty reproducing the short-term variations.
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A comparison of the performance of three limited area climate models (MM5S/BATS,
MMJ5/SHEEL S and RegCM 2) was conducted in order to quantify their ability to
reproduce near surface variables. Components of the energy and water balance over the
land surface display considerable variation among the models, with no model
performing consistently better than the other two. However, several conclusions can be
made. The MM5 longwave radiation scheme performed worse than the scheme
implemented in RegCM 2. Estimates of runoff displayed the largest variations and
differed from observations by as much as 100%. The climate models exhibited greater
variance than the observations for amost all the energy and water related fluxes
investigated.

An investigation into improving these streamflow predictions by utilizing CMD-
IHACRES was conducted. Using CMD-IHACRES in an “offline” mode greatly
improved the streamflow estimates while the simplest evaporation technique
reproduced the evaporative time series to an accuracy comparable to that obtained from
the limited area models alone. The ability to conduct a climate change impact study
using CMD-IHACRES and a stochastic weather generator is also demonstrated. These
results warrant further investigation into incorporating the rainfall-runoff model CMD-

IHACRES into alimited area climate model in afully coupled “onling” approach.
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particle density

density of the subsurface soil layer

soil water density

saturated soil water density

terrain following vertical coordinate

fractional foliage cover for each grid point

Stefan-Boltzmann constant

cloud extinction optical depth

quickflow time constant

slowflow time constant

particle single scattering albedo

maximum transpiration that can be sustained
represents a prognostic variable

diffusion of water from rooting zone to surface soil layer
diffusion of water from total column to rooting zone
rate of transfer of water by diffusion to the upper soil
layer

Marshall-Palmer distribution parameter

surface area
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ABE
ABE”

Co
Con
CMD

Cs

CsoiLc

Dab
D¢

Ds
Dw

absorptivity dueto agiven gas

buoyant energy available

production of available buoyant energy by large scale
motions during the time At

Marshall-Palmer distribution parameter

Plank function; also Clapp and Hornberger exponent
bias

Bowen ration

aerodynamic drag coefficient over land

drag coefficient for neutral stability

catchment moisture deficit

specific heat of air

specific heat of the subsurface soil layer

transfer coefficient between canopy air and underlying
soil

diameter of droplet; relative drying power; aso
discharge from catchment

diurnal penetration depth

characteristic dimension of the leavesin the direction of
wind flow

water diffusivity in the soil

rate of excess water dripping from leaves per unit land
area

evapotranspiration

vapour pressure in near surface atmosphere

total evaporative flux from the surface to the atmosphere
drying power of the air

evaporative flux from foliage

evaporation from wet foliage per unit wetted area

evaporative flux from the ground
potential evapotranspiration
evapotranspiration rate at which E,=E
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m2st

mm m

mm
mb
kgm?s?
mm
kgm?s*t
kgm?s*t
kgm?s*
mm

mm



fad

fcI ear

clr

Ha
H¢

hy

hs

Priestly & Taylor potential evapotranspiration
saturation vapour pressure at the surface temperature

transpiration
maximum transpiration

upward long wave radiation flux
downward long wave radiation flux

probability of acloud existing in a given aimospheric
layer
clear sky fraction of atmospheric column

clear sky downward longwave radiation
clear sky upward longwave radiation

wetness factor

horizontal diffusion effects

moisture flux from ground to atmosphere

maximum moisture flux through the wet surface that the
soil can sustain

potential evaporation

the unfrozen soil water

atmospheric sensible heat flux

vertical turbulent mixing effects

gravity (ms?); also asymmetry parameter

net water applied to the surface in the absence of
vegetation; also specific flux of heat into the ground
moist static energy; also height of PBL (m)

total sensible heat flux from the surface to the atmosphere
sensible heat flux from foliage

sensible heat flux from the ground

meridionally varying, empirically derived local liquid
water scale

surface heating

amount of condensation integrated over the whole depth
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kgms?
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Kzm
Kz

La

=]

No

of the updraft normalised by the updraft mass flux
evaporation in the downdraft normalised by the
downdraft mass flux

relative evaporation; also Thornthwaite heat index
von Karman constant

the eddy diffusivity coefficient

thermal diffusivity of soil for diurnal wave
saturated hydraulic conductivity

momentum diffusivity coefficient at height z above the
surface

eddy diffusivity for moisture at height z above the surface
eddy diffusivity for temperature at height z above the
surface

latent heat; Monin-Obukhov length scale; also
daytime hours

leaf areaindex

fraction of foliage surface free to transpire

latent heat of evaporation

latent heat of fusion

latent heat of sublimation

denotes the large scale tendency

latent heat of vaporisation

fractional area of leaves and stems covered by water
moisture availability parameter

mass flux at the downdraft originating level

mass flux at the updraft originating level

denotes the model cal culated tendency

mass flux of the downdraft

stomatal resistance dependence on soil moisture
mass flux of the updraft

the displacement from the nearest boundary
Marshall-Palmer distribution parameter
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kgm?s?
kgm?s?
kgm?s*t
kgm?s?
grid points

m



NA

NSE

Peibk

Pcon
Pio

Pwmr

P
Pra

Prc

Prv
Ps
ptop

O

Oa
Car

Oc
Qg

Qq
Uoss
Qn

rate of change of available buoyant energy per unit of
mass flux

Nash-Sutcliffe efficiency

pressure

precipitation

Ps — Ptop

pressure level of the cloud base at k
condensation of water vapour into cloud
sublimation/deposition of cloud ice
initiation of ice crystals

melting (freezing) of snow or ice (rain or cloud) due to
atmospheric advection

Prandtl number

precipitation falling asrain

accretion of cloud by rain

conversion of cloud to rain

evaporation of rain

snow melting to become rain

prognostic surface pressure

pressure specified to be the model top
specific humidity; also

streamflow (observed)

modelled streamflow

specific humidity of the lowest model level

water vapour specific humidity of the air within the
foliage

mixing ratio of cloud water

saturated specific humidity at the temperature of the
surface

net outflow of ground water

saturated specific humidity at soil surface temperatures

available energy flux density
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Jst

Pa
mm
Pa

Pa

kgkg'st
kgkg's®
kgkg's®
kgkg'st

mm
kgkg's?
kgkg'st
kgkg'st
kgkg's?!
Pa

Pa
kgkg™;
mm

mm



I'smin

Py

PHDDLYLYHOYDYYPYHY OO
g

mixing ratio of rain water

net outflow of surface water

mixing ratio of water vapour

residual of water balance

effective of cloud droplets

stomatal resistance dependence on solar radiation
groundwater runoff

surface bulk Richardson number

critical bulk Richardson number

aerodynamic resistance to moisture and heat flux
net incident radiation at the surface

stomatal resistance

surface runoff

minimum stomatal resistance

fraction of rootsin soil layer i

volume of water divided by volume of water at saturation
sources and sinks; also water volume stored in the system
solar constant

clear air absorption of shortwave radiation flux
stem areaindex

cloud absorption of shortwave radiation flux
cloud scattering of shortwave radiation flux
downward shortwave radiation flux

stomatal resistance dependence on temperature
solar flux absorbed over bare ground

soil water in layer i

rate of snow melt

soil moisture

rooting zone soil water

maximum rooting zone soil water

clear air scattering of shortwave radiation flux

surface soil water (upper layer)
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Sswmax
Sw

Stwmax

Taf

U af

maximum upper soil water

total water in the soil

maximum water in total soil column

soil water for which transpiration essentially goesto zero
time

Temperature

air temperature of lowest model layer

temperature within the foliage layer

cloud water transmissivity

temperature of foliage

surface soil temperature

subsurface temperature

deep soil temperature

precipitation transmissivity

water vapour transmissivity

cross front wind velocity

horizontal wind speed; also

effective rainfall

mean wind speed

surface frictional velocity scale

horizontal wind above the canopy

wind velocity within foliage layer

cloud water path

geostrophic wind

effective water path

along front wind velocity

fall speed of rain or snow (ms™); also stomatal resistance
dependence on vapour pressure deficit

relative volume of flow that travels through as quickflow
relative volume of flow that travels through as slowflow
vertically integrated cloud water path length; also a
weighting function for the lateral boundary conditions
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V%bw

Wbmax
Wi

Ws
@

NC)

VA

Z

total water stored by canopy per unit land area
maximum water the canopy can hold

soil dryness (or plant wilting) factor

mixed layer velocity scale

guickflow

slowflow

height above the surface

originating level of downdraft; also the roughness length
height of lowest model level

originating level of updraft

depth of soil rooting layer
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Acronyms
ABRACOS
AMIP
ARI
ARPE
ASCE
BALTEX
BATS
BOREAS
CMD
CSIRO

ECMWF
EF
EFEDA

ET
FIFE
GARP
GCM
GFDL
GISS
GMT
HAPEX
HEIFE
IFC

List of Acronyms

Meaning

Anglo-Brazilian Climate Observation Study
Atmospheric Model Intercomparison Project
Average Recurrence Interval

Average Relative Parameter Error

American Society of Civil Engineers

Baltic Sea Experiment

Biosphere-Atmosphere Transfer Scheme

Boreal Ecosystem-Atmosphere Study

Catchment Moisture Deficit

Commonwealth Scientific and Industrial Research
Organisation

European Centre for Medium Range Weather Forecasts
Evaporative Fraction

ECHIVAL Field Experiment in Desertification threatened
Areas

evapotranspiration

First ISLSCP Field Experiment

Globa Atmospheric Research Program

Globa Climate Model

Geophysical Fluid Dynamics Laboratories
Goddard Institute for Space Studies

Greenwich Mean Time

Hydrological and Atmospheric Pilot Experiment
Hel Ho River basin Field Experiment

Intensive Field Campaign

XXXVil



IHACRES

IPCC
ISLSCP
I[UH
LAM
LTER
MM5
MOBILHY
NASA
NCAR
NCEP
NOAA
NOPEX

NSE
PAM

PBL

PET
PILPS

PIRCS
RegCM2
SHEELS

SRIV
SVAT
uTC

Identification of Hydrographs And Components from
Rainfall, Evaporation and Streamflow data
Intergovernmental Panel on Climate Change
International Satellite Land Surface Climatology Project
Instantaneous Unit Hydrograph

Limited Area (climate) Model

Long Term Ecological Reserve

Penn State/NCAR Mesoscale Model version 5
Modelisation du Bilan Hydrique

National Aeronautics and Space Administration
National Center for Atmospheric Research, USA
National Center for Environmental Prediction, USA.
National Oceanic and Atmospheric Administration
Northern Hemisphere Climate Processes Land Surface
Experiment

Nash-Sutcliffe Efficiency

Portable Automatic Mesonet stations

Planetary Boundary Layer

Potential evapotranspiration

Project for Intercomparison of Land-surface
Parameterisation Schemes

Project to Intercompare Regional Climate Models
NCAR Regional Climate Model version 2

Simulator for Hydrology & Energy Exchange at the Land

Surface

Simple Refined Instrumental Variable technique
Soil-V egetation-Atmosphere Transfer scheme
Coordinated Universal Time (GMT)
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