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We show, numerically, that coupled soliton pairs in nonlinear dissipative systems modeled by the cubic-
quintic complex Ginzburg-Landau equation can exist in various forms. They can be stationary, or they can
pulsate periodically, quasiperiodically, or chaotically, as is the case for single solitons. In particular, we have
found various types of vibrating and shaking soliton pairs. Each type is stable in the sense that a given bound
state exists in the same form indefinitely. New solutions appear at special values of the equation parameters,
thus bifurcating from stationary pairs. We also report the finding of mixed soliton pairs, formed by two
different types of single solitons. We present regions of existence of the pair solutions and corresponding
bifurcation diagrams.
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I. INTRODUCTION

Pulse-pulse interaction is one of the main issues in the
design of soliton-based optical transmission lines �1,2�. The
way one bit of information interacts with another can destroy
or protect the system under consideration. Since the general-
ized use of the optical amplifier, long-haul, high-bit-rate
transmission lines have now become all optical �3�. A long-
haul all-optical system is basically a dissipative one, i.e., all
losses in the system are compensated for through the inter-
action with an external pump �4�. Thus, if we want to take
advantage of soliton-based transmission, we need to know
the features of solitons and their interactions in dissipative
systems at a fundamental level.

Robust soliton pairs do exist in dissipative systems. Since
their stable existence was first predicted �5� in optical sys-
tems governed by the complex Ginzburg-Landau equation,
they have been experimentally observed on various occa-
sions in fiber lasers �6�. The fact that dissipative solitons,
when they exist, usually have a fixed profile, allows us to
describe the interaction between two of them using just two
variables, namely the separation � and the phase difference �
between the two pulses. Therefore the dynamics of a pair of
solitons can be described in a two-dimensional phase space
that is usually called the “interaction plane” �5�. In many
cases, the dynamics of the interaction between two solitons
is simple enough so that its analysis can be done without
ambiguity in a reduced two-dimensional phase space. How-
ever, this is not always the case, as our present study shows.

Even single solitons in dissipative systems can have com-
plicated behavior. They can be pulsating, creeping, or ex-
ploding �7� and exhibit many other types of dynamics �8�.
These are all determined by the parameters of the system.
Being equipped with this knowledge, one would expect that
soliton pairs could also show complicated behaviors. In par-

ticular, we have found that a soliton pair can pulsate or
evolve chaotically. Systems with an infinite number of de-
grees of freedom are likely to exhibit a wide range of com-
plicated dynamics, and the reduction to simpler systems with
a two-dimensional phase space cannot be applied as a gen-
eral rule. At least for some regions of the parameter space,
more degrees of freedom need to be considered to under-
stand the dynamics. In these cases, the interaction plane is
clearly not adequate to describe the dynamics of pairs in its
full complexity.

In this paper, we consider such complicated cases when
soliton pairs are oscillating in time, either periodically or
chaotically. In each case, the soliton pair exists indefinitely in
time as a bounded, localized two-soliton solution, thus mani-
festing stability. We have found three types of bound states;
we call them the vibrating soliton pair �VSP�, shaking soliton
pair �SSP�, and mixed soliton pair. The VSP shows simple
oscillations of the soliton pair variables. These oscillations
can be considered as limit cycles of our dynamical system
with an infinite number of degrees of freedom �see discus-
sions on this subject in Chapter 1 in �9��. The SSP is essen-
tially a strange attractor. Its behavior is somewhat similar to
that of a single exploding soliton �7�. We have also found
transitions between these various propagation regimes which
occur when the parameters of the system are changed, and
these are manifest as bifurcations in the soliton pair dynam-
ics. An interesting feature of this complex dynamics is that it
is specific for the soliton pair: each soliton forming the pair
has perfectly stable stationary behavior, when isolated, for
the same set of the equation parameters.

II. MASTER EQUATION

We are dealing, in this paper, with a dynamical system
governed by the cubic-quintic complex Ginzburg-Landau
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equation �CGLE� �10�, which in optics has been widely used
to describe the pulsed operation of passively mode-locked
lasers. The CGLE is

i�z +
D

2
�tt + ���2� + ����4� = i�� + i����2� + i��tt + i����4� .

�1�

When used to describe passively mode-locked lasers, the
CGLE represents a distributed propagation model, in which z
is the distance traveled inside the cavity, t is the retarded
time, � is the normalized envelope of the field, D is the
group velocity dispersion coefficient, with D= ±1, depend-
ing on whether the group velocity dispersion �GVD� is
anomalous or normal, respectively, � is the linear gain-loss
coefficient, i��tt accounts for spectral filtering or linear para-
bolic gain ��	0�, ����2� represents the nonlinear gain
�which arises, e.g., from saturable absorption�, and the term
with � represents, if negative, the saturation of the nonlinear
gain, while the one with � corresponds, also if negative, to
the saturation of the nonlinear refractive index. During nu-
merical computations with the propagation equation, the
magnitude that we most often monitor is the energy Q car-
ried by a certain solution after a propagated distance z. It is
defined by

Q = �
−





���t,z��2dt .

When Q oscillates on propagation, we will denote its maxi-
mum and minimum by QM and Qm, respectively.

Chaotic soliton pairs were first found by Turaev,
Vladimirov, and Zelik �11�. However, the authors of �11�
used an equation that differs from �1� by an additional term
responsible for a weak signal injected into the laser, and the
main reason for chaotic motion in their work was this addi-
tional perturbation, i.e., they induced a chaotic component in
the two-soliton solution artificially. Our results here are ob-
tained with Eq. �1� without any additional terms. This means
that chaotic or shaking soliton pairs can exist in the dissipa-
tive system without any external perturbations. The existence
of these additional solutions can be considered as an essen-
tial characteristic of the dissipative system, rather than a fea-
ture induced by additional forces. The main way to find them
is to correctly choose the parameters of the system. Once the
parameters are chosen, the system will consistently produce
the solution in the form of a vibrating or chaotic bound state
of two solitons.

Before entering this subject deeply, we consider the prob-
lem of the excitation of bound states. First, we should men-
tion that, in order to generate a two-soliton solution in nu-
merical simulations, we have to choose the initial condition
correctly. In our previous work �5�, we used two single soli-
tons, found from preliminary numerical simulations, added a
finite phase difference between them, and located them at a
fixed separation from each other �see Eq. �7� of �5��. If the
bound state does exist, this initial condition converges to it,
provided that the phase difference and the separation are
chosen within certain limits. In many cases, a broader class
of localized initial conditions can also be used. There is no

certainty that a stable soliton pair will be excited. However,
when it is excited, the solution converges to the same bound
state if it is the only pair that exists for a given set of param-
eters. Each bound state has a basin of attraction that is large
enough to allow us to generate these solutions with a certain
facility. When two types of solution exist simultaneously,
each of them has its own basin of attraction.

III. VIBRATING SOLITON PAIRS

In Ref. �5�, we found stable soliton pairs with ±� /2 phase
difference between the two pulses. These two equivalent
pairs can be represented by two points in the interaction
plane. Trajectories that start at nearby points in this plane
converge to the fixed point, which can be considered as a
stable focus of the dynamical system. On changing the pa-
rameters of the system, we can find those values for which its
stability becomes marginal and the fixed point is transformed
into a center, thus allowing periodic orbits around the center.
These periodic orbits are marginally stable. They cannot be
considered as attractors of a dynamical system. In the present
work, we have found a different type of periodic orbit. These
orbits are stable robust formations which are limit cycles of
the CGLE. As such, they are attractors of the nonlinear dy-
namical system. An example is shown in Fig. 1�a�.

Let us suppose that we use an initial condition in the form
of two solitons separated by a finite distance. When starting
from an arbitrary point in the interaction plane, located in-

FIG. 1. �a� Interaction plane limit cycle that corresponds to
purely periodic oscillations between the two solitons. The arrow
indicates the clockwise rotation of the trajectory. �b� Periodic evo-
lution of the energy Q for the same case. The equation parameters
used in the simulation are written in �a�.
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side or outside of the limit cycle in Fig. 1�a�, the trajectory
converges to this limit cycle, rather than to a fixed point.
Moreover, when the initial conditions are not exactly two
solitons at a fixed distance, but two pulses with a shape that
only approximately resembles solitons, the trajectory also
converges to the same limit cycle. The early part of the tra-
jectory in the phase space depends on the initial condition
and can be rather complicated. Thus, all such parts of the
trajectories have been removed from Fig. 1�a� for the sake of
clarity. Only the limit cycle, which is the final part of stable
evolution, is shown. It is represented by the solid curve in the
figure. The arrow shows the direction of motion in the inter-
action plane. We call this type of solution a vibrating soliton
pair �12�.

An interesting observation is that, for some given sets of
the system parameters, only two types of solution exist:
single stationary solitons and vibrating pairs. Soliton pairs
with fixed distance and phase difference do not exist for this
set of parameters, or at least we have not observed them.
Thus, any initial condition which is a bound pair of two
pulses located in the basin of attraction will cause creation of
a VSP, rather than of a stationary soliton pair.

The trajectory shown in Fig. 1 is noticeably asymmetric
relative to the vertical line which corresponds to a phase
difference of � /2. The distance � between the two maxima
of the pulses oscillates, as does the phase difference. This set
of two pulses has a finite velocity, moving toward the right
�positive z direction�. The peak amplitude of the pulse on the
right-hand side is slightly larger than that of the pulse on the
left. This asymmetry comes from the nonsymmetric phase
relationship between the two pulses. However, due to the
t↔−t symmetry of the CGLE, there always exists its sym-
metric VSP solution moving toward the left and having a
phase difference close to −� /2. The periodic evolution of the
energy Q vs z is shown in Fig. 1�b�. This single periodic
curve is very close to being harmonic.

The pulse profile evolution is shown in Fig. 2 for the same
propagation distance as in Fig. 1�b�. The periodic evolution
is better observed from the slopes of the two solitons rather
than at the maxima. The reason that the vibration appears
with a small amplitude in this diagram is mainly due to the
fact that, in the example chosen, it is mostly the relative

phase which oscillates, while the relative separation oscil-
lates only by 0.5%, as can be seen in Fig. 1�a�. This solution
can be considered as the pulsating two-soliton generalization
of a single pulsating soliton �7,8�. However, pulsations here
are solely due to the interaction between the two solitons.
Single pulsating solitons do not exist at the set of parameters
chosen for these simulations. At the same time, two single
pulsating solitons do not create a VSP. The pulsations of both
solitons causes them to merge into one. Thus, we can con-
sider a VSP as a new object in the family of localized solu-
tions of the CGLE.

IV. SHAKING SOLITON PAIRS

A second object that we have found numerically is what
we call a shaking soliton pair. Its dynamics demonstrates the
presence of chaotic effects in the evolution of soliton pairs.
These are stationary pairs that have an intrinsic instability of
an oscillatory type. The pair can be represented on the inter-
action plane as a fixed point which is an unstable-stable fo-
cus. An example of such a point is shown on the interaction
plane in Fig. 3. The trajectory that describes the evolution of
this pair is a spiral that winds out off the focus, makes a loop,
and winds back to the initial point, thus repeating the cycle
again and again. The cycles are similar to each other but are
not exactly the same. For clarity, only one of the cycles is
shown in Fig. 3. In a global evolution, each cycle is a ho-
moclinic orbit returning back to the same point. The process
of return is clearly seen in Fig. 3.

The center manifold of this dynamics is at least four di-
mensional. The inward �outward� spiraling trajectory can be
related to a fixed point with its corresponding linearized sta-
bility analysis providing two complex conjugate eigenvalues
with negative �positive� real part. Thus, a complete descrip-
tion needs at least two pairs of complex eigenvalues. The
trajectory in this reduced phase space escapes the fixed point
in one two-dimensional subspace and returns to this point in
another two-dimensional subspace.

FIG. 2. Evolution of the pulse profile for the vibrating soliton
pair �VSP�. Parameters of the simulation are the same as in Fig. 1. FIG. 3. Trajectory of the motion on the interaction plane for a

soliton pair that is spontaneously shaken. The approach to the center
and departure from it follow very different paths on the plane. Pa-
rameters of the simulation are written inside the figure.
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The evolution of the total energy Q of the shaking pair is
shown in Fig. 4. When the pair is in the nearly stationary part
of the evolution, the energy appears to be constant. This
corresponds to the fixed point in Fig. 3. In this example, the
soliton pair spends most of the propagation time very close
to this fixed point. On the other hand, when the pair is dis-
turbed by the instability, the energy changes and evolves
with the oscillations. Two shaking parts of the evolution are
clearly seen in Fig. 4. After the instability is over, the energy
returns to the same constant value as before. The cycles re-
peat indefinitely in ways that are similar, but not exactly the
same. The evolution of the pulse profile during one cycle is
illustrated in Fig. 5.

If we change the parameters of the system, the stationary
part of the evolution may become shorter in comparison with
the shaking part. To demonstrate this, we significantly
changed the parameters �, �, and �. The resulting plot for the
energy Q versus z is shown in Fig. 6. Despite the shorter
stationary part of the trajectory, the shaking feature appears,
again and again, almost periodically.

We stress that the orbit does not repeat itself at each of the
shaking parts of the evolution, thus confirming the fact that
many frequencies are involved in this dynamics. In fact,
when the values of the equation parameters are slightly
changed, the differences between the cycles can be made

considerably larger, showing that the chaotic nature of the
motion becomes more pronounced.

The peak amplitudes A1 and A2 of the two solitons in the
pair for one cycle of evolution are shown in Fig. 7. The two
amplitudes have almost the same value at the nearly station-
ary part of the evolution. They start to oscillate due to the
instability, but the amplitudes of oscillation are clearly dif-
ferent. When the instability is over, the oscillations decay
and the soliton pair becomes nearly stationary again. The
soliton pair is slightly asymmetric in that the right-hand side
�RHS� pulse �gray dotted line� has an average amplitude
which is larger than that of the pulse on the left �solid line�.
This asymmetry also comes from the phase asymmetry, as
previously discussed.

The phase trajectory on the interaction plane for the same
dynamics of the two pulses is shown in Fig. 8. The counter-
clockwise direction of the trajectory is indicated by the ar-
row. The right-hand side part of the orbit corresponds to the
part in Figs. 7 �6� where the amplitude �energy� experiences
larger variations, while the left-hand side trajectory corre-
sponds to having the amplitude �energy� almost constant. In

FIG. 4. Energy Q versus z for a soliton pair that is spontane-
ously shaken as an instability takes place. It corresponds to the
same case as the one shown in Fig. 3.

FIG. 5. Evolution of the pulse profile of the shaking soliton pair
shown in Fig. 4.

FIG. 6. Another example of a spontaneously shaken soliton pair.
The parameters of the simulation are written inside the figure. This
example shows that the shaking feature can occur for a relatively
wide range of the system parameters.

FIG. 7. Peak amplitudes of the two solitons forming the shaking
pair. Gray dotted line is for A1, and black solid line is for A2. Only
about one cycle of the spontaneous shaking represented in Fig. 6 is
shown here, with a higher resolution along the z direction.
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the right-hand part, the motion consists mainly of fast oscil-
lations of the relative phase, superimposed on a slower
stretching of the soliton pair separation.

The trajectory in Fig. 8 is shown only for a single burst of
instability in Fig. 6. To be specific, z varies from 0 to 800.
Plotting the next loop of the trajectory shows a similar pat-
tern; however, the phase of the oscillations is shifted relative
to the first loop. Plotting several loops would show the cha-
otic variation of the phase evolution.

The same set of parameters admits a second type of pair
solution, thus revealing bistability. The energy Q versus z for
this solution is shown in Fig. 9�a�. This plot shows the “pe-
riod tripling” phenomenon for the “envelope” of fast oscilla-
tions. This conjecture is confirmed by plotting the trajectory
for this motion on the interaction plane. The latter is shown
in Fig. 9�b�. One can see three loops in the trajectory. Two of
them almost overlap, while the third one, having a smaller
amplitude of oscillation, is located inside them. The trajec-
tory is roughly “repeated” after the third loop, but with cha-
otic fluctuations, showing that the motion is a complicated
mix of regular and chaotic features.

The examples above show nontrivial dynamics of soliton
interactions in dissipative systems. The type of dynamics is
defined solely by the parameters of the system. Some sets of
parameters produce a particular behavior, while others admit
two or more types. In order to know what to expect in the
dynamics, we have to classify the solutions in terms of the
various system parameters.

V. RANGE OF EXISTENCE AND BIFURCATIONS

Each type of pair described above exists in a certain re-
gion of the parameter space. Finding complete sets of re-
gions of existence for various types of soliton pairs is a te-
dious task. The first essential step would be to find a region
of existence for stable stationary single solitons. To some
extent, this work has been carried out in our previous papers

�15�. Inside the region, we can look for stationary soliton
pairs, and this is still a relatively easy and short task. Once a
stable stationary pair is found for a single set of parameters,
we change the values of the parameters, and try to delimit
the areas where the specific pair exists. Usually, only two
parameters are changed, and the rest are kept constant. This
procedure allows us to make a two-dimensional graphical
representation of the regions, while keeping the computa-
tional burden within reasonable limits. The soliton pairs may
gain qualitatively new features at the edges of these regions.
These features usually appear in the form of bifurcations.

In order to find the bifurcations, we further simplified the
technique. In particular, we monitored the energy of the pair
while changing only one parameter of the system. When the
soliton pair is stationary, the energy has a fixed value for a
given set of soliton parameters. This changes when the pa-
rameters are changed, but it reaches a constant value for each
new point in the parameter space. If the soliton pair starts
pulsating at a bifurcation point, then the energy becomes a
periodic function of z. Strict periodicity appears after conver-
gence to the new solution. After convergence to periodic or
quasiperiodic motion had occurred, we monitored all the lo-
cal minimal and maximal values of the energy.

In most of the simulations, we fixed all the parameters
except the nonlinear gain coefficient �. An example of a plot
of maxima QM and minima Qm of the energy Q versus �, for

FIG. 8. Trajectory on the interaction plane showing one cycle of
shaking in Fig. 6. The direction of the evolution is indicated by the
arrow. There is no particular fixed point for this example. For 2 /3
of the time, the system stays on the left-hand side part of the orbit,
bursting into higher amplitude oscillations on the right-hand side of
the loop.

FIG. 9. �a� Energy Q versus z for the alternative evolution of the
system with the same set of parameters as in Fig. 6. Period tripling
of the envelope of oscillations can clearly be seen. �b� Trajectory in
the interaction plane for the same simulation.

SOLITON COMPLEXES IN DISSIPATIVE SYSTEMS:… PHYSICAL REVIEW E 75, 016613 �2007�

016613-5



the case when a stationary pair is transformed into a simple
pulsating pair, is shown in Fig. 10. The energy Q takes a
stationary value when � is within the range �1.05, 1.834�,
although the figure shows it in the much smaller interval
�1.8, 1.834�. At �=1.835, the bifurcation occurs and the en-
ergy starts to oscillate between the lower and upper curves in
Fig. 10. This bifurcation is from a stable fixed point to a limit
cycle �Hopf bifurcation�. The soliton pair starts to vibrate at
this point. The energy varies from the lower value to the
upper one when the representative point moves along the
limit cycle in Fig. 1.

Another type of bifurcation is shown in Fig. 11. Relative
to Fig. 10, only the value of � has been changed, from 0.5 to
0.45, but the dynamics changes dramatically. In fact, the dia-
gram in Fig. 11 shows a stationary value of energy Q when �
changes in the interval �1.82, 1.829�. Bifurcation takes place
at �=1.829. The soliton pair starts to shake, thus causing the
energy to evolve chaotically. In contrast to the previous case,
there is no single frequency and no fixed value for the am-

plitude of oscillations. Plotting every local maximum and
minimum in the changes of energy creates the lower and
upper ranges of what appears as an energy band in Fig. 11.
The plot shows that, at the point �=1.829, the stable station-
ary pair is transformed into a shaking pair with maximum
and minimum values of energy evolving like those in Fig. 4.
The transition that is observed in this case is abrupt, thus
allowing us to classify the bifurcation that is occurring in
Fig. 11 as subcritical. We have found two solutions that exist
simultaneously in the small region above the point �=1.829.
Increasing or decreasing � allows us to demonstrate each
type of solution.

Now we turn our attention to the regions of existence of
various types of solutions. An accurate mapping in the pa-
rameter space requires high accuracy and fine parameter
scanning in the simulations. Diagrams which are similar to
those shown above have to be constructed when the second
parameter changes in the simulations. The results of such a
mapping are shown in Fig. 12. In fact, the largest region,
indicated in gray in this plot, is the zone in the parameter
space where stable single solitons �S� exist. We expect stable
soliton pairs to appear only inside this region. The smaller
hatched region corresponds to stable stationary soliton pairs
�SP�. Generally, as Fig. 12 shows, stable soliton pairs exist
over a relatively large range of parameters. The value of �
can vary from �1.1 to �1.8 and � from �0.3 to �0.7. Thus,
these two parameters can almost double their values and soli-
ton pairs still remain stable.

VSPs and SSPs in our simulations appear in a much
smaller region above the hatched area. This region is shown
in black. The two types of pairs, VSPs and SSPs, do not
coexist with stationary pairs. Thus, the region for VSPs and
SSPs, marked in black, has a distinct boundary with the
hatched area shown in Fig. 12. The small size of the black
region indicates that the types of soliton pairs found in this
work are far from being typical cases. Only careful adjust-
ment of the parameters allows us to generate them. It may
happen that additional perturbations, similar to those consid-

FIG. 10. Bifurcation diagram obtained by plotting the maximal
and minimal values of oscillating Q from the Q vs � values ob-
served as the soliton pair evolves along the z variable. This diagram
clearly shows the transition from stationary soliton pairs to vibrat-
ing ones. The bifurcation occurs at �=1.835. The parameters of the
system are written inside the figure.

FIG. 11. Bifurcation diagram constructed in the same way as the
one in Fig. 10. This plot reveals a transition from stationary soliton
pairs to shaking soliton pairs at �=1.829. Parameters of the simu-
lation are shown inside the figure.

FIG. 12. Regions of existence of single stable solitons �S� and
various forms of soliton pairs-�SPs�. The dashed region corresponds
to stable stationary bound states. The black region above SP is the
one with stable VSPs and SSPs.
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ered in �11�, may expand the region of their existence.
The regions for VSP and SSP solutions are shown sepa-

rately, with higher resolution, in Fig. 13. VSPs appear in the
white region surrounded by the solid black curve, while the
region for SSPs is shown shaded in gray. For each type of
pair, the size of the region of existence is very similar. The
lower boundaries are the lines of bifurcation from the sta-
tionary soliton pairs. This magnification also clearly shows a
region of overlap between the two regions. Two types of
soliton pairs coexist in this region, and each one is stable.
The initial conditions determine which one is excited in any
particular simulation. In order to demonstrate this, we fixed
the parameter �=0.47, and changed �, step by step, using the
previous solution as the initial condition for the simulation at
the new �.

The bifurcation diagram for soliton pairs constructed in
this way is shown in Fig. 14. The gray dots are calculated for
the parameter � increasing in simulations. Specifically, we
start at �=1.83 and find a stationary pair at this point. We
take this solution as the initial condition and find the next
soliton pair at �=�+��, with ��= +0.0001. The black points
are obtained when we decrease � using the same increment
with a minus sign. When the CGLE admits only one soliton
pair that is stationary and stable, the simulations result in the
same solution, independent of the direction of changing �.
On the other hand, the two solutions differ just above the
bifurcation point, indicating the presence of bistability.
Above the region of bistability, there is only one stable VSP
solution, so that the two branches again coincide in the form
of upper and lower values of energy for the vibrating solu-
tion.

The plot in Fig. 14 shows the second bifurcation from
VSP to SSP at around ��1.8385. The maximal and minimal
values of the oscillating energy now split into upper and
lower bands, indicating chaotic motion. A new frequency
appears in the dynamics at this point, thus making the overall
motion rather complicated.

VI. MIXED PAIRS

All the results in the previous sections are related to soli-
ton pairs that consist of two identical plain pulses. It is
known that soliton pairs may involve more complicated
composite pulses �13�. However, it was not known that the
CGLE admits mixed soliton pairs when one of the solitons in
the pair is a plain one and the second one is a composite
soliton �14�. Clearly, this has to be considered as a very
special case. First, to obtain a mixed pair, the parameter set
has to be chosen in a region where each type of soliton is
stable. The latter is relatively small, as we know from previ-
ous studies �15�. Second, the propagation constants for the
two different solitons are different. Thus, the phase differ-
ence between the two solitons cannot be kept constant. Any
such solution would rotate around the origin when repre-
sented by a point on the interaction plane. Consequently, it is
hard to imagine that mixed pairs would exist at all. Despite
these issues, we were able to observe stable mixed pairs, and
one example is shown in Fig. 15.

Due to the constantly increasing phase difference between
the two solitons, a mixed pair creates a periodic motion more

FIG. 13. The regions of existence of SSPs and VSPs in the
�� ,�� plane. This is a magnification of the small region shown in
Fig. 12 in black. Higher resolution of this region allows us to sepa-
rate it into two subregions for SSPs and VSPs. The overlapping part
of the two regions indicates that the two types of soliton pairs can
coexist.

FIG. 14. Bifurcation diagram obtained by increasing �gray� and
decreasing �black� values of �. This plot explicitly shows the coex-
istence of two types of soliton pair in the interval 1.832�
1.8336. This interval corresponds to the overlapping region for
SSPs and VSPs in Fig. 13.

FIG. 15. Stable bound state of a plain soliton and a composite
soliton, which we call a mixed soliton pair. Its small vibration is
hardly visible in the evolution plot.
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naturally than a pair consisting of two equivalent solitons.
Moreover, this is the reason why a mixed soliton pair can
never be stationary. Figure 15 shows the oscillatory dynam-
ics that occurs predominantly in the low-amplitude region
between the two solitons. In general, rotation of the relative
phase implies periodic attraction and repulsion of the two
pulses, thus creating periodic evolution. We can say that any
mixed pair is originally a VSP.

In most cases, the oscillations can be noticed only be-
tween solitons as in Fig. 15, since the interaction between the
two pulses is weak. Then the oscillation frequency between
the two solitons is the beat frequency defined by the differ-
ence between the propagation constants of the individual
solitons. The oscillations of energy for these solutions would
also be small. However, changing the parameters of the sys-
tem allows us to find mixed pairs with oscillations that are
more pronounced than those in Fig. 15. One such case is
shown in Fig. 16.

A composite pulse is more susceptible to a change of its
shape, since it, in turn, consists of two fronts bound to the
central bright soliton. The front that is closer to the plain
pulse on the left moves with a higher amplitude than the
other one. Only one full period of oscillations of the mixed
pair is shown in Fig. 16. The period, in this case, is equal to
four periods of beating between the two individual solitons.
Thus, this solution is the result of two period doublings in
the sequence of period-doubling bifurcations �see below�. As
the size of the composite soliton changes appreciably, the
energy of the mixed pair oscillates with a relatively high
amplitude. These oscillations are shown in Fig. 17. The os-
cillations in energy are quite far from being purely harmonic,
thus confirming that these vibrations are not a simple beating
between the two solitons. Indeed, they are the result of a
sequence of two period-doubling bifurcations �see below�.

A mixed pair is subjected to transformations when the
equation parameters are changed, and, in order to follow
these, we can construct a bifurcation diagram in the same
way as for that for the pair of two plain solitons. Thus, we
monitored the energy Q of the pair when changing the pa-
rameter �. As the solution is always vibrating and the energy
is never stationary, there are at least two extremal values of
the energy for any value of the parameter �. The minimal and
maximal values of Q for this solution are shown in Fig. 18
for � in the interval �1.81,1.86�. The remaining parameters
were kept constant.

For small values of � in the given interval, the two soli-
tons interact weakly. Consequently, oscillations of energy are
very small, and the minima and maxima of Q are close to
each other. The maxima and minima almost coincide at �
=1.81. Increasing � results in stronger oscillations, so that
the two values become well separated at around �=1.85.
When �=1.855, a bifurcation occurs and the solution starts to
pulsate with a frequency that is twice the beat frequency. At
this point, we need to plot all local minima and maxima of
the energy. Consequently, the two branches of energy in Fig.
18 split into four. A further increase in � results in a sequence
of period-doubling bifurcations and chaotic motion of the
pair. This can be clearly seen in the inset of Fig. 18, which
represents the same bifurcation diagram with higher resolu-
tion. Neither multifrequency dynamics nor chaotic motion
destroys the soliton pair. It remains a stable localized object
up to �=1.86. The pair only develops instability above this
limiting value. The two pulses then annihilate each other,
creating just a single composite soliton.

Our further studies have shown that pairs formed by two
composite pulses �13� can also evolve in a complicated way,
just like pairs formed by two plain pulses. These pairs can be

FIG. 16. One period of oscillation of a mixed soliton pair. Pa-
rameters of the simulation are shown in Fig. 17.

FIG. 17. Periodic evolution of energy of a mixed pair. The part
of the curve corresponding to the period presented in Fig. 16 is
shown by the solid line.

FIG. 18. Bifurcation diagram showing changes in the behavior
of the mixed soliton pair illustrated in Figs. 15 and 16. The gray and
black dots correspond to the minimal and the maximal values of the
energy of the oscillations. Multiple bifurcations, including period
doubling, occur on the RHS part of the diagram. This part is shown
in greater detail in the inset of this plot.
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vibrating, shaking, and generally chaotic. Transformations
between these forms occur as bifurcations which are similar
to those given in the present work. The results of these simu-
lations are of interest in themselves and will be presented
elsewhere.

VII. CONCLUSIONS

In this work, we have studied three types of soliton pair in
dissipative systems governed by the complex Ginzburg-
Landau equation. The interaction of solitons in dissipative
systems appears to be more complicated than we previously
thought. There are subtle effects in the interaction that lead to
the vibrating behavior of pairs. These vibrations can be al-
most harmonic or have a chaotic component, similar to in-
termittency in low-dimensional systems. We call these bound
states vibrating or shaking pairs, depending on the number of
frequencies involved in the dynamics. Another observation
that we presented in this work is that the two solitons in the
bound state do not have to be identical. The interaction of

two different types of solitons produces naturally vibrating
pairs, and even shaking pairs. This complicated dynamics of
bound states can appear without any additional external per-
turbations. A correct choice of system parameters is the only
requirement for the appearance of these solutions.

These observations can have far-reaching consequences.
Single solitons can be perfectly stable for a given set of
parameters. However, this does not mean that a bound state
formed from them is either stationary or stable. Moreover,
their relations can be highly complicated. Such is the life of
dissipative solitons.
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