
Bounds to unitary evolution

Mark Andrews*
Department of Physics, Faculty of Science, Australian National University, ACT 0200, Australia

�Received 13 May 2007; published 21 June 2007�

Upper and lower bounds are established for the survival probability ����0� ���t���2 of a quantum state, in
terms of the energy moments ���0� �Hn ���0��. Introducing a cutoff in the energy generally enables consider-
able improvement in these bounds and allows the method to be used where the exact energy moments do not
exist.
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I. INTRODUCTION

How rapidly �or how slowly� can a state evolve? This
question has been approached �1–4� through the survival
probability of the state:

P�t� ª ����exp�− ı Ht/������2 = ��exp�− ı Ht/����2, �1�

which is the probability that the system, initially in state �,
will be found to be still in that state after time t. The Hamil-
tonian H is assumed to be independent of the time. Lower
bounds to P�t� have been established �1,3� in terms of the
energy uncertainty �Eª ��H− �H��2�1/2, but these bounds
can be well below the actual evolution. Also it has been
claimed �5� that there can be no upper bound �other than
P�t��1� in terms of �E alone; without an upper bound one
cannot be sure that the state will change at all. Here, upper
and lower bounds will be found in terms of higher energy
moments.

Expanding the exponential in Eq. �1� as a power series
gives

P�t� = 1 − �h2 − h1
2�

t2

�2 + �h4 − 4h3h1 + 3h2
2�

t4

12�4 − ¯ ,

�2�

where hnª �Hn�, the nth energy moment. The absence of a
linear term in this expansion is important to the discussion of
the quantum Zeno effect �6,7�.

There are good reasons why h1 and h2 should exist �2�,
but for many states used in physics some of the higher en-
ergy moments do not exist. It will be established in Sec. III
that, apart from the factor �−1�n, the coefficient of t2n in Eq.
�2� must be positive if it exists, and that the partial sums of
this series give alternately upper and lower bounds to P�t�;
an upper bound if the last included term is positive or a
lower bound if the last included term is negative. Section IV
introduces a cutoff in the energy, equivalent to projecting
onto a finite-energy subspace. This enables considerable im-
provement in these bounds �including the one in terms of
�E� and also allows the method to be used where the exact
energy moments do not exist. We first need to show that the
coefficients in Eq. �2� are moments over the autocorrelation
of the energy distribution.

II. ENERGY DISTRIBUTION

Consider a complete set of commuting observables H ,K
with common eigenstates ��E,��, so that H ��E,��=E ��E,��
and K ��E,��=� ��E,��. �In general, K represents a set of op-
erators and � a set of eigenvalues.� Then, for any function
f�H� of the Hamiltonian,

�f�H�� =� dE� d� f�E����E,�����2. �3�

Define the energy distribution ��E�ª	d� � ��E,� ����2. Then
	dE ��E�=1 and

�f�H�� =� dE ��E�f�E� . �4�

For example, hnª �Hn�=	dE ��E�En.
Let L and M be the lower and upper bounds to the ener-

gies for which ��E� is nonzero, but allow the possibility that
M =	 and even the unphysical case that L=−	. The survival
probability P�t� is not changed by a shift in energy and for
all the examples used here L=0 or −	. In terms of ��E�,

P�t� = �
L

M

dE�
L

M

dE���E���E��eı�E�−E�t/�

= �
L

M

dE�
L

M

dE���E���E��cos
E� − E

�
t� . �5�

Change the integration variables from �E ,E� to �E ,
 with

ªE�−E, and introduce the autocorrelation of ��E� through
the even function

W�
� ª 2�
L

M−


dE ��E���E + 
� for 
 � 0. �6�

Then W�
� is never negative and

P�t� = �
0

M−L

d
 W�
�cos
 
t

�
� . �7�

Also 	0
M−Ld
 W�
�= P�0�=1.

Expanding the cosine in Eq. �7� gives

P�t� = 1 −
e2t2

2 ! �2 +
e4t4

4 ! �4 −
e6t6

6 ! �6 + ¯ , �8�

�which must agree with Eq. �2��, where*Mark.Andrews@anu.edu.au
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en ª �
0

M−L

d
 W�
�
n. �9�

The moments en are positive and can be expressed, for
even n, in terms of the energy moments hk with k�n:

en =
1

2
�

L−M

M−L

d
 W�
�
n =� � d
 dE ��E���E + 
�
n

=� � dE dE���E���E���E − E��n. �10�

Now expand �E−E��n as a sum of products of powers of E
and E�. Thus, for example, �E−E��2=E2−2EE�+E�2 leads to
e2=h2−2h1

2+h2=2�h2−h1
2�=2��E�2 and e4=2�h4−4h3h1�

+6h2
2. More generally,

en

n!
= 2 �

k=0

n/2−1

�− 1�khk

k!

hn−k

�n − k�!
+ �− 1�n/2
 hn/2

�n/2�!�
2

. �11�

III. BOUNDS ON THE SURVIVAL

We first show that the partial sums of the Taylor series for
cos x provide alternately upper and lower bounds to cos x. To
prove this, note that if we have an upper �or lower� bound to
cos x for all x0, applying sin x=	0

xcos u du gives an upper
�lower� bound to sin x. Then applying cos x=1−	0

xsin u du
gives a lower �upper� bound to cos x. Thus cos x
�1⇒sin x�x⇒cos x1− 1

2x2⇒sin xx− �1 /3! �x3⇒cos
x�1− �1/2! �x2+ �1/4! �x4 and so on. Using this sequence of
inequalities for cos x, it follows directly from Eq. �7� that

P�t�  1 −
e2t2

2�2 = 1 − ��E�2 t2

�2 , �12�

P�t� � 1 −
e2t2

2 ! �2 +
e4t4

4 ! �4 , �13�

P�t�  1 −
e2t2

2 ! �2 +
e4t4

4 ! �4 −
e6t6

6 ! �6 , �14�

and so on. Whereas the series Eq. �8� for P�t� may or may
not converge, each of these bounds is valid provided the
moments en in it exist. The lower bound in Eq. �12� is well
known and has been improved �1,3� to P�t�cos2��Et /��.
To my knowledge, the other bounds are new; furthermore,
I know of no other upper bounds to P�t�.

As a simple example, consider the energy distribution
��E��E−1/2e−E/�, E�0. (One of many possible realizations
of this as a wave function is as the free Gaussian �= �t
− ı��−1/2 exp��1/2�� ımx2 / �t− ı���, where �= 1

2� /� . ) The
exact evolution has the survival probability P�t�= �1
+ ��t /��2�−1/2 and the coefficient of tn in the power series for
this must be en /n!. In fact, en= �n−1�2�� /��2en−2 with e0

=1. The autocorrelation is W�
�= �2/���K0�
 /��, but it is
not needed. All energy moments exist because the energy
distribution falls off faster than any power of the energy.

Figure 1 shows the exact evolution and four successive
bounds for this case.

When the energy distribution ��E� decreases slowly
�slower than exponentially� then higher energy moments
may not exist and even if some do exist the bounds provided
by Eqs. �12�–�14� may be very poor. For example, if ��E�
� �1+E /��−7/2, E�0, then e2= 40

9 �2 but no other even mo-
ments exist. Equations �12�–�14� provide no upper bound
and the lower bound P�t��1− 1

2e2t2 /�2 is very poor, as
shown in Fig. 2. We will now show how using an energy
cutoff yields good upper and lower bounds for this system
and many others.

IV. USING A CUTOFF IN THE ENERGY

Following the work of Uffink and Hilgevoord �8�, we cut
off the energy at say E=c and write

� ª �
L

c

��E�dE . �15�

The exact state of the system can be expressed as

��t� = ���̄�t� + �1 − ���t� , �16�

where, in the notation of Eq. �3�,

�̄�t� ª
1

��
� d��

L

c

dE e−ıEt/���E��E,�, �17�
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FIG. 1. Bounds to the survival probability for the energy distri-
bution ��E��E−1/2e−E/�, E�0. The time unit is � /�. The dashed
curve is the exact survival probability P�t� and the solid curves are
the bounds given by Eqs. �12�–�14�. The numbers on these bounds
give the largest energy moment used.
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FIG. 2. Bounds to the survival probability for the energy distri-
bution ��E�� �1+E /��−7/2, E�0. The upper curve is the exact sur-
vival probability P�t� and the solid curve labeled “2” shows the
bound given by Eq. �12�. The dashed curve is cos2��Et /��, which
is the best possible lower bound if only �E is known. The time unit
is � /�.
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��t� ª
1

�1 − �
� d��

c

M

dE e−ıEt/���E��E,�. �18�

Then �̄�t� and ��t� are normalized and orthogonal, and the
survival amplitude A�t�ª ���0� ���t�� is

A�t� = �Ā�t� + �1 − ��B�t� , �19�

where Ā�t�ª ��̄�0� � �̄�t�� and B�t�ª ���0� ���t��. Since
�B�t� � �1 we have the inequalities �8�

�A�t�� � ��Ā�t�� + �1 − �� , �20�

�A�t��  ��Ā�t�� − �1 − �� . �21�

We now apply the bounds in Eqs. �10�–�12� to �Ā�:

�A�t��  �
1 −
ē2t2

2�2�1/2

− �1 − �� , �22�

�A�t�� � �
1 −
ē2t2

2 ! �2 +
ē4t4

4 ! �4�1/2

+ �1 − �� , �23�

�A�t��  �
1 −
ē2t2

2 ! �2 +
ē4t4

4 ! �4 −
ē6t6

6 ! �6�1/2

− �1 − �� ,

�24�

and so on, where

ēn ª �
0

c−L

d
 W̄�
�
n, �25�

W̄�
� ª
2

�2�
L

c−


dE ��E���E + 
� . �26�

Note that it is not necessary to calculate the autocorrelation

W̄ for the truncated system; the moments ēn can be obtained
from the energy moments of the truncated system using Eq.
�11�.

Returning to the example with ��E�� �1+E /��−7/2 which
has �=1− �1+c /��−5/2, Fig. 3 shows these bounds for se-
lected values of c using the quadratic lower bound in Eq.
�23� and the quartic upper bound in Eq. �24�.

It is now clear that the bounds from a given cutoff c are
good only for a limited range of the time and the best we can
do with each of the bounds in Eqs. �22�–�24� is to calculate
the envelope as c varies. Each bound to �A�t�� is given by a
function

y�t,c� ª ��c��pn�t,c� ± �1 − ��c�� , �27�

where pn�t ,c� is a polynomial of degree n in t, with n always
even. The envelope of these bounds as c varies is found by
solving

�cy�t,c� = 0 �28�

to give t as a function of c. This can be done explicitly for
the quadratic case, n=2, and for the quartic, n=4; but in

general only numerical solution is practical. The details are
in the Appendixes. Then inserting this t�c� into y�t ,c� gives
the envelope y�t�c� ,c� at time t�c� parametrically in terms of
c. Figure 4 shows these envelopes for the first four bounds
for the distribution ��E�� �1+E /��−7/2, E�0.

The Breit-Wigner system ��E�� ��E−E0�2+�2�−1 is un-
physical because neither �H� nor �H2� exist, but it is used
because it exhibits exact exponential decay: �A�t� � =e−�t/�.
None of the bounds in Eqs. �12�–�14� can be used, but cut-
ting off all energies outside the range E0−c to E0+c gives
the bounds shown in Fig. 5.

V. BOUNDS ON THE REAL AND IMAGINARY
PARTS OF THE SURVIVAL AMPLITUDE

The survival amplitude can be expressed as A�t�
=	dE ��E�exp�− ıEt /��=R�t�− ı I�t�. The methods used in
Sec. III applied to R�t� and I�t� lead to

I�t� �
h1t

�
, �29�

R�t�  1 −
h2t2

2�2 , �30�
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FIG. 3. Bounds to the survival magnitude for the energy distri-
bution ��E�� �1+E /��−7/2, E�0. The dashed curve is the exact
magnitude �A�t�� of the survival and the solid curves are examples
of the bounds in Eqs. �22� and �23� for selected values of the cutoff
energy. The lower bounds come from the quadratic form in Eq. �22�
and the upper from the quartic form in Eq. �23�. The numbers on
these curves give the values of c in units of �. The curve with c
=	, i.e., no cutoff, corresponds to the quadratic form in Eq. �12�;
this also appears in Fig. 2.
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FIG. 4. Bounds for the same system as in Fig. 3. The dotted
curves are the envelopes of the bounds given by Eqs. �22�–�24�. The
numbers on these envelopes give the largest energy moment used.
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I�t� 
h1t

�
−

h3t3

3 ! �3 , �31�

R�t� � 1 −
h2t2

2 ! �2 +
h4t4

4 ! �4 , �32�

and so on. Figure 6 shows the results when this is applied to
the same distribution as used in Fig. 1. Again an energy
cutoff could be used to improve these bounds, or to apply
them when the energy moments do not exist.

VI. DISCUSSION

These methods give a practical procedure for determining
upper and lower bounds to the survival. In the cases consid-
ered here there is just one positive solution for t�c� from Eq.
�A2� for each n, but this has not been proven in general. Note
that if the energy distribution ��E� increases suddenly then
t�c� may not be monotonic in c. If it is not monotonic there
will be more than one bound for a period of time; then only
the best one is of value.
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APPENDIX A: DETERMINING THE ENVELOPE

Applying �cy�t ,c�=0 to y�t ,c� in Eq. �27� leads to
pn�t ,c�= �pn�t ,c�+ �� /2����cpn�t ,c��2. From Eq. �25�, �cēn

=−2��� /���ēn−bn�, where ��ª�c�=��c�,

bn ª
1

�
�

L

c

dE ��E��c − E�n = �
k=0

n
�− 1�kn!

k ! �n − k�!
ckh̄n−k

�A1�

and h̄kª�−1	L
cdE ��E�Ek. Then the equation for the enve-

lope is

�
even k

n

�− 1�k/2 ēkt
k

�kk!
= 
 �

even k

n

�− 1�k/2 bkt
k

�kk!
�2

. �A2�

This must be solved for t�c��0 and the envelope is
pn�t�c� ,c� at time t�c�.

Replacing E−E� by �c−E��− �c−E� in Eq. �10� shows
that ēn /n ! =�k=0

n �−1�kBkBn−k, where Bkªbk /k!; so the
envelope equation is simplest in terms of the Bk only.
Some terms on either side of Eq. �A2� cancel, including
the constant terms so that we can divide by t2. This
gives the equation for t2 as �k �even�=2

2n �−1�k/2�k �t /��k−2

=0, where �k=�m �odd�=1
k−1 BmBk−m for 2�k�n, and �k

=�m �even�=k−n
n BmBk−m for n+2�k�2n. For the quadratic

bound �n=2�: t�c�=2�b1 /b2. The quartic bound �n=4� leads
to a cubic equation in t2: B1

2−2B1B3�+2B2B4�2−B4
2�3=0

with �ª t2 /�2. The relevant solution of this is t�c�2

=8�2�b2−d2+d1 /d2� /b4, where d1ªb1b3−b2
2, d2ª ��d1

3

+d3
2�1/2−d3�1/3, with d3ª �16b2

3−24b1b2b3+9b1
2b4� /16. Note

that all the bk�0, and d1�0 from the Schwarz inequality.
Also 16d3= �4b2

3/2−3b1b4
1/2�2+24b1b2�b2

1/2b4
1/2−b3� and this is

positive because b2b4�b3
2 from the Schwarz inequality. It

follows that this root of the cubic is positive. The next bound
�n=6� leads to a quintic equation in t2 and numerical solu-
tion is probably the most practical option.

APPENDIX B: FINITE RANGE OF ENERGIES

When ��E�=0 for all E�M, the energy cutoff must also
stop at c=M. This causes the envelope to be valid only for
times greater than t�M� given by �cy=0 at c=M. But the
envelope will match smoothly to the bound without cutoff at
that time, because the envelope osculates the sequence of
bounds as c approaches M. These two bounds together pro-
vide a continuous bound for all times until the envelope
reaches either 0 or 1.

To illustrate this, consider the simple case of a square
energy distribution: ��E�=1/M for 0�E�M. With an en-
ergy cutoff at E=c, ēn /n ! =2cn / �n+2�! and bn /n ! =cn / �n
+1�!, so the envelope equation �A2� becomes independent of
c if t�c�=��n /c, where �n is a dimensionless constant. Each
upper envelope has the form 1− �1−�n�tn / t and each lower
envelope the form �1+�n�tn / t−1, where �n is the positive
solution of

�
even k

n
�− 1�k/22�n

k

�k + 2�!
= 
 �

even k

n
�− 1�k/2�n

k

�k + 1�! �2

, �B1�

tnª��n /M and �n
2 equals either side of Eq. �B1�.
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Imaginary

FIG. 6. Bounds for the real part and the negative of the imagi-
nary part of the survival amplitude A�t� for the distribution ��E�
�E−1/2e−E/�, E�0. The dashed curves show the exact amplitude
and the solid curves are the bounds given by Eqs. �29�–�32�. The
numbers on these curves give the largest energy moment used.
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FIG. 5. Bounds for the Breit-Wigner distribution. The solid
curve is the exact magnitude �A�t� � =e−�t/� of the survival, and the
dotted curves are the envelopes of the bounds given by Eqs.
�22�–�24�. The numbers on these bounding curves give the largest
energy moment used. The time units are � /�.
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The envelope for n=2 has �2=3 and �2=1/2, which gives
the bound to �A�t�� as y2=9� / �2Mt�−1 for t�3� /M. Since
y2=0 at Mt /�=9/2, the useful range of this envelope is 3
�Mt /��4 1

2 . This can be seen in Fig. 7, which also shows
the bounds for n=4,6, and 8. The limit as n→	 can be
taken for the upper bounds by summing the series in Eq.
�B1� in terms of sin �n and cos �n, leading to �	=2�, �	=0
and the bound �A�t� � �1−2�� / �Mt� for t�2�� /M.

APPENDIX C: DISCRETE ENERGY SPECTRA

The envelope does not exist in regions where the energy
spectrum is discrete, i.e., where the energy distribution con-
sists of � functions only, because the bounds provided by

Eqs. �22�–�24� do not change as c moves from one � function
to the next. Then the present method gives a continuous se-
ries of bounds and t�c� can be used to specify the period of
time that each bound will be valid.

As a simple example, consider a 3-state system with equal
space between the energy levels: ��E�=a0��E�+a1��E
−M /2�+a2��E−M� with a0+a1+a2=1. For 0�c�M /2, �
=a0, all the hk are zero, and the only bound that can be
obtained from Eqs. �22�–�24� is �A�t� � �1−2a0 �useful only
if a0�

1
2 �. If M /2�c�M, �=a0+a1, hk= �M /2�ka1 /� and

the bound from Eq. �22� is valid for t�M�� t� t�M /2�,
where t�c�=2�b1 /b2, which leads to t�M /2�=4� /M and
t�M�= �� /M��2a0+a1� / �a0+ 1

4a1�. For t� t�M�, one must use
the bound without cutoff. This is illustrated for a particular
choice of the ak in Fig. 8, which also shows the quartic
bounds.
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FIG. 7. Bounds for the survival magnitude �A�t�� for ��E�
=1/M, 0�E�M. The solid curve show the exact amplitude, the
dashed curves are the bounds for n=2,4 ,6 ,8, and the dotted curves
are the corresponding envelopes for varying cutoffs. The dotted
curve labeled 	 is the limit of the upper envelopes as n→	. The
unit of time is � /M.
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FIG. 8. Bounds for the survival magnitude �A�t�� for ��E�
=0.7��E�+0.2��E−M /2�+0.1��E−M�. The solid curve shows the
exact amplitude, the dashed curves labeled 2 and 4 are the bounds
without cutoff, the dotted curves labeled 2c and 4c are the bounds
with M /2�c�M, and the line for c�M /2 is also shown. The unit
of time is � /M.
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