
Investigations into Satisfiability
Search

Andrew Slater

A thesis submitted for the degree of

Doctor of Philosophy at

The Australian National University

January 2004

c
�

Andrew Slater

Typeset in Palatino by TEX and LATEX 2 � .

Except where otherwise indicated, this thesis is my own original work.

Andrew Slater
17 August 2002

Acknowledgements

There are many people to whom I am grateful for guidance and support during the
course of this work. First and foremost I would like to thank my supervisors Rajeev
Goré and John Slaney for their guidance and discussions and for teaching me many
interesting things. My sincere gratitude also goes to Toby Walsh, John Lloyd, Bob
Meyer, Daniel Le Berre and Matthias Fuchs for their helpful discussions and feedback
on my research. I am also very grateful to the numerous members of staff and students
of the Research School of Information Sciences and Engineering and the Department
of Computer Science who helped me along the way. It has, undoubtedly, been an
excellent experience.

My gratitude also goes to the Australian National University for providing a schol-
arship enabling me to perform this research.

Thanks to my fellow students of reasoning with whom I have had many inter-
esting discussions, Kal, Nic and Paul. I have also appreciated the company of all
the other computer and coffee geeks, imbibing coffee whilst discussing theses and all
things digital.

Finally I thank all my family and friends for their support during the course of
this study. My heartfelt thanks goes to Libby, who let me stay up late, and Alia who
coloured in drafts for me. I thank everyone in my family for their continual support
and encouragement. Additional thanks to my parents Susan and Wayne for their
acronyms and chocolate, amongst many other things, and to my other parents Helen
and Brendan for letting me use the cool 122, also amongst many other things. Thanks
to my friends who were always supportive and also happily listened to my sometimes
obscure discourse.
Thanks be to God.

�

v

Abstract

In this dissertation we investigate theoretical aspects of some practical approaches
used in solving and understanding search problems. We concentrate on the Satisfia-
bility problem, which is a strong representative from search problem domains. The
work develops general theoretical foundations to investigate some practical aspects
of satisfiability search. This results in a better understanding of the fundamental
mechanics for search algorithm construction and behaviour. A theory of choice or
branching heuristics is presented, accompanied by results showing a correspondence
of both parameterisations and performance when the method is compared to pre-
vious empirically motivated branching techniques. The logical foundations of the
backtracking mechanism are explored alongside formulations for reasoning in rele-
vant logics which results in the development of a malleable backtracking mechanism
that subsumes other intelligent backtracking proof construction techniques and al-
lows the incorporation of proof rearrangement strategies. Moreover, empirical tests
show that relevant backtracking outperforms all other forms of intelligent backtrack-
ing search tree construction methods. An investigation into modelling and generat-
ing world problem instances justifies a modularised problem model proposal which
is used experimentally to highlight the practicability of search algorithms for the pro-
posed model and related domains.

vii

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 An Informal Description . 1

1.1.1 Searching for an Answer . 1

1.1.2 Satisfiability Problems . 3

1.1.3 Solving Satisfiability . 3

1.1.4 Further Information and Resources 4

1.2 The Satisfiability Problem . 5

1.3 Solving SAT . 6

1.3.1 The Davis Putnam Algorithm . 6

1.3.2 Other Methods . 9

1.3.3 Proof and Complexity . 9

1.4 Satisfiability Problems . 10

1.5 This Thesis . 11

2 A Theory of Choice 13

2.1 A History of Choice Strategies . 14

2.1.1 The Simplification Hypothesis . 14

2.1.2 Further Advances . 16

2.1.2.1 Multiplication . 16

2.1.2.2 Further Comments on Multiplication 17

2.1.2.3 Look-Ahead . 18

2.1.3 Newer Schemes . 19

2.1.3.1 A Kappa Based Heuristic 19

2.1.3.2 A Complexity Based Heuristic 20

2.1.4 Other Work . 21

2.2 A Theoretical Approach to Choice . 21

2.2.1 The Weighting Scheme . 22

2.2.1.1 Correspondence with Empirical Schemes 24

ix

x Contents

2.2.1.2 Related Work . 25
2.2.2 The Priority Function . 26
2.2.3 Relationships with the Kappa Model 27

2.2.3.1 Knife Edge Phenomena 27

2.2.4 Accounting for Dependence . 28
2.3 Experimental Analysis . 30

2.3.1 Method . 30
2.3.2 Branching Schemes . 31

2.3.3 Search Cost Results . 33
2.3.4 SAT vs. UNSAT Search Cost Results 37

2.4 Conclusions . 39

3 Relevance and Backtracking 41
3.1 Preliminaries . 42

3.1.1 Search as Proof Construction . 42

3.1.2 (One of) The problem(s) with classical logic 43
3.1.3 Practical Implications of Relevant Logic 46

3.1.3.1 A Mapping from Classical CNF to
���

. 46
3.1.4 Intelligent Backtracking Approaches 49

3.1.4.1 Backjumping . 50
3.1.4.2 (Relevant) Backjumping 51
3.1.4.3 (Relevant) Unit Propagation 53
3.1.4.4 Dependency Directed Backtracking 56

3.1.4.5 Dynamic Backtracking 57
3.1.4.6 Other Related Work . 58

3.2 Relevance for Backtracking . 59
3.2.1 A System to Work With . 60

3.2.1.1 A Basic Formulation . 60
3.2.1.2 Erasing and Consistency 61
3.2.1.3 Using Reductio . 63

3.2.2 The � Tree . 66

3.2.3 Termination and Choice . 67
3.2.4 Possible Rearrangement Strategies 69
3.2.5 A Relevant Backtracking Algorithm 70
3.2.6 Soundness and Completeness . 72

3.2.6.1 Related Work – Partial Order Backtracking Systems . . 73
3.2.7 Experimental Analysis . 75

3.2.7.1 Method . 76

Contents xi

3.2.7.2 Back Tracking Schemes 76
3.2.7.3 Search Cost Results . 77
3.2.7.4 Search Cost Results in Time 80

3.2.8 Extensions – Further Work . 83
3.3 Conclusions . 84

4 Structure in Problems 87
4.1 Modular Structure in the Real World . 87

4.1.1 The Small World Topology . 88
4.1.2 The Small World Model for Search Problems 90
4.1.3 Real Modularity . 91

4.2 Parameterising reality . 92
4.2.1 Real World Generators . 93
4.2.2 Structural Generators . 94

4.3 A Problem Model for Clustering . 95
4.4 Experimenting with the Model . 97

4.4.1 Generating Clustered Instances . 98
4.4.2 Initial Experiments . 98
4.4.3 Subsequent Experiments . 101

4.5 Measuring A System’s “Concentration” 103
4.6 Related Work . 106
4.7 Conclusions . 108

5 Conclusions 111
5.1 Limitations and Further Work . 113

5.1.1 Chapter 2 – A Theory of Choice . 113
5.1.1.1 Limitations . 113
5.1.1.2 Further Work . 113

5.1.2 Chapter 3 – Relevant Backtracking 114
5.1.2.1 Limitations . 114
5.1.2.2 Further Work . 114

5.1.3 Chapter 4 – Structure in Problems 115
5.1.3.1 Limitations . 115
5.1.3.2 Further Work . 115

Bibliography 117

xii Contents

Chapter 1

Introduction

This thesis is concerned with the theoretical nature of some fundamental but practi-
cal aspects of the search and the satisfiability problem. This chapter provides a brief
informal overview of search and the satisfiability problem, followed by a formal de-
scription of the satisfiability problem and a basic overview of research related to the
work presented in this thesis. In depth reviews of related research are given in each
chapter.

1.1 An Informal Description

The following discussions introduce the concepts behind search and satisfiability, and
illustrate the richness and diversity of the research in these areas.

1.1.1 Searching for an Answer

A search problem may be simply classified as one which requires us to actually “search”
for the answer. The problem in question may have no obvious method which may be
followed to determine a solution, other than to intelligently search through all possi-
ble solutions, the search space, until one is found. Typically we may have an efficient
way of determining whether one of the candidate solutions is actually correct, but no
efficient way of determining how to find a correct solution. We may also want to know
whether there is a solution at all. There are many such problems, both theoretically
and practically motivated, but they all have these difficulties in common.

Consider a simple example where we wish to know whether a number � can be
factored into two different numbers: �����

�
. We are asking whether � is non-prime.

It is simple to check a solution by simply multiplying the two factors to see if the
product is � , but we may have to test whether � is divisible by � for a great many
number of possible values for � . This is a special kind of search problem in itself,
and a detailed logical system related to this appears in [86]. In practice however we
would exploit properties of the factoring problem itself to find an answer efficiently

1

2 Introduction

[83], but the problem remains as a challenge for the area of satisfiability testing [22].
In general when we consider the checking or verification of a solution to be “efficient”
we are saying that the number of steps required by this process is bounded by some
polynomial function. In contrast, the size of the search space is more likely to be
defined by an exponential function. (For factorisation, the search space is exponential
due to the number of bits required to represent the product, and search space of total
possible factors may be simply bounded by two to the power of that number.)

More typically we consider problems that may not be so readily exploited by nu-
meric properties. We may encounter “real world” problems that have a rich complex-
ity which makes analysis difficult, but for which we want to find solutions. These
problems include theorem-proving, electronic circuit diagnosis, and various planning
problems. The real world domain of such search problems is discussed further in
Section 1.4, but for the moment we point out that, in general, a search problem has a
derivable equivalence to another and that, in some cases, solving the equivalent prob-
lem can be more straightforward than solving the original. This is not because the
second problem is any easier, but because there is a better understanding of how to
solve instances of the second type of problem. The techniques that are used in solv-
ing a particular kind of search problem often also occur within the domain of other
kinds of search problems. The successes in one field of research are soon translated to
similar fields.

While we can view search problems as some kind of generic whole, there are some
important differences. In this dissertation we are mainly concerned with those prob-
lems for which we can actually determine whether or not there is a solution. These
kinds of problems are called decidable. There are problems for which this property does
not hold, for example theorem proving in first order logic. The addition of a possibly
infinite search space means that we cannot always cover the search space required to
determine an answer. Although there are similarities in techniques used to solve both
decidable and undecidable problems, there are often better techniques that are spe-
cialised to deal with the problem domains which manage infinite search spaces, e.g.
[113, 37, 114]. Much of the class of decidable search problems can be characterised by
their membership in the set NP, or NPC, as defined from the field of complexity the-
ory. These sets characterise complexity classes that classify the potential difficulty of a
problem [39]. The class of problems in NPC are NP Complete, and these are at the top
of the difficulty hierarchy in the class NP. The Satisfiability problem is a prototypical
NP-Complete problem and was in fact the first problem to be proved as NP-Complete
[21]. Further discussion of the complexity of satisfiability appears in Section 1.3.3.
The satisfiability problem may be used as a vehicle for studying search problems in
general and, while other problems may be expressed as instances of satisfiability, one

�
1.1 An Informal Description 3

may also extract techniques used to solve satisfiability problems so that they may be
applied directly to problems in other domains.

1.1.2 Satisfiability Problems

The general problem of satisfiability is to find some solution to a given set of require-
ments such that the solution satisfies each and every requirement in at least one way.
Consider a simple example where one desires to organise a party. Every friend invited
has a list of requirements for the party. They may include things like having loud
music or not having loud music, having lemonade or not having lemonade, or allow-
ing window breakages or not allowing window breakages. Each friend will agree to
come to the party if at least one item on their list of requirements is met. The ques-
tion is then: Can one organise a party where every friend will attend? Solving this
problem may be straightforward. Perhaps everyone invited has asked for free beer
on tap. On the other hand there may be a large guest list, considerably many options,
and many disagreements amongst the guests. An efficient and popular approach to
finding a solution is to logically construct an answer and test it. We may start with
the assumption that fire-breathing be allowed, then after making further assumptions
and finding no possible solution, deduce that fire-breathing events cannot be held. We
then continue with this new information. At every stage of the solution construction
we are performing the method of assumption and test. When an assumption seems
valid, we continue assuming until we have satisfied everyone, or we have identified
that someone has been left out, and must therefore change one of our assumptions. A
methodical ordering of assumptions and corresponding deductions ensures that we
check all possibilities in the event we cannot find a solution. The problem of solving
satisfiability is discussed in Section 1.1.3.

Apart from organising parties, satisfiability has been shown to have a wide range
of practical applications in other areas such as microprocessor design [109], planning
[62, 63, 61] and theorem proving [116, 117]. The application of techniques for satisfia-
bility solving to “real world” problem domains is reviewed in Section 1.4. Later in this
work we question whether the problems from the “real world” have some common
characteristics that would enable us to better understand search problems and more
effectively use the techniques for solving them.

1.1.3 Solving Satisfiability

As discussed above, the most efficient general method of mechanically solving satis-
fiability problems is to search for a solution by successive assumptions and possible
deductions until they lead to an obviously recognisable contradiction or satisfying as-

4 Introduction

signment. This method is also referred to as proof by refutation. The “splitting” nature
in such searches, where both the effect of an assumption that something is true and its
corresponding negation might be explored, accounts for the possible exponential cost
in finding a solution. In between assumptions we can of course make other smaller
deductions which may prove to simplify the problem. The nature of this method of
search is very similar to other mechanical means of proof such as Tableaux [103]. If
the search discovers a solution then that solution is known as a satisfying assignment
for the problem. In the case of the method finding no satisfying assignment, then the
record of the search constitutes a proof that there is no solution. Note in this case the
“answer” may not be efficiently verifiable as it consists of the search performed in a
large search space.

Another way to solve the satisfiability problem is to try to “guess” the answer.
Generating a random assignment and using some strategy to modify that assignment
to attempt to make it a satisfying assignment is known as local search. This gives no
guarantees other than if a solution is found then it is a correct solution. This approach
is not the focus of this thesis but is further discussed in section 1.3.2.

The aim of an efficient satisfiability algorithm is to reduce the search space that
must be traversed. Making a good choice for an assumption may mean that the num-
ber of successive splits is significantly reduced. It is the splitting or “branching” of the
search space that produces the exponential nature of the search space. Intermediate
reasoning, or refinement before branching, can also significantly simplify the prob-
lem. It is also possible to further reduce or “prune” the search space by analysing the
relevance of some assumptions. It may turn out that they were not needed at all, in
which case the branch points where they occur can be removed altogether. A suc-
cessful satisfiability checker will often combine these techniques to reduce the search
space as much as possible. Understanding the function and effectiveness of individual
techniques helps to enhance their effects and understand the nature of the problem.
In this work we investigate the theory behind some of these techniques.

1.1.4 Further Information and Resources

There are many different areas ranging from the entirely theoretical, e.g. complexity
analysis, to the entirely empirical, e.g. system construction. Excellent general reviews
of research in satisfiability exist. An informative and comprehensive overview ap-
pears in [22]; a considerably larger categorisation of algorithmic approaches and re-
search on satisfiability appears in [52] and a somewhat more recent review appears in
[42].

There are centralised electronic resources for research into satisfiability: satlib

�
1.2 The Satisfiability Problem 5

[57] is a repository for collections of solvers, benchmarks, and other research resources
for satisfiability. The satlive [68] web site is a community driven resource for pro-
viding information on recent publications and announcements related to research in
satisfiability. Sat-Ex [100] is a web based experimental platform for the comparison
of satisfiability solvers.

1.2 The Satisfiability Problem

The formal definition of Satisfiability, or SAT, derives from an equivalent problem in
propositional logic. We can state the problem as asking whether we can find a suitable
assignment to the propositional variables in a given formula that makes the formula
true. We can restrict the definition to the equivalent question where the formula is
in conjunctive normal form (CNF) – a conjunction of disjunctive clauses, in essence a
collection of lists of requirements such as the simple party example above. Following
[39], we formally define the problem as follows: Let � be a set of boolean variables

� �����������
	����
��������������

A truth assignment for � is a function ������� � ������� mapping a variable to truth
values. When �����
 "! � � , �� is true under � , and when �����# $! �%� , �� is false under � . For
every �'&(� , � and � are literals over � . For any truth assignment � , the literal � is
true if and only if the variable � is true under � , and the literal � is true if and only if
the variable � is false under � . A clause is a set of literals representing the disjunction
of those literals, thus a clause can be defined as) �*�,+-�/.�+0	1.2��3.�+04
! where each +0 is
a literal. Given a truth assignment � , a clause is satisfied if and only if at least one of its
members is true under � . Note that an empty clause represents the empty disjunction,
which is false under all truth assignments. It therefore represents a contradiction. The
given CNF formula � is a conjunction of a set of clauses and thus can be defined as

� �%)��657)8	957)8��5:��;57)=<

A CNF formula is satisfiable if and only if there is a truth assignment � which simulta-
neously satisfies each of its member clauses. This assignment is known as a satisfying
assignment. Note that an empty formula (i.e containing zero clauses) is true under all
truth assignments. The satisfiability problem is: Given a formula � (constructed over
some finite set of variables �), is there a satisfying assignment?

An example is as follows: Let � ��� �>� � ��?3��@�� and

� �*� �A. � !B5C� �A.D?�!B5C� @E. �F. � !

6 Introduction

then assigning � and ? to true, and
�

to false is sufficient to satisfy the formula. Our
simple example of organising a party can be seen in propositional logic when we con-
sider that each friend contributes a clause, and that each variable represents a possible
event at the party.

1.3 Solving SAT

The most effective approaches used to solve SAT problems are generally based on
the Davis Putnam Logemann Loveland algorithm [27] (DPLL). It is sometimes re-
ferred to as the Davis Putnam algorithm (DP), however the original Davis Putnam
algorithm [28], was quite different and resembled resolution proof techniques. The
revised DPLL algorithm, published soon after, is the basis for algorithms in use today.
The DPLL algorithm is further illustrated in Section 1.3.1. While DPLL is the domi-
nating technique, there are other approaches, sometimes used as an adjunct to DPLL.
The more common methods will be briefly reviewed in Section 1.3.2.

1.3.1 The Davis Putnam Algorithm

DPLL traverses the search space by constructing a tree whose paths correspond to
variable assignments. Additional reasoning allows the approach to avoid the worst
case of exploring all possible assignments. The key performance gain that this algo-
rithm has is called Unit Propagation. Making an assignment (or assumption) corre-
sponds to a branch in the search tree. After propagating the effects of this assign-
ment on the given formula, this assignment may infer the values of other variables. A
unit clause is one that can only be satisfied by one assignment, because other assign-
ments have eliminated the other members of that clause. When the algorithm finds
a unit clause, it makes that assignment, and then propagates it across the remain-
ing clauses. These simple deductions, when performed after each assumption, create
massive gains in efficiency.

Algorithm 1.1 (������� �$!) describes a simple pseudo-code version of a DPLL style
routine. The notation �$! in the code denotes the empty clause or empty set. Note that
an empty clause in a CNF formula implies contradiction. An empty formula implies
that each clause has been satisfied. The ������� �$! procedure takes the formula and an
assignment state as parameters which are passed by reference, i.e. alterations of these
variables by the procedure are seen by the calling routine. The procedure returns
���	��
 when the given formula is satisfiable and in this case the assignment state holds
a solution.

Lines 1–5 test whether the formula contains a contradiction or is satisfied.

�
1.3 Solving SAT 7

Algorithm 1.1 A Simple Davis Putnam Logemann Loveland algorithm
����� +
 � � DPLL �,� � ��� �>+ �A� � �����	��
 ���
 �B� � !

1: if �$! &7� then
2: return � � + �

3: else if � �*�$! then
4: return ���	��

5: end if
6: ��)�� ��� �
 ����� �����>� � � ���,� � � !
7: � � � � � � � � �
 � �
 � �>��� � � !
8: if ������� �,� � � ! �(� ��+ �
 then
9: � � @ � � � � � �
 � �
 � �>��� � � !

10: � � � � � � � � �
 � �
 � �>��� � � !
11: if � ����� �,� � � ! �(� � + �
 then
12: � � @ � � � � � �
 � �
 � � ��� � � !
13: return � � + �

14: end if
15: end if
16: return ���	�

Line 6 selects an assignment to be made from the set of all currently unassigned
variables. The heuristic process of choosing the next assignment can greatly affect the
performance of the search and is the subject of Chapter 2.

Line 7 propagates the effect of the assumption chosen. The � � � � � � � � �
 � �
 �$! rou-
tine is discussed below. Note that on lines 9 and 12 the effects of � � � � � � � � �
 � �
 �$! are
reversed with a call to � � @ � � � � � �
 � �
 �$! . This guarantees that the state of the formula
is consistent with the assignment state. It is possible to use other approaches. A much
more detailed discussion appears in Chapter 3. For the moment we note that, at the
very least, undoing unit propagation may be simply implemented by taking a copy of
the formula prior to modification, and that copy may be reinstated if required.

Lines 8–16 perform the recursive construction of the search tree. If after making
an assumption a solution is not found, the alternative space, where the negation of
the assumption is true, is explored. The negation is “deduced” via the contradiction
found after making the original assumption (reductio ad absurdum). Intelligent con-
struction of the search tree can yield a far more efficient traversal and exploration of
the search space. These issues are the subject of Chapter 3.

Unit propagation consists of some simple additional rules of reasoning, but it is
a powerful technique. The unit propagation routine executes unit resolution and unit
subsumption on a given assumption. An assumption is treated as a unit clause – a clause
containing a single literal which must be true to create a satisfying assignment. Unit
resolution is the resolution operation between two clauses where one of the clauses is

8 Introduction

Algorithm 1.2 The unit propagation routine
UnitPropagate ��� � �
 � ��+ � ��� � ��� � + � � � � ���	��
 ���
 �B� � !

1:
� � ��� � �

2: for all ?E&7� do
3: if ��&7? then
4: � ��� ��?3�
5: end if
6: end for
7: for all ?E&7� do
8: if ��&7? then
9: ? ?�� � ���

10: end if
11: end for
12: while exists ? such that �,?E&7� and ? ����� �;! do
13: � � � � � � � � �
 � �
 ��� ��� � � !
14: end while

a unit clause. Unit resolution thus eliminates the part of the other clause that cannot be
satisfied. Unit subsumption eliminates any clauses that are subsumed by a given unit
clause. This is not strictly a deduction but a simplification performed by eliminating
the parts of the formula that have been satisfied. The steps of unit resolution (UR)
and unit subsumption (US) with regard to the state of the formula can be described as
follows

(UR)
� + � ! ���,+$� .D+ 	1.:��;.D+04
! ����
� + � ! ���,+ 	=.2���. + 4�! ���� (US)

�,+ � ! ���,+$� .D+ 	�. ��;.D+ 4;! ����
�,+$� ! ����

Unit propagation further “propagates” the effect of an assumption by recursively ap-
plying itself to any unit clauses that are created during the process. Algorithm 1.2
shows a basic unit propagation routine. The parameters are again passed by refer-
ence.

Line 1 updates the assignment state used to record a possible solution.

Lines 2–6 perform unit subsumption – the value � subsumes any clauses that con-
tains it, thus such clauses are eliminated.

Lines 7–11 perform unit resolution – resolution is performed between the value
� and clauses containing its negation, thus occurrences of � are eliminated from the
formula.

Lines 12–14 apply unit propagation recursively to any newly created units.

�
1.3 Solving SAT 9

1.3.2 Other Methods

Although DPLL style algorithms are generally accepted as the most efficient approach
for solving satisfiability problems, there are several other approaches [52, 42], many
of which seem to be motivated by methods used for other decision problems. In this
section we briefly mention current successful techniques with foundations in propo-
sitional reasoning.

Resolution [93] based systems are far more predominant in theorem proving for
first order logics, but are able to solve particular classes of satisfiability problems very
efficiently. A specialised version called directional resolution has been shown to be
particularly successful on specific classes of random problems that have similarities to
real world problem domains [92]. Resolution based techniques can also be integrated
within DPLL style approaches [71]. Some practicalities of resolution are addressed in
Chapter 4.

The use of more complex rules for reasoning (i.e. the application of useful the-
orems) is also prevalent. Stålmarck’s algorithm [105] (see also [53]) has been used
to implement a satisfiability solver [51]. Integration of equivalency testing to sim-
plify search has also been shown to be useful [70]. Exploiting properties of polyno-
mially bounded satisfiability decision problems during search is discussed below in
Section 1.3.3.

So far we have discussed methods that are considered complete – methods that
will determine whether there is a solution or not. Other notable approaches are those
which employ an incomplete method. These algorithms do not attempt to verify that a
problem has no solution, but can locally search for possible solutions within the space
of all possible assignments in a way similar to a random walk. These systems have had
remarkable success on a variety of problems and the most popular methods are based
around GSAT [99]. Further gains are made when incorporating limited amounts of
reasoning, dubbed “local search”. A class of constraint satisfaction algorithms which
combine aspects of incomplete and complete methods is investigated in [46].

1.3.3 Proof and Complexity

The satisfiability problem has roots in complexity theory and the interests of proof in
propositional logic [21, 23]. Satisfiability may be extended to all syntactic variations
of propositional formulae by observing that any propositional formulae has an equiv-
alent CNF representation. Furthermore using a complete method for solving SAT
can be interpreted as constructing a proof by refutation of the negation of the given
formula. For example, the original formula to be “proved” may be in disjunctive nor-
mal form (DNF) and the CNF formula for SAT algorithm input is obtained simply by

10 Introduction

negating it. This approach allows us to consider the CoNPC problem TAUT: Given
a formula � , is � true under all possible assignments? In other words, is � a theo-
rem? Indeed verification problems may be posed as satisfiability problems: Does the
refutation proof produce a counter-model? While the subject of this work is search
for satisfiability it is noted that it has relevance to theorem proving and that there is a
correspondence of certain search methods to proof by refutation.

The worst case time bounds for solving satisfiability problems are exponential.
Bounds are generally defined for the restricted problem of 3-SAT, where each clause
contains at least 3 literals. For 3-SAT, a bound of � ������������ � ! has been shown using
a method based in propositional logic [66]. This bound is improved to � ����	��
�� � ! by
mapping the satisfiability problem into a specialised constraint satisfaction problem
[94]. However, several studies of experimentation with “hard” 3-SAT problems (see
Section 1.4) show the average cost is much lower (e.g. [36, 26, 65]). The least average
solution cost found, for difficult problems, is ��������� � [65]. The complexity of proposi-
tional proof is covered in [12, 13, 107].

For practitioners perhaps the most interesting results from complexity analysis are
those which show certain classes of SAT problems to be solvable in polynomial time.
The incorporation of these methods into general satisfiability algorithms are called re-
laxation techniques. For 2SAT problems a solution can be found in � � �/! by computing
the transitive closure of the implication graph representing the problem [4, 35]. De-
spite the polynomial expense of this operation, variations of this technique have been
attempted [16, 67]. A set of propositional Horn clauses is also decidable in linear time
[30]. Several further methods extend this result by relabelling variables and detect-
ing special cases, yielding computations bounded by low-order polynomials, e.g. see
[17, 97]. Schaefer developed a scheme which defined sub-classes of the satisfiability
problem and showed that within this infinite class of satisfiability problems any mem-
ber is either polynomial-time decidable or NP complete [96] . This powerful result is
known as the dichotomy theorem. More recently Franco and Van Gelder reviewed and
investigated polynomial time solvable classes of satisfiability problems and introduce
novel classifications of tractable satisfiability problems [59].

1.4 Satisfiability Problems

There is a wide range of examples for practical applications in satisfiability research
including hardware design [109, 74, 67], planning [62, 63, 61], theorem proving [116,
117] and encryption [77]. These applications exploit efficient translations from their
natural domain in order to utilise the abilities of satisfiability search procedures. While
collections of benchmark problems from practical scenarios exist, there is only a lim-

�
1.5 This Thesis 11

ited number of instances. Comparatively there is an almost inexhaustible supply of
random satisfiability problems based on simple problem models.

“Hard” random 3-SAT problems arise from the observation of phase transition be-
haviour discovered in empirical studies of some decision problems [18, 81]. This is
known as a phase transition due to its similarity with the thermodynamic behaviour
of physical matter as it changes state or phase. For random 3-SAT problems, with
number of variables � and number of clauses � , the clause to variable ratio is de-
fined as � � ��� � . If � is fixed and a sample set of random problems are generated
for values of � , then there will be a sudden transition, as � increases, from the prob-
lems being mostly satisfiable to the problems being mostly unsatisfiable. This transi-
tion corresponds to a peak in the difficulty of solving the problems in the sample set.
Randomly generated 3-SAT problems with a clause to variable ratio in the vicinity
of � ���� are particularly difficult when compared to other ratios. These problems are
particularly useful for testing satisfiability algorithms as they are simple, difficult, and
plentiful. While the phenomenon of “hard” problems has been the subject of much re-
search, the problem of generating random but “realistic” satisfiability instances is yet
to be fully explored. Indeed this has been proposed as a challenge to the satisfiability
research community [98]. Approaches for realistic modelling of real world scenarios
in satisfiability instances are the subject of Chapter 4.

1.5 This Thesis

This thesis investigates some fundamental, but practical, aspects of research in satis-
fiability. It is motivated by the lack of theory that is capable of both describing and
generalising those important and successful aspects in research on satisfiability. Us-
ing approaches that capture theoretical foundations yields a better understanding of
satisfiability and, if general enough, yields a better understanding of search. Enhance-
ments and insights developed in this thesis can be extended to other search problem
and proof generation domains. The aims of this thesis are to explain some fundamen-
tal mechanics of successful search methods in satisfiability, and to question whether
considerations about “real world” problem domains lead to a better understanding of
the practical nature of search methods. Although the work presented develops the-
oretical foundations, the processes used yield immediate and practical results for the
satisfiability problem. When applicable we demonstrate where a particular approach
may be used for richer problem domains.

Chapter 2 investigates the mechanism used for choice in constructing a search
tree. It develops a theoretically derived branching scheme, which empirical analysis
shows to be an effective and efficient strategy. We find that the parameterisations

12 Introduction

of the scheme are very similar to other schemes that are derived empirically. The
foundations of the proposed scheme yield explanations of why choice mechanisms
work so well. The method used to derive the scheme for satisfiability can be applied
to other search problems.

Chapter 3 investigates the mechanism of backtracking, focussing on intelligent
backtracking schemes and the notion of logical relevance from non-classical logics. It
demonstrates that the aims of intelligent backtracking search tree construction directly
correspond to ideas in a formal system of relevant reasoning. The work develops a
formulation and framework that subsumes previous backtrack search tree construc-
tion techniques and shows that the new approach yields far more flexibility in proof
construction. It is illustrated that the simple use of formal logical foundations yields
a malleable framework for developing systems concerned with solving problems in
proof construction and search.

Chapter 4 investigates modelling “real world” problem scenarios, and whether
such models lead to a better understanding of search methods for practical problems.
We propose and justify a model capturing some real world properties. Through ex-
perimentation we analyse search behaviour and identify where certain popular search
techniques can succeed or fail in the situations that the model captures.

