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Classical information capacity of superdense coding

Garry Bowen*
Department of Physics, Australian National University, Canberra, Australian Capital Territory 0200, Australia

~Received 9 August 2000; published 10 January 2001!

Classical communication through quantum channels may be enhanced by sharing entanglement. Superdense
coding allows the encoding, and transmission, of up to two classical bits of information in a single qubit. In this
paper, the maximum classical channel capacity for states that are not maximally entangled is derived. Particular
schemes are then shown to attain this capacity, first for pairs of qubits, and second for pairs of qutrits.
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Quantum information exhibits many features that do
have analogs in classical information theory@1#. For this
reason, when a quantum channel is used for communica
there exist a number of different capacities for the differ
types of information transmitted through the channel@2–5#.

Superdense coding~referred to in this paper simply a
dense coding!, first proposed by Bennett and Wiesner@6#, is
where the transmission of classical information through
quantum channel is enhanced by shared entanglemen
tween sender and receiver. The classical information ca
ity for a channel where sender and receiver share entan
ment has been called theentanglement-assisted classic
capacity CE @5#. The classical capacity for dense codin
denoted here byC, provides a lower bound onCE .

For completely general dense coding~CGDC! @7#, the
sender Alice and receiver Bob share qubits in the staterAB .
Alice may encode a message using a set of unitary trans
mations$UA

k %, with a priori probabilities$pk%, on her qubit.
Alice then sends her qubit to Bob, who decodes the mess
by doing joint measurements on both qubits.

For pure states of pairs ofD state systems, whererAB
5uCAB&^CABu, the channel capacity has been derived
both Hausladenet al. @8# and by Barenco and Ekert@9#, and
was shown to beC5 logD1S(rB). HereS is the von Neu-
mann entropyS(r)52Tr r logr, where the logarithm is
base 2.

Bose, Plenio, and Vedral@7# have further proven that i
Alice’s alphabet of operators is restricted to the set of
identity and three Pauli matrices,UA

k P$I ,sx ,sy ,sz%, then
the capacity for a pair of qubits is maximized by settingpk
51/4. This scheme was labeled by the authors as spe
dense coding~SDC!.

In this paper, a bound on the channel capacity for de
coding is derived for arbitrary sets of unitary operators
pairs of qubits. It is shown that the scheme of SDC atta
that bound. Further, the proof for the case of pairs of qut
is outlined, utilizing the higher dimensional analog of SD

Suppose Alice and Bob share pairs of qubits in the s
rAB , and Alice is restricted to using unitary operators a
sending her message as a product state of letters, the
maximal amount of classical information that may be tra
ferred is given by the Kholevo bound@10#,
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C5 max
$UA

k ,pk%

FSS (
k

pk~UA
k

^ I B!rAB~UA
k

^ I B!†D
2(

k
pkS~~UA

k
^ I B!rAB~UA

k
^ I B!†!G . ~1!

This bound has been shown to be asymptotically attaina
by using product state block coding@8,11#.

As the operatorsUA
k

^ I B are unitary, applying one of the
operators torAB will not change the eigenvalues. Hence t
entropy, which depends only on the eigenvalues, of e
summand in the second term of Eq.~1! remains unchanged
and the second term reduces toS(rAB). To maximize the
capacity we must therefore maximize the first term,

S~rAB8 !5SS (
k

pk~UA
k

^ I B!rAB~UA
k

^ I B!†D . ~2!

A general density matrix of a two qubit bipartite system m
be expanded as

rAB5(
i j

l i j sA
i

^ sB
j , ~3!

where thes ’s consist of a scaled version of the set of Pa
matrices and the identity, that is,

s05
1

2
I 25

1

2 S 1 0

0 1D , ~4!

s15
1

2
sx5

1

2 S 0 1

1 0D , ~5!

s25
1

2
sy5

1

2 S 0 2 i

i 0D , ~6!

s35
1

2
sz5

1

2 S 1 0

0 21D . ~7!

By linearity we can obtain the reduced density matrices
rAB andrAB8 by tracing over the expansions

on
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rB5TrA@rAB# ~8!

5TrAF(
i j

l i j sA
i

^ sB
j G ~9!

5(
i j

l i j TrA@sA
i #sB

j ~10!

5(
j

l0 jsB
j , ~11!

where the trace of each of the Pauli matrices is zero. Als

rB85TrAF(
k

pk~UA
k

^ I B!rAB~UA
k

^ I B!†G ~12!

5(
i j

l i j (
k

pkTrA@UA
k sA

i ~UA
k !†#sB

j ~13!

5(
j

l0 jsB
j ~14!

5rB , ~15!

using the fact that the trace of a matrix does not cha
under unitary transformations.

Combining the above derivations leads to the main re
of this paper. The amount of information that may be tra
ferred for any$UA

k ,pk% using an arbitrary, two qubit mixed
staterAB is given by

C5SS (
k

pk~UA
k

^ I B!rAB~UA
k

^ I B!†D
2(

k
pkS„~UA

k
^ I B!rAB~UA

k
^ I B!†

… ~16!

5S~rAB8 !2S~rAB! ~17!

<S~rA8 !1S~rB8 !2S~rAB! ~18!

< log 21S~rB!2S~rAB!. ~19!

Here, Eq.~17! follows from the discussion following Eq.~1!,
and the first term is rewritten as for Eq.~2!. Equation~18!
uses the subadditivity of the entropies of a bipartite syst
and Eq.~19! follows from the relationsS(rB8 )5S(rB), by
Eq. ~15!, and the boundS(rA8 )< log 2 for a qubit.

This bound is attainable using special dense cod
where Alice uses the operatorsUA

k 52sA
k , each occurring

with a priori probability pk51/4. Using this scheme, th
state received by Bob is completely disentangled, that is
02230
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rAB8 5(
k

pkUA
k S (

i j
l i j sA

i
^ sB

j D ~UA
k !† ~20!

5(
i j

l i j S (
k

sA
k sA

i sA
k D ^ sB

j ~21!

5(
j

l0 jsA
0

^ sB
j ~22!

5
1

2
I A^ rB , ~23!

where Eq.~22! follows from Eq.~21! due to the relationship
s js is j5 1

2 d i j s
j2 1

4 s i56 1
4 s i for i , j P$1,2,3%, and Eq.~23!

is obtained by comparing Eq.~22! with Eq. ~11!. Thus, the
capacity for SDC is equal to the bound given in Eqs.~16!–
~19!, and SDC has been shown to be an optimal method
CGDC.

A similar result applies for two qutrits, where Alice use
the operators

U05S 0 0 1

1 0 0

0 1 0
D , ~24!

U15S 0 1 0

0 0 1

1 0 0
D , ~25!

U25S 1 0 0

0 ei2p/3 0

0 0 ei4p/3
D , ~26!

U35S 1 0 0

0 ei4p/3 0

0 0 ei2p/3
D , ~27!

U452
i

A3
@U0 ,U2#, ~28!

U55
i

A3
@U0 ,U3#, ~29!

U65
i

A3
@U1 ,U2#, ~30!

U752
i

A3
@U1 ,U3#, ~31!

U85I 3 , ~32!
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with a priori probabilitypj51/9, where@Ui ,U j # denotes the
commutator. Expanding the density matrixrAB in terms of
the identity and the traceless Hermitian generators$l i% of
SU(3) @12#, we find

rAB8 5(
j

pjU jrABU j
† ~33!

5
1

3
I 3^ rB , ~34!

and the capacity is given by

C5 log 31S~rB!2S~rAB!. ~35!

Similar constructions for arbitraryN3M state systems
may easily be considered using analogs of the unitary tra
formations used in SDC. The transformations consist of
set of cyclic permutations of theDA basis states ofHA ,
whereDA is the dimension of the Hilbert spaceHA of Al-
ice’s state, the set of unitary matrices derived from the cy
group generated by the matrix consisting of theDA roots of
unity on the diagonal~up to overall phase!, and the normal-
ized commutators between elements of these two set
transformations. The connection between sets of unitary
polarizers, the existence of orthonormal bases of maxim
entangled states, and dense coding have previously
noted by Werner@13#.

We thus make the conjecture that, for anN3M state
systemrAB , the dense coding capacity is given by

C5 logDA1S~rB!2S~rAB!, ~36!

with DA5N.
The result obtained in this paper agrees with the pre

ously obtained results in the case of pure states. The cap
may also be rewritten in the form

C~rAB!5 logDA2S~rA!1S~rA!1S~rB!2S~rAB!
~37!

5C~rA!1S~A,B!, ~38!

for C(rA), the capacity of sending qubitA without access to
qubit B, andS(A,B)5S(rA)1S(rB)2S(rAB), the von Neu-
mann mutual entropy ofrAB . In this way it is shown that the
capacity due to the joint measurement of both qubits is
. A

l,

02230
s-
e

c

of
e-
ly
en

i-
ity

-

hanced over the use of a single qubit by a factor equal to
von Neumann mutual entropy of the combined state.

The capacity also gives an exact bound on the mixedn
of a state for when dense coding with that state may be
to fail @14#. For an arbitrary bipartite state the capacity w
not exceed logN, for an N3M state system, withN,M
P$2,3%, wheneverS(rB)2S(rAB)<0. Disentangled state
@15# satisfy the inequality

S~rAB!>max$S~rA!,S~rB!%, ~39!

and therefore cannot be used to transmit more than logN bits
per state. The proof of Eq.~39! is given in the Appendix.

It may also be noted@16# that the result for the capacity o
a two qubit system also proves the conjecture that the ca
ity for dense coding is bounded by@7#

C<11ED , ~40!

whereED is the ~one way! distillable entanglement ofrAB ,
provided the Hashing inequality@17# ED>S(rB)2S(rAB) is
true.

In summary, the classical information capacity of den
coding, through a noiseless channel, using arbitrary mi
states of two qubits or two qutrits, has been derived.
method of generalizing toN3M state systems has been ou
lined, and a conjecture made about the classical capacit
dense coding using such systems.

The author would like to thank Craig Savage and T
Ralph for discussions. The author was supported by
DETYA.

APPENDIX

Proof of Eq. (39). SupposerAB is disentangled, then the
density matrix may be written in the formrAB5( i pivA

i

^ vB
i , with ( i pi51 and pi.0, where the reduced densit

matricesv i are all pure states. By the convexity of the e
pressionS(rB)2S(rAB) @18#, we have

S~rB!2S~rAB!<(
i

piS~vB
i !2(

i
piS~vA

i
^ vB

i !50,

and henceS(rAB)>S(rB). Similarly for S(rAB)>S(rA).
and,
@1# C. H. Bennett and D. P. DiVincenzo, Nature~London! 404,
247 ~2000!.

@2# H. Barnum, M. A. Nielsen, and B. Schumacher, Phys. Rev
57, 4153~1998!.

@3# C. Adami and N. J. Cerf, Phys. Rev. A56, 3470~1997!.
@4# S. Lloyd, Phys. Rev. A55, 1613~1997!.
@5# C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliya

Phys. Rev. Lett.83, 3081~1999!.
@6# C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett.69, 2881
~1992!.
@7# S. Bose, M. Plenio, and V. Vedral, J. Mod. Opt.47, 291

~2000!.
@8# P. Hausladen, R. Jozsa, B. Schumacher, M. Westmorel

and W. K. Wootters, Phys. Rev. A54, 1869~1996!.
@9# A. Barenco and A. K. Ekert, J. Mod. Opt.42, 1253~1995!.

@10# A. S. Kholevo, Probl. Peredachi Inf.9, 3 ~1973! @Probl. Inf.
Transm.9, 177 ~1973!#.

@11# B. Schumacher and M. D. Westmoreland, Phys. Rev. A56,
2-3



v.

GARRY BOWEN PHYSICAL REVIEW A 63 022302
131 ~1997!.
@12# C. M. Caves and G. J. Milburn, Opt. Commun.179, 439

~2000!.
@13# R. F. Werner, e-print quant-ph/0003070.
@14# S. Bose and V. Vedral, Phys. Rev. A61, 040101~R! ~2000!.
02230
@15# V. Vedral and M. B. Plenio, Phys. Rev. A57, 1619~1998!.
@16# S. Bose~private communication!.
@17# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Re

Lett. 85, 433 ~2000!.
@18# E. H. Lieb and M. B. Ruskai, J. Math. Phys.14, 1938~1973!.
2-4


