Detection And Genetic Mapping Of Quantitative Trait Loci Influencing Stem Growth Efficiency In Radiata Pine

Livinus Chinenye Emebiri

Department of Forestry

Australian National University

A thesis submitted for the degree of Doctor of

Philosophy of The Australian National University

January 1997

Declaration

The work presented in this thesis is my own. Assistance and specific contributions by others are referred to in the text and acknowledgments.

L. C. Emebiri

January 1997

Department of Forestry

School of Resource and Environmental Management

Faculty of Science

The Australian National University

The following papers are based on this dissertation:

Emebiri, L. C., Devey, M. E., Matheson, A. C. and Slee, M. U. (1997) Linkage of RAPD markers to NESTUR, a stem growth index in radiata pine seedlings. *Theoretical & Applied Genetics* (in press).

Emebiri, L. C.; Devey, M. E.; Matheson, A. C. and Slee, M. U. (1995) On genetically remodelling radiata pine: identification of QTLs influencing NESTUR by use of bulked segregant analysis. Paper presented at the Conifer Biotechnology Working Group 7th International Conference, 26-30 June 1995, Surfers Paradise, Queensland, Australia.

Emebiri, L. C.; Devey, M. E.; Matheson, A. C. and Slee, M. U. (1995) Detection and mapping of QTLs influencing NESTUR in radiata pine. Paper presented at the sixth Australasian Gene Mapping Workshop & New Zealand Genetical Society Conference, Nov. 27-1 Dec., 1995, University of Otago, Dunedin, New Zealand.

Emebiri, L. C.; Devey, M. E.; Matheson, A. C. and Slee, M. U. (1996). Interval mapping of NESTUR, a stem growth efficiency index in radiata pine. Poster presentation submitted for the Scientific Regional Information Exchange Group (SRIEG) Conference, Texas A & M University, Houston, Texas, June 23-26. Abstract available at http://mslismpa.tamu.edu/staff/tom/SRIEG/srieghome.html (manuscript in preparation).

Emebiri, L. C.; Devey, M. E.; Matheson, A. C. and Slee, M. U. (1997). Age related changes in the expression of QTL for growth in radiata pine seedlings. Submitted to *Theoretical & Applied Genetics*.

Emebiri, L. C.; Devey, M. E.; Matheson, A. C. and Slee, M. U. (1997). Interval mapping of quantitative trait loci affecting NESTUR, a stem growth efficiency index of radiata pine seedlings. Submitted to *Theoretical & Applied Genetics*.

Acknowledgments

I thank my supervisory panel of Dr. M. U. Slee, Dr. M. E. Devey, and Dr. A. C. Matheson for their advice and encouragement throughout the course of my studies.

Special thanks to Dan Gardener for technical assistance with the dendrometer, and to Dane Donaldson, Nathan Caesar and Josie Morosin for assistance during NESTUR measurements. I thank David Spencer for assistance with design of field layout, planting and maintenance of the progeny evaluation.

I am especially grateful to Ms Judy Faccioni for invaluable assistance and support throughout this study. Special thanks also to Prof. Peter Kanowski for his advice and encouragement.

This study was funded by an ANU PhD scholarship from the Australian National University, Canberra, and an OPRS scholarship from the Department of Employment, Education & Training (DEET), Australia. Financial and institutional support were also provided by the Southern Tree Breeding Association (STBA), Australia, the CSIRO Forestry & Forest Products, Canberra, and by the Department of Forestry, The Australian National University, Canberra.

Abstract

Needle-to-stem unit rate (NESTUR) is a stem growth index of conifer seedling trees that measures the efficiency of stemwood production per unit of needle growth. Five experiments were carried out in this thesis using progenies of two unrelated full-sib radiata pine crosses. The initial experiment (experiment 1) applied the bulked segregant analysis technique to determine whether RAPD analysis could be successfully extended to the development of molecular markers for NESTUR in radiata pine. The NESTUR values of 174 progenies of the full-sib family 12038 x 10946 were determined. Based on the genotypic analysis of the individuals, two quantitative trait loci (QTL) controlling NESTUR were identified at ANOVA P-levels of 0.01-0.001. An absence of RAPD fragment markers generated by primers OPE-06 and OPA-10 was associated with low NESTUR values, while primer UBC-333 generated a 550 bp band that was associated with high NESTUR values. Linkage to components of NESTUR (increments in stem diameter and stem volume) was demonstrated for one of the QTL, while the other was unique to NESTUR, and not shared with the components. There was a significant interaction between the two QTLs. Presence of OPA-10₁₂₀₀ locus appeared to inhibit expression of the QTL linked to UBC-333₅₅₀.

To further analyse the quantitative trait loci (QTLs) controlling NESTUR, a linkage map was constructed from RAPD markers segregating in 93 haploid progeny of another full sib cross (30040 x 80121) (experiment 2). Two hundred and sixty-two (262) markers were mapped to 14 linkage groups of at least 7 markers, ranging in size from 39 to 183 cM. The 14 linkage groups covered approximately 1511 cM of genetic map distance.

In experiment 3, the linkage map was used to map QTLs controlling NESTUR, as well as increments in seedling stem diameter, volume, and height and needle volume. Altogether, five putative QTLs were detected for NESTUR, with explained variation ranging from 9 to 22%. Of the five QTLs detected, 3 were coincidental with those for stem growth in height, diameter and volume. The two QTL positions that were unique to NESTUR were flanked by QTLs for the component traits. Together, effects of the five QTLs explained 48% of the total phenotypic variation for NESTUR.

Ability of identified markers to predict the phenotype and seedlings with growth potential was assessed in the cross 30040 x 80121, using six RAPD markers associated with NESTUR at ANOVA P-levels of 0.01-0.001 (experiment 4). The correlation between observed NESTUR and predicted values was 0.70. Differences in observed vs. predicted values were not large and did not indicate serious misclassifications, such as classification of an upper ranking individual into the lower group, or vice versa.

Over a two-year growth period, the ability of NESTUR to predict stem growth was strongly affected by seedling age. In contrast, markers linked to NESTUR showed a consistent ability to predict stem growth, irrespective of seedling age. Compared with the top 1% of the original population, seedlings selected for their genotypic values showed a higher stem volume growth of 103% in the first year, and 76% in the second year.

The expression of QTLs for stem volume, stem diameter, height, number of branches, number of whorls, and branches/whorl were compared at 5, 12, and 24 months of age. Two QTLs detected for height showed contrasting expression over two years, one was gradually reduced from LOD of 2.70 to 0.43 and the other

increased from 1.12 to 2.45. Compared with the pattern observed for height, LOD scan profiles for diameter and volume showed less temporal change of peaks, suggesting that the genetic control for height growth is probably more unstable than that of diameter. QTLs controlling the phenotype at the time of measurement (ie the final phenotype) showed similar magnitude of effects on that trait's respective increments (or growth rate).

TABLE OF CONTENTS

CHAPTER 1	1
1 INTRODUCTION	1
1.1 LIMITED PROGRESS IN BASIC TREE BREEDING	1
1.2 AGE-AGE CORRELATION AND EARLY SELECTION	2
1.3 NEEDLE-TO-STEM UNIT RATIO (NESTUR)	3
1.4 MOLECULAR MARKER-ASSISTED SELECTION	4
1.5 QUANTITATIVE TRAIT LOCUS (QTL) ANALYSIS	6
1.6 THE AIM OF THE PRESENT STUDY	7
1.6.1 Primary objectives	7
1.6.2 Secondary objectives	7
2 TYPES OF GENETIC MARKERS	8
2.1 MORPHOLOGICAL MARKERS	8
2.2 MOLECULAR MARKERS	9
2.2.1 RFLP markers	10
2.2.2 AFLP	10
2.2.3 SSR or Microsatellites	11
2.2.4 RAPDs	11
2.3 APPROACHES TO QTL ANALYSIS IN FOREST AND TREE CROP SPECIES	18
2.3.1 Bulked segregant analysis	19
2.3.2 Genomic mapping	19
2.3.3 Available mapping populations	20
2.4 MARKER ANALYSIS OF QUANTITATIVE TRAITS	22
2.4.1 Magnitude of QTL effects	25
2.4.2 QTL clustering and pleiotropic effects	26
2.4.3 Epistasis	27
2.5 MARKER-ASSISTED SELECTION (MAS)	28
2.5.1 QTL repeatability between populations	30
CHAPTER 3	33
3 STRUCTURE OF THE THESIS	33
4 CHAPTER 4	36
	THP
BY USE OF BULKED SEGREGANT ANALYSIS	36
4.1 INTRODUCTION	36
4.2 MATERIALS AND METHODS	36
4.2.1 Plant material	36
4.2.2 DNA extraction and RAPD assays	41
4.2.3 Electrophoresis and gel documentation	42
4.2.4 DNA pooling and RAPD assay	42
4.2.5 Relationship of NESTUR with stem growth variables	44
4.3 RESULTS	45
4.3.1 Frequency Distribution of NESTUR values	45

4.3.2 Identification and genetics of marker-linked QTLs	45
4.3.3 QTL coincidence and pleiotropy	49
4.3.4 Epistatic interactions	50
4.4 DISCUSSION	52
4.4.1 General considerations	52
4.4.2 Limitations of bulked segregant analysis	53
4.4.3 QTL validation	55
5 CHAPTER 5	57

EXPERIMENT 2: CONSTRUCTION OF A RAPD-BASED GENETIC LINKAGE

MAP	57
5.1 INTRODUCTION	57
5.2 MATERIALS AND METHODS	58
5.2.1 Plant materials	58
5.2.2 Primer screening	58
5.2.3 Nomenclature of RAPDs	59
5.2.4 Linkage analysis and error detection	59
5.2.5 Genome length estimation and marker coverage	62
5.3 RESULTS	62
5.3.1 Primer screening and marker scoring on mapping population	62
5.3.2 Inspection of segregation ratio	63
5.3.3 Inspection of recombination estimates and LOD scores	64
5.3.4 Linkage map construction	65
5.3.5 Map goodness-of-fit	69
5.3.6 Estimate of genome size	71
5.4 DISCUSSION	71
5.4.1 Reliability of RAPDs	71
5.4.2 Segregation distortion	72
5.4.3 Levels of polymorphism	73
5.4.4 Co-dominant RAPD markers	75
5.4.5 Genome size estimation and map coverage	77
5.4.6 Efficiency of mapping function and algorithm	78
5.4.7 Genetic mapping of QTLs	80

8

EXPERIMENT 3: INTERVAL MAPPING OF QTL UNDERLYING NESTUR AND ASSOCIATED SEEDLING GROWTH TRAITS IN RADIATA PINE------81

6.1 INTRODUCTION	81
6.2 MATERIALS AND METHODS	82
6.2.1 Plant materials and phenotying	82
6.2.2 Genotyping, linkage map construction, and QTL analysis	82
6.2.3 Linkage map re-construction	82
6.2.4 OTL detection methods	83
6 3 BESULTS	
0.5 NESSEIS	00

6.3.1 Frequency of phenotypes	86
6.3.2 Linkage map re-construction	87
6.3.3 QTL detection by single-point analyses	93
6.3.4 QTL detection by interval mapping	95
6.3.5 Epistasis between QTL	100
6.3.6 Trait correlations and pleiotropic effects	100
6.4 DISCUSSION	102
6.4.1 Linkage map calculations	102
6.4.2 Limitations of RAPDs for QTL dissection in out-breeding species	104
6.4.3 Comparison of QTL mapping methods	106
6.4.4 Perspective	107
7 CHAPTER 7	109
EXPERIMENT 4. MARKER RECTION OF NESTUR AND SEEDLING	2
WITH SUPERIOR GROWTH POTENTIAL	109
	109
7.2 MATERIALS AND METHODS	111
7 2 1 Plant materials	111
7.2.2 Field planting and trait measurements	111
7.2.3 Regression analyses	112
7.2.4 Comparative analyses	112
7.3 RESULTS	113
7.3.1 Prediction of NESTUR from linked markers	113
7.3.2 Classification accuracy	115
7.3.3 Comparison of NESTUR versus linked markers in predicting seed	ling 116
7.3.4 Growth performance of seedlings with high- and low-NESTUR mark	er 118
7 4 DISCUSSION	170 120
7.4.1 Marker prediction of phenotype	120
7.4.2 Marker prediction of seedlings with superior growth potential	122
7.4.3 Potential for marker-assisted selection	126
8 CHAPTER 8	128
	120
EXPERIMENT 7: MARKER-BASED INFERENCES ON AGE-SPECIFIC	QTL
EXPRESSION IN SEEDLING GROWTH OF RADIATA PINE	128
8.1 INTRODUCTION	128
8.2 MATERIALS AND METHODS	129
8.2.1 Plant materials	129
8.2.2 Trait measurements	129
8.2.3 QTL mapping by interval method	129
0.3 RESULIS	130
8.3.2 Coincidence of stem growth OTL s	13U 191
8 4 DISCUSSION	134 137
8 4 1 Stability of stem growth OTLs with development stage	1.37
8.4.2 Similar QTLs control stemwood variables and increments	1.3R
	,00

х

8.4.3 Perspective on marker-assisted selection	139
9 CHAPTER 9: GENERAL DISCUSSION	140
 9.1 STEM GROWTH EFFICIENCY AND EARLY SELECTION 9.2 USING MARKER-ASSISTED SELECTION TO IMPROVE STEM GROWTH EFF 9.2.1 Detection of QTLs influencing NESTUR by bulked segregant 	140 ICIENCY141 analysis
9.2.2 Genomic mapping of NESTUR-linked QTLs	143 144
9.2.3 Marker prediction of stem growth potential	146
9.2.4 Stability of QTL expression with development stage	148
9.2.5 Potential applications of detected markers in radiata pine impl	rovement
	149
10 REFERENCES	150
11 APPENDIX 4.1	170

LIST OF TABLES

TABLE 4.1 SUMMARY OF RAPD LOCI IN LINKAGE WITH FACTORSINFLUENCING NESTUR IN RADIATA PINE FULL-SIB CROSS 12038 X 10946
TABLE 4.2 SUMMARIES OF (I) SPEARMAN RANK CORRELATIONS OFNESTUR with stem growth traits, and (II) associations ofNESTUR-linked RAPDs with stem growth traits.50
TABLE 4.3 P-VALUES FROM 2-WAY ANALYSES OF DIGENIC EPISTASISBETWEEN PUTATIVE QTLS, USING MARKERS AS TREATMENTS
TABLE 5.1 SCORED MARKERS, SEGREGATION DISTORTION ANDMAPPABLE POLYMORPHISMS OBSERVED IN THE MAPPING POPULATION OF30040 x 80121 cross
TABLE 5.2 LINKAGE GROUP, MARKER NUMBER, GENETIC LENGTH AND MEANINTERVAL BETWEEN MARKERS IN THE RADIATA PINE RAPD-BASED LINKAGE MAP 66
TABLE 6.1 NUMBER OF LINKAGE GROUPS AND GENETIC LENGTH OF LINKAGE MAPS CONSTRUCTED FROM MARKERS WITH UNKNOWN PHASE AND INFERRED. 89
TABLE 6.2 LINKAGE GROUP, MARKER LOCI, AND SINGLE-LOCUS EFFECTSOF RAPD MARKERS SIGNIFICANTLY ASSOCIATED WITH NESTUR AND STEMGROWTH TRAITS.94
TABLE 6.3 BIOMETRICAL PARAMETERS OF DETECTED QTL AFFECTING NESTUR,SVOL GROWTH, HT GROWTH AND NVOL GROWTH IN THE RADIATA PINE FAMILY3040 x 8012197
TABLE 6.4 PHENOTYPIC CORRELATION COEFFICIENTS FOR NESTUR AND ASSOCIATED SEEDLING GROWTH TRAIT.
TABLE 6.5 LOD-SCORE CORRELATIONS FOR NESTUR AND ASSOCIATED SEEDLING GROWTH TRAITS
TABLE 7.1 COMPARISON OF GROWTH (OVER 2 YEARS) OF SEEDLINGTREES WHICH SHARED SIMILAR BANDING PATTERN (PRESENCE/ABSENCE)OF 6 RAPD MARKERS LINKED TO NESTUR IN THE CROSS 30040 X 80121 124
TABLE 7.2 COMPARISON OF GROWTH (OVER 2 YEARS) OF THE TOP 1%OF THE PROGENIES (BASED ON NESTUR VALUES) WITH SEEDLING TREESPOSSESSING HIGH FREQUENCY OF NESTUR-INCREASING RAPD MARKERALLELES IN CROSS 30040 x 80121.

TABLE 8.1 BIOMETRICAL PARAMETERS OF DETECTED QTLS AFFECTING	
SEEDLING GROWTH AT 5 MONTHS, 1 YR AND 2 YRS OF AGE IN THE RADIATA	
PINE FAMILY 30040 x 80121	132

÷

LIST OF FIGURES

FIGURE 4.1 RADIATA PINE SEEDLING 10 DAYS AFTER GERMINATION, SHOWING THE SEED COAT AND MEGAGAMETOPHYTE TISSUE CLOSE TO THE POINT OF BEING CAST OFF
FIGURE 4.2 IRRIGATION DRIPPERS USED IN SEEDLING CULTURE
FIGURE 4.3 MEASUREMENT OF NEEDLE VOLUME BY WATER DISPLACEMENT 41
FIGURE 4.4 FREQUENCY DISTRIBUTION OF LOG10 TRANSFORMED NESTUR VALUES IN 174 INDIVIDUALS OF THE FULL-SIB CROSS OF RADIATA PINE (12038 X 10946)
FIGURE 4.5 ELECTROPHORETIC SEPARATION OF RAPD AMPLIFICATION PRODUCTS USING PRIMERS OPE-06, OPA-10 AND UBC-333
FIGURE 4.6 ILLUSTRATION OF EPISTASIS BETWEEN MARKER-LINKED QTL INFLUENCING NESTUR IN CROSS OF RADIATA PINE 12038 X 10946
FIGURE 5.1 EXAMPLES OF REPEATABLY AMPLIFIED RAPD BANDS FROM TWO SEPARATE THERMOCYCLERS, THE FTS-960 THERMAL SEQUENCER (CORBETT RESEARCH) AND GENEAMP PCR SYSTEM 9600 (PERKIN ELMER CETUS)
FIGURE 5.2 PLOT OF TWO-POINT RECOMBINATION ESTIMATES AND LOD SCORES OBTAINED FOR 262 MARKERS USING JOINMAP PROGRAM JMREC32
FIGURE 5.3 A RAPD-BASED GENETIC LINKAGE MAP OF RADIATA PINE, CONSTRUCTED FROM HAPLOID DNA OF 93 MEGAGAMETOPHYTES
FIGURE 5.4 DISTRIBUTION OF INTERVAL SIZES (IN CENTIMORGANS, CM) BETWEEN ADJACENT MARKERS ON RAPD-BASED RADIATA PINE LINKAGE MAP69
FIGURE 5.5 PLOT OF MEAN OBSERVED VS. CALCULATED MAP DISTANCES FOR THE 14 LINKAGE GROUPS ASSEMBLED USING 262 RAPD MARKERS
FIGURE 5.6 EXAMPLES OF RAPD BANDS AMPLIFIED FROM THE SAME PRIMER, AND WHICH SHOWED LINKAGE TO THE SAME GROUP74
FIGURE 5.7 EXAMPLES OF RAPD BANDS SHOWING CO-DOMINANT SEGREGATION PATTERNS

FIGURE 6.1 FREQUENCY DISTRIBUTIONS OF NESTUR AND ASSOCIATED SEEDLING GROWTH TRAITS IN THE FULL-SIB FAMILY 30040 X 80121
FIGURE 6.2 QUANTITATIVE TRAIT LOCUS (QTL) MAP OF NESTUR AND ASSOCIATED STEM GROWTH VARIABLES IN RADIATA PINE SEEDLINGS
FIGURE 6.3 SCATTER PLOT OF MARKER ORDER IN LINKAGE MAPS CONSTRUCTED WITH MARKERS OF KNOWN AND INFERRED PHASES93
FIGURE 6.4 LOGARITHM OF ODDS RATION (LOD) PLOT OF SIGNIFICANT GENOMIC REGION IN GROUP 4, SHOWING SCAN PROFILES FOR NESTUR, HEIGHT GROWTH (HT GROWTH), VOLUME GROWTH (SVOL GROWTH), AND DIAMETER GROWTH (SD GROWTH)
FIGURE 6.5 LOGARITHM OF ODDS RATIO (LOD) PLOT OF SIGNIFICANT GENOMIC REGION IN GROUP 3, SHOWING SCAN PROFILES FOR NESTUR, HEIGHT GROWTH (HT GROWTH), AND DIAMETER GROWTH (SD GROWTH)
FIGURE 6.6 LOGARITHM OF ODDS RATIO (LOD) PLOT OF SIGNIFICANT GENOMIC REGION IN GROUP 3, SHOWING SCAN PROFILES FOR STEM DIAMETER GROWTH (SD GROWTH), VOLUME GROWTH (SVOL GROWTH) AND NEEDLE VOLUME GROWTH (NVOL GROWTH)
FIGURE 7.1 PLOT OF OBSERVED AND PREDICTED NESTUR VALUES FROM LINKED RAPD MARKERS USING A MULTIPLE REGRESSION MODEL114
FIGURE 7.2 NORMAL PROBABILITY PLOT OF THE CUMULATIVE DISTRIBUTION OF RESIDUALS FROM PREDICTING NESTUR USING LINKED MARKERS
FIGURE 7.3 PERCENTILE PLOT OF OBSERVED VS. PREDICTED NESTUR VALUES116
FIGURE 7.4 CORRELATION COEFFICIENT BETWEEN OBSERVED STEM GROWTH OVER TWO YEARS AND PREDICTED VALUES USING NESTUR, NESTUR-LINKED MARKERS, AND A COMBINATION OF NESTUR + LINKED MARKERS
FIGURE 7.5 MEAN HEIGHT GROWTH OF SEEDLING TREES WITH BANDING PATTERNS FOR RAPD MARKERS ASSOCIATED WITH LOW-AND HIGH-NESTUR, AND THE TOP 1% OF THE PROGENIES (BASED ON NESTUR VALUES)

FIGURE 8.1 MEAN OF LOD SCORES FOR STEM GROWTH TRAITS	
(HEIGHT, DIAMETER AND VOLUME) MEASURED AT VARIOUS GROWTH	
STAGES (TIME FROM GERMINATION) IN RADIATA PINE SEEDLINGS GROWN IN	
GLASSHOUSE AND UNDER FIELD CONDITIONS	133
FIGURE 8.2 LOGARITHM OF ODDS RATIO (LOD) PLOT OF SIGNIFICANT GENOMIC	
REGION IN GROUP 6, SHOWING SCAN PROFILES FOR STEM DIAMETER,	
STEM VOLUME AND THEIR INCREMENTS OVER THREE SUCCESSIVE PERIODS	135
FIGURE 8.3 LOGARITHM OF ODDS RATIO (LOD) PLOT OF SIGNIFICANT GENOMIC	
REGION IN GROUP 13, SHOWING SCAN PROFILES FOR HEIGHT, DIAMETER,	
STEM VOLUME AND THEIR INCREMENTS OVER THREE SUCCESSIVE PERIODS	136

xvi