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We present convergent-close-coupling �CCC� calculations of the angular anisotropy parameters �2 ,�4 and
the recoil ion momentum distribution d� /dp in two-photon double ionization �TPDI� of helium. In a stark
contrast to single-photon double ionization �SPDI�, where the �2 parameter varies widely changing the angular
distribution from isotropic to nearly dipole for slow and fast photoelectrons, respectively, the � parameters for
TPDI show very little change. The angular distribution of the recoil ion is fairly isotropic in TPDI as opposed
to a strong alignment with the polarization of light in SPDI.
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There has been a considerable amount of work done re-
cently on two-photon double ionization �TPDI� of He. This
work was largely driven by a rapid advancement in experi-
mental techniques. The free electron laser at Hamburg
�FLASH� started delivering vacuum ultraviolet photons at
intensities sufficient for observing various multiphoton ion-
ization phenomena. On the theoretical side, a wide range of
methods was applied to the TPDI problem during the past
decade. There have been several reported calculations of the
total integrated cross section of TPDI of He at various pho-
ton energies �1–7�. Although numerical values of the cross
sections varied depending on the theoretical model and as-
sumed characteristics of the laser field, there appeared some
consensus between several calculations �see Hu et al. �7� for
detail�. This consensus, however, was challenged recently as
can be seen from the latest reports �8–10�.

In contrast, the data on angular correlation pattern in two-
electron continuum are more conciliatory. There is at least
some agreement between the fully resolved triply differential
cross sections �TDCS� produced by nonperturbative �4,7�
and perturbative, with respect to the field, �11,12� calcula-
tions. Less detailed double differential cross section �DDCS�,
integrated over the escape angle of one of the photoelectrons,
was not explored so far. The only report of DDCS by Barna
et al. �13� is concerned with the sequential regime of TPDI
which shows much less sensitivity to many-electron correla-
tions.

In the meantime, DDCS is much more appealing for ex-
perimental studies because of a larger volume of phase space
being probed and, hence, significantly improved statistics. It
can bring a wealth of information as was demonstrated by
Knapp et al. �14� who were able to identify various mecha-
nisms of single-photon double ionization �SPDI� of He.
Similar angular distributions differential with respect to the
sum or difference momenta of the photoelectron pair can
also be readily obtained �15–17�. They proved to be useful in
pinpointing propensity rules which govern the two-electron
escape in the Jacobian coordinates �18�.

In this paper, we bridge the gap between the total inte-
grated and fully differential cross sections of TPDI of He and
present the calculations of DDCS in conventional and Jaco-
bian coordinates. The latter calculation allows us to obtain
the recoil ion momentum distribution which can be com-
pared directly with a recent FLASH experiment �19�. We use
essentially the same dynamical model as was applied in our
previous works on TPDI of He �11,20�. In this model, the
atom-field interaction is restricted to the lowest second-order
perturbation theory which is further simplified by the closure
approximation. In the meantime, the electron-electron inter-
action is treated nonperturbatively by the convergent-close-
coupling �CCC� method and included in full. In the closure
approximation, all the intermediate states of the target atom
between absorption of the first and second photons are
weighted equally and summed over with an average energy
denominator. The closure approximation restricts the ability
of this model to provide accurate absolute cross sections as it
underestimates the contribution of the intermediate states
with a small energy denominator. However, due to the long
range of the Coulomb force, the angular correlation pattern
in the two-electron continuum is formed at large distances
�and times� when the field pulse is long gone. It shows,
therefore, little sensitivity to the details of the atom-field in-
teraction. And indeed, the angular correlation patterns ob-
tained with the present model �11� are remarkably similar to
nonperturbative, with respect to the field, time-dependent
close-coupling calculations �4,7�. We thus believe that this
model should be adequate for DDCS calculations.

We start our derivation from the TPDI TDCS differential
with respect to the photoelectron angles and energy,
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Here the index M refers to the polarization state of light,
M =0 and 2 correspond to linear and circular polarization,
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respectively. In the latter case, only the quadrupole channel
L=2 contributes to TDCS. The radial matrix elements
Dl1l2

L �E1 ,E2� are obtained in the simplified second-order per-
turbation theory as described in earlier work �11�. By inte-
grating Eq. �1� over d�1, we get DDCS which can be pre-
sented in the form

d2�
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� �

J=0,2,4
�JPJ�cos �2� , �2�

where the � coefficients are given by the following expres-
sion:
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Here we introduced the hat symbol L̂= �2L+1�1/2 and
dropped the explicit energy dependence of the matrix ele-
ments Dl1l2

L �E1 ,E2� for brevity. In deriving Eqs. �2� and �3�,
we coupled the angular momenta of the photoelectron pair
L ,L� into J using the graphical angular momentum projec-
tion summation technique �21�. Equation �3� coincides with
an analogous expression for � parameters of two-photon
single ionization �22,23� in which the role of l1 is assumed
by the angular momentum of the bound target electron. In
the following, we divide the � parameters by the single dif-
ferential, with respect to energy E2, cross section such that
�0=1 and write the DDCS as
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d�2dE2
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�4�

In comparison, the DDCS of SPDI contains only the �2 term
which is given by the same Eq. �3� with L=L�=1.

To derive DDCS in the Jacobian coordinates, we use the
method proposed by Pont and Shakeshaft �24� for SPDI. We
start from the TPDI amplitude in the form suggested by Is-
tomin et al. �12�,

F�k1,k2� = f1�k̂1 · e�2 + f2�k̂2 · e�2 + fs�k̂1 · e��k̂2 · e�

+ f0�e · e� . �5�

Here k̂i=ki /ki , i=1,2 are the unit vectors directed along the
photoelectron momenta. The amplitudes f i, i=0,1 ,2 ,s de-
pend on the essential dynamic variables E1, E2, and
cos �12=k1 ·k2 / �k1k2�. We rewrite Eq. �5� with respect to the
center-of-mass momentum of the two-electron subsystem
p=k1+k2 and the relative momentum k=k1−k2,

F�p,k� = fp�p̂ · e�2 + fk�k̂ · e�2 + fkp�k̂ · e��p̂ · e� + f0�e · e� ,

�6�
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Here we used a weak asymmetry approximation f1� f2� f
thus neglecting the energy sharing dependence of the ampli-
tudes. The accuracy of this approximation for SPDI was
tested by Pont and Shakeshaft �24� who found it adequate for
qualitative interpretation of the recoil ion momentum distri-
bution. Although we do not perform such a test in the TPDI
case, the calculations of Hu et al. �7� demonstrated little
influence of the energy sharing on the angular distribution of
photoelectrons thus implicitly validating the weak asymme-
try approximation.

Directing the �linear� polarization axis along z and noting
that p ·e= p cos �p and k ·e=k cos �k we write squared ampli-
tude �6� as

�F�p,k��2 = �
i,j

Re�f if j
*�cosNpi+Npj �p cosNki+Nkj �k, �7�

where i , j= p ,k ,kp ,0 and Npp=Nkk=2, Npkp=Nkkp=1, Npk
=Nkp=Np0=Nk0=0. The next step is to expand the ampli-
tude factors entering Eq. �7� into the Legendre polynomial
series,

Re�f if j
*� = �

l

�2l + 1�Pl�k̂ · p̂�f ij
l .

With the help of the linear transformation cosn �k

=�l=0
n ClPl�k̂ ·e� and the Legendre polynomials spherical in-

tegral formula �d�kPl�k̂ ·e�Pl��k̂ · p̂�=4��2l+1�−1Pl�p̂ ·e��ll�,
we can perform the spherical integration to obtain

1

4�
� d�k�F�p,k��2 = A0 + A2P2�cos �p� + A4P4�cos �p� ,

�8�

where the coefficients A0, A2, and A4 are the linear combina-
tion of the coefficients f ij

l . The explicit expressions are cum-
bersome but their derivation can be greatly assisted by Math-
ematica. The same spherical integration technique can be
applied directly to Eq. �5� thus giving an alternative method
of obtaining the � coefficients in Eq. �4�. We used this
equivalence as a check of the accuracy of our computations.

The DDCS is the spherical integral �8� multiplied by an
extra kinematical factor kp �24�,
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where
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We note that d� /dEp=0 for p=0 even though A0�0 as the
antiparallel escape resulting in p=0 is not forbidden in TPDI
as opposed to SPDI.

Now we turn to results of our calculations. In the left-
hand panel of Fig. 1 we show the � parameters in Eq. �4� for
TPDI of He with linearly polarized light at the excess energy
of 11 eV above the double ionization threshold which corre-
sponds to the photon energy 	=45 eV. For comparison, in
the right-hand panel of the same figure, we show the � pa-
rameter for SPDI at the excess energy of 20 eV �the photon
energy 	=99 eV�. The experimental data for SPDI are from
Bräuning et al. �25�.

In the CCC method, the electrons are explicitly distin-
guishable. The label 1 is attached to the slow electron which
is described as a positive energy pseudostate whereas the
label 2 corresponds to the fast electron which is considered
as a Coulomb wave. Thus the expressions �3� and �4� define
the angular distribution of the fast photoelectron E2
E /2
where E is the excess energy above the double ionization
threshold. To obtain the angular distribution of the slow pho-
toelectron, we rely on the exchange symmetry of the matrix
elements Dl1l2

L �E1 ,E2�=Dl2l1
L �E2 ,E1�. Since the slow and fast

electrons are described differently, numerical values of the
direct and exchange matrix elements might be somewhat dif-
ferent. This is reflected in a gap of the � parameters at E /2.

By comparing the left-hand and right-hand panels of Fig.
1, we observe a significant qualitative difference between the
� parameters for TPDI and SPDI. In the two-photon case,
both �2 and �4 are large and positive. In contrast, in the
single-photon case, the �2 parameter varies widely from
nearly zero for a very slow photoelectron to large positive
values for a fast photoelectron. This tendency to large �2 is
exemplified at larger excess energies. For instance, at 100 eV
excess energy, �2�1.4 for the 99 eV photoelectron which
demonstrates a strongly dipolar angular distribution �17�. At
larger still excess energy of 450 eV, �2�2 at the top end of
the excess energy scale which corresponds to the complete
alignment of the fast photoelectron with the polarization axis
of light �14�. This energy dependence of �2 can be inter-
preted as a gradual cross over between two different regimes
of SPDI. Nearly zero �2 parameter of a slow photoelectron

corresponds to a fully isotropic angular distribution which is
a footprint of the shake-off mechanism. On the contrary, a
large positive �2 parameter for a fast photoelectron corre-
sponds to a direct knock out when the whole of the photon
energy and angular momentum is absorbed by the fast pho-
toelectron.

This can be seen from the explicit expression of the �2
parameter for SPDI obtained from Eq. �3� by setting
L=L�=1. When the shake off is the main mechanism of the
SPDI, the slow electron emerges predominantly in the s
state. One therefore can truncate the sum in �3� by a single
term l2= l2�=0 which leads immediately to �2=0. To find the
�2 parameter for a fast photoelectron, one can employ the
exchange symmetry Dl1l2

�E1 ,E2�=Dl2l1
�E2 ,E1� to establish

the only surviving term corresponding to l1=0, l2=1, and
�=2.

In TPDI, because the target atom interacts with the field
twice, the shake-off electron can be ejected in a p wave after
first being promoted from the ground 1s state to an excited
np state. In this scenario, the main contribution to the
angular distribution of the slow electron comes from the
l1= l2=1 term which leads, in the dominant L=2 channel, to
�2=1 and �4=0. This is indeed close to the calculated value
of �2 and explains much smaller values of �4. By way of the
exchange symmetry, one can argue that the same angular
terms would be dominant for the fast electron which explains
a rather weak energy dependence of � parameters. A nonzero
value of �4 indicates that the slow electron can also emerge
in a d state as a result of two repeated knock-out processes.
Most likely, as in the case of SPDI, a clear separation of the
shake-off and knock-out ionization mechanisms would occur
at much higher photon energies. However, at these energies,
the sequential regime of TPDI would become dominant.

Now we turn our discussion to the angular distribution
of the recoil ion momentum K which is defined by the
angular asymmetry parameters for the sum momentum
p=k1+k2=−K. In the left-hand panel of Fig. 2 we plot the
angular asymmetry � parameters and the energy distribution
d� /dEp corresponding to the sum momentum p for the TPDI
of He at the excess energy of 11 eV. For comparison, in the
right-hand panel of Fig. 2, we plot the analogous parameters
for the SPDI at the excess energy of 20 eV. Again, as in Fig.
1, there is a qualitative difference between the TPDI and
SPDI cases. In the two-photon case, the � parameters change
from nearly zero to large positive values as p varies from 0
to pmax. This is to be compared with the large and positive �2
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FIG. 1. �Color online� Angular anisotropy � parameters for two-
photon �left-hand side� and single-photon �right-hand side� double
ionization of He at the excess energies of 11 and 20 eV, respec-
tively. Experimental data for SPDI are from Bräuning et al. �25�.
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FIG. 2. �Color online� Angular anisotropy � parameters and
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of He at the excess energies of 11 and 20 eV, respectively.
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parameter which varies very little in SPDI. The energy dis-
tribution d� /dEp is zero both for p=0 and p= pmax�k=0� due
to the kinematic factor kp. However, the function p−1d� /dEp

is large at p=0 and decays monotonously towards pmax in
TPDI but has a broad maximum at about �pmax/2 in SPDI.

This qualitatively different behavior of � parameters can
be explained in the following way. Inspection of Eq. �7�
shows that the terms containing various powers of cos �p and
thus contributing to A2 and A4 coefficients of �8� are all van-
ishing when p→0. In the meantime, A0 remains finite as fk is
nonvanishing in this limit. This results in zero values
of �2 and �4 and a finite value of p−1d� /dEp at p=0. In
comparison, the SPDI amplitude has the form F�p ,k�
= fp�p ·e�+ fk�k ·e�, where fp,k=0.5�f1 /k1± f2 /k2�. When
p→0, fk goes to zero as well and both the coefficients A0

and A2 become small. This results in a finite �2 and vanish-
ing p−1d� /dEp at p=0. We note that this analysis reflects the
tensorial structure of the SPDI and TPDI amplitudes and thus
remains valid for any atom other than He.

This different behavior of double ionization amplitudes in
the single- and two-photon case has a profound implication
when the recoil ion momentum distribution is measured ex-
perimentally. In a typical cold target recoil ion momentum
spectroscopy �COLTRIMS� experiment, the following quan-
tity is measured �17�:

d�

dpxdpz
= �

−�py

�py

dpy
1

p

d�

dEpd�p
.

Here the 3D momentum is projected on the polarization
plane by way of integration over the momentum component
py in the direction of the photon propagation. The limits of
integration �py are chosen depending on the signal count
rate. For SPDI, thus observed momentum distribution will
peak at �pmax/2 where �2 is large and positive resulting in a
broad dipole structure aligned along the polarization axis of
light as is indeed the case for various excess energies ranging
from 1 to 100 eV �15–17�. On the contrary, in the TPDI case,
the intensity of the momentum distribution is largest near the
origin where the � parameters are close to zero. Hence, there
will be very little anisotropy seen in the recoil ion momen-
tum distribution except for large momenta where the experi-
mental signal is fairly weak. A recent COLTRIMS study of
TPDI of Ne at photon energy of 38.8 eV confirmed this pre-
diction �19�. Preliminary results on He at 45 eV photon en-
ergy seem to also fit into this pattern �26�.
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