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Fusion, collapse, and stationary bound states of incoherently coupled waves in bulk cubic media
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We study the interaction between two localized waves that propagate in @wolkransverse dimensions
Kerr medium, while being incoherently coupled through cross-phase modulation. The different types of sta-
tionary solitary wave solutions are found and their stability is discussed. The results of numerical simulations
suggest that the solitary waves are unstable. We derive sufficient conditions for when the wave function is
bound to collapse or spread out, and we develop a theory to describe the regions of different dynamical
behavior. For localized waves with the same center we confirm these sufficient conditions numerically and
show that only when the equations and the initial conditions are symmetric are they also close to being
necessary conditions. Using Gaussian initial conditions we predict and confirm numerically the power-
dependent characteristic initial separations that divide the phase space into collapsing and diffracting solutions,
and further divide each of these regions into subregions of coufilsibn) and uncoupled dynamics. Finally
we illustrate how, close to the threshold of collapse, the waves can cross several times before eventually
collapsing or diffracting[S1063-651%99)00604-2

PACS numbgs): 42.65.Tg, 42.65.Sf, 42.65.Jx, 42.60.Jf

[. INTRODUCTION the walk-off could not be removed if the four-wave-mixing
terms had been included in the model, i.e., if two or more
When two or more localized light waves copropagate in-components had been phase matched.
side a centrosymmetric optical bulk medium, they can inter- For a single componenf\=1, Egs. (1) reduce to the
act strongly through the cubic nonlinear Kerr effect. Thewell-known cubic nonlinear Schdinger (NLS) equation,
nature of the interaction will depend on the state of thewhich is the fundamental model for numerous physical situ-
waves, i.e., their frequency and polarization, as well as orytions, i.e., for all nearly monochromatic wave packets in
the struc'gure of the third-order susceptibility tensor. If Westrongly dispersive, weakly nonlinear medi. In 1D the
neglect higher-order effects such as loss and four-wave mixy| s equation is integrable and has stable soliton solutions
ing, we can write the dynamical equations in the generaj3) \yhereas all localized solutions are inherently unstable in
normalized form(see, e.g.[1]) 2D and will either diffract or self-focus until a catastrophic
collapse occurs at a finite propagation distance. A sufficient
condition for collapse foer; y1,>0, which is the case we are
N 1) interested in here, is that the Hamiltonian for the system is
|n:j21 7jn|Ej|2- negative. This leads to a necessary condition for collapse in

terms of the powelP, = [|E,|?dr, which must exceed the
threshold valueo Py s/v11, Where Py s=11.69 is the
Y i - power of the ground-state solitary wave solution to the stan-
ponent,n=[1,N], of the electric field, which is propagating dard (unit coefficients 2D NLS equation(see[4] for a re-
along thez axis and diffracting in the two-dimension&D) view).
transverse plane =(x,y), with V=(dy,dy) and V?=d; In the opposite limit with infinitely many components,
+a§. The real parameters,, determine the strength of the N, Egs. (1) can describe the propagation and self-
diffraction, whereas the real nonlinearity parametggsde-  focusing of partially incoherent light beams in noninstanta-
termine the strength of the self-phase modulat®®M) for  neous nonlinear media such as biased photorefractive mate-
j=n and the cross-phase modulatioxPM) for j#n. The rials [5]. Even though the photorefractive materials are
effect of linear walk-off, characterized by the real vectorsnoncentrosymmetric, and thus quadratic nonlinear, their non-
Jn:(UnX,vny), can be removed by the simple unitary trans-linearity in the direction of the bias field can be approxi-
formation mated under strong bias conditions by the cubic Kerr nonlin-
earity for broad low intensity beams. The possible existence
E,—Eqexdi(|vn?z—2v,-1)(40,)]. of spatially incoherent solitary waves has been the subject of
considerable interest since first observed in 1@6In con-
However, for the sake of clarity we keep the walk-off termstrast to their coherent counterparts, which normally require
in Egs.(1) during the discussion of its different applications gigawatt laser pulses, the incoherent solitons can be excited
for describing the dynamics of 2D localized waves. Note thaby white light and require as little as milliwatts or even nano-

i(d,+v,-V)Ep+ 0, V2E,+1,E,=0,

HereEn(F,z) is the slowly varying envelope of theh com-
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watts[7]. Due to the nature of the photorefractive nonlinear-=y,,;=2v,,=3%) and two initially separated identical
ity, the theoretical studies of incoherent solitary waves hav&aussian waves, they used the virial relation to show that the
so far been concentrated on 1D models. waves could fuse and collapse as a single entity whenever
Here we are interested in the incoherent coupling betweetheir separation was below a certain threshold value and the
two wavesN= 2, where Eqgs(1) can describe several differ- total power was in between the threshold for collapse of two
ent physical situations. In nonlinear optics the most well-superimposed waves and of two waves infinitely far apart,
known applications are to cubic nonlinear media, where thewhere the system reduces to simply two uncoupled NLS
describe the nonresonant interaction between two orthogaequations. A numerical example with the separation slightly
nally polarized waves with the same frequeri@y} or two  below (above the threshold confirmed that the two waves
waves with the same polarization, but different frequenciegused before collapsin¢fiffracting) as one entity.
(see, e.g[1]). Furthermore, they describe the resonant inter- we note that the mechanism of fusion and subsequent
action of a fundamental wave and its second harmonic igllapse of two beams can also be found in the single-
noncentrosymmetric crystals with both a quadratic and a cusomponent NLS equatiofil5]. However, in this case the
b|g nonlinearity, in the limit when the interaction is far from q|5tive phase of the two beams plays a crucial (o, two
being phase-matchedee, e.g.[9)). beams beingr out of phase can never fusevhereas the

In plasma.physics the syste(t) for N=2 can, for €X" " dynamics naturally is phase-independent when the interac-
ample, describe the so-called beat-wave accelefafidr in tion is incoherent as in Eq€l)

Wh'c.h a large-amplitude Langmuir wave is g(_anera}ted by the The results for initially separated waves were recently ex-
beating of two laser beams, whose frequencies differ by ap- . -
tended to arbitrary many components [ib6]. Here virial

proximately the plasma frequency. The longitudinal electri- : o
cal field of this Langmuir wave can then be used to accelerJEheory and the |r_1t_ernal structure of th_e Ham|lt_0n|an were
used to further divide the collapse regioH<0) into two

ate particles. The focusing Kerr nonlinearity of this system : . . ) ’ .

originates from the relativistic correction to the mass of theSUPregions, in which two Gaussian beams will collapse in-

particles oscillating in the strong Langmuir figlti0]. dependentlyi.e., never fuseand fuse before collapsing, re-
In the context of incoherent solitons, a thorough study ofSPectively. Variational calculations further predicted that ini-

the fully 2D system(1) for N=2 is a first step on the way to tially close Gaussian beams with medium powers could
a detailed understanding of the limit—o, which can de- Oscillate about the center of mass and cross several times

scribe incoherent self-focusing. before eventually collapsing or diffractiid6]. The oscilla-

As for N=1 (the NLS equatio)) the systen{1) can also tions in the separation were found to be damped in the col-
be integrable foN=2 in 1D, but only for the specific sym- lapse regime, whereas they were increasing in amplitude in
metric case whew,= o and yj,=v, i.e., when the diffrac- the diffraction regime.
tion and nonlinearity parameters are identical, respectively In spite of the investigation performed by McKinstrie and
[11]. These coupled bright Manakov solitons were first ob-Russe[10] and later by Berget al.[14,16, the spectrum of
served experimentally in 1996 in Aba _,As planar dynamical scenarios in incoherent two-wave interaction de-
waveguides, due to the difficulty in making the interactionscribed by Eqs(1) is so rich that several points still need to
completely incoherent, i.e., eliminating the four-wave-be investigated.
mixing terms[12]. First, the possibility of realizing stable solitonlike states in

The system(1) with N=2 has been abundantly studied in a 2D system(bulk medium is of considerable interest, since
1D since first derived in 197Gee, e.9.[13]). Here we con- it may open up possibilities for all-optical switching applica-
sider the 2D case, for which much less is known. One of thdions. So, it is worth identifying the stationary bound states
earliest studies was by McKinstrie and Russel in the contexof Egs.(1) and investigating their stability. In this respect it
of the beat-wave acceleratdrQ]. They derived the so-called was recently predicted that the so-called ground states, de-
virial relation for generalN-component initial conditions. fined as localized stationary waves minimizing the Hamil-
For superimposed Gaussian waves, virial arguments showednian, are stable in 1D17] (see alsd18]). In this case, as
that a negative Hamiltonian was sfficientcondition for  for solitons of the scalar NLS equation, the derivative of the
collapse, corresponding to the fact that the total power mugbower with respect to the soliton eigenvalue is posifi@).
be above a certain threshold value. This was confirmed nu-lowever, in 2D the same derivative is zero and this criterion
merically [10]. only predicts so-called marginal stability of the solitary

The results for superimposed waves were recently exwaves[16]. Although such a theoretical result can suggest
tended to arbitrary dimensions, as part of a study of resonaistability, numerical investigations of the existence and sta-
interaction in quadratic nonlinear medid4]. In particular, bility properties of the different solitary wave solutions are
in 2D, asufficientcondition for the absence of collapse was necessary.
derived, requiring that the power in both components is be- Furthermore, it is worth verifying numerically the suffi-
low a certain threshold value. We note that this powercient conditions for collapse and spreading of superimposed
threshold for the absence of collapse is generally lower thawaves predicted theoretically [10,14]. An important issue
the threshold for occurrence of collapse found by McKinstrieis whether the corresponding power thresholds are accurate
and Russel. measures of the actual power threshold for collapse. As we

McKinstrie and Russel also studied the so-called entrainwill show, this is only the case for identical initial conditions
ment effect, in which two initially separated beams fuse beand symmetrical system parameterso,€o,, 711
fore collapsing or diffracting as one entiff0]. In the par- =1y,,, 1= v,1). In the highly asymmetrical case, collapse
ticular case of symmetric positive coefficients&3,y;,  can still occur for positive Hamiltonians, which is in sharp
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contrast to what is known from the NLS equation. We notethe HamiltonianH=H(E,),
that the examples presented irD,16 were all for symmetri-
cal cases. H(E ):f
Finally, although the process of fusion has already been n
predicted theoretically and confirmed numerically [&0],
this was for initial separations well below the diameter of the — p|E4E,|
individual wave. Clear examples of fusion when the compo- pIE1E2
nents are well-separated still remain to be shown. Further- L
more, a complete map of the different possible scenarios stithind the momenturvl =M (E,,),
remains to be given theoretically and confirmed numerically.
For instance, it should be possible to separate the diffraction
regime into coupled and independent behavior also, and it
seems plausible that the two components may be able to _
oscillate about the center of mass and cross more than onétere we have defined the integrfdir= [ fdx dy. Further-
before fusing, both in the collapse and diffraction regime.more, Egs(2) and(3) are Hamiltonian and can be written as
The latter was predicted from variational calculation§lif], Hamilton’s equationsid,E,= §H/SE; , where H is the

but given the limitations of the variational approach, it needsqyamiltonian density,H=fHdr, and &/8E, denotes the
to be confirmed numerically, i.e., are the oscillations reallyfnctional derivative with respect 6, .

increasing in amplitude in the diffraction regime, or is it an
artifact of the fixed test function?

In this paper we recall the conservation laws for localized
solutions of Eqs(1) for N=2 ando;=0, in Sec. Il. We Consider the beam widtlimean-square radipysor so-
derive sufficient criteria for collapse and spreading from acalled virial, | (z), which we define as
virial relation governing the mean-square radius of the total
field in Sec. Ill. In Sec. IV, we find the different stationary 10, 5 o 4
solitary wave solutions and investigate their stability proper- I(2)= Bj RA(|E4[*+[E,[%)dr, @)
ties, both numerically and analytically. In Sec. V A we con-
firm the sufficient criteria numerically and show that only in \where P=pP, + P, is the total powerR=r—(r), and R?
the symmetrical case do they coincide and give a good ap-.
proximation to the actual threshold. Finally, in Sec. V B, we
consider the symmetrical case and use the internal structure o1 .
of the Hamiltonian to analytically identify all four types of <r>25f r(|E4|?+|E,|?) dr (8)
scenarios: independent collapse or spreading and fusion with
subsequent collapse or spreading. To do so we introducgn
auxiliary parameters defining the degree of spatial overlap

71 72
|VE4|?+|VE,|*~ 7|E1|4_ 7|Ez|4

dr, (5)

I\7I(En):2J Im{E*VE,+E}VE,}dr. (6)

lll. VIRIAL THEORY

|R|2. The total center of mags) is defined as

d is easily found to obey the relation

necessary for coupled behavior. The predictions are con- d(*> Ni d2<F)
firmed numerically and examples of damped oscillations be- — == =0. 9)
fore fusion are given in both the collapse and diffraction dz P dZ

regimes.

Thus, for initial conditions with zero momentum, as we will

use here, the center of mass is fixed. For periodic or suffi-

ciently localized solutions to Eq$2) and (3), the virial sat-
We consider two incoherently coupled waves propagatingsfies the relatiorj14]

in a bulk Kerr medium, for whichr; = o, (corresponding to

the case considered by McKinstrie and RusgHl). In this d’l 8H 2M?2

case the equations given in the Introduction can, by means of 42 P p2 (10

a proper scaling, be written in the form

Il. THE MODEL

whereM?2=|M|2. If the right-hand side of Eq10) is nega-

; 2 2 PN =

19,E1+ V°E1+ (71| Eq|“+ p|E2[)E1=0, @ tive, the beam widtH (z) will continuously decrease and a

. collapse, defined dgz)— 0, will inevitably occur at a finite

19,E2+ V2B + (2] Bl + p|Ee| ) E2=0, ®) distaﬁce. Thu$1—MS(2/)(4P)<0 is asuffic)i/ent conditiorfor

- , . collapse(sinceP is positive definite
where E,=E,(r,2) is the normalized slowly varying com- If the right-hand side of Eq.(10) is positive, H
plex envelope function of the mode=1,2,z is the propa-  _\2/(4p)>0, we have to do further analysis to determine
gation coordinater =(x,y), and p==*1. In the following  whether a collapse can occur or not. For example, if the
we will only consider positive SPM coefficientg,,>0. wave is given a sufficiently strong prefocusing at the input
For periodic or sufficiently localized solutions, Ed®)  [dI(0)/dz<0], a collapse could in principle develop despite

and(3) conserve the poweP,=P(E,) of each mode, the second derivative of the virial being constant and posi-

tive.
P.(En=| |E |2dF @) First we note that a col!apse of the t_ota! wave function,
m=n n ' 1(2)=14(2) +1,(2)—0, implies that each individual compo-
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nent also collapses,(z)—0 (sincel,, is positive definitg In the case when at least one of the components has a
Herel,(z)=P }|RE,3, with the standard.P norm being power above threshold, the boufit¥) does not forbid col-
given by lapsing solutions withl,(z) —0, or any singularities with
" |VE,||3—, regardless of the sign ¢4 and the right-hand
IE,| :(I E |de) (11) side of Eq.(10), and regardless of the sign and strength of
nip n ' the initial gradientdl(0)/dz. This interesting property,

) which is due to the multicomponent nature of the sys(@m
Conservation oP, and the 2D bound and (3), will be demonstrated numerically in the following,
4 2 2 where we also confirm the sufficient conditionid
IEdll2<[VEl2IREqll2. 12  _ M2/(4P)<0 for collapse and®,< P! for spreading.

The virial relation for Eqgs.(1) with arbitrarily many
coupled equations was first developed by McKinstrie and
Russel[10] and later by Bergé¢16]. The rigorous proof of
the absence of collapse fpe=0 and#,+ p=0 in the system
of two coupled Eqgs(2) and(3) when the individual powers
are below threshold was first given [iti4], and later for an
arbitrary number of equations if16]. Here we have just

further implies that the gradient norm goes to infinity,
|VEq|5—, whenl,(z)—0. Note that the adverse is not
true, i.e.,|VE,|5—= does not imply that,(z)—0. Thus a
singularity, in which the gradient norm diverges, can in prin-
ciple develop despite the virial being finite.

To derive a more useful criterion in terms of the power,
we use the Schwarz inequaliti, E,|5<| E4||3|E,|l and the given the main steps.

Sobolev ipequaIiF)H!En||ﬁ$ ClIVEIZIEn|3. The Sobolev in- Before proceeding, we would like to point out two impor-
equality is optimized by the best constaifi=Crest tant things to be aware of. First, the application of the
=2/Py.s [20], where PNng 11.69 s the power of the gehywarz inequalityl| E,E,l|2<||E4)|2|E,|2 in deriving the
ground-state solution oV“E—E+E*=0, which can be y,,,q(14) means that any information on the effect of an
found numerically[20]. Furthermore, we use Ed12) 10 jnitia| separation between the two components is lost, and
connect the total power and virial, that PL“ can significantly underestimate the actual power
2 2 threshold for large separations. Thus virial theory only gives
P<2I(|VEl2+[VE4[2). (13 information about an initial separation through the sufficient
For p=0 and7,=—p we can then bound the Hamiltonian C'iterion for collapseH —M?/(4P) <0.
(5) from below as follows: Second, the virial theory pre_dlcts w_hether or not_a global
collapse of the wave function into a single point will occur
2 p over a finite distance, in which all the power becomes fo-
H= D ( 1- —:;]> IVEql3. (14)  cused at that point with the amplitude going to infinite.,
n=1 P the virial goes to zero and, due to conservation of power, the
o gradient norm goes to infinify Typically such a collapse is
If the individual powers are both below threshold, preceded by a so-called blow-up, in which the amplitude
locally goes to infinity, and the solution ceases to exist, while
, (15) the power can still be arbitrarily distributéte., the gradient
7ntp norm goes to infinity while the virial remains finjte

- . . This is, e.g., a well-known property of solutions to the
thenH and all coefficients in the surfi4) are positive, and g equation in two or more transverse dimensidsee

we can use Eqg13) and(14) to boundd?l/dZ* as follows: [4]). For the critical 2D NLS equation it is further well-
) established numerically that the singularity captures exactly
d—|>a n a (16) the powerPy, s of the ground-state solitary wave solution,
dz2_ o and that it locally has a self-similar structufeee, e.g.,
[21,22).
where the constanis, , are given by In this work we are mainly interested in the threshold for
the development of &ollapse singularity, and not so much
a,=—2M?/P2<0, in what the specific profile looks like at this singularity. In
the following we will therefore not distinguish between a
a,=4 min{(l—Pllptlh),(l— P2/Pt2h)}>0. collapse and a blow-up, but use the term collapse for both
scenarios.

n

PNLS
P,<Pih=_—"=

It is straightforward to do an integration of E¢l6) and

show that collapse is only possible af,<<0 (see[14] for
details. IV. BRIGHT SOLITARY WAVES

Since a,>0 (and H>0) always when both individual — The system(2) and(3) are invariant under the scaling
powers are below threshold, collapse cannot occur in this

case. In fact, from Eq.14) and the conservation @& finite) I

H, it follows that any singularity, in which the gradient norm En —\E,, T—\r, z—\?z 17
goes to infinity, cannot occur when EL5) is fulfilled for

both components. ThuB,< P! is a sufficient conditiorfor ~ Keeping this in mind, we consider stationary exponentially
the absence of collapse. In this low-power case the beam wilbcalized bright solitary wave solution(with no nodes, i.e.,
eventually spread out with(z) — . lowest-order bound statesf the form
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E (r,2)=Nyn(£)€N2,  e=nr, r=|f], (19 () my=n=p=1,

where the soliton eigenvalueis real and the real and sym- then one C solution has the form

metric functionsy,, decay monotonically to zero a& in-

creases. Inserting the solutidb8) into Egs.(2) and(3), we — — @ 29
obtain the stationary equations vald) = ain(d) Vi +pa® e, @2
It € N — g+ (9P + pyd) =0, (19) where the parameter is given by
V(1= p)(mp—p) for LI,
y -1 _ 2 N B
ot & o= thot (maib3+ pih7) h2=0, (20) @=1 arbitrary for 1II, (23

where a dot denotes differentiation with respectto

The individual and total power of the solutions8) are ~ and wherey(¢) is the solution to the stationary nonlinear
independent of the solution parametar, ie., P(E,  Schralinger(NLS) equation
=P(4,) ordP(E,)/d\=0. Thus the solutions are so-called . )
marginally stable according to the Vakhitov-Kolokol6wK ) Y+ E =g+ P=0. (24)
criterion, which requiresl P/dA>0 (dP/d\<0) for stabil- , , )
ity (instability) [19]. However, in contrast to the NLS equa- The2 pcama; powers of tg's C solution are thergfdPé
tion, the VK criterion for stability is only aecessary crite- =@ P1=a"Pnis/(71+pa®). An analytical expression for
rion in this system of coupled NLS equatiofis]. The proof the solution to the 2D NLS equation is not known, but a
of it being also a sufficient criterion is still an open problem good approximation can be found by variational techniques
and certainly nontrivial. In media with both quadratic andto be[25]
cubic nonlinearity, examples have been given in which the
VK criterion fails and predicts stability of solutions that nu- (&)= Ao sectiBof), (29)

merical simulations show to be unstabis]. 2_ 2_
Multiplying Egs. (19) and (20) with g, and g, respec- Whlereﬁo L21In 2|/(4 '”}1)ha”dEi° 6 In 2/(2 '”il)' A
tively, and integrating the sum, it is straightforward to obtain__ " the particuiar case whem, =7, (giving a=1), the
' ! partial powers of the C solution are identical to the threshold

: _ 2 2
e dton PCIMME TS B e oy e o Pl
=Pi(¢ 22 s=H{dn b the general case whem, # 7,, the two are different.

Hamiltonian gvzijuated on the soliton slolut|o1j*i£8). D.0|ng The single-component W solution exists for a}>0. It
the same W'thRéV’f’n' one can obtain the relatiofs  hagy. =0 andy, is the solution to the stationary NLS equa-
=[|Vi|5+|Vi,|5—Hs. Combining these two relations, tion

we see that the Hamiltonian is zero on the soliton solutions,

Hs=0. Furthermore, the soliton solutiofs8) have zero mo- g+ & N — g+ myi=0. (26)
mentum,M¢=M (¥,) =(0,0), which means that the center _ ”

of mass is constantd(r}/dz=0, and thatdi(0)/dz=0.  Thus the W solution has the powet'=Py'=Py.s/7,, and
Therefore the virial relationd?l/dz2=0, predicts correctly IS approximately given by

that the width of the solitons also remains constdgg)

=1(0). #1(8) = AoV 1/n; sechiByg). (27)

From the above we would expect that the soliton solutionsl.he single-component V solution exists for a§>0. It has
(18) are unstable, as is the case for the stationary solutions tg . . . § .
the 2D NLS equation, which have the same characteristics}?l 0 andy; is the solution to the stationary NLS equation

dPs/dN=0,H,=0, and1(z)=1(0). Thus we expect that - “15 3
there are no stable states towards which the Gaussian initial Yot & St that 1292=0. (28)

conditions that we consider in the following sections cant, < ihe V solution has the POWBY = PY%=Py.s/ 7, and is

evolve. For completeness, we will nevertheless briefly con- : ;
. ) C . ; roximately given
sider the regimes of the existence of the soliton soiution§PP™ ately given by

(18). =AyV1/n, sectiB 29
The bright solitary wave solutiond8) can be categorized Y2(£)=AoV1/m; sectiBot). 9
into three types, the C, W, and V solutions, borrowing the  Note that the C solutions can also exist for negative val-

notation from systems with both® and x(*) nonlinearities  yes of the SPM coefficients,, whereas this is not the case
[24]: The C solution, where both components are nonzeroigr the W and V solutions.

with no particular relative size, can generally only be found \we have numerically found the families of C, W, and V
numerically. However, whem,>0 andp=*1 fulfill one  solutions using a standard relaxation technique. In Fig. 1 we

of the requirements show the individual power®,, versus the SPM coefficient
7,>0 for ;=4 andp=1. From the requiremer(21) we
() p>max 71,72}, expect that the C solutions exist fgs>>1, while the W and

(2)  V solutions exist for all,>0. Furthermore, aty;=7,,
()  p<min{ 5., 7.}, where a=1, the partial power for the C solution should be
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FIG. 1. Individual powerP; (left) andP, (right) versusz, for FIG. 2. Threshold power versug = 7, (left) and 5, (right) for

the C(dash-dotte W (dotted, and V solutions(dashedl of Egs. n,=4. Solid lines represent numerical results and dotted and
(19) and (20), with ;=4 andp=1. The solid curve indicates the dashed lines represent the virial predictid8d) and (35), respec-
corresponding threshold pow®". tively. The dash-dotted lines represent the prediction
min{2Py s/ 171,2Pnis/ 772}. The initial condition is Eq(30) with
P,=P,, A=2, andp=1. The filled circle marks a case for which

equal to the corresponding threshold power for collapse, we show the specific evolution in Fig. 3.

=P§1h= Punis/(7m1tp). The numerical results confirm that
this is true, and that the predicted partial powers of the three 2 Gaus
types of solutions are correct. th _ (1+B8)°Phis
Using an iterative, radially symmetric, midpoint Crank- B2+ mat28p
Nicholson finite difference scheme, we have performed nu-
merical simulations of Eq$2) and(3) with the C, W, and V  From Eq.(32) we see thaH<0 (H>0) corresponds to the
solutions as initial conditions. We used a resolutiondof total power being abovébelow) the threshoIdPth. Here
=102 over the intervalr=[0,40] and a stepsize ofiz  PS4=47 corresponds to the power of the Gaussian ap-
=103 In all test casesd=1, »;=4, and7,=3,4,5) all  proximation to the ground-state solution to the 2D NLS Eq.
three types of solitary waves were observed to be unstablg¢24), which can be obtained by variational techniques. For
with the perturbation introduced by the discrete numericalg=0 (8=%=) we recover the threshold power
sampling causing the center amplitude to blow up after &=/, (4m/7,) for collapse of a Gaussian initial condition
finite propagation distance, just as for the critical NLS equain the 2D NLS equation.
tion [26]. Although this is not a proof, it suggests that soli-  We have performed numerical simulations of the dynami-
tary waves of the forn{18) are unstable for positive coeffi- cal Egs.(2) and(3) using the Crank-Nicholson routine de-

(33

cients7,>0 andp=1 [see discussion below E(0)]. scribed in Sec. IV, and the initial conditiof80) with P,
=P,=P/2,A=2, andp=1. The resolution waslr=10"°
V. COLLAPSE IN 2D over the intervar =[0,30] and the stepsize watz=10"2.

When the beams diffract this keeps the relative deviations of
both P andH from their respective initial values below 19
In this section we numerically investigate the thresholdover a distance=[0,50].
power for collapse, and the different possible dynamical sce- For this particular case, the sufficient conditions predicted
narios with Gaussian initial conditions of the form from virial theory, which can be obtained from Ed45),
(32) and (33), reduce to

A. Both components with the same center

. r?
En(r,0)= = exp( -— I, (30) [2Pais 2Puis
A 2A No collapse: P<P =min Py (349
where both components are centered at the origin. In this pGaus
caseM=dI(0)/dz=0 and thus the virial relatiol0) re- Collapse: P>P" NLS (35)

duces tad12/dZ>=8H/P, where the Hamiltonian can be cal-
culated explicitly to

W ot (7t )12

where Eq(34) is only valid forp=0 and»,=—p. Thus for

2 P, 7Pnt pPa_n low powers fulfilling Eq.(34) the beam will spread out with
=> —( - T) (31)  I(2)—o=. For high powers fulfilling Eq(35) the beam will

n=1 A2 collapse at a finite distance.

In Fig. 2 we show the numerically found threshold power,
above which the solution collapses at the center at a finite
distanceZ.,<50. As the collapse is approached, the evolu-
tion in z becomes so fast that the numerical routine with
fixed stepsize no longer conservies As a convenient and
reliable definition we therefore detect a collapse as when the
H= E( _ 7%) (32) relative deviation ofP from its initial value has increased to

a For the symmetrical casgeft figure) when ;= 7, and

A? more than 10%.
where the threshold powé?fjhp is given by P,=P, the lower and upper thresholds become formerly

A sufficient conditiorfor collapse of the solution to Eq&2)
and (3) with initial condition (30) is thereforeH <0. Intro-
ducing the ratioB=P,/P,, which we typically fix in our
numerical simulations, we can reduketo
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identical, within the approximatiorPgisPy.s. In this 127y Oy T
case we see that the numerically calculated threshold power ¢ tor S: 08¢
(solid curvé lies exactly on top of the lower thresho®f, | X o6}
=2P.s/(72+p) (dotted curve For P<Ph, we always 29 = 04|
observed that both components spread out Wj{lz) — . § ll % 0ol
Thus the numerical results confirm that E¢34) and (35) g' . : - iy o:o Gl
are sufficient conditions for spreading and collapse, respec- 0o 1 2 3 4 16 -8 0 8 18
tively. Note that with the resolutiodr=10"2 the effect of Distance, Z Coordinate, X
discreteness, which tends to lower the threshold pd&e};
can be neglected. 51(w) - _ L0y T

In the right side of Fig. 2 we show the threshold of col- o ‘/,/’ S 087
lapse versusy, when ;=4 is fixed andP;=P,. We see B AT X oef
that when the asymmetry is weak,~ 7,, the numerically A = o4l
calculated threshold is close to the predicti¢B4) and(35), -2 T~ =
which in turn are close to each other. When the asymmetry 1r E 0.2
becomes pronounced, i.e., when and », are significantly 0 — : 0.0 e

0 1 2 3 4 -16 -8 0 8 16

different, the gap betweeRl), and PL"D widens and we see

that the actual threshold lies in between the two limits. How-
ever, the prediction$34) and (35) are never violated, and FIG. 3. Evolution of(a) the amplitudegE(0,02)| and (b) the
thus the numerical results also confirm the virial predictionsvirials I,(z) for the first(solid) and seconddotted component. The
in this more complicated asymmetrical case. total virial 1(z) is shown with a dashed linéc) and (d): Profiles

In the highly asymmetric limit wheny;> 7, or 7, |En(x,0,z).| atz=0 (dotted and at collapse=4.77 (solid). Results
<7,, we can obtain a good approximation to the actual®f numerical integration of Eqd2) and(3) for 7,=87,=4 and
collapse threshold from heuristical arguments: Take the ext:~ P2=3:25, corresponding to the marked point in Fig. 2.
ample with ;> 5, and identical initial conditions for the
two componentsP; =P,. Assume that we can disregard the when 7;=87,=4 and P=6.5 (H=0.13>0 and P}Qw< P
XPM term that couples the two modes together. In that casgﬂhp) marked by a filled circle in Fig. 2. In this cas®,
the power threshold of the compone, is simply —=3.35 is above the NLS threshoRly s/ 7;=2.92, while
Pnis/ 70, @s in the conventional 2D NLS equation, and thusp,=3.25 is below the NLS thresholBy, s/ 7,=23.38. As
the threshold in the total power isP2, s/ 7,. Assume now expected, the first component self-focusbgz) decreaseds
thatE, is collapsing P,>Py.s/ 71) and thatk, is diffract-  while the second component spreads[dyfz) increase In
ing rapidly (P,<Py.s/72). Then, even in the presence of the end the first component “pulls” the center amplitude of
the XPM terms, the collapse dynamics will be primarily the second component with it and a collapse singularity de-
driven by theE; component and as a first approximation wevelops atz=3.32, in which the amplitude of both compo-
can disregard the rapidly decreasing influence of the diffractnents diverges to infinity.
ing E; component. Since the power in each component indi- An equivalent discussion of collapse in media with both a
vidually is conserved, the presence of the offtifracting) @ and y® nonlinearity can be found in Ref§14,27.
beam in the equation for a given component through thedere this effect of asymmetry on the collapse threshold in
XPM term simply adds a focusing potentidior p>0),  multicomponent systems was also observed.
which acts as a waveguide, and tries to keep the beam fo-
cused. This should merely decrease the collapse threshold
slightly.

Distance, Z Coordinate, X

B. Initially separated components

Pn

A2

_(X_Xn)2+y

2
En(r,0)= A2 ) . (39

According to these arguments, the actual threshold will be After having numerically confirmed the predictions of
close to mik2Py s/ 71,2Pnis/ 772} in the highly asymmetri-  virial theory for initial conditions with both components cen-
cal limits whenzn,> 7, or n,<<7,, and of course also when tered at the origin, we now consider Gaussian initial condi-
the XPM term can be neglected, i.e., whep>p and n, tions of the form
>p. Away from these limits the threshold should be some-
what lower than mifRPy, s/ 71,2Pnis/ 772}- This is exactly
what we observe in Fig. 2. ex

These numerical results highlight the interesting property
of an asymmetric multicomponent system, such as E3s.
and (3) for 7,# 5, and P;=P,, namely that collapse is Where the two components are located at a distaigavay
possible even when the second derivative of the virial igfom each other, withx; = —x,= 8/2. In this case the virial
always positive,d2|/d22=8H/P>O, i.e., when the total relation is Sti||d2|/d22=8H/P, sinceM =d1(0)/dz=0. The
mean-square radius is always increasing. This effect canndtamiltonian still has the forni32), but now the upper power
be observed in, e.g., the symmetric case or the NLS equatiothreshold depends on the initial separation,
where there is only one wave function that determines the
dynamics. 2

To illustrate this, we show in Fig. 3 the evolution of the Am(1+8) —.
center amplitudes and the virial for the asymmetric case B2+ ot 2,8,oe’50’2A2

Pip( o) = (37)
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In contrast, the lower power threshold does not depend on p2/ 1 1 -
the initial separation and is still given by E(4). ThusP Hin( 80) = _2(?_ W) e %0/?A%, (39
>Py(80) (H<0) is still a sufficient condition for collapse AT\ PL Py

and(for p=0 and#n,=—p) P<7>f2w is still a sufficient con-
dition for spreading. . :
Introducliang an ignitial separation of the two componentsCOMPONeNts are superimposed, aw:ﬂhp(m) is the
means that the number of different dynamical scenarios inthreshold in the limit,—ce, where they are isolated from
creases significantly. McKinstrie and Russel used the viriaf2ch other and evolve independently.
relation to separate thé>(,) space into regions of collapse Ve Will contilder positive coeff|C|ent3ryn>Othandt,t31>O,
(H<0) and spreading{>0) [10]. A collapse implies per N which _casePup(éo) increases ywthSO._ThusPO<Pw and
definition that the virial decreases until all the power be-Hin(d0) is always negative. It is straightforward to extend
comes concentrated at one point after a finite distance. Thul}e theory to negative coefficients as long 78 5o) re-
when the two components are initially separated, it mean§iains positive for alld, .
that they will attract and eventually fuse before collapsing as First we separate theP(d;) space into regions of col-
one entity. Fusion was observed numericallyibr0 where  lapse and diffraction. For a given separation the threshold
the components subsequently collapsed as one entity, af@wer that separates these two regions is given Fby
also for H>0 where they subsequently spread out as one=Pi( o). For a given power in the rangef'<P<7" we
entity [10]. Bergerecently used the internal structure of the can define the corresponding threshold value of the initial
Hamiltonian to separate the collapse regime into regionseparationﬁ{)h, from the relationH e+ Him(a*g“)zo, which
where the components collapse individually and where theys equivalent to inverting Eq.37). From Eqs.(38) and (39)

Here Pg'="P41(0) is the threshold whed,=0 and the two

fuse before collapsinfl6). we find 57(P) to be
However, as we have seen in the preceding sectibn,
=0 is only an accurate measure of the collapse threshold in 55“ 1_7353/735“
the nearly symmetric case when~ 7, andP;~P,. When N n T_ptp | (40)

the asymmetry becomes pronounced, the gap bet\i)!?égn
and the actual threshold power widens, and collapse can oc-, . , . . th th . .
cur well into the region wheréd is positive, as we have xhlc?irlst ¥al'g df(i)rz[71)0]$f F;Thp * ;?:15 ttr?reShOId fepar?lt(ljon
shown in Sec. V A. It is therefore important that the specific as nirst fou or the Symmetric case, =7, a

P,=P,, and later in[16] for the general case.
examples presented ji0,16 were exactly for the symmet- "~ 1_ "2 < C ; .
fic case wheny,= 7, andP,=P,. By considering the internal structure of the Hamiltonian,

we can further separate the collapse and diffraction regimes

Our aim here is to analytically map out all possible sce-. . X
narios in terms of the initial separation and power, and ther\nto each of their subregions of coupled and uncoupled be-

confirm the predictions numerically. We will focus on the havior. Thlis WE Cﬁ_? eixpectf a:hstrong mtergcho;ﬂbe';ween the
nearly symmetric case, wherg,~ 7, and P,;~P,, and components WheiiH | 1S of the same order free OF

where we can compare directly with the results and examplelﬁrger’ whereas the interaction will be negligible when

of [10,16. This simplifies the calculations considerably in i“‘|<|.Hf’ee|' This means that we can define a critical initial
that H = (1— P/Pﬂ‘p) PIA2=0 is a good measure of the ac- separation, for whicH,,| is some given fractiord<1 of

tual threshold between collapse and diffraction. Thdis l:lg;ﬁélcxnaenrgstiflsot\:\é)r\llvtﬂ;ljhﬁ fl(;\rt?rr]z(;:]lct)g atiterglzl:?zr;dﬂ:ﬁe;(w g at
<0 (P>P™ is a sufficient condition for collapse, artd b 9 9 g

>0 (P<P™M is to a good approximation a sufficient condi- a finite dlstance._ .. ol .
tion (for sprgading. I% othef?/vords, the Hamiltonian deter- oM the d_ef|n!t|on|Him(58 )/H”eel.zefo' we find the
mines the dynamics of the system. critical separation in the collapse regimg to be
Note that in derivingP!",, any dependence on the separa- ol
tion has been eliminated, as can be seen by comparing Egs. 5CL: \/2 n
(34) and(37) in the symmetric case. Thus,ﬂ}'gw is to be an
accurate measure of the actual collapse threshold, it requires
not only that the system be nearly symmetric, but also thatvhich is valid for Pih< P<Pax The upper limitP. iS
the separatiors, be much less than the width of the indi- given by
vidual component\. Even so, we will not considep!’,, in
the theoretical analysis, since it gives no information about 900.7%“7352
the effect of 8. Prmax= (6t 1)PI_ph (42
To determine the possible dynamics, we rewrite the col 0 *
Hamiltonian in the fo.rrrH.(50)= Hieet Hint( o), Where the for (Pi]_Pgh)/PBh< 00, WhereasP,.,== when P
free partHyee=H(>) is given by —P!MIPP=6,. Similarly, from the definition
[Hint( 83" /Hged = 04 the critical separation in the diffrac-

1-PlIPg
1-PoP

1

ecol ' (41)

P2(1 1 tion regimes3' becomes
free™ 5 P ph (38
A Pe .
85" 1 (1-PYPY
e 21In oo Rpeopy B I (43
and the interaction pak;(5p) is given by dif\ 1—P /P
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which is valid for Py,<P<P". The lower limit P, is
given by

04tPGPY | . |
I o]
(8gi— 1) PE+ P

(44)

Pmin

From the predictions of virial theory we can therefore
identify the following regimes of different characteristic dy-
namics.

(1) When |Hipi/Hed < 84 @and H>0, both components 6 7 8 9
will spread out independently. This is the case for low pow- Total power, P

ers P<PEE when o> 58”' FIG. 4. Theoretically predicted regions of characteristic dynam
(1) When |Hipi/Hed > 04 and H>0, the components ics in the P8, plane for n,= 7,=4, p=1, Pa=P,. A=2. 4

will interact strongly and merge at a finite distance before”

. : i =0.2, andf,=1. The solid curves represedf’ and 65", the
th ' col 0
eventually spreading out. This requires low power P gaspeq curvesl, and dotted lines indicate the limite!h

and 87'< 5,< 55" . =5.03,P=6.28, andP,,,=8.38. Pointsa—d indicate specific
(1) When [Hiy /Hyed > 6 and H<0, the components  cases considered numerically in Figs. 5-8.
will interact strongly and merge before collapsing at a finite
distancelwith 1(z) —0]. This is the case for low powel  also not been presented. Here we give clear numerical ex-
<P when 8,< 8, and for high power®>P" whend,  amples of all four types of behavior, and present a complete
< 58"'. map of the different regimes, to be compared with the theo-
(IV) When |H;,/Hged < 0. and H<O0, the components retical prediction given in Fig. 4.
will collapse independently at a finite distance. This requires We now consider the particular symmetric case when
high powerP>P™" and 5,> 565 m=1n=4, p=1, A=2, and P,=P,=P/2. Then PI
We have distinguished here between the fraction neces= 87/5,P"=27, and the threshold and critical separations
sary for strong interaction in the low-poweP& P dif- become
fraction regime 64, and the high-powerR>P") collapse 575
regime, 0. if dif th
gCollapcsotle is a violent effect generally taking place over a 53 V8 In( 877—4P)‘ Pmin<P<P:,
relatively short distance, whereas the components can have a

Initial separation, §,
O M WA OO WD

~
w

much longer interaction length when diffracting. It is there- P

fore natural to expect that the initial overlap in the collapse o=1/8 In(m), Ph<p<plh (45
regime, quantified byd.,, should be larger than the initial

overlap in the diffraction regimey;, in order for the waves P/

to fuse before having collapsed or diffracted. Furthermore, 530|: \/8 |n(_°°'), pih< P<Prax:

the interaction, or overlap, will increase when the beams dif- AP—8m

fract individually, even without the XPM. In contrast, an _ _

individual collapse of the beams will decrease the beam siz¥N€re Pmin_8”0dif/(40dif+_1) and Pgax_&ww'_/(‘wcol

and thus tend to decrease the overlap. A reasonable conjec-L) fOr fcoi>0.25, andPya=° for f¢=0.25. In Fig. 4 we
ture would therefore be that,,~ 1, whereal;;<0.5. How- show the theoretically predicted regimes in the &, plane

ever, the specific values of these fractions must be detefO fair=0.2 andfe,=1. _ _
mined numerically. To integrate Egs(2) and (3) numerically, we use a split

Note thatég‘: 5gif when 64=1. In this case the theory step Fourier technique, with a resolutiona¥=dy=0.1, a

: ; ; > step size ofdz=10"2, and the initial condition(36) with
would predict that regime Il with strongly coupled but dif- S ! ) )
fractive behavior is absent. In the particular degenerate casy~ 2- Generally we have used 52256 mesh point¢512 in

when 6= 0.,=1, the expressions for all the characteristicxr’] excepthfor the g)éampgllgs s.hct>wr_1”|]n Flllgs. f,|_8 almtq 10,
separationss, 5%", and 5% could be combined into one, WNere We have used 5k512 points. The allowable relative
deviation of the conserved power from its initial value is

corresponding to Eq40) with the parentheses replaced by a 10-%. In the theoretical discussion we assume tigj

numerical value sign. —0.2 andfy, =1, as in Fig. 4.

The approach of using the internal structure of the Hamil- . ¢ . . . .
: - : ) ; We identify the different scenarios by tracking the ampli-
h h f lied N : .
tonian to characterize the dynamics was first applie 6}, ftude distribution |E(x,0,z)] and the ‘“virtual point” of

but without specifically introducing the additional degrees o maximum amplitudd x.(z),A(z)], which is found using a

freedom@y; and 6., Instead Hj, =|Hsed Was assumed to ; ST
give the critical separation, which we see corresponds to thBa.rabOIIC approximation fokEl(x,y,z)| betwegn the thrge
points X, andxy+dx, where §q,Y,) is the point of maxi-

degenerate casg;:= 0.,=1. Furthermore, the existence of . .
9 St Oco mum |E;(X,y,2z)| on the discrete mesh. Due to the special

the cutoff P, has not been investigated yet. S - . .
Thus the separation of the diffraction region into the fwoSymmetry of the initial condition, the amplltude Is the same
for the two components, the separation the separation is

regimes | and Il, which originates fromy;# 1, has not been T ol 12 42
considered before, and numerical examples confirming thé(2)=2Xm(2), and the virial is1(z)=(2/P)[r*[E4|*dr,
independent behavior predicted in regimes | and IV havesince(r)=0.
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Coordinate, X
o
i

Coordinate, X
o
i

0 2 4 6 8 10 12 14 16 18 20
Propagation distance, Z Propagation distance, Z

10

FIG. 5. Contour plot(30 equidistant levels between 0.01 and  FIG. 7. As Fig. 5, but folP,=P,=3.1 andd,=4, correspond-
0.458 of |E4(x,0,2)| (top) and|E,(x,0,2)| (middle), found by nu-  ing to pointc in Fig. 4.
merical integration of Egqs(2) and (3) for 7,=#7,=4 andp=1. . ) .
The bottom figure shows the corresponding evolution of the sepalteracting only weakly. As expected, we see the spreading
ration | (z)| (solid) and the normalized virial (z)/1(0) (dotteg  [!(2) increases continuouslybut despite the low power of
and amplitudeA(z)/A(0) (dashedl The initial condition is Eq(36) the beams the interaction is still strong enough for them to
with A=2, P,=P,=2.3, and&,=5, corresponding to poird in attract and move towards each other. However, before they
Fig. 4. cross, the emitted radiation has propagated throughxthe
boundaries and starts to influence the dynamics at araund
In Fig. 5 we show an example from the low-power regime =12, causing the until then monotonically decreasing sepa-
| with P=4.6 and&,=5, above the critical separatioffil ~ ration to increase. Ar=19.5 the radiation coming through
=3.1. Since the Hamiltonian is positive=0.62, and they boundaries even pushes the centgraway fromyo
|H =0.01 is only 3% of|Hyed =0.31, which is less than =0 (not shown. o _ _
f4¢=20%, we expect both components to spread out while We will define such a scenario, in Whlch the spreading
and consequent decay of the amplitude is so fastAlfa)

E,(x,0,2)| 8 E,(x,0,2)]

Coordinate, X
Coordinate, X

0 5 10 15 20 25 30 35 40 45 50 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

|E.(x,0,2)| 8 IE,(x,0.2)|

Coordinate, X

Coordinate, X

0 5 10 15 20 25 30 35 40 45 50 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4
Propagation distance, Z Propagation distance, Z
FIG. 6. As Fig. 5, but folP,=P,=2.8 and§,=4, correspond- FIG. 8. As Fig. 5, but folP,=P,=3.3 anddy=4, correspond-

ing to pointb in Fig. 4. ing to pointd in Fig. 4.
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drops to half its initial valueA(0) before the beams have
crossed amdependent spreadinghe attraction still observ-
able in this regime can be explained from geometrical optics,
in that the opposite beam acts as a gradient in the refractive
index.

In Fig. 6 we show an example from the low-power regime
Il with P=5.6 anddy=4, in between the critical separation
637=4.3 and the threshold separatiéfj=2.4. In this case
the Hamiltonian is still positiveH=0.11, but now|H;y|
=0.04 is 27% of|Hed =0.15, which is more tharfy; 4 5 6 7 8 9
=20%. Thus we expect the interaction to be strong, even Total power, P
though the beams will ultimately spread out. As expected, FIG. 9. Numerically found regions of characteristic dynamics in
we see that the beams attract each other strongly and crossigd p— s, plane for 7,=7,=4, p=1, P,=P,, A=2. Dashed
z=9.83, and even a second time at arourd41, although  curves represensd”, o', and 55°' for g4=0.25 andf.y=0.75.
influenced by radiation coming through the boundaries abotted lines indicatéP§'=5.03 andP'=6.28.
this point.

It appears as if they perform damped oscillations about We define such a scenario, in which the beams do not
the center of massx(y) =(0,0) that could possibly continue cross before collapsing, asdependent collapse
over an even longer distance if the initial separation had been Using these definitions of the different types of character-
closer to the threshold separation for collapse. Oscillations iistic dynamics, we have made extensive numerical calcula-
the separation between the beams in the diffraction regimdions and recorded the regions in which they occur. The re-
but close to the thresholé((P), were predicted analytically Sults are shown in Fig. 9, which confirms the existence of
in [16] from variational calculations. However, the oscilla- four regions of different dynamical behavior.

tions were found to increase in amplitude. This is clearly an We see that the numerically found power threshold for

artifact of the variational approach and its main approXima_collapse is slightly lower, but otherwise follows the theoret-
ical curveP"(5,). The shift of AP~0.3 can be attributed to

tion, in which the solution is assumed to keep a prescribe / S - .
pap three effects. First of all, the Gaussian initial condition dif-

test profile during evolution. : . :
We define such a scenario. in which the beams cross %@rs from the stationary ground-state solutions found in Sec.
' , and thus power is lost to radiation in the initial “adjust-

least once before_the amplltu_de has decayed to half its 'mt'arlnent” phase(see Figs. 5, 6, and 10ThusAP~0.3 corre-
value A(0), asfusion+spreading

) .__sponds approximately to the difference betweefi=2x
In Fig. 7 we show an example from the low-power region
19. : P P 9 =6.28 calculated from the Gaussian initial condition, and
of regime Il with P=6.2 and 9, =4, below the threshold - ,in_p 155 g5 which is the exact threshold in the limit
separationsi'=4.8. In this case the Hamiltonian is slightly <~ N ’

) o i . ) 6p— >, where the dynamical equations reduce to two un-
negativeH = —0.03, andHin| = 0.05 is dominant compared ¢, 5ied 2D NLS equations. Furthermore, a certain amount

to [Hyed =0.02. Thus we expect the components to interacht power is lost to radiation during collision, and therefore
strongly and cross at least once before eventually collapsingioes not participate in the collapse process. Finally, it is well
This is also confirmed by the numerical simulation, whichknown that the discreteness imposed by the numerical grid
shows that the beams crosszt8.57, with the amplitude |owers the threshold powé26].

blowing up soon thereafter at=8.98, as they again come  Taking into account the shifAP~0.3 towards lower
close together after one cycle of a highly damped oscillationpowers, the limit between independent and strongly coupled

Initial separation, §,
O M WA U O XD

with 8(z) reaching onlys(z)=—0.19. (fusion) behavior in the low-power diffraction region is op-
We define such a scenario, in which the beams cross aitmally reproduced by the estimated critical separation
least once before collapsing, sion+collapse 53”(P) when 64;=0.25. From the high-power collapse re-

Note that the amplitude blows up before all the power hagjion we see that.,=1 is not necessary. Instead we find that
collapsed into the single poink{y) =(0,0) and the virial has  6.,=0.75 optimizes the fit of the estimated critical separa-
reached zero, which is a well-known phenomenon in col+tion 580'(p) to the numerical data.
lapse studiegsee the discussion in Sec.)llIn general, the The damped oscillation in the separation between two in-
collapse distance predicted from virial theory should becoherently coupled beams, which was observed in Fig. 6, is
viewed only as an upper limit of the actual collapse distanceof particular interest. Since such oscillations require that the

In Fig. 8 we show an example from the high-power re-heams keep their shape over a considerable distance, they
gime IV with P=6.6 andd,=4, slightly above the critical can only be observed for beam powers close to the threshold
separations®=3.6. In this case the Hamiltonian is negative, for collapseP'(8,) (as also found ifi16]) where the beams
H=—0.14, with |H;,/=0.06 being 75% of|H;.d=0.08, are marginally stable with the collapse length diffraction
i.e., belowé.,=1. Thus we expect that the components will length going to infinity. In Fig. 10 we show an example of
attract each other, but not be able to fuse before collapsindamped oscillations in the low-power collapse regime |ll,
almost at their initial position. This is confirmed by the nu- where the beams eventually collapse after having crossed
merical simulation, showing that the beams collapsez at four times. Such damped oscillations ending with fusion and
=5.04, with the separation having only decreased by 18% teoollapse as a single entity were recently predicted from
6(z)=3.28. variational calculationg16]. In contrast to the diffraction
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IE,(x,0,2)] 18
151

12|

Coordinate, X

Coordinate, X

Total power, P

FIG. 11. Zy (solid), Zgg (dotted, Zgoss (dashedh and Age,
(dash-dottegversusP for §,=4, corresponding to horizontal cuts
in Fig. 9.

distance of the first crossing.,.s,, the collapse distance
Z.o1, and the distance between the center of the two compo-
O e st 7 nents at collapsé se;= |_50(ZCO|,)|, versus the total poweP
03 for fixed initial separations,=4.
At high powers we see that the collapse distance is short,
the crossing distance is undefined, ahg~ d;, i.e., the
| beams collapse individually and we are in regime IV. Upon
decreasing the power, the collapse distance increases and the
separationA ., decreases. Whed ¢, reaches zero aP
Coordinate, X =6.2 the crossing distance becomes well-defined and bifur-
FIG. 10. As Fig. 5, but foP, — P,—2.9 andé,—5, correspond- cates from th&Z . curve, i.e., we havéat Igast on)a_crossmg
ing to pointein Fig. 9. The additional bottom figure shows the total and sub_sequent collapse and we enter into regime lll. Upon
intensity profile |E;(x,02)[2+ |Ex(x,02)[2 (solid) and the indi- d€creasing the power further, the collapse distance goes to
vidual profiles|E(x,02)|? (dashed and dottedat z= 25, marked infinity and is no longer defined below the threshd_ki
by a vertical line in the upper three figures. =5.6, where we instead havat least ong crossing with
subsequent diffraction and we enter into regime Il. Finally,
regime, where the variational approach predicted that thbelow P=4.7, the beams are no longer able to cross before
amplitude increased, its main assumption of a constant tethe amplitude has decayed to half its initial valu®gf
profile seems therefore to be a good approximation in the<Z.,sJ. ThusZ..ssis no longer defined and we enter into
collapse regimdsee the discussion in connection with Fig. regime |I.
6). In Fig. 12 we fix instead the power and show the depen-
We note that no such oscillations have been observed fatence on the separatiafy. For low powersP=5.6 we see
two coherently coupled Gaussian beams described by thi#at both the crossing and collapse distances are well-
single-component 2D NLS equatih5], which is similar to  defined, withZ,s<<Zqo and Ag=0. Thus we haveat
Egs. (2) and (3) in the sense that it also allows no stable least ong crossing with subsequent collapse in regime Ill.
solitary waves towards which the beams can evolve. Théncreasingd,, the crossing and collapse distances also in-
reason for this is that one can only compare the evolution ofrease. When the beams are further separated dfar3.8,
the total intensity in the two systems. This is confirmed bythey no longer collapse, and we enter into regime Il of fusion
the profiles of the total intensity shown in Fig. 10, from and diffraction. Eventually the beams are so far apart ini-
which we see that the two beams cannot be separated, but

appear as a single hump even when they are farthest away =20 5 ;

after the first crossing. The reason why we can separate them

is that they are incoherent, i.e., they each have a distinct 1© 4 7

mark, such as, e.g., orthogonal polarizations or different fre- 12l sl I,"

quencies. In the NLS equation, when two coherent beams y

(two humps in the amplitude of the NLS solutjoare too 8 2 i

close, they have no such individual mark, and therefore they == H

cannot be separated, but appear as a single hump solution. 4 1h /

In isotropic bulk media that allow the existence of stable H

2D solitary waves, such as saturable Kerr media, fusion of 9= Ol

two input beams into a single soliton or two solitons forming IO‘ 12 3 45 o 1 &2 3 45
nitial separation, &, Initial separation, &,

a bound state can be obsenj@a].

To illustrate the specific transitions between the different FIG. 12.Z, (solid), Z ,.ss(dashedi andA ¢, (dash-dottegiver-
regimes, we show in Fig. 11 the diffraction distarfg; at  susé, for P=5.6 (left) and P=7.8 (right), corresponding to verti-
which the amplitude has decayed to half its initial value, thecal cuts in Fig. 9.
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tially ( 8,>6.0) that they diffract independently, and we are after a finite propagation distance. A rigorous proof of this
in regime |. instability would be an important subject for further studies.
For high powersP=7.8 there is always collapse. A% In our numerical studies we have considered Gaussian
=1.9 there is a transition between regimes Il and IV ofinitial conditions, for which the Hamiltonian can be calcu-
coupled and uncoupled collapse. Starting at small initialated explicitly, and the sufficient conditions for collapse and
separations theoss and Zgo curves bifurcate into each spreading reduce to the total power being above and below
other at this value, and the collapse separation starts to iRsgrtain threshold Va|ue§3>pthp( 8) and P<P . respec-

u

crease. For sufficiently large separations both componentge|y where the threshold for collapse depends on the initial
collapse at the point of initial excitatiods= dp, and the separations, of the two components

collapse distance saturates to the constant VAlyeg=2.5. Fixing p=1 and tracing the collapse threshold in the

(m1,72) space, we have numerically confirmed these suffi-
VI. SUMMARY AND DISCUSSION cient conditions for the particular case when the two compo-

We have studied the properties of two incoherentlynents are identicaIEl(F,O)zEZ(F,O), and superimposed,
coupled localized waves in bulk cubic media with two trans-8,=0. In doing so we have emphasized an important differ-

verse dimensions, described by the equations ence between symmetric systems wijfi= 7, and E;(r,0)
=E,(r,0), and asymmetric systems with,# 7, and/or

E,(r,0)#E(r,0): The sufficient conditions for collapse and
i&ZE2+(19)2(-1-&§)E2+(772|E2|2+p|E1|2)E2=0, spreading are to a good 'approximati'on necessary conditions
also, only if the system is symmetric. This has not been
wherep= =+ 1. This represents the simplest scaled version ofonsidered in the literature so far, and is important when one
a general physical system that has equal diffraction coeffiwants to accurately predict the regions of different dynamical
cients, but can include walk-off. The main scope of the papepehavior.
has been to give a complete description of the possible dy- Finally we have studied the more general case when the
namics, both analytically and numerically. two components are initially separated. In view of the above
As a first step we have used virial theory to derive amentioned result we have for simplicity considered only
sufficient condition for collapsénegative HamiltonianH nearly symmetric systems in the theoretical treatment. In this
<0), which is valid for arbitrary values of the parameters,caseH =0, or equiva|ent|yP=7Dth(50), gives an accurate
and a sufficient condition for spreadiriipw power of both  prediction of the actual threshold for collapse.
componentsP,<P}"), which is valid for p=0 and 7,=> Using virial theory and the internal structure of the
—p. These conditions were derived[ih0] and[14], respec-  Hamiltonian, we have found the regions of different dynami-
tively, so we have only given a brief summary for the presental behavior in terms of the total power and the initial sepa-
notation. ration. The conditionH (5g) =Hfeet Hin( 8p) =0 separates
However, in doing so we have emphasized an interestinghe phase space into two regions with collapse and spread-
property of this multicomponent system: The system coning, respectively. From the relative strength of the interaction
serves the individual power in each component, but, neverpart|H,(8,)| and the free pafiHy.d, each of these regions
theless, when only one of the components has a power belol then separated into two subregions of uncoupled and
the thresholdP™, both components can still collapse, even coupled behavior. To do so we have had to introduce two
when the Hamiltonian is positive, and the beam is given additional parameterg; and 6., which gives the fraction
strong prefocusing at the inptegative initial derivative of  |H;(8o)/Hsed, Or the degree of initial overlap, required for
the virial). Furthermore, the use of the Schwarz inequality inthe attraction to be strong enough to cause the components to
the derivation means th&" can significantly underestimate cross before a collapse occur8.{), or before they have
the actual threshold power for collapse when the two comdiffracted so much that they are essentially in the linear re-
ponents are initially separated. These facts underlineHhat gime (64¢). We have presented heuristical arguments for the
<0 andP,<P!™" aresufficientconditions. approximate values oby; and 6, but in principle they
To see whether the system has stable bound states towst be determined numerically.
wards which a given input condition can evolve, we have In summary, the theory gives three characteristic power-
numerically found the different types of families of station- dependent initial separations, which divides the phase space
ary bright solitonlike solutions, which exist for positive SPM into four regions of different dynamical behavior. For the
coefficients, 7,>0. Sech-profile solutions calculated using symmetric case witlp=1,7,=4, and identical initial condi-
variational techniques are found to accurately represent thégons for the two components, we have performed extensive
numerically found solutions. Simple calculations show thatnumerical calculations and traced the characteristic separa-
the Hamiltonian is zero on the soliton solutions, and that thdions. The results verify the predictions of the four regions
derivative of the power with respect to the soliton eigenvalueand give the fraction®.,~0.75 andf4~0.25. Thus, as
is also zero. heuristical arguments predict, the initial overlap must be
This predicts that the soliton solutions are so-called marfarger in the collapse region than in the diffraction region in
ginally stable, just as for the 2D NLS equation. In otherorder for the components to fuse. A numerical example of
words, this theoretical result suggests that the solitons ardhe dynamics in each region is presented.
unstable, which is confirmed numerically for a number of This completes the pioneering work of McKinstrie and
test cases, where the solutions were observed to collap$ussel[10], who first used virial theory to find the charac-

10,E1+(95+ 37)Eq+ (71 Eq|?+ p| Ex|)E, =0,
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teristic separation dividing collapsing and diffracting solu- found to increase indefinitely, which contradicts our numeri-
tions, and gave two numerical examples of fusion with sub-cal results. This is clearly an artifact of the variational ap-
sequent collapse and spreading. Furthermore, it completggoach and its main approximation, in which the solution is
the recent work of Berggl6], who first used the internal assumed to keep a prescribed test profile during evolution.
structure of the Hamiltonian to separate the collapse regioAn interesting subject for further studies would be to adjust
into subregions of fusion before collapse and independerthe variational approach appropriately, such as to be able to
collapse. Here the fractiors;; and 6., were not introduced, theoretically predict the damped oscillations in the diffrac-
but |Hin( )| =|Hted Was assumed to give the separatrix, tion regime also.
which is why the specific separation of the diffraction region Here and i 10,16 specific examples have been given for
into coupled and uncoupled behavior was not determined. a symmetric system. We do not expect the existence of the
Close to the threshold for collapse the solution is marginfour different regions to change qualitatively for asymmetric
ally stable and the two components keep their shape over gystems, but in any case, a thorough study of the asymmetric
considerable distance, with the collapse or diffraction lengttcase would be important. Furthermore, the influence of the
going to infinity. In this region we have observed that thefour-wave-mixing terms, which are neglected in our model,
components were able to cross several times before fusinghould be investigated.
We have shown two numerical examples of this oscillatory

beh_avi(_)r, in which the two components performed damped ACKNOWLEDGMENTS
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