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Time-dependent fluctuation theorem
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~Received 23 September 2002; published 14 February 2003!

The fluctuation theorem~FT! is a generalization of the second law of thermodynamics that applies to small
systems observed for short times. For thermostated systems it gives the probability ratio that entropy will be
consumed rather than produced. In the present paper, we propose a version of the FT that applies to thermo-
stated dissipative systems which respond to time-dependent dissipative fields. In testing the time-dependent
fluctuation theorem we provide convincing evidence that sets of trajectories with conjugate values for the
time-integrated entropy production, (6A6dA), are indeed~for time-reversible dynamical systems such as
those studied here!, time-reversal images of one another. This observation verifies the deep connection between
time-reversal symmetry, the fluctuation theorem, and the second law of thermodynamics.
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INTRODUCTION

The fluctuation theorem~FT! gives a mathematical ex
pression for the ratio of probabilities that, in a finite therm
stated system observed for a finite time, the time-avera
irreversible entropy productionS̄ t will take on an arbitrary
value A, compared to2A. The FT was first proposed b
Evans, Cohen, and Morriss in 1993@1#. The FT was then
expressed as

Prob~S̄ t /kB5A!

Prob~S̄ t /kB52A!
5exp~At!. ~1!

Thus the probability that entropy will be produced rath
than consumed increases exponentially with time and w
system size. The theorem applies exactly to transient sys
evolving from equilibrium att50 toward a nonequilibrium
steady state@2#, and asymptotically (t→`) to nonequilib-
rium steady states@1,3#.

The FT is important for several reasons. It expresses
probability that the second law of thermodynamics will
violated for a finite system observed for a finite time. It
one of the few exact mathematical expressions that is v
even far from equilibrium. Close to equilibrium, Green-Kub
relations can be derived from the FT@4#. It can also be used
to derive expressions for free energy differences betw
two equilibrium systems, where the differences are compu
using nonequilibrium path integration@5,6#.

Evans, Cohen, and Morriss originally proposed the FT
ergodic systems with constant-energy dynamics@1#. They
showed that the FT was applicable to systems composed
set of steady-state subtrajectories obtained from a single
long steady-state phase-space trajectory. Their heuristic
vation used Lyapunov weights for sampling phase-space
jectory segments. This version of the FT has since been
noted as the steady-state FT~SSFT! @7#. Evans and Searle
@2# subsequently gave a derivation of the FT that used
Liouville measure for a microcanonical ensemble of syste
where the entropy production was averaged over an
semble of transient nonequilibrium trajectories spawn
from a single equilibrium trajectory. This transient fluctu
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tion theorem~TFT! was subsequently shown to be valid
many other ensembles and with different dynamics@8#.
Later, Gallavotti and Cohen clarified the proof of the SS
using the Sinai-Ruelle-Bowen measure@3#. Recently, a deri-
vation of the TFT using local Lyapunov weights applied
arbitrary ensembles and dynamics has been given@9#.

Many numerical simulations have been performed veri
ing the FT in various ensembles and with various dynam
@1–2,4,7–11#. The validity of the FT has been confirmed fo
systems in the absence of a thermostat@11# and, most re-
cently, the FT was verified in the isobaric-isothermal e
semble@7#. Recently the TFT has been confirmed in a lab
ratory experiment using optical tweezers applied to a sin
colloid particle in solution@12#.

The most general~i.e., ensemble-independent! version of
the TFT employs the so-called dissipation function@8#

V̄ tt[E
0

t

dsV„G~s!…5 lnF f „G~0!,~0!…

f „G~ t !,0… G2E
0

t

dsL„G~s!…,

~2!

wheref „G(0),0… is the phase-space distribution of the initi
ensemble andf „G(t),0… is the initial probability density~i.e.,
at time t50) at the time evolved phaseG(t). L(G)
[]Ġ. /]G is the phase-space compression factor.

This general dissipation function can be used to give
general expression for the fluctuation theorem:

Prob~V̄ t5A!

Prob~V̄ t52A!
5exp~At!. ~3!

For thermostated or ergostated systems, the dissipation f
tion V is recognizable as the rate of entropy absorption
production, S, by the thermostat. Equation~3! has been
tested via computer simulations for a range of ensemb
with a large range of dynamics@1,2,4,7–11#. With only a
single exception@12#, all these previous simulations hav
tested nonequilibrium systems subjected totime-independent
©2003 The American Physical Society13-1
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external fields.1 In this paper we demonstrate the validity
the FT in nonequilibrium thermostated systems with tim
dependent external fields.

Consider a system ofN interacting particles subject to
time-dependent color fieldFc(t). The total system Hamil-
tonian isH(G)5H0(G)1Fc(t)( i 51

N cixi , whereci5(21)i

is the color field coupling constant.H0(G)5pi
2/2m1F(q) is

the internal energy of the system, withF(q) being the inter-
particle potential energy. Interparticle interactions are m
eled with the Weeks-Chandler-Andersen~WCA! potential
@13# F(q)5( i 51

N21( j . i
N w(uqi2qj u), w(q)54@q2122q26#,

q,21/6 and zero otherwise.
The equilibriumN-particle phase-space distribution fun

tion is canonical and is given byf (G,0);e2b@H01(1/2)Qz2#.
Here Q is the effective mass of a heat bath,z is the Nose-
Hoover thermostat multiplier@14#, and b is the Boltzmann
factor b51/kBT52K/dN1O(1/N), whered is the Carte-
sian dimension. The equations of motion can be written

q̇i5
pi

m
,

ṗi5Fi2 iciFe~f!2zpi ,

ż5
1

Q F( pi
2

m
2~g11!kBTG , ~4!

ḟ5v,

whereFi52]F(q)/]qi , v is the frequency of the periodi
external field,f(t) is a periodic function,f(t1P)5f(t),
P52p/v, and g56N1O(1) is the number of degrees o
freedom in the system. The dissipative flux@15# for this sys-
tem is Ḣ0

ad[2JVFe , where V is the system volume, the
superscript ‘‘ad’’ indicates that the time derivative of th
Hamiltonian is taken in the absence of a thermostat, anJ
5V21( i 51

N cipxi . We now substitute the initial phase-spa
distribution function of the system into the expression for
general dissipation function@Eq. ~2!#. The general dissipa
tion function for this system is then V̄ t5

2b(1/t)*0
t ds J(s)Fe(s)V52bJ(t)Fe(t)V. Substituting

this expression into Eq.~2! yields

lnF Prob„2bJ~ t !Fe~ t !V5A…

Prob„2bJ~ t !Fe~ t !V52A…
G5At. ~5!

A time-dependent TFT can exist only if three conditio
are met.2 First, for every trajectory starting at a phaseG(0),
its conjugate antitrajectory must be observable among

1Previously, a version of the FT was derived for systems to wh
Fe andMT(Fe) was applied@see Eq.~31! of Ref. @10##, whereMT

denotes the application of a time-reversal mapping. This diff
from the current investigation, as here the time-reversal mappin
never explicitly applied.

2Here we assume thatFe(t) is the same for every trajectory, i
contrast to Ref.@10#.
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initial ensemble of phases~i.e., the system must be ergod
cally consistent!. This is a standard requirement for the a
plicability of the FT @7#. Secondly the conjugate trajector
G* (t), t5P whereMT@G(t)#5G* (P2t), must be a solu-
tion of the equations of motion.†A sufficient condition for
this to occur is that the equations of motion are time reve
ible and therefore the time-dependent external field m
have a definite parity under time-reversal symmetry„i.e.,
MT@Fe(t)#56Fe(P2t)….‡

NUMERICAL RESULTS

We test Eq.~5! via molecular dynamics simulations. I
order to test the time-dependent FT, we use calculations
are identical to previous TFT simulations@2,7,8,11# except
for the time dependence of the external field. Nonequilibriu
side trajectories are periodically spawned from a main eq
librium trajectory. All trajectories are thermostated using
Nosé-Hoover thermostat, which, at equilibrium, generate
canonical distribution of phases. The time-dependent ex
nal field is activated at timet50 for each side trajectory an
the response of the system is then monitored over the le
of the side trajectory,P. The time average of the dissipativ
flux is calculated for each transient trajectory and the
semble average of the dissipative flux is then calculated fr
these time averages. The conditions for our test simulati
are T51.0, N58, number densityn50.4, time step
50.001, P52.0, andFe50.15. A step potential with odd
parity was used, as shown in Fig. 1. Initially the extern
field is zero, then at timeP/4 the field increases toFe
50.15, atP/2 the field changes toFe520.15, and the field
changes to zero at time 3P/4.

Figure 2 shows the full ensemble average of the trans
responses, with the magnitude of the external field scaled
a factor of ten for convenience. The data are qualitatively
one would expect intuitively, or on the basis of the Maxw
model. The ensemble-averaged current is zero until the fi

h

s
is

FIG. 1. The wave form of a time-dependent external field t
can be used to verify the fluctuation theorem. This four-step fi
has odd parity under the time-reversal mapping.
3-2
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is turned on, at which time the current rises abruptly. At
51, the current has not yet reached its steady-state va
However, at this time the field drops abruptly toFe5
20.15 and the current immediately begins to fall in an a
proximately exponential fashion. The ensemble-averaged
sponse is causal in character, with changes in the ensem
averaged current taking placeafter the external field is
changed. The ensemble-averaged data show no anticip
of future changes in the applied field.

In Fig. 3 we confirm that the fluctuation theorem is va
for this system. As expected, the FT is verified and confirm

FIG. 2. The total ensemble-averaged dissipative flux for a s
tem of N58 particles~shown as circles!. The external four-step
field ~shown as a solid line! has been divided by five for purposes
the plot.

FIG. 3. A test of the time-dependent TFT for the color condu
ing system with a time-dependent external field that is odd un
the time-reversal mapping~see Fig. 1!. The data from the molecula
dynamics~MD! simulation are shown as circles, while the line pr
dicted by the time-dependent TFT is shown as a solid black l
The agreement is excellent.
02611
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for time-reversible systems with time-dependent exter
fields. The points near the ends of the curve may appea
diverge from the FT prediction. However, this is due to i
sufficient averaging for those points; they gradually conve
as the number of transient trajectories in the simulation
creases.

By histograming the responses on the basis of the tim
averaged entropy production, we are able to directly comp
the character of the response as a function of the tim
averaged entropy production. Figure 4 shows a histogram
the time-averaged entropy production. As expected it is
proximately Gaussian. The field is comparatively weak a
the averaging time is short so the mean of the distributi
although positive, differs from zero by less than one stand
deviation. We divide the area under the probability distrib
tion function for the dissipation function to the right of they
axis into bins. The area to the left of they axis is divided into
correspondingly symmetric bins to those on the right.

By calculating the subensemble average of the dissipa
flux of an individual bin, we can compare the second la
satisfying subensemble-averaged response of a bin to
right of the y axis with its conjugate second-law-violatin
response to the left of they axis. Figure 5 shows the
subensemble-averaged response to the time-dependent
nal field for bins 1 and 1* of Fig. 4. The plot of the externa
field is scaled by a factor of 5 for convenience. As expec
the second-law-satisfying response of bin 1~shown as
circles! as shown in Fig. 4 is related to the second-la
violating response of bin 1* ~shown as crosses! by the trans-
formation

J̄tp
52MT~ J̄tp

!. ~6!

The subensemble-averaged currents in conjugate bins
time-reversal maps of each other.

s-

-
er

.

FIG. 4. We show a probability histogram of the dissipative fl
from the NEMD simulation. The seven bins to the right of they axis
have positive values for the time-integrated entropy product
while the seven bins to the left of they axis have the conjugate
negative values.
3-3
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We note that the subensemble-averaged dissipative fl
in conjugate bins both appear to respond to the change in
external field before that change takes place. This antic
tory response is due to a mixing of second-law-satisfying
second-law-violating characteristics within the subensem
averages for the bin. The trajectories are binned in term
their time-integrated entropy production. The fact that
time-integrated entropy production is positive does not im
that for all times along a trajectory the entropy production
positive.

The anticausal character of the subensemble-average
sponse for bins 1 and 1* seems to be significantly greater fo
the bin with a negative time-averaged entropy producti
namely, bin 1* . Figure 6 shows a plot of the same data as
Fig. 5. Here, however, the data for bin 1* have been time-
reversal mapped so as to be more readily comparable to
data for the conjugate bin 1. As expected, there is excel
agreement between the two curves.

Figure 7 shows the subensemble-averaged dissipative
for bins 1 through 7 of Fig. 4. The magnitude of the respo
increases as the bin number increases. Bin 7 is therefore
one depicted with a dashed line with periodic solid circl
The data for all of the bins show considerable anticau
character. In fact all curves except the first one~obtained
from bin 1! exhibit so much anticausal character that it
hard to say which curve is most anticausal in character.

The total ensemble-averaged response~i.e., the weighted
response from all bins! must be causal in character and mu
be second-law satisfying. As we have seen, Fig. 2 confi
this. The full ensemble-averaged dissipative flux shown
Fig. 2 is the sum of the product of the subensemble-avera
dissipative flux in each bin multiplied by the weight of th
bin. We can express this as

^J~ t !&5(
i

bins

wi^J~ t !& i , ~7!

FIG. 5. The subensemble-averaged dissipative flux for bin 1
Fig. 3 is shown as circles. The response of the conjugate antib
shown as crosses. The two response curves are related via the
reversal mapping. The external field is shown as a solid line and
purposes of the plot has been divided by a factor of 10.
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where ‘‘bins’’ indicates that the summation is performed ov
all bins of the probability histogram andwi is the weight of
bin i. We know that the ensemble-averaged response f
single bin is the time-reversal mapping of the response in
conjugate bin, i.e.,̂J(t)& i5MT@^J(t)& i* #, wherei * denotes
the bin that is conjugate to bini. The total antiresponse is

f
is
e-

or

FIG. 6. A plot of the subensemble-averaged dissipative fl
shown in Fig. 4. The second-law-satisfying response is shown
circles. Here the response that violates the second law of ther
dynamics~crosses! has been time-reversal mapped in order to
cilitate direct visual comparison of the two response curves. T
agreement between the two curves is very good, indicating that
system with this external field is reversible. The external fie
shown as a solid line, has been divided by a factor of 10 for p
poses of the plot.

FIG. 7. A plot of the subensemble-averaged responses in bi
through 7 of Fig. 2. As the bin number increases, so does the m
nitude of the response.
3-4
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M t@^J~ t !&#5(
i

bins

wiM
T@^J~ t !&#5(

i

bins

wi^J~ t !& j*

5(
i

bins

wi* ^J~ t !&. ~8!

In other words, the time-reversal mapping of the f
ensemble-averaged response is the sum of the product o
weights for a bin and the subensemble-averaged curren
the conjugatebin. Figure 8 shows the results of the applic
tion of Eq. ~8! ~shown as crosses! and the time-reversa
mapped normal response obtained by applying the ti
reversal mapping to the data for the total forward respo

FIG. 8. A plot of the antiresponse of the dissipative flux to t
external field~solid line!. The antiresponse~circles! is the time-
reversal map of the ensemble-averaged response, i.e.,MT^J(t)&.
Also shown ~crosses! are the results obtained from pairing th
weights of the response in each bin with the subensemble-aver
response of the conjugate bin, Eq.~8!.
et
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~shown as circles!. As expected from Eq.~8!, the agreement
of the two curves is very good. Numerical error is respo
sible for any difference between the curves.

CONCLUSION

We have shown that the fluctuation theorem is satisfi
for time-reversible, time-dependent systems. The fluctua
theorem is therefore not restricted to systems with cons
dissipative fields. This further enhances the breadth of ap
cability of the theorem.

The standard proof of the transient FT assumes that
jectories with conjugate values of the entropy productio
(6A6dA) are composed of pairs of trajectories and th
corresponding time-reversed antitrajectories. It has been
gued that, although the existence of trajectory-antitraject
pairs issufficientfor the existence of a fluctuation theorem,
may not be anecessarycondition. It is possible that Eq.~3!
may be derived by means other than through the exploita
of time-reversal symmetry. The present paper dispels
conjecture. Figure 5, 6, and 7 give convincing evidence t
sets of trajectories with conjugate values for the tim
integrated entropy production (6A6dA) are indeed~for
time-reversible systems such as those studied here! time-
reversal images of one another.

It is also possible that, although trajectory conjugacy m
be necessary and sufficient for the existence of a fluctua
theorem, as a practical matter the shear complexity o
many-particle phase-space may be so great~with many non-
contiguous islands in the initial phase space having the s
value for the time-averaged entropy production! that it may
not be possible to actually observe time-reversed respo
for subsets of trajectories with conjugate values for the tim
integrated entropy production. Again the present work d
pels this concern.

Finally, this work shows that, although the total ensemb
averaged response obviously satisfies the second law a
completely causal in character, in general, the subensem
averaged currents, averaged over sets of trajectories w
specified, time-averaged value of the entropy production,
hibit mixed causal and anticausal character.
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