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The following changes were made to the manuscript after the original submission.

On page 78 after equation (4.20) replace the paragraph with the following text

At the NATRE site
�

was of the order of 100 m ��� implying that vertical velocities were of the

order of �����
	�� �� m s ��� . Inertial waves provide the dominant shear in the ocean but as these

waves have a corkscrew velocity profile,with shear magnitude invariant in depth and time, they

will not cause any flux divergence. A spatially varying shear can also be produced by intrusions

from collapsing turbulent events and internal waves. Measurements of finestructure at the NA-

TRE site by Polzin et al. (2001) found that both turbulent patches and internal waves had typical

vertical wavelengths of � = 1-10 m. After a turbulent event, partially mixed patches collapse

with a Richardson number of the order of 1, implying that the maximum shear is ����������� .

Typical values of � at the NATRE site were of the order of ����	�� ��� s ��� , so that maximum hor-

izontal velocities of the collapsing patches would be of the order of ������	�� ���� 	�� ��� m s ��� .
If we assume that the maximum shear in internal waves also occurs when  "!$#�	 then the max-

imum horizontal velocities will be the same as those due to collapsing turbulent patches. The

ratio of maximum horizontal velocities to maximum vertical fingervelocities is then of order %
= 0.1–1, which from figure4.1 implies that �'&(	*),+.-/%10�),�'&3254 . The timescale for the formation

of significantdensity structure by (4.17) is then of the order of �76 = 	��98 � 	��� s, when either

collapsing turbulent patches or internal waves are driving a spatially varying shear.

On page 86 equation 5.8 should be corrected to the following.
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Abstract

In this thesis I address several topics concerning the interaction of convection and density

stratification in oceans and lakes. I present experimental and theoretical investigations of the

interaction between a localized buoyancy source and a heat flux through a horizontal boundary,

and of the interactions between salt fingers and intermittent turbulence or shear.

An extensive series of laboratory experiments were used to quantify the stratification and

circulation that result from the combined presence of a localized buoyancy source and a heat

flux through a horizontal boundary. Previous studies found that convection in the form of a

turbulent buoyant plume tends to produce a stable density stratification, whereas the distributed

flux from a horizontal boundary tends to force vigorous overturning and to produce well-mixed

layers. A new result of this thesis is that a steady density profile, consisting of a mixed layer and

a stratified layer, can exist when the plume buoyancy flux is greater than the distributed flux.

When the two fluxes originate from the same boundary, the steady state involves a balance

between the rate at which the mixed layer deepens due to entrainment on the one hand and

vertical advection of the stratified water far from the plume (due to the volume flux acquired

by entrainment) on the other hand. There is a monotonic relationship between the normalized

mixed layer depth and flux ratio R (boundary flux/plume flux) for 0 � R � 1, and the whole

tank overturns for R � 1. The stable density gradient in the stratified region is primarily due

to the buoyancy from the plume and for R � 0 there is a small increase in the gradient due to

entrainment of buoyancy from the mixed layer. For the case of fluxes from a plume located

at one boundary and a uniform heat flux from the opposite boundary the shape of the density

profile is that given by Baines & Turner (1969), with the gradient reduced by a factor � 1 � R �
due to the heating. Thus, when R ��� 1 there is no stratified region and the whole water column

overturns. When 0 � R ��� 1, the constant depth of the convecting layer is determined by the

Monin-Obukhov scale in the outflow from the plume.

One application of these laboratory experiments is to surface cooling in lakes and reser-

voirs that have shallow sidearms. During prolonged periods of atmospheric cooling, gravity
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currents can form in these sidearms and as the currents descend into the deeper waters they

are analogous to isolated plumes. This can result in stratification at the base of a lake and an

upwelling of cold water. Away from the shallow regions, surface cooling leads to a mixed

surface layer. The depth of this layer will be steady when the rate of upwelling balances the

rate at which the mixed layer deepens by turbulent entrainment. A series of laboratory exper-

iments designed to model the depth distribution of a lake with a shallow sidearm showed that

the steady depth of the mixed layer depended on the ratio of the area of the shallow region

to the area of the deep region. Significant stratification resulted only when the reservoir had

shallow regions that account for more than 50 % of the surface area. The depth of the surface

mixed layer also depended on the ratio of the depths of the shallow and deep regions and no

significant stratification forms if this ratio is greater than 0.5. These results are in good agree-

ment with observations of circulation and stratification during long periods of winter cooling

from Chaffey reservoir, Australia. Theoretical time scales are also developed to predict the

minimum duration of atmospheric cooling that can lead the development of stratification.

In the second part of this thesis, I report a series of laboratory experiments which are

designed to investigate the fine structure and buoyancy fluxes that result from salt finger con-

vection in the presence of shear and intermittent turbulence. We find that, when salt finger

convection in deep linear gradients is superposed with a depth-dependent spatially periodic

shear, variations in the density profile develop on the same wavelength as the shear. The lab-

oratory experiments presented in this thesis were carried out in a continuous density gradient

with a spatially periodic shear produced by exciting a low-frequency baroclinic mode of ver-

tical wavelength 60 mm. The density gradient consisted of opposing salt and sugar gradients

favourable to salt fingers (an analogue to the oceanic heat/salt system). Where the shearing

was large the salt finger buoyancy fluxes were small. Changes in salinity gradient due to the

resulting flux divergence were self-amplifying until a steady state was reached in which the

spatial variations in the ratio of salt and sugar gradients were such that the flux divergence

vanished. Thus, along with reducing the mean salt finger buoyancy flux, a spatially varying

shear can also lead to the formation of density structure.

In the ocean intermittent turbulence can occur in isolated patches in salt finger-favourable

regions. I present new results from laboratory experiments in which a partially mixed patch

was produced in deep linear concentration gradients favourable to salt finger convection. Salt
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fingers give rise to an “up gradient” flux of buoyancy which can reduce the density gradient

in a partially mixed patch. This can then lead to overturning convection of the partially mixed

patch if a) the ratio of T and S gradients, Rρ � αTz
�
βSz, is near one, b) if turbulence results in

a nearly well-mixed patch and c) the patch thickness is large enough that convective eddies are

able to transport T and S faster than salt fingers. Once overturning occurs, subsequent turbulent

entrainment can lead to growth of the patch thickness. Experimental results agree well with

the theoretical prediction that h ��� � 8η B
�
N2 t, where h is the patch thickness, t is time, η is

the mixing efficiency of turbulent entrainment, B is the buoyancy flux of the salt fingers and N

is the buoyancy frequency of the ambient gradient region. This thickening is in contrast to the

collapse that a partially mixed patch would experience due to lateral intrusion in a very wide

tank. In regions of the ocean that contain salt fingers there is the possibility that, after a period

of initial collapse, an intrusion could enter a regime where the rate of collapse in the vertical is

balanced by the growth rate due to turbulent entrainment from the salt fingers buoyancy flux,

thus tending to maintain the rate of lateral spread.

A further series of laboratory experiments quantified the buoyancy fluxes that result from

salt fingers and intermittent turbulence. A continuous density gradient, favourable to salt finger

convection, was stirred intermittently by an array of vertical rods that move horizontally back

and forth along the tank at a constant velocity. Previous experiments had found that continuous

turbulence destroys any salt fingers present because the dissipation of turbulent kinetic energy

occurs at scales that are generally smaller than salt fingers widths. However, when turbulence

is present only intermittently, the salt fingers may have time to grow between turbulent events

and so contribute to the vertical diffusivities of heat and salt. We conclude that the vertical

buoyancy flux of salt fingers is strongly dependent upon the intermittency of the turbulence,

and equilibrium fluxes are only achieved if the time between turbulent events is much greater

than the e-folding time of the salt fingers. When these results are applied to an oceanographic

setting, the effect of intermittent turbulence, occurring more 5% of the time, is to reduce the

effective eddy diffusivity due to salt fingers below equilibrium salt finger values, so that at

Rρ � 2 the eddy diffusivity is due only to turbulence. The time averaged salt fingers fluxes are

not significantly reduced by intermittent turbulence when Rρ � 2 or if the intermittence occurs

less than 2% of the time, and so may contribute significant diapycnal fluxes in many parts of

the ocean.
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Chapter 1

Introduction

The research in this thesis is aimed at understanding some of the important dynamics of

convection and turbulent mixing that drive circulation in oceans and other water bodies. The

oceans on the whole are stably stratified with warm, light waters overlying cold, dense waters

at the bottom. Near the surface, exchanges of heat and freshwater with the atmosphere result in

density differences which can drive convection between surface and bottom waters. In regions

where there is strong localized cooling, dense surface water can sink to the abyssal plains and

force a distributed upwelling in the rest of the ocean. In the sub-tropical regions, solar heating

can result in hot, salty water overlying colder, fresher water. In this case salt finger convection

can occur, which also results in a flux of buoyancy downwards. Turbulent mixing can also

occur in the stable density gradients of the ocean from a variety of mechanisms such as flow

over topography or interactions between internal waves. Detailed predictions of circulation

in oceans and water bodies are sensitive to how these three mechanisms of vertical transport

are parameterized, so it is important to understand how the different forms of convection and

turbulence interact and under what conditions they will contribute buoyancy fluxes.

In this thesis two fundamental problems involving mixing and stratification in water bod-

ies are addressed. The first concerns the stratification and circulation that result when both

distributed and isolated sources of buoyancy are simultaneously applied to a confined volume.

This problem is explored using theory and laboratory experiments, and the results are then

applied to understand observations from a field study of stratification that developed in a water

supply reservoir in response to winter cooling. The second problem addressed in this thesis is

the interaction of salt finger convection with shear and intermittent turbulence. This problem is

investigated using a series of laboratory experiments and the results have implications for the

generation of oceanic fine-structure and for diapycnal fluxes in the thermocline.

1
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In
�
1.1 we review previous laboratory and field observations on the circulation and strat-

ification that result from distributed and isolated sources of buoyancy. In
�
1.2 the salt finger

instability is introduced and previous theory, laboratory experiments and field observations are

discussed. An overview of the experiments and theory in this thesis is presented in
�
1.3.

1.1 Competition between distributed and isolated sources of buoy-

ancy

1.1.1 Stratification produced by plumes and surface heating in confined vol-

umes

A destabilizing buoyancy flux distributed uniformly over the top or bottom horizontal

boundary of a fluid layer drives turbulent convection in the layer when the Rayleigh num-

ber is large. The consequent convection maintains a nearly homogeneous layer. A localized

source of buoyancy, on the other hand, produces a plume. Baines & Turner (1969) showed

that a turbulent plume in a fluid volume of finite vertical and horizontal extent leads to the

development of a stable density stratification. Hence if a layer is subjected to both a uniformly

distributed boundary flux and an intense, localized flux, there is competition between the ten-

dency for the uniform flux to overturn the layer and the tendency for the turbulent plume to

stratify the system.

In a semi-enclosed sea, for example, the heat loss or evaporation from the surface may

supply a buoyancy flux broadly over the surface, driving convection in a surface mixed layer.

If the surface fluxes are more intense in a relatively small region, deep convection may occur,

involving sinking and horizontal entrainment similar to that in the idealized turbulent plume

from a small (or even point) source. Stratification may be established by the plume deep in the

water column, while the surface flux maintains the upper convecting layer.

Baines & Turner (1969) have analyzed the case of a turbulent plume in detail. The plume

rises through its surrounding fluid until it reaches the opposite boundary, where it spreads out

in a layer of thickness h, as illustrated in figure 1.1. The first fluid in the plume to reach

this boundary is lighter than the surroundings and forms a density step. As the plume flow

continues, entrainment of surrounding fluid into the plume assures that the outflow continually
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decreases in density while the density step, or “first front”, is slowly displaced downward to

asymptotically approach the level of the plume source. Thus the tank is slowly filled with

a density gradient, the shape of which is controlled by the entrainment into the plume. The

resulting density profile is illustrated in figure 1.2.

h

Figure 1.1: A schematic illustration of the “filling box” model of Baines & Turner (1969), showing the
entrainment of fluid by the plume and vertical advection v in the tank. This box has radius r and depth
H.

Worster and Huppert (1983) approximated the entrainment equations to obtain an analytic

solution for the time evolution of the density gradient. They showed that below the first front

the density gradient quickly reaches that of the steady state, an observation that agrees well

with experiment. Manins (1979) extended the description of the “filling box” model and set

limits on the aspect ratio of the box, so that inertial recirculation driven by the momentum of

the plume outflow is avoided. For tanks of aspect ratio H
�
r � 1 the whole tank is characterized

by vertical accelerations comparable to horizontal accelerations and the tank remains mixed.

Baines & Turner (1969) and Barnett (1991) both concluded that the outflow depth increases

with the aspect ratio, for an aspect ratio H
�
r � 1.

For small aspect ratios (wide basins) Manins (1979) found that the outflow occupies 1/4

of the total depth of the plume fall. However, due to the lack of any strong density gradients

in this region, the outflow makes little difference to the asymptotic density gradient. Manins

defined a Froude number for the flow and showed that when the outflow thickness is small (as

assumed by Baines & Turner, 1969) the flow entrains fluid from above causing the outflow to

deepen until it reaches an equilibrium depth.
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Figure 1.2: The density profiles that result at three successive times. The density profile remains a
constant shape while decreasing in density linearly at every point.

Other studies relevant to the present problem have shown that when there is a pre-existing

gravitationally stable density gradient in the water and a destabilizing heat flux is imposed at

a horizontal boundary, a mixed layer forms and increases in depth with time. This is relevant

to, for example, the formation of the surface mixed layer of a lake during nocturnal winter

cooling, or the oceanic mixed layer during times of low wind but strong surface cooling. Turner

(1973) and Manins & Turner (1977) showed that a balance of the kinetic and potential energy

involved in the mixing gave a convecting layer depth with the time evolution h ∝ t1
�
2. Deardorf

et al. (1980) investigated the mechanism of convective mixing as a function of a Richardson

number, defined as Ri � g∆ρh
� � w � � 2, where g is the acceleration due to gravity, ∆ρ is the

density difference, w
�

the r.m.s. eddy velocity of the convective motion in a convecting layer

of depth h. When the penetrative eddies reached the base of the mixed layer they penetrated a

distance ∆h in the underlying stratification. Deardorf et al. (1980) found that even for mixed

layers with high Ri the normalized interface thickness ∆h
�
h was approximately 0.2.

When a layer is subjected to both a destabilizing uniform boundary flux and a localized
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flux, competition between overturning and stratification-building is expected to depend on the

relative strengths of the two sources and the box aspect ratio. We define R to be the ratio of the

total buoyancy flux BA through the base (where B is the buoyancy flux per unit area and A is

the base area of the tank) to the total buoyancy flux F from the localized source as

R � BA
F �

(1.1)

and investigate the behaviour of the system as a function of R in the long-time limit. We make

use of laboratory experiments in which a basal heat flux is applied to a box of water while the

plume is driven by either a small source of dense salt solution at the top or a source of less

dense fresh water at the base. Of particular interest is whether a mixed layer of steady depth

can exist with a part of the water column well-mixed and a part stratified.

1.1.2 Stratification produced by surface cooling in lakes with significant shallow

regions

In many lakes, reservoirs and estuaries the interaction of surface cooling with sloping

bathymetry results in the generation of downslope flows of cold dense water that can lead

to the formation of stratification. The formation of gravity currents has been observed in field

studies by Monismith et al. (1990) where differential cooling, due to variations in reservoir

bathymetry or surface wind speed, led to strong horizontal circulation in a reservoir. Gravity

currents have been observed flowing down topography in Lake Geneva, Switzerland (Fer et

al., 2000) and in Lake Tahoe, California, USA (Thompson & Schladow, pers. comm.) where

they are believed to have filled the deep basin with dense cold water. James & Barko (1991)

observed gravity currents transporting significant amounts of phosphorous from the shallow to

the deeper regions of Eau Galle reservoir, Wisconsin, USA. Thermistor chain data show the

ubiquitous presence of convectively-driven circulation in billabongs (Sherman et al., unpub-

lished data), shallow lakes and wetlands (Arnold & Oldham, 1997). The relationship between

the volume flux of a gravity current, the surface cooling rates and the side arm geometry has

been studied numerically by Horsch & Stefan (1988) and in the laboratory by Maxworthy

(1997), Sturman & Ivey (1999), Sturman et al. (1999) and Finnigan & Ivey (1999, 2000) .

Away from shallow regions, surface cooling of a reservoir leads to a well-mixed surface
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Figure 1.3: A uniform destabilizing buoyancy flux per area is provided to the surface of a reservoir with
a deep region which has a shallow side arm. The shallow region cools rapidly and produces a gravity
current that fills the deep region with cold dense fluid. This causes a general up-welling of cold fluid.
Near the surface of the deep region there is a convecting layer.

layer that can erode the deep cold stratified layer. A surprising new result of this thesis is

that if the rate at which cold dense water up-wells, due to continued input by the cold gravity

current, balances the rate at which the mixed layer deepens due to entrainment by surface

convection, then a steady mixed layer depth may result. This is sketched in figure 1.3. This

development of stratification is in contrast to the normal assumption of ‘winter overturning’ of

lakes and reservoirs. During spring and summer many lakes will develop a strong thermocline

in response to surface heating. If there is already a strong thermocline present after winter

then there will be important economic consequences for maintaining water quality and the

prevention of toxic algal blooms.

To determine how the stratification depends upon the reservoir geometry, we conduct a

series of laboratory experiments with a geometry similar to figure 1.3, where a destabilizing

buoyancy flux is applied to the water column. By systematically varying the lengths and depths

of the shallow and deep regions we determine the conditions for persistent stratification to

develop. The theory and experimental results are then compared with bathymetry and field

measurements of stratification that developed in response to winter cooling from the Chaffey

reservoir, Australia, from a three year observation program by Sherman et al. (2000). This
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reservoir had large shallow sidearms and persistently formed a steady surface mixed layer with

a deep cold stratified layer. As the water column was not well-mixed, there were frequent

winter blooms of dinoflagellates and buoyant cyanobacteria, that required expensive water

treatment before it could be used by the nearby city of Tamworth.

1.2 The interaction between salt fingers, shears and intermittent

turbulence

Salt finger instability occurs when relatively hot salty water overlays cooler, fresher water.

A small parcel of water displaced downward loses heat faster than salt to the surrounding

fresh, cool water, and so becomes denser which accelerates the flow. Similarly if cool, fresh

fluid rises it gains heat and so becomes less dense. This results in an instability and a series of

counter-flowing plumes as shown in the sketch in figure 1.4. The horizontal wavenumber, k,

of the fastest growing perturbation is set by a balance between between thermal diffusion and

viscous drag.

1.2.1 Salt finger instability

The opposing gradients of salinity and temperature are sketched in figure 1.5, where the

stronger temperature gradient stabilizes the unstable saline gradient. Salt fingers grow most

rapidly when the ratio, Rρ of the mean temperature and salinity gradients, expressed in terms

of their contributions to the density gradients

Rρ � αT Z

βSZ �
(1.2)

is close to one. Here α � � 1
ρ � ∂ρ

∂T � S � p is the coefficient of thermal expansion at constant pressure

and salinity and β � 1
ρ � ∂ρ

∂S � T � p is the coefficient of saline expansion at constant pressure and

temperature. The horizontal over-bar in (1.2) denote that a horizontal average of T and S is

used to calculate vertical gradients.

When Rρ � 1 the density gradient is unstable and will overturn. An upper limit on the Rρ
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w
w
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Figure 1.4: (a) A sketch of the salt finger instability. Heat flows rapidly down the temperature gradient
(sketched by gray arrows) separating fingers, generating local density anomalies which drive vertical
motion with velocity, w, and horizontal wavelength 2π

�
k, where k is the horizontal wavenumber. (b) A

laboratory photograph of salt fingers formed by hot salty water (containing fluorescene dye) overlying
cold fresh water, photograph by J. Stewart Turner.

at which salt fingers can form is the ratio of thermal and saline diffusivities

τ � κS

κT � (1.3)

where τ � 0 � 01 in sea water. Thus salt fingers can form when 1 � Rρ � τ � 1. While heat and

salt are the oceanographically interesting case, the salt finger instability can occur with any

two components that have different diffusivities if there is an unstable gradient of the slower

diffusing component and a stable gradient of the faster diffusing component (Turner, 1973). It

has become standard to refer to the slower diffusing component as S and the faster diffusing

component as T . In the laboratory the sugar/salt pair is often used where sugar is the slower

diffusing S component and salt the faster diffusing T component, for which τ � 1 � 3. The

sugar/salt system is strictly an analogue to cold/salt rather than heat/salt, as increasing the

concentration of T (salt) increases the density of the fluid. Using the sugar/salt system has

the advantage that it avoids the problems caused by the difficulty of insulating the tank when

there are large vertical temperature gradients. The main problem is that while density and
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conductivity are easily measured, the concentration of each component is very time consuming

to measure.

density

de
pt

h
−αTz

ρz

βSz

Figure 1.5: A sketch of the horizontally averaged profiles of T , S (in density units) and ρ within a salt
finger region, for the heat/salt system.

Another important parameter of salt finger convection is the flux ratio

γ � � αFT

βFS
� (1.4)

Laboratory measurements (Turner, 1967; Schmitt, 1979b; Griffiths & Ruddick, 1980; Mc-

Dougall & Taylor, 1984) of the heat/salt system indicate γ � 0 � 6, and for sugar/salt γ � 0 � 9 for

Rρ near 1. Similar values were obtained in the numerical experiments of Shen (1995), Radko

& Stern (1998), Stern & Radko (1999), and Merryfield & Grinder (2001). As γ � 1 this means

that there is a net transport of density ‘up gradient’ and that the potential energy stored in the

unstable S gradient is being released to drive the convection. In contrast, turbulent mixing re-

quires an external input of energy and results in an increase in the potential energy of a density

gradient, so it has a ‘down gradient’ flux of density.
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1.2.2 Previous salt finger theory

The equations governing the time evolution of fingers in deep linear gradients of T and S

were first formulated by Stern (1960) as an equation for the conservation of momentum

∂w �
∂t
� ν∇2w � � g � αT � � βS � � (1.5)

and two conservation equations of T and S

∂T �
∂t
� κT ∇2T � � w �

∂T
∂z � 0 (1.6)

∂S �
∂t
� κS∇2S � � w �

∂S
∂z � 0

�
(1.7)

where ν is the molecular viscosity, w � is the vertical velocity, S � and T � are the perturbations

from the mean S and T and ∇2 � ∂2

∂x2 � ∂2

∂y2 for tall, narrow fingers where ∂2

∂z2 � 0. .

One solution to the above system of equations, valid at small times, is to assume that the w

T and S anomalies are sinusoidal in the horizontal and that the amplitudes grow exponentially

with time.

� w �
�
T �

�
S � � � � ŵ �

T̂
�
Ŝ � eλt sin � kx � sin � ky � � (1.8)

This reduces the system of equations (1.5) to (1.7) to

ŵ � λ � νk2 � � g � T̂ � Ŝ � (1.9)

T̂ � λ � κT k2 � � ŵT z � 0 (1.10)

Ŝ � λ � κSk2 � � ŵSz � 0 � (1.11)

Using the above equations, Schmitt (1979a) found the initial exponential growth rate for

the fastest growing fingers as a complex function of Rρ �
τ � κS

�
κT and Pr � ν

�
κT . As ν �

κT � κS for the heat/salt case, an approximate solution was found by Kunze (1987) for the
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initial exponential growth rate as

λ � 1
2
� κT � RρκS � gβSZ

ν
� � Rρ � � Rρ � 1 �

�
(1.12)

and that the wavenumber of the salt fingers is given by

k ��� gβSz � Rρ � 1 �
νκT � 1

�
4

� (1.13)

This results in finger widths of order several centimeters in the ocean and of order millimeters

in typical sugar/salt laboratory experiments.

1.2.3 Salt finger fluxes

The equations (1.9) to (1.11) require additional assumptions to determine the steady fluxes

of T and S. In the following we discuss the way in which salt finger fluxes scale with the S

gradients and differences between the fluxes through thin interfaces and deep linear gradients.

1.2.3.1 Thin interfaces

Most of the previous laboratory experiments on salt fingers have concentrated on the case

where there is a well-mixed layer of hot salty water overlying colder, fresher water. Salt fingers

can form at the interface between the two layers when 1 � α∆T
�
β∆S � τ � 1, where α∆T and

β∆S are the respective T and S difference between the two well-mixed reservoirs, and α and β

are the T and S expansion co-efficients.

For interfaces the dimensionless T flux, Nu, must be a function of the following variables

Nu � FT

κT ∆T
�
d � f � gβ∆S

�
gα∆T

�
d

�
ν

�
κS �

κT � �
(1.14)

where d is the convective layer depth, g the acceleration due to gravity, κS and κT the respective

molecular diffusivities of S and T , and ν is the viscosity of the fluid. These variables can be

formed into of the non-dimensional parameters

Pr � ν
κT �

τ � κS

κT �
Ra � gα∆Td3

νκT �
RaS � gβ∆Sd3

νκT �
(1.15)
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giving Nu � f � Ra
�
RaS �

Pr
�
τ � . Turner (1967) assumed that the buoyancy flux only depended

upon the properties of a thin boundary layer at the edge of the convecting region and did not

depend upon the convective layer depth d or the Prandtl number, Pr. It then follows from the

definition of Ra and Nu that

Nu � f � β∆S
α∆T �

τ � Ra1
�
3

� (1.16)

since this is the only form that removes the dependence of FT on d. Using the definition of the

Nusselt number (1.14), and the Rayleigh number (1.15), Turner (1967) then showed that

βFT � f � Rρ �
τ � � β∆S � 4

�
3

� (1.17)

The value of f � Rρ �
τ � was measured by Stern & Turner (1969) as f � Rρ �

τ � � 10
� 2 cm s

� 1 in

sugar/salt experiments. Similar experiments by Lambert & Demenkow (1972) at lower values

of Rρ, found values of f � Rρ �
τ � in the range of 0 � 5 � 10 � 3 to 0 � 75 � 10 � 3 cm s � 1. Part of the

reason for the difference between these results was explained by Griffiths & Ruddick (1980)

who measured the dependence of f � Rρ �
τ � upon Rρ and found that f � Rρ �

τ � � R
� 6
ρ . Recent

numerical simulations of the salt finger fluxes across thin interfaces by Radko & Stern (2000)

have also verified the functional form of (1.17).

1.2.3.2 Deep linear gradients

An interface between two well-mixed regions is no longer ‘thin’ when the thickness is

much larger than the intrinsic finger length scale and the fingers are no longer connected to

both of the well-mixed reservoirs. This occurs as salt fingers are not infinitely long (as assumed

in 1.8) but rather have aspect ratio ratio of two or three, for Rρ � 2 (Taylor, 1993; Shen, 1995).

For salt fingers in deep ‘crossed’ gradients of S and T , the result of (1.17) does not apply. The

extensive parameters which govern the dynamics of the salt fingers in deep linear gradients are

gβSz �
gαTz �

ν
�
κS �

κT , and there is no externally imposed length scale. These variables can be

expressed in terms of the non-dimensional parameters

Pr � ν
κT �

τ � κS

κT �
Rρ � αTz

βSz
� (1.18)
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and there is no Rayleigh number. The Nusselt number in this case is defined in terms of the

gradients as

Nu � FT

κT Tz � f1 � Rρ �
Pr

�
τ � � (1.19)

For a given fluid, Pr and τ will be constant. Using the definition (1.19) leads to

FT � f2
�
Rρ � κT

∂T
∂z �

(1.20)

and for a given Rρ the flux of T is linearly proportional to the gradient of T .

The equation (1.20) does not give the magnitude of the T fluxes or their dependence upon

Rρ. Various theoretical mechanisms have been proposed by which salt finger fluxes in deep

gradients are limited. The initial growth of fingers is exponential, with growth rate (1.12), up

to the point where shear instability of the fingers (described by a Froude or Reynolds number

criterion) sets in (Kunze, 1987) and steady fluxes are then reached. Holyer (1984,1985) and

Taylor & Veronis (1986) have identified vertical disturbances that grow at a wavelength com-

parable with the finger width, consistent with observations of Taylor (1993) that salt fingers

with 1 � Rρ � 5 broke down into ‘blobs’ of aspect ratio of two. Direct numerical simulations

of salt fingers in deep linear gradients have been used to parameterize the magnitude of the

fluxes. In 2D and 3D numerical experiments of salt fingers in linear T and S gradients, Shen

(1995), Radko & Stern (1998,2000), Stern & Radko (1999) and Merryfield (2001) developed

scaling for the resulting non-dimensional T and S fluxes in terms of Rρ.

1.2.4 Eddy diffusivity parameterization

Given the linear dependence of flux on gradient in (1.20), the fluxes can be written in the

form of an eddy diffusivity as

FT � � KT � Rρ � ∂T
∂z

� (1.21)

Salt fingers are strictly a convective process but their fluxes in deep gradients can be modeled in

the form of an eddy diffusivity. This assumption has been used by other authors such as Schmitt

(1981), Walsh & Ruddick (1995, 1998) and Zhang et al. (1998) when studying vertical length

scales much larger than the finger scale. For Rρ close to one, salt fingers have aspect ratio near
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2 (Taylor 1993) and hence the assumption of an eddy diffusivity is reasonable for modeling

transport through distances much larger than the finger width.

The conservation equations governing the evolution of horizontally-averaged T and S

within a deep field of salt fingers (Stern 1969) are simply written as

∂S
∂t � �

∂FS

∂z �
(1.22)

∂T
∂t � �

∂FT

∂z
� (1.23)

The fluxes of T and S are then

FS � � KS � Rρ � ∂S
∂z �

(1.24)

αFT � γ βFS �
(1.25)

where γ is the ratio of T and S buoyancy fluxes due to salt fingers. Salt fingers transport S most

efficiently, (γ � 1) and there is a net flux of density ‘up gradient’.

Combining equations (1.22) and (1.24) gives the familiar Fickian ‘diffusion’ equation

∂S
∂t � KS

∂2S
∂z2 � (1.26)

If one considers an S gradient composed of a steady part S, with a small perturbation S̃

∂S
∂z �

∂S
∂z
� ∂S̃

∂z �
(1.27)

then the action of the salt fingers is to ‘diffuse’ away the S̃ perturbation, with an exponential

decay rate given by

λ � KS

l2 �
(1.28)

where l is the wavelength of the perturbation. This decay rate (1.28) is independent of both Sz

and S̃z.

Salt fingers cause an ‘up gradient’ flux of density, which is consistent with a negative
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diffusivity of density, Kρ. Mathematically modeling in terms of the diffusion equation for

density with a negative diffusivity would imply that the amplitude of any density perturbations

will increase exponentially with time. The exponential grow rate would be

λ � � Kρ

l2 �
(1.29)

and the smallest scales would grow most rapidly. However the effective T and S diffusivities,

KS and KT , are positive and it is only due to the coupling of T and S fluxes, by (1.25), that

there is an ‘up gradient’ flux of density. The time evolution of S anomalies is simply one of

enhanced ‘diffusion’. Thus great care must be exercised in the use of the negative diffusivity

for density and it will generally be essential to use explicitly the flux equations for both T and

S. The coupling of fluxes in (1.25) means that the rate of change of T̃ is less than that of S̃ by

a factor γ. An implication of this is that when salt fingers are dominant S̃ can ‘diffuse’ away,

while changes in T̃ generally will be slower. The effects this has on density anomalies will be

discussed in chapters 4 and 5. This approach is different to the model of Merryfield (2000),

who considered the evolution of perturbations in a density gradient by ‘up gradient’ salt finger

fluxes using a negative diffusivity of density.

Salt fingers in the ocean are usually present in a background of turbulence and it has not

been clear whether the equilibrium fluxes predicted from numerical results will actually be

realized. The effect of turbulence and shear on salt fingers has been studied in the context of

eddies produced by an oscillating grid and impinging upon a density step, where salt fingers

were growing (Linden, 1971; Altman & Gargett, 1987). In these studies the turbulence and

salt fingers were spatially separated with turbulent entrainment occurring at the edges of the

interface. When the turbulence was weak the turbulent eddies provided a shearing motion that

limited the salt finger fluxes. When turbulence was strong the salt finger fluxes were totally

disrupted. In the ocean turbulence is present only intermittently, so that fingers may have

time to grow and reach their equilibrium fluxes between turbulent events and hence contribute

significantly to diapycnal fluxes. In laboratory experiments (Taylor 1991) salt finger micro-

structure has been observed to rapidly re-emerge from a decaying turbulent event at Nt � 10

and then reach equilibrium structures after 5 to 10 e-folding periods. Related experiments

by Turner & Chen (1974) found that when turbulence was spatially isolated in crossed linear
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gradients of T and S, that a small mixing event could result in a breakdown to a well-mixed

patch for active fingers (density ratio Rρ near one), but at large Rρ even vigorous initial mixing

did not lead to any permanent well-mixed patches.

1.2.5 Salt fingers in oceanography

When first described by Stommel, Aarons & Blanchard (1956) salt fingers were termed an

“oceanographic curiosity” but advances in observational technology meant that, by the time

of the review by Schmitt (1994), it was thought that “the ocean is strongly unstable to double

diffusive processes and profoundly influenced by their presence”. Salt fingering-favourable

gradients occur in much of the world ocean’s mid-latitude thermocline, with much of the main

thermocline having Rρ � 2 (Figueroa, 1996). However, a difficulty in understanding the impli-

cations of salt fingers for ocean circulation arises because fingers are present in a background

of internal waves, density fine-structure and intermittent turbulence. Hence it has been dif-

ficult to transfer many of the ideas developed in laboratory experiments to the complicated

oceanographic environment in order to estimate fluxes, or even to unequivocally attribute fine-

structure to salt fingering.

An important result from laboratory experiments has been that, when a stable linear T

gradient is subjected to an imposed S flux at the vertical boundaries, a series of well-mixed

convecting layers can form (Turner, 1973) separated by sharp steps in T and S. Observations

of these “staircase structures” in the oceans can easily be made using the common CTD (con-

ductivity - temperature - depth) probe because the vertical scale between the steps is of the

order of several tens of meters. A probe only need have resolution of 1m to be able to de-

tect this fine-scale structure. The first such observations were made under the Mediterranean

outflow (Elliot, Howe & Tait 1974), in the Tyrrhenian sea (Molcard & Tait 1977) and in the

Caribbean (Lambert & Sturges 1977). A first step in verifying that these T � S staircases are

caused by salt finger convection requires that the characteristic small scales, or micro-structure,

of fingers can be distinguished from other processes such as turbulent mixing. A direct obser-

vation of salt fingers in the Caribbean T � S staircases was first achieved by Williams (1975)

who used an optical device to record photographs of thin vertical laminae with a wavelength of

order several centimeters. The characteristic spectral signal of salt fingers was also observed

in oceanographic measurements by Magnell (1976) and Gargett & Schmitt (1982) using towed
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micro-structure recorders. The first large scale field program to investigate salt fingers was

conducted in the Caribbean in 1985 over an area of 1 million km2 (Schmitt et al. 1987). The

C-SALT (Caribbean Sheets and Layers Transect) experiment made extensive fine-scale and

micro-structure observations of a series of strong T and S steps in the main thermocline that

had strong horizontal coherence for hundreds of kilometers. A significant result was that fluxes

infered from micro-structure measurements were a factor of 10 lower than predicted by (1.17),

using the salinity contrasts across the interfaces. The salt fingers were also observed to interact

strongly with inertial shear (Kunze et al., 1987) and turbulence was also found to be important

in determining the vertical fluxes (Marmorino 1990).

While the C-SALT experiments found that salt fingers were present in the Caribbean T � S

staircases, these fine-scale layers are relatively rare in the ocean even though much of the

main thermocline is favourable to the formation of salt fingers. This is thought to be due to

the occurrence of turbulence disrupting salt finger fluxes, as had been observed in laboratory

experiments of Linden (1971). The recent NATRE (North Atlantic Tracer Release Experiment)

field program was conducted in a region of the north Atlantic where gradients are largely

favourable to the salt fingers but without any strong fine-scale structure like the T � S staircases

such as those observed in the C-SALT experiments. Ruddick, Walsh & Oakey (1998) and St.

Laurent & Schmitt (1999) were able to compare a direct measurement of diapycnal diffusivity

made from the rate of spread of a passive dye tracer with measurements of micro-structure.

By calculating the dissapation rates of thermal variance and kinetic energy, St.Laurent

& Schmitt (1999) were able to determine the relative contribution of salt-fingers or turbulence

as a function of Richardson number (Ri) and density ratio (Rρ). The non-dimensional ratio of

dissipation rates of thermal variance and turbulent kinetic energy, Γ, is theoretically predicted

to vary for turbulence (Oakey, 1985) and salt fingers (McDougall & Ruddick, 1992). In regions

of high shear, where Ri � 1 the model for turbulence described most of the observed Γ and

when Ri � 1 most of the observed Γ was best described as being due to salt-fingers as a function

of Rρ. This led to estimates of diffusivity of heat and salt of KT � 0 � 08
�

0 � 01 cm2 s
� 1 and KS �

0 � 13
�

0 � 01 cm2 s � 1. St. Laurent & Schmitt (1999) found this agreed well with independent

measurements of the tracer inferred mixing rates by Ledwell et al. (1993). Because KS � KT

they inferred that the contribution of salt fingers was significant. This suggests that salt fingers

can be important in determining vertical T and S fluxes without necessarily forming easily
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observed staircase structures, and so may be significant for vertical fluxes in the large regions

of the ocean thermocline where 1 � Rρ � 2. A difficulty in generalizing the results of St

Laurent & Schmitt (1999) is that while there are many large scale measurements of S and T

gradients in the oceanic thermocline (Levitus, 1987), the frequency, variability and strength

of turbulent events over the oceanic thermocline is not well known. Turbulence in the stable

oceanic thermocline is generated by a variety of mechanisms (Gregg 1987) and measurements

from NATRE by Polzin et al., (2001) indicate that at any time about 5% of the water column

is actively overturning due to turbulent events. This raises the question of the mechanisms by

which the intermittent turbulence interacts with salt finger convection to determine diapycnal

fluxes and whether the fluxes are linearly additive and what possible fine-scale structure may

emerge.

The first evidence for the wide spread oceanographic influence of salt fingers was found by

Schmitt (1981), who showed that the T -S curves in central waters of the north Atlantic were

well described by curves of constant Rρ rather than the straight lines one would expect from

turbulent mixing between two different water bodies. By parameterizing the eddy diffusivities,

KS and KT , as decreasing functions of Rρ he found that any anomalies in Rρ would decay to

produce T -S curves of constant Rρ. The potential influence of salt fingers on ocean circulation

was investigated by Gargett & Holloway (1992) who examined the sensitivity of the GFDL

ocean model to changes in the ratio of of KT
�
KS. They found that the circulation from the

pole to the equator was very sensitive to choice of this ratio rather than the magnitude of KT

or KS. To understand the dynamics of this complex model Gargett & Ferron (1996) carried

out a simple four box model of thermohaline circulation to model the meridional overturning

cell. With ratios of KT
�
KS from 0.5 to 2, they found that multiple equilibria in the form of

the circulation could exist. Zhang et al. (1998) carried out a similar numerical experiment

to Gargett & Holloway (1992) but used a parameterization of KS and KT similar to that of

Schmitt (1981). They found that there were widespread regions of 1 � Rρ � 2 in most of

their experiments and these led to a reduction of 8% in the pole-ward transport of heat and

a 22% reduction in the meridional overturning rate compared to the case where heat and salt

have the same diffusivities. Merryfield et al. (1999) also used the parameterization of Schmitt

(1981) in the GFDL ocean model and found that it greatly improved the T -S relationships in

the deep ocean. All these studies provide strong evidence that the influence of salt fingers is
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significant in the thermohaline circulation. However as the results are all based on the ad hoc

parameterization of Schmitt (1981), it is important to investigate in greater detail how effective

diffusivities due to salt fingers are affected by inertial waves, shear and intermittent turbulence.

1.3 Thesis overview

In chapter 2 the circulation and stratification in a confined environment is systematically

investigated when distributed and localized buoyancy fluxes are released from the same hori-

zontal boundary and when they are released from opposite boundaries. The experiments are

described and experimental results are compared with theoretical hypotheses. Particular atten-

tion is given to the final equilibrium depth of the convective layer.

In chapter 3 a geometry similar to that sketched in figure 1.3 is used to model the effect of

winter cooling in a reservoir when a large fraction of the surface area is composed of shallow

side arms. The formation of gravity currents in these regions is analogous to the buoyant plume

sketched in figure 1.1 and similar stratification and circulation to that discussed in chapter 2

is expected. The ratio of the areas and the ratio of depths of the shallow to deep regions

(as sketched in figure 1.3) are systematically varied and the resulting mixed layer depth is

compared with theory. Results from laboratory experiments and theoryare then compared with

field observations of winter stratification that developed in the Chaffey reservoir, Australia.

The field data were obtained from a 3 year observation program run by Dr Brad Sherman

of the Commonwealth Scientific and Industrial Research Organization (CSIRO), Division of

Land and Water.

In chapter 4 the interaction of salt fingers with a spatially varying shear is examined. Strong

shear reduces the vertical T and S fluxes as the fingers become bent over. Hence a spatially

varying shear leads to flux divergences and could result in the generation of fine-scale structure

in the ocean. By using theory and laboratory experiments the magnitude and timescales of the

resulting density fine-structure are discussed along with an estimation of the timescales for the

formation of fine-scale structure in an oceanographic setting.

In chapter 5 a theoretical and laboratory model is developed to study the interaction be-

tween isolated turbulent patches and deep salt finger favourable gradients. A turbulent patch

will partially mix a density gradient and so leave a characteristic fine-scale signature. Once salt
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finger convection has re-established after the turbulent event, the density structure will change

due to divergences in the ‘up gradient’ buoyancy flux. These flux divergences weaken the den-

sity gradient in the partially mixed patch and can lead to overturning. Turbulent entrainment

may then become important and the patch may deepen with time, as predicted by Stern &

Turner (1969).

Chapter 6 discusses a laboratory experiment designed to measure the buoyancy fluxes that

result from intermittent turbulence (generated by periodically towed grid) and deep linear salt

finger favourable gradients. A theory is developed in terms of the e-folding periods of salt

fingers relative to the time between turbulent events. Using typical oceanic values of turbulent

intermittencies and the parameterization of Merryfield & Grinder (2001) to describe the eddy

diffusivities of salt fingers, a parameterization of the time averaged salt finger diffusivities of

T and S is suggested for use in large scale oceanographic modeling. This parameterization is

compared to the ad hoc parameterization of Schmitt (1981).

The main conclusions of this thesis are summarised in chapter 7 and suggestions are made

for future work.

Much of the research presented here has either been published or is under review. The

material of chapter 2 is found in Wells, Griffiths & Turner (1999), chapter 3 is reproduced

from Wells & Sherman (2001) and the study in chapter 4 forms the basis for Wells, Griffiths &

Turner (2001).



Chapter 2

Competition between distributed and

localized buoyancy fluxes in a confined

volume

In this chapter we investigate the stratification and circulation that result when a distributed

source and an isolated source of buoyancy are simultaneously present in a confined region. In
�
2.1 we examine the behaviour when fluxes are released from the same horizontal boundary

and, in
�
2.2, when they are released from opposite boundaries. The experiments are described

in
�
2.3 and experimental results are compared with theoretical hypotheses in

�
2.4. A discussion

of geophysical applications is presented in
�
2.5.

2.1 Fluxes from the same boundary

The interaction of flows produced by two buoyancy sources released at the same lower

boundary, is shown diagrammatically in figure 2.1 (a). Upon reaching the top of the layer,

the plume generates an outflow that forces a general downwelling of water. The downwelling

and entrainment of this water back into the plume produces a stable stratification. However,

the density gradient produced by the plume, if it were not continuously replenished, would be

overturned by the basal heating at a rate that can be calculated by applying the theory developed

by Manins & Turner (1977). In the present situation we hypothesize that a constant convecting

layer depth (less than the total depth of water) can exist. This occurs when the rate at which

the top of the convecting layer is advected downwards by the plume-induced circulation, is

equal to the rate of deepening of the convecting layer by bottom heating. If there exists such

21
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a balance, the system will consist of a well-mixed layer of depth h and an overlying density

profile similar to that sketched in figure 2.1 (b). Since the two buoyancy sources provide a

non-zero net flux into the chamber the density everywhere must decrease linearly with time.

2.1.1 Entrainment - advection balance

If the convecting layer depth h is to be constant, then the rate of convective deepening,

U � dh
�
dt, of the mixed layer must be equal and opposite to the downwelling velocity, v, of

the stratified interior. Entrainment will tend to increase the mixed layer thickness while the

filling box advection tends to decrease it. When these processes are not in balance, due to

either a small perturbation or initial conditions, the unequal advection and entrainment will act

to return the interface towards the steady position.

We can determine U from Manins & Turner (1977), who derived a result for the time

evolution of h for a convectively mixed layer beneath a constant density gradient as

h � �
6E

�

B1
�
2 N

� 1 t1
�
2

�
(2.1)

where N � � � g
�
ρ dρ
�
dz � 1

�
2 is the buoyancy frequency. The value of the mixing efficiency

constant, E
�

, is related to the fraction of the kinetic energy of the convecting layer which is

converted into potential energy by mixing less dense overlying water downward in to the mixed

layer. If there is extensive penetrative convection and entrainment creating a sharp density step

at the top of the convecting layer, then all the deepening is due to working of the convective

motions against buoyancy forces and E
� � 1. On the other hand, if convection is less vigorous

and the density profile remains continuous, mixed-layer deepening is by “encroachment” only

(heating of the mixed layer), and E
� � 1

�
3. We allow N to be a function of depth in (2.1) and

eliminating t gives

U � 3E
�

B N � z � � 2 h
� 1

�
(2.2)

where N � z � is now the depth-dependent buoyancy frequency at depth h.

Changes of the density in the filling-box stratification are due only to vertical advection

(Baines & Turner 1969) so that
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Figure 2.1: (a) A diagrammatic illustration of the expected flow pattern, with a mixed layer depth h
and (b) density profiles that result at three successive times, for heating from the bottom boundary and a
relatively fresh-water plume source at the base. Here R � 0 � 2 and the horizontal line shows the expected
depth to which there is mixing due to convection from the base.
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∂ρ
∂t � � v

∂ρ
∂z

� (2.3)

Since the density profile has a constant shape at large times the density changes with time

everywhere at the same rate. The rate of density change at all levels in the tank will simply be

given by the total input of buoyancy into the tank,

dρ
dt �

ρF � 1 � R �
AHg

� (2.4)

The density profile is uniform in the mixed layer and of the form given by Baines & Turner

(1969) in the stratified region. Using (2.3) and (2.4) the downwelling velocity v is

v � � ρF � 1 � R �
AHg

� ∂ρ
∂z � � 1

� (2.5)

Setting U � � v for a steady mixed layer depth gives

ζmixed � R
1 � R

3E
�

� (2.6)

where ζmixed � h
�
H the normalized mixed depth. If mixing into the convecting layer is due to

encroachment alone we have E
� � 1

�
3 (Manins & Turner, 1977) and ζmixed � R

� � 1 � R � . The

relationship between E
�

and η (the ratio of the downward buoyancy flux due to entrainment Be

relative to the buoyancy flux from the boundary B), was found by Manins & Turner (1977) to

be

E
� � 1

3
� 2η � 1 � � (2.7)

The ratio η has been found (Denton & Wood, 1981) to empirically depend upon the

Richardson number and Peclet number as

η � 0 � 20 Ri

1 � 0 � 41 Ri3
�
2
� 0 � 18 Ri

Pe
� (2.8)

There is a maximum value of η � 0 � 2 when Ri � 1 for high Pe. For large Ri, η approaches

zero. Using the result of (2.7) and (2.8) we see that E
�

is a function of Richardson number and

varies between E
� � 1

�
3 for high Ri to a maximum of E

� � 0 � 46 for low Ri when the interface

is entraining. The result of (2.6) is a general result for any plume source in a confined region
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-the exact form of the plume is important only in terms of evaluating the exact density gradient

to determine E
�

.

Using the idea of the entrainment - advection balance we can also determine a characteristic

time taken for the system to converge from initial conditions to the steady mixed depth. If the

system starts from a configuration where convection initially dominates then when the plume

is started a front will develop that is advected downwards until the steady depth h is reached.

From Baines & Turner (1969) the time it takes the position of the first front to reach a distance

ζ � z
�
H from the opposite boundary for a point source plume is given as

t � 5
4α
� 5π

18α � 1
�
3

r2H
� 3

�
2F

� 1
�
3

�
� 1 � ζ � � 2

�
3 � 1 �

�
(2.9)

where α is an experimentally determined entrainment constant equal to 0.1 and r is the ef-

fective tank radius. Substituting the value of ζ appropriate for the steady mixed depth at a

particular value of R gives a timescale on which the system converges to the steady mixed

depth. Similarly if the plume was started before the basal heating, the tank would be stratified

and the system would converge to the steady mixed depth on a timescale determined from (2.1)

where N � z � 2 is the stratification produced by the filling box process, given by (2.14) below.

2.1.2 Interface thickness

At the interface between the convectively mixed layer and the stably stratified region there

must be a transition region in which convective elements have penetrated and partially mixed

the density gradient. The thickness of this interface, ∆h, is a function of Richardson number

and adds to the apparent depth of the convecting layer when it is viewed in terms of convective

motion or small-scale refractive index gradients. Hence (2.6) under-estimates the total depth

of the mixed layer. In order to estimate the thickness of the interface we consider the average

kinetic energy of heated convective elements in the turbulent mixed layer. Experimental studies

(Deardorf et al., 1980) indicate that at low Ri the empirical relationship is

∆h
h � 0 � 21 � 1 � 31Ri

� 1

�
(2.10)

derived as a curve fit to experimental data, valid for the range 5 � Ri � 40.
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This means that the observed mixed depth ζ will be greater than that given by (2.6) by

ζmixed � � 1 � 21 � 1 � 31Ri
� 1 � 3E

� R
1 � R

� (2.11)

In our experiments, a gradient form of the Richardson number can be defined as

Rig � N2h∆h
w2

� �
(2.12)

with w � the root-mean-square velocity of the convective turbulent motions. As the experi-

ments of Deardorf et al. (1980) used a linear density gradient their values of Ri would be the

same as if they had used Rig, allowing a meaningful comparison to be made between results.

Experimental and theoretical work of Adrian et al. (1986) has determined that

w � � 0 � 6 � Bh � 1
3

� (2.13)

The buoyancy frequency is taken from the filling box solution of Baines & Turner (1969) and

can be expressed as

N2 � 1
�
4 � π � � 2

�
3F2

�
3α � 4

�
3H

� 5
�
3 ∂ fo

∂ζ �
(2.14)

where α is the entrainment coefficient and fo is the non-dimensional density gradient in the

“filling box” as defined in Baines & Turner (1969). If we assume that ∆h � 0 � 2h and R �
ζ
� � 1 � ζ � then the gradient Richardson number (2.12) can then be written as

Rig
� 0 � 69π2

�
3 � 1 � ζ � 2

�
3 � r � H � 4 �

3α � 4
�
3 ∂ fo � ζ �

∂ζ �
(2.15)

which is a weak function of the aspect ratio H
�
r, but a strong function of the convecting layer

depth, partially due to the form of fo � ζ � . For large values of ζ, Rig is small ( � 5) and we see a

significant interface thickness.
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2.2 Fluxes from opposite boundaries

2.2.1 Qualitative description of the flow

When the plume source is at the top boundary and heating is again at the base, the plume

outflow spreads along the base, where it heats up. Thus the total buoyancy flux supplied to the

water at the base of the tank is reduced by the basal buoyancy flux. When the magnitude of the

base buoyancy flux BA is greater than that from the plume source F then R � � 1, and a stable

density gradient cannot develop and the whole water column overturns. When the magnitude

of the distributed boundary flux is less than that of the plume flux (R � � 1), a stable gradient

similar to that in the “filling box” solution may develop (in at least some of the water depth),

but the density gradient will be reduced by the factor 1 � R below the strength of the gradient

that would be produced by the plume alone. Since the plume buoyancy flux at each depth

within the upper stratified region is unchanged, the entrainment and plume volume fluxes, and

hence the vertical advection velocity and shape of the density gradient, are also unchanged.

This result can also be derived using the equations of Baines & Turner (1969) modified for the

effect of the additional buoyancy into the outflow layer.

We predict that for 0 � R � � 1 an asymptotic state can be achieved in which the density

profile has two distinct regions, a stably stratified region overlying a well-mixed layer of depth

h, as illustrated in figure 2.2. The uniform mixed layer is maintained by the turbulence gener-

ated by shear in the plume outflow. However the advective balance that can maintain a steady

mixed-layer depth in our previous case of buoyancy sources on the same boundary (
�
2.1) is no

longer possible - both plume filling of the interior and mixing by convection in this case act to

deepen the mixed layer. In the present case we recall the mechanism which limits the depth

of the turbulent outflow layer of the plume when B � 0. Here the turbulent kinetic energy of

the outflow must do work against buoyancy, and the extent of mixing is limited. When B � 0

the density gradient is reduced by a factor of � 1 � R � by the bottom heating, but the available

kinetic energy in the plume outflow is dependent only upon F. The density gradient is reduced

by the heating from the base so the mixed depth will increase with R until, at R ��� 1, there is

no stabilizing density gradient and the whole tank becomes well mixed.
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Figure 2.2: (a) A diagrammatic illustration of the flow pattern with a mixed layer depth h. (b) The
expected density profiles at three successive times for the case of a plume source at the top and heating
from the bottom boundary. As the plume source is in the opposite sense to figure (2.1) the density
increases with time and the maximum density gradient is near the top of the tank. Here R ��� 0 � 4
and the horizontal line shows the depth to which the plume’s turbulent outflow mixes the overlying
stratification.
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2.2.2 The shear generated turbulent mixed layer

The depth of the turbulent outflow from an axisymmetric plume was found experimentally

to be ζ � 0 � 25 (Manins, 1979). With the addition of heating at the base, the turbulent kinetic

energy in the outflow will be the same, controlled only by the plume buoyancy flux and the

depth of water. Thus we expect that the mixed depth, ζm, increases monotonically from the

value of ζm
� 0 � 25 at R � 0 to ζm � 1 (mixing through the whole depth) when R � � 1. Aspect

ratios larger than 1 (deep, narrow boxes) are expected to lead to full mixing also at some

R � � 1 due to creation of a vortex recirculation at the tank wall.

The mixed depth in this case can be predicted from the total buoyancy flux per area B � F
�
A

and the mean outflow velocity u of the turbulent outflow layer. These provide a length scale

physically analogous to the Monin-Obukhov scale (Turner 1973, 1986) as

L � � u3

B � F
�
A

� (2.16)

When L is positive a relatively dense bottom mixed layer will form and when L is negative

the heat input will be gravitationally unstable and a deeper mixed layer will form. As the

volume flux is conserved at the base of the plume, the initial outflow velocity of the layer will

be directly proportional to that of the plume, hence u3 ∝ � F
�
H. If we assume that the mixed

depth scales as L in (2.16), then

ζm � L
�
H � c

1 � R �
(2.17)

where the constant of proportionality c is taken to be 0.25 to agree with observations and

theory of Manins (1979) for R � 0. For larger basal fluxes
�
R

�
is larger and the shear mixed

layer is deeper. For R � � 1 the total buoyancy flux is destabilizing and the whole tank will

overturn. It is expected that this relationship will only be valid for small R. As the magnitude

of R increases, the effects of penetrative convection and the radial dependence of the outflow

velocity and heating will modify (2.17). The decreasing radial velocity as the plume spreads

out will be compensated by a greater uptake of heat by the slower flow, so that initially ζm

would not change as rapidly with R as (2.17) suggests and complete overturning (ζm � 1) will

occur closer to R � � 1.
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2.3 Experimental design

Experiments were carried out in a square Perspex tank with 50 cm � 50 cm, filled with

water to a depth of 15 or 35 cm. Base heating was provided by an electrical heating mat capable

of running at powers of up to 2kW. This was insulated from below to ensure that most of the

power dissipated in the mat was transfered to the water, and overlaid by a 4mm sheet of copper

to ensure a uniform heat flux. The Perspex walls and a floating foam roof provided sufficient

insulation of the water against heat loss from the water to the room. The two different water

depths gave aspect ratios of approximately 0.5 and 1.

Plumes were produced either by releasing very small volume fluxes of dense salt solution

at the top of the fresh water column (the opposite boundary from the heat flux) or by using a

strong salt solution in the tank and releasing fresh water from a source through the centre of

the base. In each case the release was at a constant rate and from tubes 7mm in diameter. The

buoyancy flux of the plume is given by

F � g
∆ρ
ρo

Q
�

(2.18)

where Q is the volume flux and ∆ρ is the density difference between the incoming fluid and

the reference density, ρo, of the water in the tank. Source density differences of ∆ρ
�
ρo � 0.13

to 0.18 were used, and buoyancy fluxes were typically F � 20 to 40 cm4 s
� 3. The volume

fluxes, measured using a Gapmeter flow meter, were sufficiently small that both the mass and

momentum fluxes from the sources could be neglected. To ensure that the flow became fully

turbulent when it left the nozzle, we either placed cross-hairs inside the end of the tube or

used a mechanical vibrator on the pipe. Experiments of Bloomfield & Kerr (1998) used very

similar volume fluxes and tube diameters to generate plumes and jets, and they found over a

comparable range of conditions that the virtual point plume source was less than 1cm inside

the tube. This small correction changes the effective depth H by less than 5%.

The integrated buoyancy flux BA from the base is given by

BA � g
αT J
ρcp �

(2.19)

where J is the total heat flux, αT is the coefficient of thermal expansion of the water or salt
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solution (taken from data in the CRC Handbook 1985) and cp is the specific heat of the water

at constant pressure (taken from data in Kaye & Laby 1973). The heat flux J was determined

from both a direct measurement of the rate at which the temperature in the tank increased while

it was stirred and from a measurement of the power dissipated in the heating mat. The two

methods agreed well, indicating that at most 5% of the input heat was lost to the surroundings

through the top, walls or base. Changes in salinity of the water within an experiment were

very small, whereas changes in temperature of the order of 10 � C were common. Hence the

average value of α could change by a factor of 2 and the buoyancy flux was no longer constant

for a fixed heat flux. Thus no truly steady mixed layer depth was achieved. Instead, the system

reached a quasi-steady state in which the depth of the mixed layer increased as B (and
�
R

�
)

slowly increased with time. The ratio of fluxes, R, was adjusted by changing the base heat flux.

Shadowgraph techniques were used since the sharp changes in refractive index gradient at

the boundary of the turbulent region offered an easy means to measure the outflow thickness

of the plume and the depth of active convection. Passive dye tracers and time lapse video

recording also proved helpful in determining the mixed layer thickness by revealing regions of

rapid mixing. The conductivity and temperature were measured as functions of depth (Head

Precision Engineering model 5021) and the salinity and density profiles were calculated from

these using the polynomials of Ruddick & Shirtcliffe (1979). Profiles were taken halfway

between the plume and the tank wall and it was assumed that the structure far from the plume

was independent of horizontal position. Each experiment was run until the mixing depth ζ

and the shape of the T and S profiles were in a quasi-steady state. As a guide it was assumed

that the quasi-steady mixed depth was approached once the first front produced by the plume

had been advected through 80% of the depth of the tank (Worster & Huppert 1983). This was

typically 30 - 45 minutes after the plume was turned on, and we ran the experiments for 60

- 90 minutes. The majority of experiments were started with the plume and heating turned

on simultaneously. Some experiments were started with one source on much earlier than the

other, but the same steady mixed depth resulted after a time period that was well described by

either the advection of the first front or convective entrainment into the stratified layer above.

This indicated that in the long time limit there was no dependence upon initial conditions.
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Figure 2.3: A comparison of experimental results and theory (2.6 and 2.11) for the steady state mixed
depth when the sources are on the same boundary, for aspect ratios of 0.5 and 1. We see that full depth
mixing occurs for R � 1.

2.4 Experimental results for fluxes from the same boundary

The quasi-steady mixed layer depths ζ measured from shadowgraph visualization, are

shown in figure 2.3. The steady mixed depth ζ varies from 0, when there is no heating, to

the whole depth overturning � ζ � 1 � when 0 � 8 � R � 1 � 2. There is some dependence upon

the aspect ratio with the narrower tank showing full depth overturning earlier than the wider

tank. The mixed layer depth is much deeper than predicted by (2.6), plotted in figure 2.3 with

E
� � 1

�
3. There is much better agreement with (2.11), which includes the thickness the inter-

face and is plotted in figure 2.3 with E
�

= 0.4. The density gradient in figure 2.1 is very weak

in the plume outflow region, so the Richardson number becomes low for large ζ and hence the

interface thickness becomes large. The weak aspect ratio dependence in (2.11) also matches

the data well, with the narrower tank having a relatively deeper mixed layer than the wide tank

for a given R. The error-bars in figure 2.3 are of order 20% of h, which is roughly the thickness
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of the interfacial region produced by penetrative convection.

Measurements of the density profile when the steady mixed depth had been reached were

made for the case of no base heating (R � 0) and for R � 0 � 4. In figure 2.4 (a) there is no

heating, and the predicted “filling box” density profile of Baines & Turner (1969) developed

quickly, approaching its constant asymptotic shape and decreasing in density with time in a

linear rate.

In figure 2.4 (b) we plot profiles for R = 0.4, when the position of the the mixed depth

was steady.When both heat and salinity are used to provide buoyancy fluxes,there will be con-

centration gradients of each component. However, the individual profiles will give density

contributions of similar forms, both being stable above the mixed layer and near uniform in

the mixed layer. A small fraction of the heat flux into the mixed layer is entrained into the

plume to produce the overlying temperature profile, which produces a thermal contribution to

the stable density gradient of the same form as the salinity gradient. As the flux of heat out of

the base by entrainment into the plume is small relative to the input by basal heating, we see a

minimum in temperature just above the mixed layer.

The density profile retains a constant shape with time, while decreasing linearly with time

between measurements. The transition from the stratified region to the convecting region oc-

curs at a position that agrees well with the measurements from the shadowgraph. The profiles

shown are instantaneous (rather than time-averaged) and hence they ignore significant vari-

ability in the top of the mixed layer. The transition from the stratified region to the well mixed

region is of the same order as the interface thickness for the salinity profile. Due to thermal

diffusion the temperature interface is about twice as thick as the salinity interface. In the strat-

ified region, the density and salinity profiles have the same shape as in the case with no bottom

heating as they are again controlled by the filling box mechanism. However, the entrainment

of heat from the convecting layer gives rise to a characteristic stable temperature gradient in

the stratified region.

The use of heat and salt to provide the two buoyancy fluxes also leads to some double

diffusive effects in the experiments. For R � 0 � 2 a “diffusive” interface formed at the top of

the mixed layer and the gradient region immediately above broke down to form a second con-

vecting layer. This second layer was relatively shallow and appeared to make little difference

to the predicted mixed depth.
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Figure 2.4: Measured density, temperature and salinity profiles at two successive times for; (a) R = 0,
a normal filling box and (b) buoyancy fluxes from the same boundary and R � 0 � 4. Profiles were taken
1 minute apart in (a) and 5 minutes apart in (b). The aspect ratio is 0.5 and the horizontal lines in the
graph represent upper and lower limits to the depths of convection measured independently from the
shadowgraph. In both cases the density is decreasing while the profile shape remains constant.
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Figure 2.5: A comparison of experimental results and theory (2.17) for the steady state mixed depth
when the sources are on opposite boundaries, for aspect ratios of 0.5 and 1. We see that full depth
mixing occurs for R � 1 when H

�
r � 1 and at R � 0 � 7 when H

�
r � 1

�
2.

2.5 Experimental results for fluxes from opposite boundaries

When the plume was dense and descended from the top boundary, the basal heating in-

creased the thickness of the well mixed outflow layer. The mixed depth was measured from

shadowgraphs which reveal the maximum turbulent outflow depth. The results are plotted in

figure 2.5 and agree with the theoretical prediction of (2.17) for small R. For magnitudes of

R greater than about -0.4 we do not expect the theory to agree well with experiment, and the

apparent agreement is despite the expected inertial recirculation driven by the plume (Baines

& Turner, 1969; Barnett, 1991). For the small aspect ratio full tank mixing does not occur until

R � � 1 when there is no longer any stabilizing input to the tank.

Measurements of the temperature, salinity and density profiles provide additional informa-

tion. For the case of R � 0 we see in figure 2.6 (a) that the temperature profile was uniform and

the salinity distribution produced by the plume was solely responsible for the density changes.
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The profile was a constant shape between successive measurements while increasing linearly

in density at every point. At the base the water was well mixed by turbulence to a normalized

depth of 0 � 25 in agreement with the shadowgraph observations.

When the experiment was repeated with heating, both temperature and salt gradients de-

veloped and the mixed depth increased. Since the density gradients due to both temperature

and salinity are produced by the plume recirculation they have exactly the same shape, but the

temperature profile is destabilizing while that of salinity is stabilizing. Profiles for R � � 0 � 4

are shown in figure 2.6 (b) where the mixed layer depth has increased to ζ � 0 � 4. Because the

temperature profile is destabilizing the overall density gradient was reduced by a factor � 1 � R �
below that in the simple “filling box” process. When R = -1 the buoyancy fluxes were equal

and opposite and the whole tank was well-mixed, giving uniform property profiles.

Double-diffusive effects were seen in the experiments only when R � � 0 � 7. These took the

form of up to 3 diffusive layers which developed above the well-mixed layer. Similar layers

have been observed for a double-diffusive plume (and single buoyancy source) (McDougall,

1983). While the layers did not appear to significantly influence the overall density distribution,

they did make it more difficult to distinguish the top of the well-mixed layer.

2.6 Geophysical applications

The density structure of enclosed seas may, in part, represent the partially-mixed result of

competition between the tendency for deep localized convection to stratify the water column

by the “filling box” process on the one hand, and the maintenance of a surface mixed layer

on the other. As our model is more general than for just the point source plume studied, the

same result should hold if the localized buoyancy production is periodic but with the same total

buoyancy flux when integrated over each cycle (Baines & Turner, 1969; Killworth, & Turner

1982).

Addition of rotation to the problem is expected to make only small quantitative differences

to the long term density profile and vertical advection of this very large “filling box”. This is

shown by Pierce & Rhines (1996) who experimentally found that for low rotation a turbulent

plume generates the same density gradient as in the non-rotating filling box. Thus while we

do not find point sources in nature, we do find periodic isolated sources of deep convection so
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Figure 2.6: Measured density, temperature and salinity profiles at three successive times for (a) R � 0;
since there is no heating the temperature is constant (except for small amount of surface cooling). In (b)
R ��� 0 � 4 and the temperature profile is the same shape as the salinity profile. The normalized mixed-
layer depth is in this case 0.41 which agrees well with independent shadowgraph measurements, where
the upper and lower limits of this measurement are shown by the horizontal lines. Profiles were taken 5
minutes apart in (a) and 10 minutes apart in (b). In both cases the density is increasing while the profile
shape remains constant.



�
2.6 Geophysical applications 38

25 26 27 28 29 30 31 32 33 34 35 36

−1000

−500

0

Salt ppt

D
ep

th
 (

m
)

−2 −1.5 −1 −0.5 0 0.5 1

−1000

−500

0

Temperature C

D
ep

th
 (

m
)

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

−1000

−500

0

Dissolved oxygen (ml/l) 

D
ep

th
 (

m
)

Figure 2.7: Measurements of density, temperature and oxygen profiles taken in the the Bering Sea,
from the Levitus oceanographic data set (Levitus, 1987).

expect our study to be indicative of processes in the ocean.

Profiles in high latitude seas such as that from the Bering Sea, shown in figure 2.7, reveal

a characteristic temperature profile with a maximum beneath the mixed layer, in the same way

that our ‘upside down’ experiments show a minimum temperature above the mixed layer. The

concentration profile of dissolved oxygen (an indication of how long the water body has been

away from the surface) shows a minimum below the mixed surface layer and a maximum

at greater depths. Both of these effects are consistent with the circulation and stratification

produced by the combined effects of deep plume-like convection and a widespread surface

buoyancy flux. The weak stratification apparent within the surface layer may be a result of

other factors, such as an input of fresh water at the surface from melting ice and precipitation

or lateral advection of water masses. Since this sea, like most others, is not isolated from

the oceans, lateral advection will lead to intrusions of warmer water into the colder Bering

Sea. It is this lateral advection that is the means by which the sea can maintain steady long-

term properties rather than continue to decrease in density as do our confined ‘upside down’

laboratory experiments.
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2.7 Conclusions

When there is a uniform buoyancy flux through the horizontal boundary at which the plume

source is located, we have shown that the long-time steady state of the finite chamber may be

a partially mixed and partially stratified one, a wholly stratified one or a completely mixed

one, depending on the ratio of the two buoyancy fluxes. The partially-mixed state involves a

convecting layer whose depth adjusts until the rate of encroachment into the stratification is

equal and opposite to the vertical advection driven by the plume “filling box” process. For flux

ratios 0 � R � 1 the normalized mixed layer depth, ζmixed � � h � ∆h � � H, is ζmixed � � 1 � 2 �
1 � 31Ri

� 1 � 3E
�

R
� � 1 � R � , where E

�

is a mixing efficiency defined by Manins & Turner (1977)

and Ri is the Richardson number of the convecting layer. For R � 0 the whole tank is stratified

apart from the turbulent outflow from the plume and for R � 1 the whole of the water column

is convectively stirred. Profiles in the stratified layer had the same form as in the “filling-

box” theory of Baines & Turner (1969). Entrainment of buoyancy (heat) from the mixed layer

resulted in the production of a temperature minimum (in our case with bottom heating) just

above the convectively mixed layer. The transition between the well mixed region and the

stratified region has an appreciable thickness, which increases as the aspect ratio increases so

in tanks having large aspect ratios overturning occurred for R � 1.

In a possible oceanographic application of these results, concurrent widespread surface

cooling or salt input due to freezing or evaporation on the one hand and deep convection due

to a localized buoyancy flux on the other, are predicted to lead to a steady-surface mixed-layer

depth. The results apply equally to the cases where there is a line source or a periodic source of

buoyancy in competition with a steady distributed source, as the relationships between vertical

plume advection and the density gradient are the same.

When the two buoyancy fluxes were released from opposite boundaries a steady mixed

depth was again observed. However, the balance of vertical advection and enchroachment,

processes which now act in the same direction, could not occur. A dynamic balance applies

instead. Since the fluxes were introduced at opposite boundaries, the distributed boundary flux

must be added to the outflow from the turbulent plume, resulting in a “filling box” density

gradient proportional to the difference between the fluxes. Thus the gradient is a factor of

� 1 � R � smaller than that which would be generated by the plume alone. The reduced gradient is
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stable only for R � � 1 whereas for R ��� 1 the whole tank overturns. For R � � 1 a mixed layer

forms due to the turbulent kinetic energy of the plume outflow, and has a depth determined by

the extent to which the turbulent kinetic energy is able to mix the stabilizing density gradient.

The mixed layer depth in this case again increases as
�
R

�
increases. This situation may possibly

occur in the Earth’s liquid outer-core, where it has been suggested (Fearn et al., 1981; Fearn

et al., 1981; Whaler, 1980) that plumes of less dense residual melt may be released from the

solidification front at the bottom of the outer core, potentially leading to density stratification

of the outer core. The relatively uniform heat flux from the core to the base of the solid

mantle provides a destabilizing buoyancy flux from the top and must tend to overturn the

core. If isolated plumes do exist in the core (and we doubt this because they seem likely to

have azimuthal spacings much smaller than the depth of the outer core) then our results would

imply that the system should be completely mixed if the total buoyancy flux from the inner

core - outer core boundary is less than the total buoyancy flux due to cooling from the top

of the core (R � � 1). On the other hand, the outer core could be partially stratified with a

convecting layer of normalized depth ζ � 0 � 25
� � 1 � R � at the top if the cooling to the mantle

provides a lesser buoyancy flux (R ��� 1).



Chapter 3

Stratification produced by surface

cooling in lakes with significant

shallow regions

In this chapter, results of chapter 2 are applied to understand field observations of steady

stratification that forms due to prolonged surface cooling when a large area of a reservoir is

relatively shallow. We start by reviewing previous experimental studies of the formation of

dense gravity currents by cooling a shallow side arm of a reservoir. The initial timescales for

these gravity currents to fill a deep basin with a stratification are then discussed in
�

3.1.1.

By considering the input of buoyancy into control volumes for the deep stratified layer and

surface convective layer a predicted equilibrium mixed layer depth is derived in terms of the

bathymetry of the reservoir in
�

3.1.2. The predicted mixed layer depth is then compared

with a laboratory experiment in
�

3.2.3 and with field observations of winter stratification in

a medium-sized reservoir in
�

3.3. Conclusions are then presented on the application of this

theory to predicting the existence of winter stratification based on reservoir bathymetry and

surface cooling.

3.1 Theoretical background

We consider the circulation and stratification of a simple reservoir with the bathymetry

shown in figure 3.1 in which a uniform surface heat flux, H̃, drives the negative surface buoy-

ancy flux, B � gαH̃
�
ρcP. Negative fluxes represent heat lost from the water to the atmosphere.

Cooling of the shallow sidearm leads to a dense gravity current, analogous to the buoyant

41
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plume in chapter 2. Away from the shallow sidearm, surface cooling will result in a well

mixed layer so that the stratification results from competition between the stratifying gravity

current and the distributed surface cooling.

Deep region, LD

Shallow region, LS

Convecting

Stratified

Uniform surface buoyancy flux, B

dHD

h
HS

v

Q

Figure 3.1: A uniform destabilizing buoyancy flux per unit area B is applied to the surface of a reservoir
with a deep region of length LD, depth HD , and width WD, and a shallow side arm of length LS and depth
HS , and width WS. The shallow region cools rapidly and produces a gravity current of initial thickness d
and volume flux Q. The gravity current fills the deep region with cold dense fluid and causes a general
upwelling with velocity v. Near the surface of the deep region there is a convecting layer of depth h.

3.1.1 Convective circulation timescales

Surface cooling on the shallow sidearm of a reservoir results in horizontal density gradi-

ents that drive the formation of a dense cold gravity current. In laboratory studies of such

cooling, Sturman & Ivey (1998) found that there was an initial period of disorganized over-

turning convection before horizontal density gradients started to drive a dense gravity current.

This timescale, τinitial , was found by Finnigan & Ivey (1999) to depend upon the length of the

shallow region LS, the buoyancy flux B, and the ratio of the thickness of the gravity current d,

to the depth of the shallow region HS, as

τinitial � L2
�
3

S B
� 1

�
3 � 1 � d

�
HS � � 1

� (3.1)

Experimental observations of d
�
HS by Finnigan & Ivey (1999) and Grimm & Maxworthy
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(1999) found values in the range d
�
HS = 0.25 - 0.33. This suggests that exchange occurs at a

rate less than the theoretical maximum of d
�
HS = 0.36, predicted by Armi (1986).

The steady volume flux per unit width of the gravity current was found by Sturman & Ivey

(1998) to vary as

Q
WS
� 0 � 2 � BLS � 1

�
3HS �

(3.2)

where Q is the volume flux of the gravity current and WS is the width of the shallow region.

Finnigan & Ivey (1999) and Grimm & Maxworthy (1999) found similar expressions for the

volume flux but with slightly different experimental constants. The timescale for the gravity

current to fill the whole of the deep region of volume VD � WDLDHD then becomes,

τ f lush � VD

Q � 5LD B
� 1

�
3 L

� 1
�
3

S

HD

HS
� (3.3)

The steady circulation sketched in figure 3.1 can only become established if the duration

of surface forcing is longer than both τinitial and τ f lush.

3.1.2 Steady convective layer depth

We consider control volumes for the surface mixed layer of constant depth h and a deep

stratified layer of thickness (HD � h). Both layers have the same area AD � LDWD. The dis-

charge of the gravity current provides a buoyancy flux from the shallow to the deep region

which is exactly balanced by a surface return flow from the deep to the shallow region.

If the convective layer depth, h, is to remain constant, then the rate at which the gravity

current forces the interface to upwell, v, must balance the rate at which penetrative convection

causes the surface layer to deepen, U � dh
�
dt, (defined in 2.2). This requires that the density

difference between the two layers remains constant, so the density of both layers changes at

the same rate.

The rate at which the density of both layers increases must equal the rate of density increase

of the entire system. This is due solely to the surface buoyancy flux applied across both deep

and shallow areas
dρ
dt �

ρoB � AD � AS �
g � ADHD � ASHS � �

(3.4)
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where the total surface area is � AD � AS � , the total volume is � ADHD � ASHS � , g is the gravita-

tional acceleration and ρ0 is a reference density. Within the stratified layer dρ
�
dt must balance

the induced upwelling velocity, v, of the density gradient, as defined by (2.3). Using (2.3) and

(3.4) the upwelling velocity is equivalent to

v � B � AD � AS �
N2 � ADHD � ASHS � � (3.5)

Equating the interface entrainment rate (2.2) with the upwelling velocity of the density gradient

gives

ζ � h
HD
� 3E

� R � P
R � 1 �

(3.6)

where ζ � h
�
HD is the normalized mixed-layer depth and

P � HS
�
HD �

(3.7)

is the ratio of the shallow and deep region depths, and

R � AD
�
AS �

(3.8)

is the ratio of the deep and shallow areas. As the discussion of R concerns the relative strengths

of the gravity current to the surface convection, it has the same interpretation as the parameter

defined by (1.1).

The mixed layer penetrates to full depth of the deep region (ζ � 1), as R becomes very

large. When P � 0 the normalized mixed-layer depth ζ is essentially the same as defined by

(2.6) in chapter 2.

3.2 Laboratory experiments

3.2.1 Methods

An extensive series of laboratory experiments were performed to test the dependence of

the normalized mixed layer depth ζ upon P and R, as in equation (3.6). The apparatus used

was a rectangular tank 1.2 m long � 0.2 m wide � 0.4 m deep with geometry as shown in
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figure 3.1. The base was made of copper and the side walls were insulated with 15 mm of

polystyrene foam. Rather than provide cooling from the upper surface we found it easier to

invert the whole setup and heat from the base using two electric heat pads that allowed the

deep and shallow regions to be heated independently. Before each experiment, the tank was

filled with fresh water at the laboratory temperature. The heat flux was then started over the

base of the whole tank. The buoyancy flux was the same in all experiments and had a value of

1 � 2 � 10
� 5 m2 s

� 3.

The ratio of shallow and deep areas, R, was varied by changing the relative length of the

deep and shallow regions. The slope region between the shallow and deep regions occupies

about 10 cm, as shown in figure 3.2. The lengths LS and LD are measured to the halfway

position of this sloping region. In initial experiments the deep region had HD = 280 mm. The

shallow region had a depth of HS = 40 mm. Later experiments systematically varied the ratio

P � HS
�
HD.

To determine the flushing timescale of the deep region, as defined by (3.3), one experiment

was conducted with R = 1 and P = 1/5 where only the shallow region was heated. A gravity

current formed that stratified the whole of the deep region after 12 minutes, in agreement with

(3.3). All experiments were run for at least twice this time to ensure a steady balance in the

convective depth.

3.2.2 Development of the circulation

Immediately after the initiation of heating, thermals formed in the deep region and ini-

tially mixed the whole depth of the water column. After 3 - 5 minutes horizontal temperature

differences were set up between the deep and shallow areas and a gravity current started to

stratify the deep region. The timescale for the initiation of the gravity current was consistent

with (3.1). After approximately 12 minutes the thermals in the deep region were influenced

by the stratification and no longer penetrated the full depth of the deep region and by about 15

minutes the upwelling of the deep region had forced the interface to the steady depth given by

(3.6).

In some experiments heating was commenced in the shallow region 20 minutes before

it commenced in the deep region in order to establish a strong stratification. The surface

convection subsequently eroded the stratification within 15 minutes and the same steady state



�
3.2 Laboratory experiments 46

was attained. Similarly, when the heating was turned off so that the circulation stopped, the

circulation was re-established 5 minutes after the heating restarted, consistent with (3.1).

To visualize the circulation in the experiments, food dye was added to the water in the

shallow and deep regions. Experimental photographs are shown in figure 3.2, where the images

are inverted so that they appear to be cooled from the surface as in figure 3.1. The well mixed

surface layer can be seen in figure 3.2 (a) where red dye is transported by thermals to an average

depth h, marked by a horizontal line. The dense gravity current can be seen in figure 3.2 (b)

where blue dye had been added to the shallow region. The blue dye was subsequently observed

to fill the deep region and further input of dense fluid by the gravity current advected the blue

dye into the well mixed surface layer.
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a)

b)

Figure 3.2: Photographs showing the circulation of dye in an experiment where R = 0.5. In (a) red dye
is placed into the convecting layer of depth h. In (b) blue dye is placed in the gravity current.
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3.2.3 Results
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Figure 3.3: Experimental results of the normalized convecting layer depth ζ as a function of R, the ratio
of deep to shallow areas. The theoretical result of (3.6) is shown as the curves for P = 0.1 (solid) and P
= 0 (dotted) and agrees well with data.

Two sets of experiments were conducted. The first tested the dependence of the surface

mixed layer depth upon the relative surface areas of shallow and deep regions, as described by

(3.6). The thickness of the convecting region was estimated visually by injecting dye into the

layer, as shown in figure 3.2 (a). In these experiments the shallow depth was at most 1/5 of the

deep layer depth, i.e. P � HS
�
HD

�
0 � 2. The experimental data is is plotted in figure 3.3 and is

in good agreement with theory (3.6), and we see that for R � 2 the whole depth is essentially

well mixed.

The size of the error bars reflects the thickness of the interface, as described in
�
2.1.2.

In all experiments the maximum interface thickness was ∆h � 0 � 2 h consistent with large Rig

(as defined by 2.12). The observed interface thickness ζ in figure 3.3 is smaller than in the
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Figure 3.4: Experimental measurements of the normalized convecting layer depth ζ as a function of
the ratio of shallow to deep depths, P = HS

�
HD, for a given area ratio R. The theoretical result of (3.6)

is shown as the curves for R = 0.2 (solid) and R = 0.58 (dotted), with E � � 0 � 42.

experiments shown in figure 2.3. This is because the gravity current entrains less fluid than

a plume from a point source for the same buoyancy flux (Ellison & Turner 1959), so will

produce a stronger density gradient in the stratified region. This resulted in the persistence of

stratification beneath the well mixed layer until R � 2 in figure 3.3, as opposed to R � 1 in

figure 2.3.

The second set of experiments studied the dependence of the normalized mixed layer depth

ζ, upon the depth ratio P = HS
�
HD, for a given area ratio R. Experimental results are shown

in figure 3.4, and ζ can be seen to increase with P. Theoretical values of ζ given by (3.6) are

plotted for R = 0.2 and R = 0.58. When P increased above 0.5, the whole deep region was well

mixed by an overturning cell driven by the surface convection. This experimental result shows

that the shallow sidearm must be less than half the depth of the deep region (HS
�
HD � 0.5) if
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the gravity current is to produce a significant stratification in the deep region.

3.3 Field experiment

3.3.1 Site description and methods

Chaffey reservoir is located in northeastern New South Wales, Australia (31 � 21 � S, 151 � 8 �

E) approximately 32 km southeast of Tamworth at an elevation of 519 m above sea level. When

full the reservoir has a capacity of 62,000 ML, a surface area of 542 hectares, a maximum depth

of 28 m and a mean depth of 11.4 m. A drought during 1994-1995 led to a drop in reservoir

level to 506 m above sea level, equivalent to approximately 20% of capacity, by the beginning

of winter, i.e. June 1995. Subsequent inflows increased the level to 512.3 m above sea level

( � 53% capacity) by winter 1996 and to 518.3 m above sea level ( � 93% capacity) by winter

1997. The water level was constant to within
�

0 � 1 m throughout each winter.

The reservoir has a deep region extending from roughly the 502 m contour in the south and

west to the dam wall at the northeastern corner. To the south, the broad shallow region between

the 502 and 506 m contours spans the drowned channel of the Peel River (figure 3.5), the only

major source of inflow.

Monitoring of the reservoir took place from February 1995 through November 1997 by

a team of scientists, led by Dr Brad Sherman (CSIRO). Meteorological (air temperature, rel-

ative humidity, emission or absorption of long wave and short wave radiation, wind speed

and direction) and thermistor chain data were collected 200 m northeast of Stn 1 (figure 3.5).

The instruments were sampled every 10 seconds and recorded as 10 minute averages from

September 1995 to November 1997. Weekly conductivity-temperature-depth-dissolved oxy-

gen (CTDO) profiles with a spatial resolution of 0.25 m were measured in the early morning

at 5 - 6 sites (see figure 3.5) depending on water level using a Seabird Electronics SBE-19

profiler. The sixth site, Stn 3, was located 3 km upstream (2.5 km SSE) of Stn 2 (not shown

in figure 3.5) and was only sampled in winter 1997 when the reservoir was nearly full. Full

details of the measurement program are given in Sherman et al. (2000).
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Figure 3.5: Bathymetry of Chaffey reservoir. The elevation above sea level is in m with contours at
2 m intervals. Filled circles denote locations of the weekly CTDO casts. Meteorological station and
thermistor chain were located at Stn 1. Reservoir levels were 506.6 and 512.3 m above sea level during
the winters of 1995 and 1996, respectively. The drowned river channel is evident along the west side of
the island. Figure plotted with data collected by Dr Brad Sherman.
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3.3.2 Calculations

The surface heat flux, H̃, was computed by Sherman et al. (2000) as the sum of the

turbulent sensible and latent heat fluxes plus the net emission or absorption of long wave and

short wave radiation. Turbulent heat, mass, and momentum fluxes, adjusted for atmospheric

stability, were computed using the air temperature, relative humidity, wind speed and water

surface temperature (0.10 m depth) data following Liu et al. (1979). The velocity scale of the

eddies in the convective layer, w
�

, was computed using (2.13) and observed values of h and H̃

with the buoyancy flux, B � gαH̃
�
ρcP, determined by the surface heat flux.
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Figure 3.6: Depth distributions and areally weighted mean depths of the shallow, HS , and deep, HD,
regions in Chaffey reservoir during 1995 and 1996. Peaks in the distribution occur at 4 and 9 m depth
in 1995 and 1996, respectively. R = 0.93 during 1995 and 0.49 in 1996.

The predicted value of the normalized convective layer depth, ζ, can be computed from the

field data using (3.6). This required that R and P be determined from the bathymetry of Chaffey

reservoir, as shown in figure 3.5. The boundary between deep and shallow areas was assumed
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to correspond to the largest peak in the frequency distribution of reservoir depths (figure 3.6).

This occurred at roughly the 502 m contour during both years. Areal mean depths, HS and HD,

were then computed for the shallow and deep regions from the frequency distribution data. The

efficiency of the convective deepening process, E
�

, is expected to be within the range 0.36 to

0.43 for the range of Rig experienced in the field, as described by (2.7) and (2.8).

3.4 Field experiment results

3.4.1 Meteorology, heat fluxes

Sherman et al. (2000) found that during winter 1996 (1 June - 22 Jul), the average daily net

heat flux from the reservoir was � 27 Wm � 2 comprising sensible, latent, and radiative (short

wave + long wave) fluxes of � 22, � 43, and + 38 W m � 2, respectively. The mean daily wind

speed was 2.2 ms
� 1. When just the main cooling period is considered, i.e. between 1800

h and 0600 h, the corresponding fluxes were � 29, � 45, and � 66 Wm � 2. The typical night

time cooling flux driving the circulation was therefore � 140 Wm � 2 (B � 3 � 7 � 108 m2 s � 3)

whereas during the day there was a net flux of heat into the water. The field experiment is

analogous to the laboratory experiments but with the constant boundary heat flux replaced by

a periodic flux of approximately � 140 Wm � 2.

The periodic nature of the reservoir heat flux is shown in figure 3.7 (a) and thermistor chain

data for the temperatures of the surface mixed layer and at a depth of 14 m are shown in figure

3.7 (b). The signature of the cold gravity current is particularly noticeable on 9, 12 and 18 June

96 when the temperature at 14 m continued to decrease long after the surface layer had started

to heat up. Episodes of cooling were of 7 to 8 days duration and were defined by periods when

the 24 hour moving mean net heat flux was negative.

Meteorological data were not available for 1995, but 1997 data showed a 10% greater rate

of heat loss than occurred in 1996. A 10% change in the heat flux changes the computed

timescales of (3.1) and (3.3) by less than 5% and has no effect on the determination of ζ.

Therefore, we assume the same heat flux for both 1995 and 1996 to facilitate comparison of

results between years.
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Figure 3.7: (a) Net heat flux into Chaffey reservoir during 1-21 June 1996. Negative values indicate
heat loss from the reservoir. The bold line is the 24 hour moving mean. (b) Thermistor chain data from
near Stn 1 showing water temperature in the surface mixed layer (solid line) and at 14 m depth (dashed
line). Figure plotted with data collected by Dr Brad Sherman.

3.4.2 Stratification

Temperature profiles at Stn 1 in Chaffey reservoir for the winters of 1995 and 1996 are

shown in figure 3.8. As each winter progressed the temperature decreased everywhere through-

out the water column while at the same time the water column remained stratified with a sharp

interface located 4.5-5 m above the bottom due to the presence of a cold intrusion. At no time

during either winter was an isothermal water column observed. The time variation in the sur-

face forcing can be seen in the temperature profile of 20 June 95 where a significant cooling

event has produced a very cold intrusion in the deep region that is removed by thermal diffusion

and subsequent intrusions. The temperature profile shapes are very similar to the equivalent

density profiles shown in figure 2.6 when R � 0 � 4.

From visual inspection of figure 3.8 the convecting layer depth h, is 6.5 and 12 m during

1995 and 1996, respectively. Profiles measured at the three locations close to the dam wall
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Figure 3.8: Temperature profiles from CTDO casts taken at Stn 1 during the winters of 1995 (top)
and 1996 (bottom). The horizontal line indicates the boundary between the convecting region near the
surface and the stratified region near the bottom caused by the intrusion of cold water. Arrows indicate
the thicknesses of the two regions. Figure plotted with data collected by Dr Brad Sherman.

confirmed the location of the interface at this depth.

3.4.3 Normalized convective layer depth and circulation timescales

Using the field data we can compute the expected normalized convective layer depth using

(3.6) and the timescales for the initial set up of the circulation τinitial , defined by (3.1), and for

the filling of the deep region τ f lush, defined by (3.3).

During winter 1995 the areal mean depths of shallow and deep regions, HS and HD, were

2.6 m and 8.5 m, respectively, and the shallow region accounted for 52% of the reservoir’s

surface area. This gives R = 0.93 and P = 0.31. Using these values in (3.6), predicts that the
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convective layer depth is ζ = 0.71 - 0.83, assuming a similar range as the experimental results.

The observed convective region thickness was 6.5 m giving ζobs = 0.76. We approximate LS

= 1500 m and LD = 1500 m, so that the timescales for the initial establishment of circulation

and flushing the deep region are τinitial = 15.9 hours and τ f lush= 7.6 days, consistent with the

observations of Sherman et al. (2000) that the intrusion appeared to be replenished with colder

water on a weekly basis.

Year 1995 1996

Deep region contour 502 m 502 m
Shallow region contour 506 m 512.3 m
h 6.5 m 12.0 m
LS 1500 m 3000 m
LD 1500 m 1500 m
HD, areal mean 8.5 m 13.5 m
HS, areal mean 2.6 m 5.2 m
P � HS

�
HD 0.31 0.38

AD 48% (124 ha) 33% (129 ha)
AS 52% (132 ha) 67% (265 ha)
R � AD

�
AS 0.93 0.49

B 3.7 � 10
� 8m2s

� 3 3.7 � 10
� 8m2s

� 3

Rig 10 - 80 20 - 160
Measured ζ 0.76 0.86
Predicted ζ 0.71 - 0.83 0.63 - 0.70
τinitial 15.4 hours 24.4 hours
τ f lush 7.4 days 4.7 days

Figure 3.9: A summary of field observations for 1995 and 1996 winters.

By winter 1996, the reservoir had filled to 512.3 m and the shallow region shifted signif-

icantly towards the southeast, as seen in figure 3.5. We approximate LS = 3000 m, whereas

the deep length was relatively unchanged at LD = 1500 m. Areal mean depths for the shallow

and deep regions were 5.2 and 13.5 m, respectively. With R = 0.49 and P = 0.38, we find the-

oretically ζ = 0.63 - 0.70, assuming a similar range as the experimental results The observed

convective layer thickness was 12 m giving ζobs = 0.86. The circulation and flushing timescales

are τinitial = 25.3 hours and τ f lush= 4.6 days. A summary of these results is included in table

3.9.

Agreement between the field data, theory, and the laboratory model is good for 1995 but

poor for 1996. We believe the reason for the discrepancy relates to the way in which changes in
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the geometry of the field situation interact with the timescales for the forcing and establishment

of the convectively driven circulation.

Of particular significance is the periodic forcing in the field which varies from destabilizing

to stabilizing buoyancy fluxes not only diurnally but also on weekly timescales associated with

the movement of high and low pressure systems (figure 3.7 a). This timescale, τatmosphere, is

approximately 12 hours. If τatmosphere � τ f lush we expect to see a steady normalized mixed

layer of depth ζ as in the laboratory. If τinitial � τatmosphere � τ f lush we expect to see a gravity

current starting to stratify the deep region but probably with a deeper normalized mixed layer

depth than the predicted ζ as steady state has not yet been reached. If τinitial � τatmosphere, then

the whole deep region would be well mixed and, although there may be horizontal density

differences between deep and shallow regions, no significant gravity current would have time

to form.

During 1995, τinitial was about 16 hours, i.e. similar to τatmosphere, and so the circulation in

the shallow region had time to become established. In 1996, the shallow region was roughly

twice as long as in 1995 (τinitial = 25 hours) and so the buoyancy flux was never applied long

enough for the circulation to become fully established. This means that in 1996, ζ may not

have reached the equilibrium described by (3.6) and is probably only due to the cold water of

the shallow region flowing into the deep region after surface cooling had stopped.

Another factor that may contribute to a deeper than expected ζ in the field is the presence of

a wind-generated shear stress at the water surface. At Chaffey reservoir, shear stress contributes

about an additional 20% to the energy available to deepen the surface mixed layer during

the winter. This amount is less than 15% of the energy required to explain the additional

entrainment observed in the field. The insufficient duration of forcing must therefore be a far

more significant contributor to the discrepancy in ζ than is wind mixing.

3.5 Conclusion

Stratification can occur in reservoirs during periods of winter cooling if the bathymetry

can be characterized by distinct deep and shallow regions. If the ratio of the deep areas to

the shallow areas of the lake is less than 1 and the ratio of the shallow depth to the deep

depth is less than 0.5, then a mixed surface layer and a deep stratified region can develop.
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These reservoirs might otherwise be expected to be well-mixed due to convective overturning.

Should the cooling persist for at least one deep region filling timescale, τ f lush, (given by 3.3),

then theory predicts that a steady state can exist in which the depth of the convecting layer

normalized by the depth of the deep region, ζ � h
�
HD, is given by ζ � 3E

� � R � P � � � 1 � R �
where R is the ratio of deep and shallow areas. Laboratory experiments presented here have

confirmed this functional relationship.

The field data from Chaffey reservoir, has good agreement with theory for 1995 but poor

agreement for 1996. The probable reason for this is that the timescale for the circulation to

become fully established, which depends on the length of the shallow region, was close to the

timescale of the forcing buoyancy flux during 1995 but much longer in 1996 when the shallow

region extended much further.

The timescales for establishing the circulation in the shallow region and flushing the deep

stratified region suggest that with a typical periodic destabilizing heat flux of � 140 Wm
� 2,

only reservoirs up to 2-3 km in length will be able to reach the steady circulation observed

in the laboratory experiments. Larger reservoirs will still experience convective circulation,

and possibly persistent winter stratification, but the theoretical predictions of the normalized

convective layer depth presented here will not be applicable.

An interesting consequence of convectively driven circulation is the significant upwards

advective transport in the deep region driven by the gravity current. Sherman et al. (2000)

concluded that differential cooling was the second strongest vertical transport mechanism in

Chaffey reservoir, behind only the circulation resulting from artificial destratification (by bub-

ble plume injection) and between 2 to 20 times stronger than turbulent diffusion. They pro-

posed also that the associated stratification was likely to be responsible for the frequent win-

ter blooms of dinoflagellates and buoyant cyanobacteria that are more often associated with

strongly stratified water columns during summer and autumn.



Chapter 4

Generation of density fine structure by

salt fingers in a spatially periodic

shear

In this chapter we discuss the interaction of salt fingers with a spatially varying shear. In
�

4.1 we review previous experiments where salt fingers were present in shear. A model of the

flux divergences caused by a spatially varying shear is developed in
�

4.2. The steady state

solutions are discussed in
�

4.2.1 and compared with a numerical model in
�

4.2.2. Observa-

tions from laboratory experiments are presented in
�

4.3 and in
�

4.4 we discuss the possible

implications for an oceanographic setting.

4.1 Previous experiments

The effect of shear on laboratory salt fingers has been studied by Linden (1971) in the con-

text of turbulent eddies impinging upon a density step where salt fingers were growing. Here

the turbulence and salt fingers are spatially separated with turbulent entrainment occurring at

the edges of the interface. The turbulent eddies provide a shearing motion that reduced the salt

finger fluxes. In the ocean, on the other hand, shear is generated by internal inertial waves and

by collapsing intermittent turbulence (Gregg, 1987) in vertical stratification that is often salt

finger favourable. Tilting of fingers by shear was observed in some of the sharp interfaces of

the Caribbean Sheets and Layers Transect (CSALT) experiment (Kunze et al., 1987). St. Lau-

rent & Schmitt (1999) report observations from the North Atlantic Tracer Release Experiment

(NATRE) of optical structure in the form of near-horizontal laminae typically at 10 � � 20 � to

59
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the horizontal.

For a density interface with hot salty water overlying relatively cold and fresh water stirred

from beneath by an oscillating grid, Linden (1971) measured the fluxes of heat and salt as a

function of stirring frequency ω and the ratio of temperature T and salinity S gradients defined

as

Rρ � αTz
�
βSz �

(4.1)

where α is the coefficient of thermal expansion and β is the coefficient of saline contraction.

There are two competing effects that can contribute to the fluxes of T and S across the interface:

salt fingering and turbulent entrainment. When the eddies were weak, their main effect at the

interface was to provide a shearing motion upon the growing fingers. Water in the fingers had

a velocity U , and the turbulent eddies had an RMS velocity ∆V , and on average, it was found

that the fingers in the thin interface were tilted at an angle from the vertical of

θ � tan
� 1 � ∆V

�
U � � (4.2)

This result for a thin interface follows from the more general description that in a continuous

uniform shear the angle that fingers will make to the vertical has the time dependence

tanθ � tanθo �
� t

o

∂V
∂z

dt � (4.3)

Since the fingers are buoyant rising and falling parcels of water (rather than passive tracers),

one can derive (4.2) in the limit where the fingers have short length scales. The finger fluxes

are reduced from the undisturbed flux Fo by

FS � Fo cos � θ �
�

(4.4)

because of a change in the effective gravity. This result agrees well with the measurements

of Linden (1971) for small ∆V
�
U when fingers are tilted up to 45 � from the horizontal, but at

larger ∆V
�
U the fluxes were dominated by turbulence.

When a large velocity difference ∆V is applied across a salt finger interface (such that the

ratio ∆V
�
U is large), a different form of salt fingering convection can emerge (Linden, 1974):
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vertical two-dimensional sheets form, aligned with the direction of the sheared flow. Theoret-

ically, these two-dimensional sheets can have the same buoyancy fluxes as three-dimensional

fingers.

Kunze (1990) used measurements of inertial wave shear in the main thermocline and typi-

cal values of salt fingering vertical velocities to conclude that most oceanic salt fingers should

take the form of two-dimensional (2-D) sheets. He derived a dependence of the vertical finger

velocity on the angle of the salt fingers, taking into account the action of viscosity and the re-

duced total wave number of the strained fingers. For large θ the flux is expected to be reduced

as

FS � Fo cos4 � θ � � (4.5)

The theoretical form of the shearing flux reduction by Kunze (1990) is consistent with the

experimental results (4.2) in that the salt finger fluxes are reduced to zero as the salt fingers are

tilted toward the horizontal. At present, there are no experimental data to test the predictions

of flux reduction at large θ. It is also not clear from the experiments of Linden (1971, 1974)

how salt fingers make a transition from 3-D salt fingers, where fluxes are reduced by shearing,

to form 2-D sheets in high shear, where fluxes are not reduced by shearing. As salt fingers in

the ocean generally occur in regions of high ∆V
�
U , this is an important question that needs to

be addressed.

Various mechanisms have been proposed by which the growth unsheared salt finger fluxes

is limited at large amplitude. The initial growth of fingers is thought to be exponential until

the point where shear instability (described by a Froude or Reynolds number criterion) sets

in (Kunze, 1987). Holyer (1985) and Taylor & Veronis (1986) have identified vertical distur-

bances that grow on a wavelength comparable with the finger width, consistent with observa-

tions of Taylor (1993) that salt fingers with 1 � Rρ � 5 broke down into ‘blobs’ of aspect ratio

2. In 2-D and 3-D numerical experiments (Shen, 1995; Stern & Radko, 1998; Radko & Stern,

1999), low aspect ratio blobs were again found, and scaling was developed for the resulting

buoyancy fluxes.

In the experiments reported here, active salt fingers and a sinusoidally varying shear were

established simultaneously. Rather than dealing with a continuous spectrum of internal waves,

we study the effects of shear produced only by a zero-frequency baroclinic mode. The shear
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in this simple case is only a function of depth. A similar but finite frequency shearing mode

is discussed by Wong et al. (2001) for the case of a filling box where a plume outflow feeds

energy into vertically propagating internal wave modes having vertical wavelength similar to

the thickness of the plume outflow. The salt finger buoyancy flux is reduced by strong shear,

where maximum horizontal velocities are greater than vertical finger velocities. This leads to

regions of flux divergence which change the local ∂ρ
�
∂z and Rρ. The buoyancy flux becomes

constant with depth when the variations in ∂ρ
�
∂z and Rρ � z � balance those caused by the vari-

ations in the shear so that density fine structure emerges with the same vertical wavelength

as the shear. In the ocean such a periodic shear could be a mechanism for the initial forma-

tion of staircase structure, which would therefore reflect the vertical scales of internal waves,

intrusions, or turbulent patches driving the shear.

4.2 Growth of density perturbations in a sinusoidal shearing flow

The action of a local horizontal velocity shear is to reduce the flux of T and S by changing

the angle θ that the fingers make with the vertical (and hence reducing the effective gravity), so

that the flux is locally reduced by a factor cosθ (4.4). We assume that the horizontal velocity

varies sinusoidally in the vertical so that V � Vo sin � kz � , where k is the vertical wave number.

The salt fingers will be tilted according to the local shear. For Rρ � 2, heat/salt salt fingers are

characterized by rising and falling blobs, so it seems appropriate to use a form similar to (4.2)

to determine the angle. We use (4.4) to approximate the reduction in vertical buoyancy flux

and define a flux reduction factor Ω as

Ω � cos � θ � � � Θ2 cos2 � kz � � 1 � � 1
�
2

�
(4.6)

where Θ � Vo
�
U .

For mathematical simplicity we will assume that we can describe the salt finger fluxes in

the form of an eddy diffusivity as discussed in
�
1.2.4 . This assumption has been used by other

authors, such as Walsh & Ruddick (1995b, 1998) and Zhang et al. (1998), when studying

vertical length scales much larger than the finger scale. For low Rρ, salt fingers have aspect

ratio near 2 (Taylor, 1993), so in the present experiment the shear is always at much larger
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scales than the finger length. In the following we use an eddy diffusivity that takes into account

the effect of shear reduction (4.6), of the from ΩKS � Rρ � , where KS � Rρ � is the eddy diffusivity

due to salt fingers that would occur without any shearing. The exact functional form of (4.6) or

KS � Rρ � is not critical in the following discussion; the important point is that where the shear is

locally high, the eddy diffusivity ΩKS � Rρ � is reduced. The vertical fluxes of T and S are then

FS � � Ω KS � Rρ � ∂S
∂z �

(4.7)

and

αFT � γ βFS �
(4.8)

where γ is the ratio of T and S fluxes. Salt fingers transport S most efficiently, so that γ � 1,

and there is a net transport of density downward. Laboratory measurements of the heat/salt

system indicate γ � 0 � 6, and for sugar/salt γ � 0 � 9 (Turner, 1967; Schmitt, 1979b; Griffiths &

Ruddick, 1980; McDougall & Taylor, 1984).

Using equations (1.22) and (1.23) the rates of change of S and T are

∂S
∂t � � KS � Rρ � � Ω ∂2S

∂z2 �
∂Ω
∂z

∂S
∂z
� � Ω

∂KS � Rρ �
∂z

∂S
∂z �

(4.9)

and

α
∂T
∂t � γ β

∂S
∂t

� (4.10)

With an initially constant salinity gradient ∂Sinitial
�
∂z but spatially varying Ω, ∂S

�
∂t will

be a function of depth, leading to flux divergences. The gradient ∂S
�
∂z must evolve in phase

with ∂Ω
�
∂z. The initial growth rate of horizontally averaged salinity S is given by

∂S
∂t � � KS � Rρ � ∂Ω

∂z
∂Sinitial

∂z
� (4.11)

4.2.1 A steady state

A steady state (∂S
�
∂t � 0) can arise when there are no vertical gradients of buoyancy flux,

(∂FS
�
∂z � 0). In this case a simple solution to (4.9), assuming the changes of KS � Rρ � with
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depth are small in comparison to the other terms, is

Ω
∂2S
∂z2 � � ∂Ω

∂z
∂S
∂z �

(4.12)

and hence

∂Ssteady

∂z � c
Ω

� (4.13)

where c is a constant of integration. This solution has maximum destabilizing ∂S
�
∂z at regions

of minimum Ω, which are also regions of maximum shear. Stable αT anomalies grow in the

same sense as βS anomalies by (4.10) but have smaller magnitude because γ � 1. This implies

that the stable density gradient is dominated by β∂S
�
∂z and has minimum ∂ρ

�
∂z at regions of

maximum shear. Thus there may be a breakdown due to shear instability.

We can determine the constant c by assuming conservation of S over a vertical wavelength

of the shearing, thus

� k � 1
0

∂Ssteady

∂z
dz �

� k � 1
0

∂Sinitial

∂z
dz

�
(4.14)

and the constant c is given by

c � 1
k

∂Sinitial

∂z

� � k � 1
0

1
Ω

dz � � 1

� (4.15)

Evaluating c for the present form of Ω involves an elliptic integral and was done numeri-

cally. Using (4.13) and (4.11), we derive a timescale for the approach to the steady state. Inte-

grating (4.13) gives S � z � , and we define a salinity anomaly as ∆S ��� � Sz initial � Sz steady � dz. If

∂S
�
∂t (4.11) is approximated as ∆S

�
∆t, then the timescale is

∆t � � ∂Ω
∂z � � 1 1

KS

���
1 � c

Ω � dz � (4.16)

This timescale is a function of z. We are most interested in the time it takes to reach maximum

∆S, which occurs when ∂Ω
�
∂z is a maximum. We define a dimensionless timescale ∆t

�

to

reach maximum ∆S as

∆t
� � ∆t k2 KS

�
f � Θ �

�
(4.17)
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Figure 4.1: A numerical evaluation of the function f � Θ � , defined by (4.18) plotted against Θ, the ratio
of maximum horizontal velocity to vertical finger velocity. There is a maximum in f � Θ � of 0.28 at
Θ � 1.

where the dimensionless function f � Θ � is defined as

f � Θ � � k2 � ∂Ω
∂z � � 1 � k � 1

0

�
1 � c

Ω � dz
�

(4.18)

and evaluated the depth z that corresponds to maximum ∂Ω
�
∂z. This function is plotted in

figure 4.1 against Θ. There is a peak of 0.28 at Θ � 1, while at large values of Θ, f � Θ �
decreases like Θ � 1. If we use a parameterization of Ω based on (4.5) rather than (4.4), f � Θ �
has a similar dependence upon Θ with a peak at Θ � 1 of f � Θ � � 0 � 6, implying that the time

to equilibration ∆t is twice as long. The form of the flux reduction implied by (4.4) was only

experimentally verified by Linden (1971) up to Θ � 3, so we caution the use of (4.18) at high

Θ. The dimensional timescale ∆t is inversely dependent upon the undisturbed vertical eddy

diffusivity of salt Ks and wavenumber k of the shearing; highly active fingers in a varying shear

of short wavelength will result in rapid approach to the steady density structure.
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4.2.2 Numerical solutions

The model equations (4.9) and (4.10) were discretized using a semi-implicit Crank Nichol-

son scheme. For runs where the undisturbed vertical eddy diffusivity KS � Rρ � is a function of

local Rρ we explicitly calculated this from current values of T and S for use in the next time

step. Ω is calculated from (4.6) and the prescribed values of Θ and k. We ran the model with

values typical of salt-sugar fingers: γ � 0 � 9, KS � 10
� 5 m2 s

� 1 and Rρ � 2, with a shear wave-

length of 2π
�
k � 0 � 20 m in a total tank depth of 1 m. We used no-flux boundary conditions to

model laboratory conditions. Agreement between equilibrium predictions of
�
4.2.1 and calcu-

lated values of FS, ∆S, and ∂S
�
∂z was very good. We have assumed that all the depth variation

in the eddy diffusivity ΩKS is due to the term Ω rather than changes in KS with Rρ, so we only

discuss numerical solutions in which we set ∂KS
�
∂z to zero. In runs where KS was a function

of Rρ we found qualitatively similar behaviour in the evolution of FS, ∆S, and ∂S
�
∂z. When

we parameterize the diffusivity in the realistic form of KS ∝ R
� 1
ρ , the vertical fluctuations of KS

are small and the time ∆t
�

for adjustment to equilibrium is longer.

In figure 4.2 we plot the vertical flux of salt FS defined by (4.7) for Θ= 0.5 and 2, which

correspond to cases of weak and strong shearing through the term Ω (equation 4.6). The initial

Sz was chosen to be uniform. However the vertical fluctuation in Ω led to divergence in FS.

In both cases the salinity field evolved with FS becoming uniform in the central region and

approaching the equilibrium state described by either FS � � Ω KS ∂Ssteady
�
∂z or ∂Ssteady

�
∂z �

c
�
Ω, which is plotted in figure 4.2 (b). Numerical evaluation of the constant c in (4.15) shows

that it is a slowly decreasing function of Θ; thus we expect the steady FS to be slightly less

than the initial FS, as is seen in figure 4.2 (a). The top and bottom boundary conditions lead to

the more slowly evolving smooth gradient over the full depth. In figure 4.2 (c) we plot the flux

reduction factor Ω due to shear for the same values of Θ. For the smaller values of Θ, there

were changes of only 10% in the magnitude of the S flux, whereas for Θ � 2 the fingers were

periodically tilted up to 60 � from the vertical and S fluxes are reduced by up to 50%, leading

to large vertical flux divergences.

In figure 4.3 we plot further results from numerical simulations for Θ � 0 � 5 and 2. In

figure 4.3 (a) we plot ∆S, defined as ∆S � Sinitial � S � t � . This increases from an initial value

of zero through an initial linear growth and equilibrates to a vertically periodic structure of
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the same wavelength as Ω. Theoretical predictions for the steady values of ∆S are found by

integrating (4.13), which are plotted as circles in figure 4.3 (a) and show good agreement with

numerical results. The no-flux boundary conditions lead to growth of boundary layers at the

top and bottom. The magnitude of ∆S is determined in part by the initial growth rate, which

depends upon ∂Ω
�
∂z, plotted in figure 4.3 (c). At larger values of Θ, for which there is greater

vertical variation in shearing, the amplitude of ∆S is larger. In the numerical simulation we

also calculate the evolution of T using (4.10) and determine ρ � ρo � 1 � α � T � To � � β � S � So ��� .
In figure 4.3 (b) we plot the normalized density gradient ρz

� �
ρz initial

�
. A comparison of figures

4.3 (b) and 4.2 (c) shows that minimum ρz occurs where Ω is smallest, which is where the shear

is highest. Thus shear instability may occur, and if it does, it will be at levels of minimum Ω.

The growth of ∆S is plotted against the dimensionless time ∆t
�

(defined by 4.17) in fig-

ure 4.4, for Θ = 0.5 and Θ � 2 at the depth z � 0 � 45 m (at which point ∂S
�
∂t is at a local

maximum). In both cases, there is a brief period of initial growth in good agreement with the

predictions of (4.11) which are plotted in figure 4.4 as straight lines. Later, growth slows, and

the profiles asymptotically reach a steady state at around ∆t
� � 1.
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Figure 4.2: Numerical solutions of (4.9) and (4.10) starting with a uniform gradient Sz, with Θ � 0 � 5
(top) and Θ � 2 (bottom). (a) The salt flux FS normalized by the mean initial value of FS , (b) the salinity
gradient Sz normalized by Sz initial and the prediction of (4.13), which is plotted as circles, and (c) the
flux reduction factor Ω. The flux divergences result in changes in Sz, and the flux FS becomes uniform.
The final steady values of Sz

�
Sz initial agree well with the prediction of (4.13).
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Figure 4.3: Further results of numerical solutions, with Θ � 0 � 5 (top) and Θ � 2 (bottom). Plotted
are (a) the salinity anomaly ∆S � Sinitial � S � t � along with predicted values (circles) that are found by
integrating (4.13), (b) the normalized density gradient ρz, and (c) Ωz. Note that ∆S evolves to a steady
state with periodic changes of the same wavelength as the shear and Ωz has greater magnitude for Θ � 2
than for Θ � 0 � 5. The use of a no-flux boundary condition causes ∆S to grow at the top and bottom
boundaries.
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Figure 4.4: Further results of numerical solutions. The evolution of ∆S toward its steady value is plotted
here at z � 0 � 45 m for Θ � 0 � 5 and Θ � 2. When Θ � 2, the steady value of ∆S is roughly 5 times that
when Θ � 0 � 5. The initial growth of the anomaly is well described by the linear prediction of (4.11)
(straight line). In figure 4.3 (a) the depth of z � 0 � 45 m is the local site of maximum ∆S.
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4.3 Experimental observations of salt fingers in shear

4.3.1 Experiments
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D
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Figure 4.5: A linear density gradient produced using the standard double bucket method. By using
a small float localized at one of the tank we were able to force a low-frequency baroclinic mode of
wavelength of 120 mm as the tank was being filled.

To conduct experiments on the effect of a steady sinusoidal shear, we used a double bucket

system to produce a salt finger-favourable density gradient by continuously adding less dense

(but more S rich) solution at the top of the gradient through a permeable diffuser floating on

the the surface of the tank, as shown in figure 4.5. The diffuser was confined to one end of the

tank so that the outflow of less dense solution produced a surface flow toward the other end

of the tank, while creating the density gradient. This arrangement produced a low-frequency

baroclinic mode with a vertical wavelength of � 120 mm and maximum horizontal velocities

of around V � 2 � 5 mm s
� 1. The maximum shear was � 0 � 05 s

� 1. A discussion of similar

baroclinic modes forced by the outflow of a turbulent plume is given by Wong et al. (2001). For

the initial density gradients and horizontal velocities used in these experiments the calculated

Richardson numbers are high so that the flow is stable to shear instabilities. Vertical velocities

of the fingers were measured from the shadowgraph as U � 2 � 5
�

0 � 5 mm s
� 1, which is the



�
4.3 Experimental observations of salt fingers in shear 72

D
ep

th
 (

m
m

)

 Horizontal distance (mm)
100 200 300 400 500 600 700 800

50

100

150

200

250

300

Figure 4.6: A shadowgraph of the observed shearing and banded density structure, Rρ � 1 � 13 and
N � 1s �

1

same as the maximum horizontal velocity. This resulted in fingers being tilted to 45
�
.

In the laboratory it is easier to use salt and sugar in place of the oceanic properties of heat

and salt, thus avoiding the difficulties in insulating the experiment and in making observations

and measurements very rapidly before a heat/salt system runs down. The difference in molecu-

lar diffusivities between sugar and salt is much less than between heat and salt, so the resulting

salt finger convection is less vigorous. In these experiments it is usual to refer to the faster

diffusing component as T and the slower as S. However, one experiment was conducted with

heat/salt, and similar layered structure was observed in the shadowgraph. A series of eight

sugar/salt experiments were conducted for Rρ = 1.02-2.2 and N = 1-5 s
� 1. In all cases the tank

was filled in the same manner.

We observed the experiments using a shadowgraph, an example of which is shown in

figure 4.6. The salt fingers are sheared, and there are bands of different intensity in the vertical

indicating that there are variations in horizontally averaged density gradient. This ‘layering’
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of the density gradient was observed in experiments with low Rρ, where there was a large

buoyancy flux and hence faster growth rate of ∆S as predicted by (4.11). The emergence of

a steady pattern is consistent with (4.13). For runs with Rρ � 1 � 5, layering was not observed.

The absence of visible structure under these conditions may have been a result of the limited

duration of the forcing or a change of phase of the forcing (on a period of order 300 s) from

the filling of the tank. We use (4.17) to get an idea of the timescale at which the disturbances

are expected to grow. In chapter 5 (
�
5.3.3) an experimental determination of buoyancy flux

for the salt/sugar system for Rρ � 1 � 13 and N � 1 s
� 1 finds KS

� 10
� 5m2 s

� 1. Thus with a

shear that has 60 mm between maxima and Θ � 1 we expect the time to reach the equilibrium

state to be ∆t � 90 s. The numerical simulations in figure 4.4 clearly show the emergence of

structure before the dimensionless time ∆t
� � 1, so the dimensional result is consistent with

observations of banded structure in the shadowgraph of figure 4.6 after only 30 s of forcing for

low values of Rρ. The experiments with higher Rρ had a lower vertical eddy diffusivity KS and

hence took much longer to produce significant density structure.

4.3.2 Salinity profiles

By taking measurements of the salinity gradient we can test some of the ideas developed

in
�

4.2.1. The conductivity and temperature were measured as functions of depth using a con-

ductivity probe (Head Precision Engineering model 5021) and thermistor (Fenwal GB38P12).

The salinity profiles were calculated from these using the polynomials of Ruddick & Shirt-

cliffe (1979), and the mean linear salinity gradient was subtracted from the measured profiles

(figure 4.7 a) to obtain the fluctuations (figure 4.7 b). Because the tank was being filled from

the surface diffuser, the forcing is constant relative to the surface, and the pattern of the salinity

fluctuation remained constant relative to the surface. The wavelength of the anomaly was the

same as that of the shear (observed with the shadowgraph) and has a similar sinusoidal pat-

tern to that described in
�
4.2.1. The salinity anomaly becomes much smaller near the base of

the tank due to the decay of velocity in the low-frequency shear mode with distance from the

forcing region (Wong et al., 2001).

Unpublished experimental results of Turner (1974), which were carried out to explore fur-

ther some qualitative observations reported by Turner & Chen (1974), show a similar behaviour

to that described here. His experiment consisted of three layers: a top layer containing sugar,
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Figure 4.7: Measured salinity profiles through the salt-sugar gradient shown in figure 4.6 while the
density gradient is being filled using the double bucket method. In figure 4.7 (a) successive profiles of
salinity gradient taken 1 min apart are shown, each offset by 0.005 wt %. The fluctuations in the salinity
gradient resulting from the shear are plotted in figure 4.7 (b) after subtracting the background linear
gradient of salinity (profiles offset by 0.005 wt %).

a middle layer containing a gradient region (from sugar at the top to salt at the bottom), and a

lower layer of salt. Between these layers were solid horizontal boundaries, each with a gap at

opposite ends as shown in figure 4.8. The system was unstable to salt finger convection. As a

result of the horizontal separation of the gaps in the horizontal boundaries the convection set up

horizontal density differences which rapidly generated a low-frequency baroclinic mode with

four layers, very similar to the shear structure used in the present experiments. The rapid emer-

gence of a banded structure which broke down to form a staircase structure with two interfaces

at the top and bottom where the shear was greatest, is shown in figure 4.9. As the density gra-

dient changed due to flux divergences, there may have been bands of low Richardson number
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Figure 4.8: A second experimental setup which produces zero frequency baroclinic modes with
stronger diagonal forcing. The three layers are filled separately, and then two barriers are removed at
the ends. The salt finger buoyancy flux forces the circulation shown. This “cross gradient” experiment
was carried out by J. S. Turner in 1974, but a description has not been previously published.

and consequent the shear instability. These experiments had much larger horizontal velocities

than present experiments. The formation of regions of low stability in regions of high shear is

predicted by (4.13) for the case of a constant diffusivity and was also found for non-constant

diffusivity in numerical experiments. This “density staircase” structure looks very similar to

structure reported by Linden (1978) except that the vertical wavelength is set by the imposed

shear rather than an intrinsic salt finger length scale.
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Figure 4.9: Three successive shadowgraphs of the cross gradient experiments by Turner (1974). In the
first photograph, only the bottom salt reservoir and the middle salt finger region are in place. When the
top sugar reservoir was added, the shearing set up by the horizontal differences in vertical buoyancy
flux led to bands in the shadowgraph. The third photograph shows the subsequent breakdown into a
series of convecting layers.
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4.4 Discussion and conclusion

The results of our experiments indicate that density structure can be formed from an ini-

tially linear density gradient by a spatially varying shear in the presence of salt fingering. The

spatially varying shear leads to a divergence of the salt finger buoyancy flux on the same wave-

length as the shear, and this in turn leads to an initial rapid growth in density perturbations from

a linear gradient. Further growth of the fine structure ceases once the fluctuations in ∂S
�
∂z and

Rρ become large enough for vertical flux divergences to vanish.

This response to low-frequency shearing represents a previously unreported mechanism by

which density fine structure can arise from salt finger convection. The initial vertical scale does

not depend upon an intrinsic finger length scale nor the scale of collective instability but instead

upon the externally imposed shear wavelength. If the forcing is very strong the formation of

the density structure by the salt fingers may lead to low Richardson numbers, shear instability,

and consequent breakdown into a series of convecting layers, as shown in figure 4.9. This new

mechanism adds to the variety of other mechanisms by which structure can be produced in a

continuous density gradient. Experimental observations by Stern & Turner (1969) and Linden

(1976) showed that a finger-favourable gradient region between two unstratified reservoirs can

breakdown to a series of convecting layers. We interpret these convecting layers as being due

to the large buoyancy fluxes occurring at the edge of the salt finger region which results in the

formation of layering by a similar mechanism to the experiments of Turner (1968) where a

stable salinity gradient is heated from below. Layered structures also form when two bodies

of water with different thermohaline properties meet to give horizontal gradients of T and S

(Turner & Chen, 1974; Ruddick & Turner, 1979).

In none of our experiments did we observe the formation of two-dimensional salt finger

sheets aligned with the shear as seen by Linden (1974). This is probably because horizontal

velocities were never much larger than finger velocities. Kunze (1990, 1994) inferred that the

formation of such sheets was important in the CSALT experiment where the shear due to in-

ertial waves was large. We hope this thesis will motivate further study of externally imposed

velocity gradients in direct numerical simulations of salt fingering to quantify when flux re-

duction or formation of 2-D sheets occur under oceanographic shearing conditions, as we are

not aware of any laboratory studies after the original work by Linden (1971, 1974).
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Whether or not the mechanism suggested here is important in the initial development of

oceanographic fine structure depends sensitively on the magnitude and wavelength of the verti-

cal shear, the salt finger velocity, and eddy diffusivity as these control the timescale of the fine

structure growth (4.17). St. Laurent & Schmitt (1999) found values of the eddy diffusivity of

temperature due to salt fingers of the order of KT � 10
� 5 m2 s

� 1 when Rρ � 2 at the NATRE

site. We use this observation to infer a characteristic vertical velocity of a salt finger. Steady

salt fingers have a balance between vertical advection and horizontal diffusion of temperature

(Stern, 1969) so that

w �
∂T
∂z � κT k2T �

�
(4.19)

where w � and T � are velocity and temperature anomalies in the salt finger field, κT � 1 � 4 �

10 � 7 m2s � 1 is the molecular diffusivity of heat, ∂T
�
∂z is the background temperature gradient

and k is the horizontal wave number of salt fingers. If we equate the salt finger flux KT ∂T
�
∂z

with � w � T � � , then we can determine a vertical salt finger velocity w � as

w � � k
�

κT KT � (4.20)

At the NATRE site k was of the order of 100 m
� 1 implying that vertical velocities were of

the order of w � � 10 � 4 m s � 1. Measurements of fine structure at the NATRE site by Polzin et

al. (2001) found that turbulent patches have typical thickness D = 1-10 m. After a turbulent

event, partially mixed patches collapse with a Richardson number of the order of 1, so that the

maximum shear is ∆U
�
D � N. With a typical buoyancy frequency at the NATRE site of the

order of N � 10 � 5 s � 1 this implies horizontal velocities of the collapsing patches were of the

order of ∆U � 10
� 4 � 10

� 5 m s
� 1. The ratio Θ of maximum horizontal velocities to maximum

vertical finger velocities is then of order Θ = 0.1–1, so that the dimensionless function f � Θ � is

in the range 0.1–0.25. This implies that the timescale for the formation of significant density

structure (4.17) is of the order of ∆t = 103 � 104 s when collapsing turbulent patches are driving

intrusions and the associated spatially varying shear described by Wong et al. (2001). Inertial

waves are another candidate for a spatially varying shear, but as their vertical wavelengths are

typically larger than 10 m and their shear is typically lower than in collapsing intrusions, the

growth times (4.17) are consequently orders of magnitude larger, and density structure would

not appear in less than the timescale 1
�
2 f over which the shear changes phase.



Chapter 5

Localized stirring experiments in salt

finger-favourable gradients

In this chapter experiments and theory on the interaction between isolated patches of tur-

bulence and salt finger convection are presented. Previous experiments with salt fingers are

discussed in
�
5.1. In

�
5.2.1 we review background theory on partially mixed turbulent patches.

In
�
5.2.2 we model the effect that ‘up gradient’ buoyancy fluxes of salt fingers have upon a

partially mixed patch. We show that salt fingers can lead to overturning instability of this re-

gion. A criterion is derived in
�
5.2.3 for the critical patch thickness for a transition to occur

from laminar salt finger convection to overturning convection. Turbulent entrainment is shown

to lead to an increase in patch thickness in
�
5.2.4. These theoretical predictions are compared

with new experimental observations in
�
5.3. The application to an oceanographic setting is

discussed in
�
5.4.

5.1 Previous salt finger experiments

In a series of exploratory experiments, Turner & Chen (1974) noted that under certain

conditions, an isolated patch of turbulence could cause a salt finger favourable gradient to

breakdown into a convecting layer. These experiments were conducted in a tank of length 90

cm, width 7 cm and depth 30 cm. Using the double bucket method, the tank was filled with

linear ‘crossed’ gradients of sugar and salt to create a salt finger favourable gradient. A small

flap was located at the left end of the tank that could be moved up and down, to create a patch of

turbulence. A photograph from one of their experiments is shown in figure 5.1. Here the tank

had been filled with an initially linear density gradient, with Rρ � 1 � 08. At 20 minutes after the

79
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initiation of filling, the flap was raised by 45 � from its initial vertical position. This generated

a patch of turbulence, which subsequently caused the linear density gradient to breakdown and

form a well-mixed convecting layer at the base of the tank. At 54 minutes the flap was moved

to 45 � upwards, generating a patch of turbulence in the top of the tank but now no convecting

layer formed. The photograph shown in figure 5.1 was taken at 85 minutes and the sharp

interface above the lower convecting layer can be seen. As the T and S gradients decrease with

time during experiments, Rρ increased with time. Other experiments with different Rρ showed

similar behaviour - with Rρ near one, virtually any disturbance would cause breakdown into a

convecting layer, but at later times (when Rρ was higher) no amount of mixing could lead to

the breakdown to a convecting layer.

Figure 5.1: A photograph taken at 85 minutes after the start of the experiment. A convectively over-
turning layer can be seen at the base of the tank, with salt fingers occupying the rest of the tank. The
convecting layer was generated by setting the flap down at 20 minutes, subsequent movement of the
flap at 53 minutes failed to cause another convective layer. Photograph reproduced from Turner & Chen
(1974).

Some further experiments from Turner & Chen (1974) are shown in figure 5.2. The tank

was filled with a salt finger favourable gradient as before, but a wedge was now placed at the

left end of the tank. This locally reduced the width of the tank. With the double bucket method

of creating T � S gradients, the reduced width meant that a region of low density gradient

was produced in the otherwise linear gradient. At 39 minutes after the start of the experiment

the salt finger gradient broke down and a convectively overturning layer formed of the same

vertical dimension as the wedge, as shown in figure 5.2 (a). At 63 minutes the convecting layer

was well established and had increased in thickness by 10%, as shown in figure 5.2 (b). This



�
5.1 Previous salt finger experiments 81

is similar to the theoretical predictions of Stern & Turner (1969), where a convecting patch

in a salt finger gradient increases in thickness with time due to convective entrainment. The

two processes illustrated in figures 5.1 and 5.2 may be important in the ocean where isolated

turbulent patches could interact with salt fingers to form convecting layers. This would result

in large horizontal intrusions and may be important in the initial formation of density staircase

structures that are often associated with salt fingers in the ocean.

a)

b)

Figure 5.2: The disturbance was created by filling the tank past a wedge fixed on the left wall. a) 39
minutes into the experiment, showing initiation of the convecting layer, b) 63 minutes, with convection
well established. Photographs reproduced from Turner & Chen (1974).

The qualitative experiments of Turner & Chen (1974) show that a salt finger gradient can

breakdown to a convecting layer if there is sufficient mixing and Rρ is near one. Theoreti-

cal models have been developed by Zhurbas, Kuzmina & Kulsha (1987), Walsh & Ruddick

(1995b) and Merryfield (2000) which show that an ‘up gradient’ flux of density due to salt

fingers, can form density anomalies in an initially linear density gradient. Subsequent flux di-
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vergences can locally weaken the density gradient and may lead to overturning instability and

convection. While ‘up gradient’ flux divergences offer a plausible mechanism for the break-

down of a linear gradient, the models of Zhurbas, Kuzmina & Kulsha (1987), Walsh & Ruddick

(1995b) and Merryfield (2000) did not depend upon Rρ or the magnitude of the initial density

anomaly. In the next section we develop theory to quantify the previous observations of Turner

& Chen (1974) in terms of the initial Rρ, vertical scale of the turbulent patch and the degree of

mixing within the patch. The theory is then tested against new experiments in
�
5.3.

5.2 Theory

5.2.1 Salt fingers and turbulent mixed patches

Turbulent patches can be created in stable density gradients by shear instability, internal

wave breaking or mechanical mixing (Turner, 1973). It has been widely recognized that a patch

of turbulence due to wave breaking or mechanical mixing of a density gradient will not result in

complete mixing of the density gradient within the patch. An illustration of vertical gradients

in such a partially mixed patch is shown in figure 5.3. The mixed patch has an interior region,

of depth hin, where the density gradient has been reduced by the action of the turbulent mixing.

This interior region is bounded above and below by thin interfaces of high density gradient.

The ratio of the outer patch thickness hout, to inner patch thickness hin was measured by De

Silva & Fernando (1992) as being around 0.8, indicating most of the patch depth is occupied

by low density gradient. The vertical scale of a turbulent patch, hout , can be determined by a

balance between buoyancy and energy dissipation (Ivey & Imberger 1990).

Partial mixing of a density gradient results from the low efficiency of converting mechan-

ical energy into increased potential energy of the density gradient. Measurements by Linden

(1979, 1980) indicate that turbulent mixing is strongly dependent upon a Richardson number

and has a maximum mixing efficiency of 25%. A parameter related to the mixing efficiency

is the ‘mixedness’ parameter of De Silva & Fernando (1992) and Hughes (1996).The mixed-

ness of the patch shown in figure 5.3 (a), is defined as the ratio of the mixed interior density

gradient, dρin
�
dz to the initial linear density gradient, dρinitial

�
dz, as
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M � 1 � dρin

dz

� dρinitial

dz
� (5.1)

The mixedness can also be defined in terms of the density difference over the patch, defined

as ∆ρout � hout dρinitial
�
dz,

M � 1 � ∆ρin
�
∆ρout � (5.2)

Complete mixing corresponds to M � 1 and no mixing corresponds to M � 0. Experi-

ments by De Silva & Fernando (1992), in which a linear gradient was stirred by a mechanical

device, have shown that both M and the patch thickness h decreased with increasing Richard-

son number of the stirring and increased with the duration of the stirring. Thus weak and brief

stirring of a linear density gradient resulted in thin patches of low mixedness (M � 0) and

strong continued stirring resulted in deep well-mixed patches with high mixedness (M � 1).
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Figure 5.3: (a) A sketch of the density gradient of a partially mixed patch. In the interior region
the density gradient is weaker, while in a thin inter-facial region at the edges the density gradient has
increased. In (b) and (c) we sketch the S and T distributions after a turbulent event. In this figure we
have plotted values typical of laboratory sugar-salt experiments where Rρ � 1 � 13.
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5.2.2 Overturning due to salt fingers

Salt fingers can change density fine structure due to vertical divergences in T and S fluxes.

If the partially mixed region has a large horizontal extent then we can consider a simple one

dimensional model of the evolution of the T and S fields and use the flux equations (1.22),

(1.23), (1.24) and (1.25), as discussed in
�

1.2.3.2. An ‘up gradient’ flux of density is consistent

with a negative diffusivity of density, Kρ. However mathematically this implies that density

anomalies at the smallest scales would grow the fastest. The effective diffusivity of salt KS

is positive, and it is only due to the coupling of T and S fluxes in (1.25) that there is an ‘up

gradient’ flux of density. The time evolution of S anomalies after a perturbation is simply one

of enhanced ‘diffusion’ to a linear gradient. The coupling of fluxes in (1.25) means that the T

anomalies will change only while the S anomalies are changing. This is different to the model

of Merryfield (2000) who considered the evolution of perturbations in a density gradient by

‘up gradient’ salt finger fluxes using a negative diffusivity of density.

Initially we shall consider the simple case illustrated in figure 5.3 (b) and (c) where the

T and S gradients were initially linear. Figure 5.3 is plotted in the sugar/salt sense, where

increasing the concentration of T (salt), increases the density. After a mixing event of depth

hin the local gradients in the patch interior will have weakened by the factor 1 � M. The ratio

of T and S gradients, Rρ, remains constant because turbulent mixing changes only the density

gradient and transports S and T equally. After the turbulence has stopped the change in S over

the interior of the patch is

∆Sin � � 1 � M � hin
dSinitial

dz �
(5.3)

and the change in T over the interior of the patch is

α∆Tin � Rρ β∆Sin � (5.4)

The action of salt fingers on the S component is governed by (1.22) to (1.25). Because the flux

ratio γ � 1 the S gradient changes more rapidly than the T gradient. Hence Rρ will change

within the interior of the patch, implying that KS would also change. For mathematical sim-

plicity we will initially assume that KS is a constant. With this assumption S will ‘diffuse’ back
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to the original linear gradient and the change in S over the patch depth is

∆S f inal � hin
dSinitial

dz
� (5.5)

The time scale for evolution of the S component back to the original linear gradient after the

mixing event is of the order of

t � h2
in
�
KS � (5.6)

The changes in T are related to changes in S by the flux ratio γ. The total change in T from

the time after the turbulent event to the time that flux divergences in S disappear is

α � ∆Tf inal � ∆Tin � � γM β∆Sin � (5.7)

Because γ � 1 � Rρ initial the final Tz will be less than before the mixing event and con-

sequently the final Rρ will be smaller. There is now the possibility that this final T gradient

will no longer compensate for the unstable S gradient, making the density gradient unstable.

This occurs if α∆Tf inal
�
β∆S f inal

�
1. Using (5.3), (5.5) and (5.7), this implies that an unstable

density gradient occurs when

Rρ initial
� 1

1 � M
� γM � (5.8)

Thus for small Rρ initial a small mixedness M can lead to flux divergences that result in over-

turning instability of the density gradient and when Rρ initial � 1, any value of M will lead to an

unstable density gradient. For large initial Rρ an unstable density gradient occurs only when

M is almost one. This is similar to the observations of Turner & Chen (1974). Increasing γ to a

greater value means that a larger mixedness M is required for overturning instability to occur,

implying that heat/salt fingers will be more unstable than sugar/salt fingers.

To test these ideas we model the evolution of T and S gradients due to salt fingers by

numerically solving equations (1.22), (1.23), (1.24) and (1.25) using a semi-implicit Crank

Nicholson scheme, as used in
�

4.2.2. The initial T and S gradients are shown in figure 5.4

and are similar to those sketched in figure 5.3 except now we use more realistic gradients to

model a partially mixed patch. The initial mixing efficiency in figure 5.4 is M � 0 � 9 and initial

Rρ � 1 � 3, representative of sugar/salt laboratory experiments that will be discussed in
�
5.3.
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The S gradient evolves by a ‘diffusion’ equation until ∂2S
�
∂z2 � 0, where flux divergences

are zero. The T flux is coupled to the salt gradient by the flux ratio γ � 0 � 9. As the final T

gradient is less than the initial T gradient, the stability of the density profile has decreased.

The result is that the density profile, shown figure 5.4 (c), becomes less stable with time. For

the parameters we have chosen, the final density gradient is less than zero (i.e. unstable) in the

center of the interior region. This corresponds to overturning instability and is in agreement

with predictions of (5.8). Further runs (not shown) were conducted where M, γ and Rρ were

varied and also found good agreement with (5.8).
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Figure 5.4: A numerical simulation of the evolution of T and S gradients due to salt fingers from the
initial stratification that is present after a turbulent mixing event of mixing efficiency M � 0 � 8. The
curves were obtained by numerically solving equations (1.22) to (1.25) using a semi-implicit Crank
Nicholson scheme. The values of T and S were typical of laboratory sugar-salt experiments where
Rρ � 1 � 13.
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Another way of representing the evolution of density anomalies is by plotting αT against

βS, as shown in figure 5.5. This is plotted in the sugar/salt sense, where increasing the concen-

tration of T (salt), increases the density. Only points from within the partially mixed region

are shown in figure 5.5, outside this region there no changes in T and S. All the points initially

lie on a line of slope Rρ � 1 � 3. Mixing by the turbulent patch does not change the initial Rρ,

but changes the spacing of the points along the line of constant Rρ, reflecting changes in the

density gradient. The increased concentration of the points in the center represents the low

gradient in the interior of the mixed patch. The high gradient interfaces are represented by

the wide spacing of the points. Subsequent evolution of the S and T fields occurs along lines

of slope γ, due to equation (1.25). The final slope of points within the patch has Rρ � 0 � 91,

indicating overturning instability of the density gradient. Near the edges of the patch the final

Rρ can be seen to have increased indicating higher static stability in these regions.
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Figure 5.5: A graph showing a numerical solution for the evolution of T and S fields due to salt fingers
after a mixing event has locally changed density gradients within a patch. This graph shows the same
data as presented in 5.4.
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The preceding discussion has ignored the effect that variations of Rρ have upon on the eddy

diffusivity KS of the S component. In oceanographic observations, St Laurent & Schmitt (1999)

found that KS � Rρ � is a decreasing function of Rρ. In our model Rρ decreases with time in the

interior of the mixed patch. Hence KS in the interior should increase with time. This means that

flux divergences can disappear without the S gradient returning to the initial linear gradient.

This will decrease the change in T (5.7) so that the ratio (5.8) must increase. We explored this

effect in numerical calculations for a case where KS � R
� 2
ρ and found small changes from the

predictions of (5.8) with the density gradient being slightly more stable than in the case where

KS was constant.

5.2.3 Transition to overturning convection

If the density gradient within the mixed patch is small or zero, there is the possibility that

the form of convective instability may change from laminar salt fingers to turbulent overturning

convection. We argue that this transition will occur not when the density gradient changes sign

but when the turbulent convective velocity WC is faster than the salt finger velocity WF , a

condition we express as:
WC

WF
� C

�
(5.9)

where C is a constant of order one. When this occurs, large scale convection can sweep away

the fingers faster than the fingers extend from the boundaries. We will assume that the rate at

which fingers extend into the mixed layer is that same as that defined by (4.20).

The salt fingers in the deep linear gradient above and below the mixed patch provides a

constant buoyancy flux into the mixed region. The RMS velocity of convective eddies was

found experimentally by Adrian, Ferreira & Boberg, (1986) for a buoyancy flux B and a well-

mixed thickness h to scale as

WC � 0 � 6 � Bh � 1
�
3

� (5.10)

Because the convective eddy velocity (5.10) scales with the thickness h, of the patch we

can rearrange (5.9) to give the critical patch thickness where laminar salt finger convection

changes to turbulent overturning, as
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hcrit � � 1 � 66 C WF � 3
B

� (5.11)

We assume the buoyancy flux B depends only upon the Sz and Tz in the deep gradient regions

rather than ∆T and ∆S across the patch. From (4.20) the finger velocity WF also depends upon

KT and hence B. Once the buoyancy flux B in the linear salt finger gradients is known (as a

function of Rρ), the critical patch thickness hcrit can be determined.

An alternative to (5.11) would be to consider a Rayleigh number defined as

Ra � h4B

νκ2
T

� (5.12)

The Rayleigh number at which the transition from finger convection to overturning convection

can be found by substituting (5.11) in (5.12) to give

Racrit � � 1 � 66 C WF � 12

B3 ν κ2
T �

(5.13)

which is not a fixed number, as both WF and B are functions of Rρ and Sz. In order to estimate

the magnitude of Racrit we now discuss typical values of these parameters in laboratory exper-

iments, detailed below in in
�

5.3. Buoyancy fluxes B are of the order of 10 � 1cm2s � 3 and a

constant of C � 5 describes the laboratory observations well. In our laboratory experiments

observations from the shadowgraph suggest that velocities are of the order of 10 � 1cm s � 1. The

molecular diffusivity of the T component (salt) κT � 1 � 10 � 5cm2s � 1, and ν � 1 � 10 � 2cm2s � 1

so Racrit
� 1013. This is much larger than the values of Ra � 103 for the transition from molec-

ular diffusion to overturning convecting in the classic Rayleigh-Benard cell, owing in part to

the fact that convection in our case must overcome rapid salt finger growth (rather than molec-

ular diffusion in the Benard problem).

5.2.4 Growth of mixed patch due to entrainment

If salt fingers can drive overturning convection then the patch can grow in thickness by

entrainment of the overlying density gradient. A fraction of the buoyancy flux released from

one unstable boundary is able to entrain part of the density gradient on the opposite boundary.

This results in a buoyancy flux into the well-mixed layer of
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Be � � 1
2

∂h
∂t

g∆ρ
ρ �

(5.14)

where ∂h
�
∂t is the rate at which the convecting layer increases in depth. By symmetry both

boundaries are growing so there are equal and opposite entrainment fluxes, Be, and the density

in the mixed region remains constant. The density step ∆ρ at the edges of the well-mixed

convecting patch is given by

∆ρ � h
2

dρ
dz

� (5.15)

Following Manins & Turner (1977) we express the ratio of entrained flux due to mixing to the

salt finger buoyancy flux as

η � � Be

B
� (5.16)

A value of η � 0 corresponds to no entrainment and maximum experimental values were found

by Denton & Woods (1981) to be η � 0 � 25 for Richardson number of the order of one; for

higher Richardson number η slowly decreases.

We will assume the salt finger buoyancy flux B is constant and is driven by the buoyancy

flux in the deep linear gradients, rather than by the magnitude of the density step, ∆ρ. Com-

bining equations (5.14), (5.15) and (5.16) gives

∂h
∂t �

� 4ηB
hN2

� (5.17)

where N is the buoyancy frequency. The general solution for the time dependence of the mixed

layer thickness is

h �
�
� 8η

B
N2 � t � tc � �

(5.18)

where tc is a constant that must be experimentally determined. This growth of a convecting

patch is similar to the result derived by Manins & Turner (1977) for the time evolution of a

convectively mixed region beneath a linear gradient heated from below.

The growth rate predicted by (5.18) differs from the theory of Stern & Turner (1969) where

h � t3
�
2. The central difference between (5.18) and Stern & Turner (1969) was their assumption
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that fluxes were determined by the size of the S step at the edge of the convecting layer as

FS � ∆S4
�
3, rather than assuming constant fluxes from the deep linear gradients. As a third

alternative, if one assumed that the buoyancy flux was proportional to the density step (B � ∆ρ),

this would imply that h � t. Thus an experimental determination of the growth rate of the

mixed patch will test whether the buoyancy fluxes that cause the entrainment depend upon the

uniform gradient Sz or upon ∆S4
�
3.

5.3 Laboratory experiments
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Figure 5.6: The apparatus used in laboratory experiments.

The experimental apparatus used is sketched in figure 5.6. It consisted of a glass tank of

depth 70 cm and cross section 25 cm � 25 cm. Using a double bucket system the tank was

filled from the base with linear ‘crossed’ concentration gradients of T (salt) and S (sugar) to a

depth of 60 cm. In all experiments a constant value of destabilizing S gradient was used with
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the density of sugar = 1 � 06 g cm
� 3. To vary Rρ between 1 and 2.5 we changed the density of the

stabilizing T (salt) solution. At 30 cm depth there was a tube through which a known volume of

water could be withdrawn to an external measuring container by a peristaltic pump. This water

was then mixed and slowly pumped back in to create a well-mixed patch in the otherwise linear

gradient. In some of the initial experiments we used a stirring device at the same 30 cm level

to create a partially mixed patch but it was difficult to produce repeatable patch thicknesses.

The subsequent development of this mixed patch was viewed using a shadowgraph and results

of patch thickness were recorded from time-lapse video images, allowing experiments to be

observed for up to 2 days.

5.3.1 Partially mixed patches

The evolution of partially mixed patches with salt fingers was investigated by briefly stir-

ring a linear T and S concentration gradient. By varying the time that this stirring was active

(between 1-5 seconds) we could create partially mixed patches that had thickness between 5-

12 cm. A sequence of photographs of a laboratory experiment with Rρ � 1 � 2 is shown in figure

5.7, ordered sequentially from top left to bottom right. Initially there is a linear field of salt

fingers, shown in photograph (a). This is briefly stirred for 3 seconds, shown in photograph

(b), and 30 seconds later a partially mixed region of thickness 10 cm can seen in (c). Five

minutes after the stirring event salt fingers have fully re-established in (d). Between 10 and 12

min the partially mixed patch started to overturn, as shown in (e) and (f). In (g) and (h) the

form of convection in the layer is characterized by strong overturning rather than laminar salt

fingers and the resulting entrainment can be seen to increase the layer depth. This breakdown

of a partially mixed patch is consistent with the numerical evolution of T and S profiles shown

in figure 5.4. A number of similar experiments were conducted for different Rρ. The time

scale for overturning was smallest in experiments with low Rρ. Use of equation (5.6) with the

observed patch depths and time-scales of 10 - 30 minutes when 1 � 13 � Rρ � 1 � 7, implies an

effective eddy diffusivity of KS � 0 � 04 � 0 � 08 cm2 s
� 1. This value of KS is consistent with later

measurements shown in figure 5.12.

To explore the effects of the mixedness on the eventual breakdown to convection (as de-

scribed by equation 5.8) we changed the intensity and duration of the stirring event. The ex-

periments of De Silva & Fernando (1992) indicated that mixedness increases with the duration
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of the stirring. Hence, although we were unable to directly measure the magnitude of M, we

may have created more strongly or weakly mixed patches. For small Rρ � 1 � 13 virtually any

amount of mixing could lead to eventual overturning. When these experiments were repeated

at Rρ � 1 � 5 only very vigorous and extended mixing (high M) would lead to an eventual break-

down to convection. These observations are consistent with the predictions of (5.8). Similar

observations were made by Turner & Chen (1974) who noted that for Rρ close to one virtually

any mixing of a salt finger gradient could lead to a breakdown to a well-mixed convecting

layer. At high Rρ no amount of mixing would produce a well-mixed convecting layer.

Figure 5.7: Experimental photographs of the development of convection after a brief stirring event
in an initially linear density gradient with salt fingers. Initial Rρ � 1 � 2 and photographs are ordered
sequentially from top left to bottom right.
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5.3.2 Critical patch thickness

To determine the critical patch thickness for convection to occur (described by 5.11), we

systematically varied the size of the initial mixed patch thickness h and Rρ. All experiments

had the same initial Sz. The initial mixed patch thickness was varied by changing the volume

of fluid that was withdrawn, mixed and then re-inserted. In figure 5.8 we plot the initial patch

thickness h and initial Rρ and indicate whether or not convection occurred. The experiments

fell into two distinct groups; those where h � hcritical and overturning convection occurred and

subsequently deepened with time (figure 5.9 a) and those where h � hcritical , where laminar

salt fingers were stable and no overturning convection occurred (figure 5.9 b). The prediction

of hcritical based on (5.11) is plotted in figure 5.8 with experimental values of B
�
N2 discussed

in the following
�

5.3.3. To determine the finger velocity (defined by 4.20) we determine the

eddy diffusity KT in terms of the buoyancy flux by

KT � B
N2

γ
Rρ

Rρ � 1

γ � 1 �
(5.19)

and assume γ � 0 � 9 for sugar/salt fingers. A good fit to the data is obtained with the constant

C � 5 in (5.11). The dotted lines bound the experimental uncertainty in B.
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Figure 5.8: Plotted is a summary of initial patch thickness h against initial Rρ indicating whether the
patches started to convect and the prediction of hcritical based on (5.11).
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a)

b)

Figure 5.9: a) Experimental photos of patch evolution when h � hcritical. In this case the initial patch
thickness is 6 cm and Rρ � 1 � 7. Salt finger convection breaks down and starts to overturning, and
subsequently deepens with time due to the action of turbulent entrainment. Photographs are taken 20
minutes apart. b) When h � hcritical no overturning convection occurs. Here the extracted fluid had been
well-mixed and had some dye added before being reinserted to make a patch of thickness 4 cm and
Rρ � 1 � 7. Photographs are taken 20 minutes apart.
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To test that the critical thickness hcritical depended only upon the density gradient and not on

∆S we conducted several additional experiments. In these experiments a thick mixed patch was

created within a linear gradient (as in normal experiments) for Rρ = 1.13, 1.2 and 1.5. Once the

well-mixed patch had started to convect, fluid was withdrawn from the patch so that the patch

thickness became less than the critical thickness of (5.11). This is sketched in figure 5.10 (a).

The removal of this fluid would not change ∆S. In all cases once enough fluid was withdrawn

so that h � hcrit , the overturning convection ceased and salt fingers re-established themselves

across the mixed region, similar to figure 5.9 (b). Thus it seems that the ∆S across the mixed

patch does not affect the stability of the convection and that h is the important parameter.

a) b) c)
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Figure 5.10: A sketch of T and S profiles used in additional experiments; in (a) ∆S across the mixed
region remains constant but the thickness h is varied, in (b) the top half of the tank is stratified but the
bottom half is well-mixed, in (c) there are three well-mixed layers.
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Figure 5.11: A log-log plot of the convecting layer depth h against the time t from onset of convection.
The straight dotted lines have slope = 1/2. After several hours the growth decreases below that of a t 1 � 2

law as the convecting patch starts to feel the effect of the top and bottom boundaries.

5.3.3 Time evolution of patch thickness

A summary of experimental results of the time evolution of the convecting patch thickness

h is shown in figure 5.11 for a range of Rρ and initial patch thickness. The growth of h is

plotted on a logarithmic scale against the time, t, from the onset of convection. In this figure

all the straight lines have slope = 1/2. The results show very good agreement with the predicted

h � t1 � 2 power law (5.18) at small times. At large times the growth drops below the t1 � 2 power

law. This is expected to occur as we assumed a constant density gradient in deriving (5.18). At

large times the density gradient and Rρ outside the patch will have increased because the S and

T gradients have weakened. The prediction of Stern & Turner (1969) was that a convecting

patch would grow as t3 � 2; this is clearly not consistent with the data. For thin ‘two sided’

interfaces the ∆S4 � 3 law is a reasonable assumption, but the present results show that it does

not describe these ‘one sided’ interfaces, where there are deep linear gradients next to the sharp

interfaces at the edges of the convecting patch. This difference should not be surprising as the
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∆S4
�
3 flux law was originally derived for sharp interfaces bounded above and below by well-

mixed regions where salt fingers can penetrate all the way across the interface and be driven by

the ∆S between top and bottom boundaries. In deep linear gradients this will not be the case,

as discussed in
�

1.2.3.2

Two additional experiments were performed to test other assumptions of (5.18). In the

first experiment, ‘crossed’ linear T and S gradients were made with Rρ � 1 � 5. The bottom

half of the tank was then mixed, as sketched in figure 5.10 b). The depth of the mixed re-

gion easily exceeded the criterion of (5.11) and started to convect. However, as there was no

buoyant convection from the bottom boundary, there was no entrainment across the interface

and the mixed-layer depth remained constant to within 1 cm over a duration of 12 hours. The

buoyancy flux of the salt fingers would only act to increase the density in this mixed layer and

hence increase the stability, rather than drive strong convection that could entrain fluid from

the interface. The second experiment used the same density of the T and S solutions as in other

experiments but now three well-mixed layers were produced, as sketched in 5.10 (c). In this

case convection occurred in all three layers. The interfaces were not observed to move over

a 12 hour period. This illustrates the difference between our one sided interfaces above and

below a mixed region, and the thin two sided interfaces that occur between the well-mixed

regions. These two experiments show that for growth of a mixed layer to occur, there must be

smooth gradients above and below the convecting region.

The data from the growth of the layer thickness shown in figure 5.11 can be used to estimate

the buoyancy flux of B as a function of Rρ by rearranging (5.17) to give

B � � N2h
4η

dh
dt �

(5.20)

where 0 � η � 0 � 2. Only values of h and dh
�
dt at small times are used to calculate the average

value of B. As η is not a well known quantity we made an independent measurement of B by

conducting a second set of experiments that measured the rate of change of a linear density

gradient due to the ‘up gradient’ salt finger fluxes. In these experiments we used the same Rρ

and Sz as in earlier experiments but there was no mixed region. The top and bottom boundaries

of the tank result in flux divergences that change the local density gradients. Syringe samples

of fluid were taken at equally spaced depths through the tank and their densities measured on
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an Anton Paar densitometer (model DMA 602). Thus we were able to measure the rate of

the change of density gradient with time. The buoyancy flux per unit area due to irreversible

processes (such as mixing or salt fingers) is defined by Winters et al. (1995) as

B � g
ρoD

∂
∂t
� �

ρ z dz � �
(5.21)

where D is the depth of the tank, g is the acceleration due to gravity and ρo the mean density.

The buoyancy flux defined by (5.21) is an averaged value within the tank. In figure 5.12 we

plot experimental values of a Nusselt number, defined as

NuB � � Bρo

gκT αTz �
(5.22)

where κT is the molecular diffusivity of the T component (salt). Typically we would calculate

B from the average for 5 - 7 density profiles. The large error bars represent the scatter in the de-

termination of the rate of change of density profiles. The error was mainly due to the difficulty

in accurately measuring the small changes in density caused by the low fluxes. The buoyancy

flux could be measured more accurately if many repeated, continuous density profiles could be

taken rather than with interpolating between 10 density samples to determine the profile. At

present it is very difficult to record continuous density profiles using the sugar/salt system.

The Nusselt numbers inferred from (5.21) are in close agreement with those inferred from

(5.20), if η � 0 � 2. This close agreement shows that the buoyancy flux into the well-mixed

region is the same as the buoyancy flux in the linear gradients, rather than being controlled by

the density step. An empirical formula for NuB that fits the data shown in (5.12) is

NuB � � 11
�

3 � � Rρ � 1 � � 1 � 8

�
(5.23)

for the range 1 � 13 � Rρ � 1 � 7.

5.3.4 Comparison of laboratory results with numerical simulations of salt fin-

gers

Recent advances in available computational power have meant that direct numerical sim-

ulations of salt fingers are now possible. Stern & Radko (1998) and Radko & Stern (1999)
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Figure 5.12: A plot of the inferred Nusselt number NuB, as a function of Rρ. Plotted are experimental
values of NuB determined from the growth of patch thickness with time (5.20), assuming η � 0 � 2, and
values of NuB determined from the rate of change of potential energy of a linear salt finger gradient.
The predictions of Radko & Stern (1999) are also plotted along with an empirical fit to our data.

carried out 2D and 3D simulations of sugar/salt finger fluxes in linear T and S gradients, for

2 � Rρ � 3. The numerical studies found that the eddy diffusivities KS and KT are decreasing

functions of Rρ.

The empirical form of Radko & Stern’s (1999) Nusselt number for buoyancy, over the

range 2 � Rρ � 3 is

NuB � 84 � 1
τRρ
� 1 � 2 � 11

�
(5.24)

where τ � κS
�
κT � 1

�
3 for sugar/salt. An extrapolation of this empirical result to lower values

of Rρ is plotted in figure 5.12. There appears to be good agreement, except at Rρ � 1 � 13 when

(5.24) fails to predict the increase of Nu seen in (5.23) as Rρ
� 1.
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5.4 Discussion

Whenever salt fingers are present in the ocean they will experience a background of exter-

nal shear and intermittent turbulence. Hence the dynamics discussed in this paper are expected

to be relevant. A partially mixed patch can become gravitationally unstable due to salt fingers

when the initial Rρ and mixedness, M satisfy the criterion of (5.8). A typical wave breaking

event has a mixing efficiency of converting kinetic energy into potential energy of around 25

%, equating to a mixedness M � 0 � 75 (Hughes 1996). Using (5.8) this implies that partially

mixed patches can become gravitationally unstable for Rρ � 2, assuming heat-salt fingers have

γ � 0 � 6. Using (5.11) we can estimate a critical patch size for oceanographic conditions. A

typical value for buoyancy frequency for much of the oceanic thermocline is 0.02 s
� 1 and mea-

surements of eddy diffusivity due to salt fingers from the NATRE site by St Laurent & Schmitt

(1999) found Kρ � B
�
N2 in the range of 10 � 4 to 10 � 5m2s � 1. If we assume that the constant

C � 5 in (5.11) applies to heat/salt fingers, then in the ocean the critical patch thickness is of

the order h � 1 � 10 m for overturning convection to occur. Typical depths of mixed patches at

the NATRE site were found by Polzin et al. (2001) to be in the range 1 - 10 m. Hence we ex-

pect that these patches may start convecting due to the salt finger fluxes. As KT is a decreasing

function of Rρ, the critical patch thickness will tend to increase with Rρ, thus only for Rρ near

1 do we expect to see convecting patches forming.

In the ocean a turbulent patch will collapse laterally, as opposed to patches in our laboratory

experiments which were confined by the walls of the narrow tank. We have shown that if the

patch can start to convect then the patch thickness can increase in thickness with time. For

patches of small aspect ratio, which behave locally as layers, this convective entrainment could

balance the decrease in thickness of a patch as it collapses laterally. Such a balance would lead

to mixed patches of small aspect ratio which would spread laterally at an increased velocity due

to the sustained input of volume by convective entrainment. Polzin et al. (2001) inferred from

their observations that collapsing mixed patches were an important mechanism for enhanced

lateral dispersion of an anthropogenic tracer in the NATRE site.

After a turbulent event the collapse of the patch is initially governed by a buoyancy-inertia

balance (Turner, 1973) so that the lateral intrusion propagates at wave speed U given by
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U � Nh
�

(5.25)

where h is thickness of the well-mixed patch and N is the buoyancy frequency of the surround-

ing stratification. For radial collapse of a cylindrical volume of radius R this corresponds to a

volume flux of 2πRNh2. The volume flux into the horizontal surfaces of the cylinder due to the

entraining convection, is given by πR2dh
�
dt. Using (5.17) with η � 1

�
4 to determine dh

�
dt,

a steady h can occur when the patch has a radius

R � 2N3h3

B
� (5.26)

An experiment designed to test (5.26) in the laboratory was carried out in a long narrow

tank of length 150 cm, width 10 cm and depth 50 cm. A small stirring device was located

at one end to create a mixed patch. However, even with the smallest buoyancy frequency N,

smallest convecting depth h and most active salt fingers (large B) the resulting lateral intrusion

from the collapsing turbulent patch reached the far end of the tank well before the layer started

to thicken by convective entrainment. With realistically achievable laboratory parameters for

N, h and B, we would need a tank of length � 10 m to test the balance implied by (5.26).

Using plausible oceanographic values of N � 0 � 02 s � 1, h � 1 � 5 m, and Kρ � 10 � 4m2 s � 1

we would expect the condition (5.26) to be important when the radius R of the well-mixed col-

lapsing patch is of the order of 200 m - 1000 m. This large horizontal length scale would only

be detectable if one could measure the horizontal coherence of mixed patches. Observations

made by Mack (1989) using a towed micro-structure chain in the Sargasso Sea revealed small

aspect ratio patches of turbulence and salt fingering having horizontal scales of the order of

100 m - 1000 m. These scales are possibly consistent with the present mechanism. Intrusions

of similar lengths scales have also been detected due to other mechanisms such as cross frontal

exchange flows (Ruddick & Herbert 1988, Alford & Pinkel 2000b).

5.5 Conclusion

A theoretical and experimental model of the interaction of a patch of turbulence in a deep

linear salt fingering gradient has been developed. The initial instability of the salt finger flux
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divergences acting upon a partially mixed density gradient is shown by (5.8) to lead to an

unstable density gradient for initial Rρ near one. This unstable patch could subsequently start

to convectively overturn if large convective eddies are able to transport T and S faster than salt

fingers. This implies that there is a critical thickness of a mixed patch below which overturning

convection does not occur. The theoretical description of the critical patch thickness (5.11) is

in very good agreement with laboratory results.

Once a patch started to convectively overturn in the laboratory experiments the patch thick-

ness was observed to increase by entrainment of the overlying linear density gradient. Mea-

surements of the growth rate of the patch are in good agreement with the prediction of h � t1
�
2.

This is in contrast to theory of Stern & Turner (1969) who predicted that a patch of salt finger-

ing will grow as h � t3
�
2 based upon the assumption that fluxes scale as ∆S4

�
3, where ∆S is the

difference of the unstable S component cross the mixed patch.

Using the theoretical prediction of patch growth rate (5.18) we have inferred the buoyancy

flux of buoyancy B as a function of Rρ (shown in figure 5.12). These results agreed well with

independent measurements of B made by measuring the rate of change of density gradient in

linear T and S gradients. This indicates that the fluxes in the mixed region are controlled by

the linear gradients above and below the mixed region rather than the density step across the

interface. We found B was a rapidly decreasing function of Rρ, consistent with inferences

from oceanographic observations of St Laurent & Schmitt (1999) and numerical studies (Shen

1995; Radko & Stern, 1998; Stern & Radko; 1999, Merryfield 2000 and Radko & Stern, 2000).

Our measurements of B at Rρ � 2 are of similar magnitude to predictions of a 3D numerical

simulation of salt fingers by Radko & Stern (1999).

In an oceanographic setting our theory predicts that salt fingers can lead to unstable density

gradients of partially mixed patches when Rρ � 2. If the patch has thickness greater than 2-5

m, laminar salt-finger convection may give way to overturning convection. Once this occurs

the growth rate of the patch thickness due to convective entrainment may balance the decrease

in patch thickness due to lateral collapse when a patch is of the order of 200 m - 1000 m radius.

The salt finger fluxes thereby enhance horizontal transport in regions of intermittent turbulence

and may provide a mechanism for the initial formation of density staircase structure.



Chapter 6

Interaction between salt finger

convection and intermittent

turbulence

In this chapter we develop a model of the diapycnal fluxes due to the combined presence of

intermittent turbulence and salt fingers. We focus on the disruptive effect that frequent turbu-

lent events has upon salt fingers and consider the case where sharp density steps do not form,

as was discussed in chapter 5. In
�
6.1 we review the previous laboratory experiments and re-

sults from direct numerical simulations of the initial growth and equilibration of salt fingers.

In
�
6.2 we describe the time averaged buoyancy flux due to the presence of both intermittent

turbulence and salt fingering. An experiment is then discussed in
�
6.3 where the time between

turbulent events is systematically varied relative to the growth period of the salt fingers and

the resulting average buoyancy flux measured. In
�
6.4 we use realistic oceanographic param-

eters to determine the resulting T and S diffusivities when both turbulence and salt fingering

are present. We then compare this with previous ad hoc parameterizations of salt fingering

diffusivities that have been used in ocean circulation models.

6.1 Previous work

In laboratory experiments, Linden (1971) found that continuous turbulence totally dis-

rupted salt finger convection, resulting in ‘down gradient’ buoyancy fluxes. However experi-

ments of Taylor (1991) found that after a turbulent event, salt fingers can grow and re-establish

an ‘up gradient’ buoyancy flux. In these experiments a grid was dropped through a heat/salt

107



�
6.1 Previous work 108

interface. By taking rapid horizontal and vertical conductivity and temperature profiles, the

evolution of the wavenumber spectra was observed. Active turbulence was observed to stop

after Nt � 1, and characteristic salt finger wave numbers were observed to form by Nt � 10,

which corresponds to one e-folding period of the salt fingers. By calculating a Cox number

from the wavenumber data, Taylor deduced that fingers reached equilibrium structures after

5-10 e-folding periods. In the ocean there are large regions that are salt finger favourable.

Turbulence occurs intermittently in the ocean (Gregg, 1987) and so will disrupt salt finger

fluxes. However if the time between turbulent events is greater than the time salt fingers take

to re-establish themselves, then salt fingers may contribute significant diapycnal fluxes.

6.1.1 Equilibration of salt fingers

After salt fingers have been disrupted, the initial growth of the salt fingers’ velocity, T and

S anomalies is exponential (Stern, 1969; Schmitt, 1979a; Kunze, 1987). For given T and S

gradients, the growth rate depends upon the wavelength of the salt fingers. The fastest growing

fingers have a width that is set by a balance between lateral diffusion of T (which produces

the buoyancy perturbation driving the anomaly) and the viscous dissipation generated by the

shear between up and down going fingers. The growth rate of the fastest fingers is plotted as a

function of Rρ in figure 6.1. Exponential growth does not continue indefinitely and the flux of T

and S becomes limited by secondary instabilities that grow on the salt fingers. Many secondary

instabilities have been recognized, such as the “collective instability” of Stern (1969) and other

“varicose” instabilities of Holyer (1984, 1985), Howard & Veronis (1987), Veronis (1987)

and Shen (1995). For active fingers at low Rρ, these instabilities have vertical wavelengths

comparable to the finger width and growth rates that are only slightly lower than those shown

in figure 6.1. In a laboratory experiment, Taylor (1993) made a comparison of vertical and

horizontal wave numbers and showed that the salt fingers were characterized by small aspect

ratio‘blobs’ rather than long ‘fingers’. Thus we expect active salt fingers to reach equilibrium

fluxes after several e-folding times (λ � 1) and at small aspect ratio.

Salt finger fluxes only grow exponentially for a small time and no analytic description

is available for the subsequent evolution to steady fingers. Direct numerical simulations of

salt fingers in linear T and S gradients have modeled the brief initial period of exponen-

tial growth and the subsequent equilibration of salt fingers fluxes at large times. The two-
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Figure 6.1: A plot of the (1.12), exponential growth rates λ of salt fingers normalized by the buoyancy
frequency N, for the heat/salt and sugar/salt case.

dimensional heat/salt simulations of Shen (1995) and Merryfield & Grinder (2001) and the

three-dimensional sugar/salt simulations of Radko & Stern (1999) all found similar results for

the time-dependence of the salt finger fluxes over the range 1 � 25 � Rρ � 15 for heat/salt fingers

and for 1 � 6 � Rρ � 3 for sugar/salt fingers. Results from these models showed that when the

velocity, and T and S anomalies are initially very small the growth rate is very similar to the

predicted exponential growth rate, described by (1.12). Subsequently the growth rate reduces

and then steady velocity, T and S anomalies are reached at around 3-7 e-folding periods. The

difference in the timescales to equilibration of the various numerical models depends in part

upon the magnitude and structure of the initial ‘white noise’ that the linear T and S fields are

seeded with.
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The time evolution of salt finger fluxes is plotted in figure 6.2 (a) from a numerical simula-

tion by Merryfield & Grinder (2001). In this graph, the T flux has been normalized in the form

of a Nusselt number

Nu � FT

κT Tz �
(6.1)

where κT is the molecular diffusivity of T . The three different curves are for Rρ = 2, 6 and 15,

so that the exponential growth rates vary. When time is normalized by the salt finger growth

rate, λ, the three curves all reach equilibrium values of Nu at around 4-5 e-folding periods after

the initiation of the growth from linear T and S gradients. These equilibrium values of Nu are

very similar to those found by Shen (1995) for similar Rρ. In figure 6.2 (b) the numerical data

are plotted on logarithmic axes. When Nu is growing to equilibrium values the three curves

closely follow a t7 power law. Similar steep growth was found in the evolution of sugar/salt

salt finger fluxes in the numerical experiments of Radko & Stern (1999) where a similar steep

approach to equilibrium values over approximately 7 e-folding periods was seen. The growth

of Nu in figure 6.2 (a) is also consistent with exponential growth at small times, however the

exact functional form of this growth will be relatively unimportant in the following discussion.

6.2 Interaction between intermittent turbulence and salt fingers

In this section we discuss how the buoyancy fluxes due to salt fingering and intermittent

turbulence vary with time. By averaging these time dependent buoyancy fluxes over large

timescales we describe how the total buoyancy flux depends upon the time between turbulent

events and the e-folding period of the salt fingers.

6.2.1 Salt finger fluxes

After a turbulent event has disrupted the salt fingers fluxes, salt fingers re-establish them-

selves over several e-folding periods. For simplicity in the following discussion we propose

an empirical parameterization of the growth of salt fingers based upon the numerical results

shown in figure 6.2. The fluxes are parameterized as having an initial growth which follows a
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Figure 6.2: The normalized T flux Nu, due to salt fingers plotted against time normalized by the initial
exponential growth rate λ plotted on linear and logarithmic axes; data from the numerical simulations
of Merryfield & Grinder (2001).

t7 power law which equilibrates after 5 e-folding periods

Nu � t � �
�� � 1 � � Nu

� � Rρ � � 1 � � λt
�
5 � 7 if t � 5

�
λ

Nu
� � Rρ � if t � 5

�
λ

�

(6.2)

where Nu
�

is the equilibrium value. The exact functional form of (6.2) will be shown to be

relatively unimportant. The time dependent parameterization of (6.2) is plotted in figure 6.3 (a).

The initial growth rate λ is a strongly decreasing function of Rρ (as shown in figure 6.1) so that

for higher Rρ Nu takes longer to reach the equilibrium values Nu
�

. The dimensionless S flux

is NuS � γ � 1Nu, where γ is the flux ratio.

The time average of Nu � t � over a time ∆t, beginning at the time of zero salt finger ampli-

tudes, is given by
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Nu � 1
�
∆t

� ∆t

0
Nu � t � dt

�
(6.3)

where the over-bar denotes a time averaged quantity. The instantaneous and time-averaged

fluxes (6.2, 6.3) are plotted in figure 6.3. The instantaneous Nu reaches the equilibrium value

Nu
�

at 5 e-folding periods, while Nu reaches half Nu
�

at around 9 e-folding periods. Virtually

the same result for Nu would occur if we used a step function to describe (6.2) rather than

assuming a polynomial growth. For the case of a step function, the time average value would

reach half the equilibrium value at 10 e-folding periods. This means that as long as there is

a steep growth in Nu the exact details of the functional form are not important for the time-

averaged Nu; only the time taken for the salt fingers to equilibrate and the equilibrium value of

Nu
�

are important.

The important point of figure 6.3 (b) is that Nu can be considered as a time-average over

many cycles of disruptive events. If turbulence disrupts salt fingers every 5 e-folding periods,

then Nu is only 10% of Nu
�

. If turbulence disrupts salt fingers every 9 e-folding periods,

then Nu will be half the equilibrium values. Only in the limit of very long times between

turbulent events will Nu � Nu
�

. This indicates that the time-averaged fluxes of salt fingers are

very sensitive to the time between intermittent turbulent events and will be greatly reduced if

turbulence occurs frequently.

6.2.2 Turbulent fluxes

Observations of turbulence in stratified flows have found that the buoyancy flux due to the

turbulence is suppressed after one buoyancy period (Itsweire et al. 1986; Hughes 1996). On

timescales much greater than one buoyancy period (t � 2π
�
N) we can consider a turbulent

stirring event to be an instantaneous event. The time-averaged flux will then scale with the

time ∆t between turbulent events.

If the time-averaged flux due to the turbulent event over the period 2π
�
N has the value

FTurb and the time between turbulent events is ∆t then the time-averaged flux will scale as

FTurb � 2π
N∆t

FTurb (6.4)

where N is the buoyancy frequency. If turbulence is highly intermittent, the time-average
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Figure 6.3: a) A plot of the evolution of the salt finger flux Nu, defined by (6.2), against time: b) The
evolution of the time-averaged salt finger flux Nu, defined by (6.3), against the time between stirring
events ∆t, time normalized by λ.

turbulent flux, FTurb, is much less than the turbulent flux FTurb during a turbulent event. The

same FTurb can result from strong but infrequent turbulence (large FTurb and large ∆t) as for

weak but frequent turbulence (small FTurb and small ∆t). In the laboratory the time between

turbulent events ∆t and the magnitude of FTurb are constant; in the ocean average values of ∆t

and FTurb would have to be used.

The assumption that FTurb scales linearly with the time between events for a given FTurb

will only hold if the density gradient remains essentially linear so that the buoyancy flux is

uniform through the depth of the tank. The growth of low-gradient boundary layers at the

top and bottom places one restriction on how large the buoyancy flux due to turbulence can

be. Density staircase structure can also occur if stirring is near Richardson numbers of unity

(Ruddick et al. 1989; Park et al. 1994 and Holford & Linden 1999).
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6.2.3 Addition of salt fingers and turbulence

On large timescales (t � ∆t � 2π
�
N) the time-averaged buoyancy fluxes due to the com-

bined presence of both salt fingers and turbulence is determined by addition of (6.3) and (6.4).

These equations have taken into account the disruption of salt finger fluxes by turbulence and

represent average fluxes over many cycles of turbulence and growing salt finger fluxes. The

buoyancy flux due to both processes is

B � g � αFT � βFS � �
(6.5)

and will be negative when salt fingers dominate and positive when turbulence dominates.

At large Reynolds numbers turbulence T and S are transported with the density gradient so

that αFT Turb � RρβFS Turb. The time-averaged fluxes of T and S are

βFS � β FS Finger � β FS Turb �
αFT � γ β FS Finger � RρβFS Turb �

(6.6)

where γ is the salt finger flux ratio, FS Finger is defined by (6.3) and FS Turb is defined by (6.4).

The assumption that the total flux (6.6) is the sum of the salt finger and turbulent fluxes was also

made by Walsh & Ruddick (1998); the important difference is that now the time dependence

of the salt finger fluxes is considered.

The ratio of the time-averaged T and S fluxes in (6.6) is

γeff � αFT

βFS
� γFS Finger � RρFS Turb

FS Finger � FS Turb
� (6.7)

This had been previously described as the “effective flux ratio” by Walsh & Ruddick (1995b)

and defined in terms of eddy diffusivities of T and S. When time-averaged salt fingering fluxes

are large, γe f f � γ and the buoyancy flux is ‘up gradient’. When the time-averaged turbulence

dominates, γe f f � Rρ and the flux of density is ‘down gradient’. For a given Rρ and γ, the

flux ratio γeff is a function of the time between turbulent events ∆t. FS Finger increases with

increasing ∆t by (6.3), while FTurb decreases with increasing ∆t by (6.4).

An example of the dependence of γe f f upon the normalized time between turbulent events

λ∆t is plotted in figure 6.4, where we have used a value of γ � 0 � 9 and Rρ � 1 � 25 representative
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sugar/salt experiments.

of laboratory sugar/salt fingers. We define C as the ratio of average turbulent flux (evaluated at

λ∆t � 1) to the equilibrium salt finger flux

C � λ 2πFS Turb

N F
�

S Finger

� (6.8)

Values of C = 0.5, 1 and 2 are plotted in figure 6.4. These values of C are consistent with

later laboratory experiments, detailed below in
�
6.3.2. The transition from an ‘up gradient’

flux of buoyancy (γe f f � 1) to the ‘down gradient’ flux of buoyancy (γe f f � 1) occurs when

the time between turbulent events is λ∆t � 7, for C � 1. When γe f f � 1 there is no buoyancy

flux. When C � 2 the transition occurs at λ∆t � 10 and when C = 0.5 the transition occurs

at λ∆t � 6. The important feature of figure 6.4 is that when turbulence is frequent compared

to salt finger e-folding times (small λ∆t) the turbulence fluxes are large and salt finger fluxes

are weak, so that the total flux is dominated by turbulence and γe f f � Rρ. When turbulence
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is infrequent compared to salt finger e-folding times (large λ∆t) the turbulent fluxes are small

and salt finger fluxes can reach equilibrium values and dominate the total buoyancy flux, so

that γe f f � γ.

6.3 Experiments with intermittent turbulence and salt fingers

To determine how salt fingers fluxes are disrupted by intermittent turbulence, a series of

experiments was conducted where the time between turbulent events, ∆t, was systematically

varied relative to the e-folding period of the salt fingers. A comparison of the average buoyancy

fluxes from different experiments then allows a determination of the minimum time between

stirring events, ∆t, necessary for the salt fingers to reach equilibrium fluxes. Two sets of

experiments were conducted with different N and Rρ. The growth rate λ is a function of both

N and Rρ (from figure 6.1) so is varied between the experiments.

120 cm

30 cm

3 cm/sDensity

Samples

30 cm

Figure 6.5: The apparatus used in initial experiments.

The first set of experiments were conducted in a long tank of dimensions 30 cm � 30 cm

� 120 cm, as sketched in figure 6.5. Turbulent stirring was conducted by horizontally towing a

vertical comb of 8 rods at a constant velocity through the fluid. The rods had diameter 1.2 cm,

and were separated by 3.6 cm, so that the solidity of the comb of rods is 30%, similar to that
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used by Holford & Linden (1999). The tow speed and stirring frequency were controlled from

a computer using a LABVIEW routine. In the experiments we use a tow speed of 3 cms � 1 .

The time between stirring events, ∆t, was varied by changing the time the rods paused at the

end of the tank before they changed direction. In typical experiments the tank was stirred up

to 20 times during the course of measurements.

A second set of experiments was conducted in a deeper tank of depth 50 cm and area 30

cm � 30 cm. The first experimental tank was abandoned after seven experimental runs due

to difficulties with insulating the large surface area and the presence of long internal waves

induced by the stirring. The second tank had half the volume of the first tank and a smaller

surface area so that internal waves decay more rapidly (McEwan, 1971). A comb of six vertical

rods of diameter 1.2 cm separated by 3.4 cm was used so that the solidity of the comb of rods

was again around 30%. In this new experiment we used hollow stainless steel rods of small

mass which vibrated less at the start and end of a traverse. In the second set of experiments we

again used a traversal speed of 3 cm s
� 1. Insulation was provided by a sliding plastic cover on

the tank.

Using heat/salt fingers is problematic in the laboratory due to the difficulty of maintain-

ing good insulation when using high temperature gradients. The large buoyancy fluxes in the

heat/salt system also mean that the T and S gradients change quickly. For these reasons the

present experiments were conducted using the sugar/salt analogue. Linear concentration gra-

dient were created using the standard double bucket system. To create “crossed” T and S

gradients, favourable for salt finger, one bucket had a salt solution of density ρ � 1 � 07 g cm � 3

and the other a sugar solution of density ρ � 1 � 06 g cm � 3. This gave an initial Rρ � 1 � 13 and

N � 0 � 55 s
� 1. In the second experiments we used slightly higher salt concentration to give

Rρ � 1 � 25 and the deeper tank meant a lower N � 0 � 39 s � 1. Using the equations of Schmitt

(1979a) to determine the maximum growth rate, the e-folding period of the salt fingers for the

first experiments was 1
�
λ � 25 s and for the second experiments was 1

�
λ � 60 s.

The Richardson number of the towed rods is defined as

Ri � N2

� U � D � 2 �
(6.9)

where D is the diameter of rods (1.2 cm), U is the traversal speed (3 cm s
� 1) and N is the
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buoyancy frequency. In the first experiment Ri � 0 � 11 and in the second experiment Ri � 0 � 06.

A comparison to previous stirring experiments of Ruddick et al. (1989), Park et al. (1994)

and Holford & Linden (1999) indicates that we are not in the high Richardson number regime

where steps would form in the density gradient, as can happen if Ri
�

1.

6.3.1 Experimental determinations of buoyancy flux

We measured the density profile by taking 10 vertically spaced samples of fluid after a

number of stirring events, so that a time integrated measure of the buoyancy flux is obtained

from the rate of change of density gradient, calculated using (5.21). The samples were spaced

more closely near the top and bottom of the tank where the density gradient changes most

rapidly due to the presence of the horizontal boundaries. The density of the samples are mea-

sured using an Anton Paar densitometer (model DMA 602).

The maximum duration of an experiment was set by the growth of the top and bottom

boundary layers due to the no-flux condition. If only turbulence were present these boundaries

would be regions of low density gradient. As these grow inwards we can no longer assume

that the tank has a uniform buoyancy flux. When only salt fingers are present there is an ‘up

gradient’ flux so boundary layers of increased density gradient are produced along with an

increase in Rρ that acts to reduce buoyancy fluxes through the interior. The time scale for the

growth of either of these boundary layers to a thickness h is given by

t � h2 � KS (6.10)

as discussed in
�
1.2.4. In the present experiments both turbulent and salt finger diffusivities

are KS � 10 � 2 � 10 � 3 cm2 s � 1. The time scale for the boundary layer to grow to 20% of the

depth of the tank was of the order of 1-2 hours for the first shallow tank and 7-9 hours in the

deeper tank.

The time scale (6.10) constrains how slowly the tank could be filled using the double

bucket system. Slow filling is preferable to minimize mixing and create a linear concentration

gradient. However as the boundary layers grow the value of Rρ in the tank increases above

the initial value. As a compromise we filled the tank over a 10 minute period. This avoided

unnecessary mixing during the filling process and was still less than times implied by (6.10), so



�
6.3 Experiments with intermittent turbulence and salt fingers 119

that repeatable gradients can easily be made using the sugar/salt system. This problem could

not be avoided in the experiments of Taylor (1991), where the high T and S fluxes of heat/salt

fingers meant that the run down time scale was of the order of several minutes - comparable to

the time it took to fill his tank.
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Figure 6.6: Experimental density profiles showing the change in density gradient with time: in a) only
salt-sugar fingers are present, in b) only intermittent turbulence is present.

6.3.2 Experimental results

The buoyancy fluxes were calculated from the rate of change of density profiles, using

data similar to that shown in figure 6.6. The two cases shown are for experiments where

only salt fingers or only turbulence was present. These two experiments had the same initial

buoyancy frequency. These density profiles show the difference between the ‘up gradient’ flux

of buoyancy due to salt fingers (figure 6.6 a), that steepen the density gradient with time, and

the ‘down gradient’ flux of buoyancy due to turbulence (figure 6.6 b) that weaken the density

gradient with time.
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The normalized buoyancy flux is defined as

NuB � � Bρo
gκT αTz

� (6.11)

where B is calculated using (5.21) from data such as that shown in figure 6.6. Experimental

measurements of depth averaged buoyancy fluxes NuB are plotted in figure 6.7 for different

times ∆t between stirring events. As the time between the sampling is greater than the time

between turbulent events we have measured the time averaged buoyancy flux. The measured

buoyancy flux changes from ‘down gradient’ to ‘up gradient’ when ∆t � 150 s in the first

experiment and when ∆t � 300 s in the second experiment. In these figures we also plot

the expected turbulent buoyancy flux (6.4) and the equilibrium salt fingering buoyancy flux.

Measurements of the density profile were made several times during a typical experiment so

as to calculate average values of the rate of change of potential energy. The large error bars

in figures 6.7 and 6.8 represent the difficulty in calculating the buoyancy flux using a small

number of density samples when the changes in the density gradient are small, as shown in

figure 6.6. To determine the equilibrium salt finger buoyancy fluxes two experiments were

conducted for Rρ = 1.13 (not shown) and Rρ = 1.25 (figure 6.6 a) with no stirring present and

buoyancy fluxes again calculated from changes in density gradient with time using (5.21). The

average turbulent buoyancy flux was measured for five stirring events for two cases with the

same buoyancy frequencies as the salt fingers experiments. The data from one experiment is

shown in figure 6.6 (b).

In order to determine the time averaged buoyancy flux of salt fingers, the time averaged

buoyancy flux due to turbulence (6.4) was subtracted from the total buoyancy flux. In figure 6.8

the time averaged buoyancy flux due to salt fingers is plotted against λ∆t. The equilibrium and

half equilibrium buoyancy flux are plotted in figure 6.8 as horizontal lines. If the instantaneous

salt finger buoyancy flux evolves steeply to the equilibrium value then the time averaged salt

finger buoyancy flux will reach half the equilibrium buoyancy flux in twice the time it takes the

instantaneous buoyancy flux to equilibrate. In these experiments the time averaged buoyancy

flux due to salt fingers was seen to reach half the maximum value between 6-15 e-folding

periods when Rρ � 1 � 13 and at 10-20 e-folding periods when Rρ � 1 � 25. This implies that

the instantaneous flux equilibrated at between 6-10 e-folding periods when Rρ � 1 � 13 and 5-
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10 e-folding periods when Rρ � 1 � 25. This time scale is in the same range as the timescales

for fluxes to equilibrate in the experimental work of Taylor (1991) and in the numerical work

by Shen (1995), Radko & Stern (1999) and Merryfield & Grinder (2001). This agreement of

timescales indicates that it was a reasonable assumption in (6.5) to describe the total buoyancy

flux as the sum of the time averaged fluxes of turbulence and salt fingers. It would require

much more detailed data to determine the functional form of the instantaneous salt finger flux

from these time averaged measurements, as the large error bars mean that the curves shown in

figure 6.8 cannot be accurately differentiated to infer the instantaneous diffusivity. However it

is not important to know the instantaneous fluxes as the time averaged fluxes are not sensitive

to its functional form.
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Figure 6.7: Experimentally measured buoyancy fluxes for a) Rρ = 1.13 and b) Rρ = 1.25, when a salt
fingering gradient was stirred at intervals of ∆t. Note the difference in time axis.
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Figure 6.8: Experimentally determined buoyancy fluxes due to the salt fingers for a) Rρ = 1.13 and b)
Rρ = 1.25. This was found by subtracting the time averaged buoyancy flux of the turbulence (6.4) from
the total measured flux shown in figure 6.7. Note the difference in time axis.
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6.4 Oceanographic application

We now discuss a parameterization of eddy diffusivities KT and KS, due to intermittent

turbulence and salt fingers for spatial and temporal scales much larger than those of the inter-

mittent turbulence or salt fingering. We assume that the main effect of turbulence is to reduce

salt finger fluxes rather than lead to the overturning convecting layers discussed in chapter 5.

The eddy diffusivity KS is then compared with the ad hoc parameterization of Schmitt (1981),

defined below by (6.14).

The assumptions that we use to derive a time averaged eddy diffusivity of salt KS as a

function of � ∆t
�
Rρ � when both salt fingers and intermittent turbulence are present are that:

� A turbulent event totally disrupts salt fingers.

� Salt fingers then grow to reach equilibrium fluxes after 3-7 e-folding periods.

� The evolution of the fluxes of T and S grows sharply, with the parameterization defined

in (6.2)

� The growth rate λ of salt fingers is a decreasing function of Rρ and can be described

by (1.12). In this calculation we used g � 980cm s � 2, ν � 1 � 32 � 10 � 2cm2 s � 1, κT �
1 � 4 � 10

� 3cm2 s
� 1 and κS � 1 � 5 � 10

� 5cm2 s
� 1.

� The equilibrium diffusivity of salt K
�

S due to salt fingers is a decreasing function of

Rρ and can be described by results from the numerical simulations of Shen (1995) or

Merryfield & Grinder (2001)

K
�

S � 0 � 15
1 � Rρτ
Rρ � γ �

(6.12)

where we have used τ � 0 � 01 and γ � 0 � 6, typical of heat/salt.

� Turbulence has a well defined intermittency with turbulent events every ∆t and a time

averaged diffusivity KTurb.

� Due to the difference in timescales of salt finger growth and turbulence collapse we can

add the fluxes of the two time averaged processes, as in (6.6).
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We will use observations of oceanic turbulence to determine the time between turbulent

events by assuming that turbulent events only persist for one buoyancy period so that

∆t � 2π
N

1 � I
I

(6.13)

where the intermittence, I, is the proportion of a record over which turbulence is observed.

Measurements by Kunze et al. (1990) from a neutrally buoyant float found that there

was strong correlation of wave breaking events with the passing of inertial waves which gave

Ri � 1
�
4. Turbulence was present in 2% of their record. In other work Alford & Pinkel (2000b)

found, using a 9 day continuous record of velocity and density structure collected by R/V Flip,

that an average of 3 � 06% of the water column had actively overturning turbulence. Measure-

ments made by Polzin et al. (2001) using a free falling profiler at the NATRE site, indicate that

at any time about 5% of the water column was actively overturning due to turbulent events.

We therefore discuss intermittencies in the range 1% � I � 10% to cover the typical range of

values of oceanic turbulent intermittence far from topography. With this range (6.13) implies

N∆t
�
2π � 10 � 100.

With the assumptions listed above the time averaged diffusivity of salt fingers KSFinger is

plotted in figures 6.9 and 6.10 using equations (1.12), (6.3), (6.2), (6.12) and (6.13). In fig-

ure 6.9 we have fixed the time salt fingers take to equilibrate to 5 e-folding periods and change

the intermittence from I = 1 % to 10 %. When I = 1% or 2 %, KSFinger is little changed from

K
�

, and there is only a gradual reduction in salt finger diffusivity with increasing Rρ. When

I = 6% or 10%, KSFinger is reduced to almost zero at high Rρ where the e-folding timescales

are very large. The reduction in salt finger fluxes when I � 6% and Rρ � 2 � 5 is mainly due to

the rapidly decreasing functional forms of K
�

S and λ with Rρ. In figure 6.10 we have fixed the

intermittence at I � 6% and show the effect of changing the time salt fingers take to equilibrate.

When salt fingers equilibrate in 3 e-folding periods, the time averaged diffusivities are closer

to K
�

S . When salt fingers take 5 or 7 e-folding periods to equilibrate, time averaged diffusivities

are reduced below K
�

S , particularly at Rρ � 2.

The important result of the parameterization of the time averaged eddy diffusivity due to

salt fingers KS Finger (shown in figures 6.9 and 6.10) is if turbulence is intermittently present

in more than 2% of the water column, only salt fingers with Rρ � 2 � 5 have growth rates high
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Figure 6.9: A plot of the time averaged diffusivity of salt due to salt fingers for typical oceanographic
conditions. Salt finger fluxes take 5 e-folding periods to equilibrate. The time between turbulent events
∆t varies from 60 to 600 N

� 1 equivalent to intermittencies in the range 1% �
I

� 10%. Also plot-
ted are the equilibrium diffusivity K �S (defined by 6.12) when there is no turbulence and the ad hoc
parameterization of salt finger diffusivities, defined by (6.14).

enough to contribute a large equilibrium flux. This strong dependence of the diffusivities upon

the time between turbulent events means that if the turbulence in the ocean is characterized by

frequent small turbulent events the flux of T and S by salt fingers would be suppressed more

dramatically than if there were only a few large but infrequent turbulent events. Changing the

number of e-folding periods that salt fingers take to reach equilibrium eddy diffusivities K
�

S

is also important in determining KS Finger, but appears to have less effect than changing the

intermittency.
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Figure 6.10: A plot of the time averaged diffusivity of salt due to salt fingers for typical oceanographic
conditions. Turbulence occurs intermittently with I � 6% (∆t � 100N

� 1) and we plot cases where
fluxes equilibrate at 3,5 and 7 e-folding times. Also plotted are the equilibrium diffusivity K �S (defined
by 6.12) when there is no turbulence and the ad hoc parameterization of salt finger diffusivities, defined
by (6.14)

6.4.1 Previous parameterization of salt finger eddy diffusivities

The ad hoc parameterization of salt finger eddy diffusivities of Schmitt (1981) has been

used in two recent ocean circulation models of Zhang et al. (1998) and Merryfield et al.

(1999). The functional form of the parameterization for the combined effects of salt fingers

and intermittent turbulence was

KS � K#
S

1 ��� Rρ
�
Rc � n � KTurb (6.14)
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KT � γK#
S

Rρ1 � � Rρ
�
Rc � n � KTurb �

(6.15)

where K#
S is the maximum salt finger salt diffusivity at low Rρ, KTurb is a constant background

turbulent diffusivity and Rc is the critical value of Rρ at which finger fluxes are assumed to

decrease. An exponent of n � 6 and Rc � 1 � 6 was used by Zhang et al. (1998) and Merry-

field et al. (1999), so that the salt finger diffusivity rapidly decreases to zero when Rρ � Rc

so the background turbulent values dominate the diffusivity at high Rρ. Originally a value of

K#
S � 10 cm2 s � 1 had been used by Schmitt (1981). In light of observations from the C-SALT

experiment, a more modest range of values of K#
S � 0 � 5 � 1 cm2 s � 1 was used by Zhang et al.

(1998). The study of Merryfield et al. (1999) used values in the range K#
S � 1 � 10 cm2 s

� 1.

The recent observations from the NATRE experiment by St. Laurent & Schmitt (1999) sug-

gest that salt finger diffusivities are in the range of 0 � 1 � 1 cm2 s � 1 when 1 � 5 � Rρ � 2 � 5. For

comparison with results of Merryfield & Grinder (2001) we assume K#
S � 0 � 17 cm2 s

� 1. The

resulting diffusivity due to salt fingers, using (6.14) with KTurb � 0, is plotted in figures 6.9

and 6.10. The low values of KS predicted by (6.14) for Rρ � 2 are consistent with the new

parameterization in figure 6.9 when salt fingers interact with intermittent turbulence occurring

in 6% to 10% of the water column. When turbulence is present in only 1% to 2% of the water

column, (6.14) predicts much lower values of the diffusivity at high Rρ than the equilibrium

values of K
�

found by Merryfield & Grinder (2001). The important difference between (6.14)

and the new parameterization plotted in figures 6.9 and 6.10 is that the degree of the reduc-

tion in KS Finger at large Rρ varies with ∆t and must therefore be estimated for the particular

oceanographic site that is to be modeled.

6.4.2 Flux ratio

The effective flux ratio (6.7) can be written in terms of eddy diffusivities as

γeff � γKS Finger � RρKTurb

KS Finger � KTurb
� (6.16)

An example of how γe f f depends upon Rρ for realistic oceanic values of ∆t is plotted in fig-

ure 6.11, where we use the time averaged diffusivity of salt fingers KSFinger and assume that
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salt finger fluxes equilibrate after 5 e folding periods, as plotted in figure 6.10. We use γ � 0 � 6

and a constant KTurb � 0 � 1 cm2 s � 1, typical of values of turbulent diffusivity in much of the

thermocline (Ledwell, 1993). In figure 6.11 there is an ‘up gradient’ flux of buoyancy, γe f f � 1,

only for Rρ � 2. For the case of constant turbulence (∆t � 0 ) salt fingers are totally disrupted

so that γe f f � Rρ. Increasing KTurb would mean that γe f f � 1 only at Rρ
� 1. A reduction in

KTurb would mean that γe f f � Rρ even at large Rρ.

The form of γe f f plotted in figure 6.11 is qualitatively similar to that used by Walsh &

Ruddick (2000) to describe the growth of double diffusive interleaving in the presence of salt

fingers and turbulent fluxes. The important difference in (6.16) is that we have assumed γ

is constant rather than a decreasing function of Rρ and, more importantly, we assume that

KTurb
�
KS f inger rapidly increases with Rρ rather being constant as assumed by Walsh & Rud-

dick (2000). This difference means that γe f f always increases with Rρ in our model. Thus

the “UV” instability of Walsh & Ruddick (2000), whereby the growth rates of the horizontal

intrusions increase without bound for high frequency wave numbers, would not occur when

using the salt finger diffusivities plotted in figure 6.10. A negative slope of γe f f only occurs

when γ decreases more rapidly with Rρ than does KS with Rρ.

6.4.3 Further considerations

There are three effects that we have neglected in the parameterization of KS that may be

important in the ocean. The first is that the internal shears caused by the collapse of iso-

lated turbulent events may further reduce the salt finger buoyancy flux by the Linden (1971)

mechanism. In the present experiment the turbulence is spatially uniform. Experiments by

Thorpe (1982) show that there will be intrusions as the turbulence collapses but that these will

not have very large shear associated with them. The consequences of a spatially non-uniform

shear were discussed in chapter 3 where we found that density structure can be produced by

the salt fingers, resulting due to flux divergences from a strongly spatially varying shear.

If intermittent turbulence occurs in spatially isolated patches then there is the possibility

that subsequent salt finger convection may lead to breakdown into a series of convecting layers,

by the mechanism discussed in chapter 4. In this case the time averaged fluxes will not be

the sum of the time averaged salt finger and turbulent fluxes and the system may converge

to a series of sharp interfaces. This may occur in the ocean when Rρ
� 1. For Rρ � 1 we
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Figure 6.11: The effective flux ratio γe f f that results from salt fingers in intermittent turbulence (6.16),
plotted for different values of the time between turbulent events.

showed in chapter 4 that the required patch thicknesses were unlikely to occur under typical

oceanographic situations, and we expect the results shown in figures 6.9 and 6.10 to apply.

Another possibility not explored in this experiment and its interpretation, was discussed

by Gargett (1987) and in numerical simulations of Merryfield et al. (1998), whereby low

Reynolds number turbulence may be affected by the molecular diffusivities of the two strati-

fying components. This is predicted to lead to enhanced transport of T over S and hence the

effective flux ratio (6.16) may have γe f f � Rρ. This may also be possible in the present exper-

iments when ∆t was small and salt fingers were not able to form. In sugar/salt experiments it

would be difficult to quantify this effect, as κSalt
�
κSugar � 3, and at low Rρ there would only

be very small differences in S and T fluxes. For heat/salt, κHeat
�
κSalt � 100 and the effect may

be important in oceanographic situations where salt finger fluxes are very small and approach
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molecular values (at high Rρ).

6.5 Conclusions

When gradients are salt-finger favourable and turbulence is intermittent, the total buoyancy

flux is strongly dependent upon the time between the turbulent events compared to the growth

rate of salt fingers. In the present experiment intermittent turbulence is provided by a comb

of vertical rods that are periodically towed through a continuous density gradient favourable

to salt fingers. We argue that the total buoyancy flux can be described by assuming 1) that the

salt finger fluxes are limited by the time they can grow between turbulent events and 2) that

the time averaged flux of salt fingers adds linearly with the time averaged flux of intermittent

turbulence. Our experimental results indicate that salt finger buoyancy fluxes reach a limiting

flux after 4-10 e-folding periods. This is consistent with laboratory observations of Taylor

(1991) and numerical observations of Shen (1995) and Merryfield & Grinder (2001).

When we extrapolate our theory of salt fingers in intermittent turbulence to an oceano-

graphic parameterization, we find that the resulting eddy diffusivity of salt KS depends strongly

the intermittence of turbulence relative to salt finger growth rates (shown in figure 6.10). When

intermittence turbulence is present in more than 6% of the time, our present parameterization

has a similar reduction in salt finger fluxes for Rρ � 2 to that of the ad hoc parameterization of

salt finger fluxes used by Schmitt(1981), Zhang et al. (1998) and Merryfield et al. (1999) for

modeling large scale processes in the ocean. If intermittent turbulence is present less than 2%

of the time then KS will not be dramatically reduced below equilibrium values for Rρ � 2 and

salt fingers may still contribute significant diapycnal fluxes.

A further implication of time dependent salt fingers interacting with intermittent turbulence

is that most of the time the amplitude of salt fingers will be very small; a large amplitude signal

only occurs after the fingers have had time to equilibrate. For example, if salt fingers take 5

e-folding periods to reach equilibrium fluxes and turbulence occurs every 5.5 e-folding periods

then only 10 % of a micro-structure record might show strong dissipation due to equilibrium

salt fingers even though Rρ could be strongly finger favourable. Field experiments of Mack &

Schoeberlien (1993) found that in a region of the Sargasso sea where there were large regions

of low Rρ, that only a 2% volume average of micro-structure record could be attributed to
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salt fingers while an 8% volume average of their micro-structure record could be attributed to

turbulence. Similar results were found by St. Laurent &Schmitt (1999) in the NATRE Site. Salt    

fingers were expected to form as the measured density ratio was in the range� 1.5 <Rρ �  2 � 5, but

only a 1-10% volume average of their micro-structure record could be attributed to salt fingers

while a 5-10% volume average of their micro-structure record could be attributed to turbulence.



Chapter 7

Conclusions

The main results of this thesis are that:

� When distributed and isolated buoyancy fluxes are applied at the same horizontal bound-

ary of a confined fluid, a mixed layer and a stratified region can result. The distributed flux

produces a well mixed layer, which reaches a constant depth owing to the vertical advection of

the stable density gradient produced by the localized plume buoyancy flux. The depth of the

convective layer increases as the distributed flux is increased relative to the plume flux. The

whole tank becomes well mixed when the distributed buoyancy flux is approximately equal to

the plume buoyancy flux.

� When distributed and isolated buoyancy fluxes are applied from opposite horizontal

boundaries of a confined region, a mixed layer and a stratified region again result. The out-

flow of the plume source is well mixed and, when the distributed flux is small, occupies 1/4 of

the tank depth. As the distributed buoyancy flux is increased the strength of the stratification

decreases. This results in the depth of the outflow of the plume increasing. The whole tank

becomes well mixed when the distributed buoyancy flux is approximately equal to the plume

buoyancy flux.

� When surface cooling is applied over a confined volume of fluid consisting of a distinct

deep and shallow region, a gravity current forms and flows the shallow region to the deep

region. This can then stratify the deep region and force a general upwelling of cold dense

fluid. Away from the shallow region the surface cooling leads to a convecting layer above

the deeper stratified region. The steady depth of the convecting layer is dependent upon the

relative surface areas of the deep and shallow regions. When more than half of the surface area

is occupied by a shallow sidearm, then the convecting layer in the deep region occupies less

than half of the total depth.
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� Observations of winter stratification in the Chaffey reservoir by Dr. Brad Sherman can

now be explained in terms of the bathymetry of the reservoir. During the winters of 1995 and

1996 this reservoir had a large shallow sidearm. The surface cooling led to the formation of a

gravity current in the sidearm, which was able to stratify the deep region and limit the depth

of the surface convecting layer. The observed depth of the surface convecting layer over both

winters was in good agreement with the laboratory models presented in this thesis.

� The interaction of salt finger convection and a spatially varying shear can lead to the

formation of density fine structure. Tilting of fingers leads to reduced buoyancy fluxes, hence

a vertical varying shear leads to buoyancy flux divergences. Where the shear is greatest, the

resulting density gradient is weakest and shear instability can occur. This is a new mechanism

for the formation of well mixed layers, and the vertical scale is set by the wavelength of the

shear rather than a characteristic scale of the salt finger length.

� Salt finger convection in smooth density gradients can break down and drive overturning

convection if subjected to localized turbulent mixing. This transition to overturning convection

will occur only if; a) the initial Rρ is near one, b) if the turbulence results in a nearly well-mixed

patch and c) if the patch thickness exceeds a critical thickness. Subsequently the thickness

of the overturning layer will increase by the entrainment of fluid from the smooth density

gradients. The patch thickness h increases in time t, with h � Ct1
�
2. The constant C was shown

in chapter 5 to depend on a mixing efficiency of the entrainment as well as on the buoyancy

flux of the salt fingers. This is another new mechanism for the formation of a well-mixed layer,

and the vertical length scale is set by the size of the isolated mixed patches rather than by the

characteristic scales of salt fingers.

� The buoyancy flux due to salt finger convection and intermittent turbulence, when av-

eraged over large times, was shown in chapter 6 to be a strong function of the time between

turbulence events relative to the e-folding timescale of salt fingers. The salt fingers are dis-

rupted by turbulence but rapidly grow back over several e-folding timescales. Thus salt fingers

can contribute a large buoyancy flux only if the time between turbulent events is at least 5 to 10

e-folding periods. The e-folding period is an increasing function of Rρ (Schmitt, 1979a), so if

turbulence occurs more than 5% of the time in the ocean only regions where Rρ � 2 will have

significant buoyancy fluxes due to salt fingers. If turbulence occurs infrequently, less than 2%

of the time, then salt fingers can contribute significant diapycnal fluxes at Rρ � 2.
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7.1 Future work

7.1.1 Circulation and stratification due to cooling in reservoirs

The theoretical and laboratory models of chapters 2 and 3 agreed well with the observations

of stratification in Chaffey reservoir. In order to predict whether similar dynamics will apply in

other reservoirs during periods of winter cooling, there are two important questions that need

to be addressed, namely

� How does the circulation change for different 3-D bathymetries?

� How important is wind-driven mixing in determining the depth of the surface mixed

layer?

The first question could be addressed through further laboratory modeling of simple cases,

but the geometries that could be studied are numerous and perhaps should be constrained by

particular field cases, as discussed below. The second question can addressed theoretically

with existing knowledge of wind driven mixed layers and turbulent entrainment, as amplified

in
�

7.1.1.2.

7.1.1.1 Different bathymetries

In figure 7.1 (a) to (c) we sketch some of the possible bathymetries a reservoir may have.

The theory developed in chapter 3 assumed a geometry that had distinct shallow and deep

regions, as sketched in 7.1 (a). However the bathymetry of Chaffey reservoir is closer to

7.1 (b) for which the histogram of depths is still bimodal but the sloping regions now occupy

a large fraction of the reservoir. A third possibility is that all of the reservoir is a triangular

wedge, and no longer has a distinct shallow and deep region, as sketched in 7.1 (c). In this case

the resulting circulation is still in the same sense as sketched in figure 3.1, with the important

difference that in this case is there is no longer a well mixed surface layer or a strong gravity

current. This circulation has been described by Horsch & Stephen (1988). It is not clear when

a strong gravity current will fail to form as the bathymetry changes between that shown in

figures 7.1 (b) and (c). It would be interesting to perform a series of laboratory experiments

to determine where this transition occurs. In a field study a difference might be seen between

reservoirs with different bathymetries by making repeated Acoustic Doppler Current Profiler

(ADCP) transects in conjunction with moored temperature profilers.
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Figure 7.1: A sketch of different possible bathymetries and the associated depth histograms.
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7.1.1.2 Wind driven mixing

The theoretical model and laboratory experiments developed in chapters 2 and 3 did not

include the effect of wind-driven mixing in determining the steady mixed layer depth. If wind

was present in addition to surface cooling, the rate of surface layer deepening would increase.

A steady state should occur when the rate at which the gravity current forces upwelling bal-

ances the rate at which the mixed layer deepens. The resulting depth of the mixed layer would

then be greater than for the case of buoyancy forcing alone.

The effect of additional wind driven mixing could easily be included by replacing equation

(2.2) with the one dimensional mixing model of Kraus & Turner (1967). This would result in a

more complicated functional form for the steady mixed layer depth than (3.6), with the steady

mixed layer depth being a function of mechanical energy available from wind-driven mixing

and the magnitude of surface cooling, as well as the depths and areas of the deep and shallow

regions.

7.1.2 Salt finger convection

7.1.2.1 Laboratory

All the results from chapters 4, 5 and 6 were either obtained from flow visualization or

by taking discrete fluid samples to calculate density profiles. The quantitative results of these

experiments could be improved with new equipment and techniques. Some suggestions for

future work are:

� Flow visualization - If very fine particles or a fluorescene dye could be seeded into a

salt finger field then the velocities of the fingers could be determined. Chapters 4, 5 and 6 all

made assumptions about the salt finger velocities that could be checked only by observations

from the shadowgraph. The use of micro-scale particle imaging velocimetry would allow the

predicted scaling of finger velocities (4.20) to be quantified in greater detail.

� A probe to measure refractive index or optical rotation - Advances in laser and optic-fiber

technology mean that a traversing probe could be developed of similar dimensions to commer-

cially available conductivity and thermistor probes. If profiles of optical rotation, refractive

index and conductivity could be made, then using the polynomials of Ruddick & Shirtcliffe

(1979), profiles of sugar and salt could easily be determined for laboratory experiments.
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� Heat/salt experiments - With the exception of the work by Taylor (1991, 1993) there have

been very few experiments using “crossed ” heat/salt gradients due to the inherent technical

difficulties of insulating a tank. Future experiments might try to test the numerical results of

Merryfield & Grinder (2001). It would also be interesting to repeat the shearing and intermit-

tent turbulence experiments of chapters 4, 5 and 6 using heat/salt and see whether any new

behaviour emerges.

7.1.2.2 Numerical simulations

Direct numerical simulations of salt fingers could be used to further test and quantify some

of the predictions of chapter 4, 5 and 6. Some suggestions for future work are:

� Model the effect of an imposed velocity gradient upon equilibrium salt finger fluxes.

The results could be used to quantify how fluxes are reduced by shear and test whether fluxes

decrease like cosθ at large θ.

� Investigate the timescale for salt finger fluxes to equilibrate after being disrupted by a

turbulent event. This could be done by changing the magnitude and spectral signature (chang-

ing the initial “white noise”) of perturbations that are used to seed the T , S and vorticity fields.

These different initial conditions could mimic those present after a turbulent event.

� Determine when salt finger fluxes scale with ∆S4
�
3 (where ∆S is an imposed S difference

over a distance d) and when the fluxes scale linearly with Sz. This could be done in a series of

numerical experiments by progressively increasing the size of the computational domain d for

a constant ∆S, determining when FS decreases like ∆S
�
d.

7.1.2.3 Field work

The interaction of salt fingers with shear (in chapter 4) and with isolated turbulent patches

(in chapter 5), both resulted in layered density structure. There are many regions of the ocean

where Rρ is favourable to salt finger convection and any salt fingers that form are likely do so

in the presence of shear and turbulence. The fine-scale structure predicted in chapters 4 and

5 would be observable in a vertical cast using a CTD probe and the use of a micro-structure

probe would allow the detection of any salt fingers present. However, it may be difficult to

distinguish any observed fine-scale structure from other processes such as frontal intrusions.
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The best way to determine if the processes described in chapters 4 and 5 are occurring in

the ocean would be to take a “slice” through a region where Rρ is close to one. Such a field

experiment was performed by Mack (1989), who towed a vertical chain of conductivity probes

and thermistors through a region of the Sargasso sea where 1 � Rρ � 3. If an ADCP is used in

conjunction with the vertical chain, then regions of high shear or turbulence interacting with

salt fingers might be identified. Subsequent transects might then look at the time evolution of

the fine-scale structure and determine whether the density fine-structure takes the same vertical

scale and is coherent with the horizontal shears.

In chapter 6 it was shown that the time-averaged buoyancy flux due to salt fingers depended

sensitively on the time between turbulent events. Observations of turbulence in the ocean are

usually reported in terms of the percentage of a record that contained turbulence. It would

be interesting to re-examine such records and determine the average time between turbulent

events. If intermittent turbulence is isolated in both space and time then the theory used in

equation (6.13) will be adequate. The same intermittence of turbulence could also occur if tur-

bulence occurs in isolated regions but has a continued input of mechanical energy. This would

result in very different times between turbulent events, so that the time averaged buoyancy flux

would be different to that described in chapter 6. Hopefully future field work will be able to

determine the form of turbulence in the large regions of the ocean where 1 � Rρ � 2.
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