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Fusion, collapse, and stationary bound states of incoherently coupled waves in bulk cubic medi
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We study the interaction between two localized waves that propagate in a bulk~two transverse dimensions!
Kerr medium, while being incoherently coupled through cross-phase modulation. The different types of sta-
tionary solitary wave solutions are found and their stability is discussed. The results of numerical simulations
suggest that the solitary waves are unstable. We derive sufficient conditions for when the wave function is
bound to collapse or spread out, and we develop a theory to describe the regions of different dynamical
behavior. For localized waves with the same center we confirm these sufficient conditions numerically and
show that only when the equations and the initial conditions are symmetric are they also close to being
necessary conditions. Using Gaussian initial conditions we predict and confirm numerically the power-
dependent characteristic initial separations that divide the phase space into collapsing and diffracting solutions,
and further divide each of these regions into subregions of coupled~fusion! and uncoupled dynamics. Finally
we illustrate how, close to the threshold of collapse, the waves can cross several times before eventually
collapsing or diffracting.@S1063-651X~99!00604-2#

PACS number~s!: 42.65.Tg, 42.65.Sf, 42.65.Jx, 42.60.Jf
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I. INTRODUCTION

When two or more localized light waves copropagate
side a centrosymmetric optical bulk medium, they can int
act strongly through the cubic nonlinear Kerr effect. T
nature of the interaction will depend on the state of
waves, i.e., their frequency and polarization, as well as
the structure of the third-order susceptibility tensor. If w
neglect higher-order effects such as loss and four-wave m
ing, we can write the dynamical equations in the gene
normalized form~see, e.g.,@1#!

i ~]z1vW n•¹W !En1sn¹2En1I nEn50,
~1!

I n5(
j 51

N

g jnuEj u2.

HereEn(rW,z) is the slowly varying envelope of thenth com-
ponent,n5@1,N#, of the electric field, which is propagatin
along thez axis and diffracting in the two-dimensional~2D!

transverse planerW5(x,y), with ¹W 5(]x,]y) and ¹25]x
2

1]y
2 . The real parameterssn determine the strength of th

diffraction, whereas the real nonlinearity parametersg jn de-
termine the strength of the self-phase modulation~SPM! for
j 5n and the cross-phase modulation~XPM! for j Þn. The
effect of linear walk-off, characterized by the real vecto

vW n5(vnx ,vny), can be removed by the simple unitary tran
formation

En→En exp@ i ~ uvW nu2z22vW n•rW !/~4sn!#.

However, for the sake of clarity we keep the walk-off term
in Eqs.~1! during the discussion of its different application
for describing the dynamics of 2D localized waves. Note t
PRE 591063-651X/99/59~4!/4600~14!/$15.00
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the walk-off could not be removed if the four-wave-mixin
terms had been included in the model, i.e., if two or mo
components had been phase matched.

For a single component,N51, Eqs. ~1! reduce to the
well-known cubic nonlinear Schro¨dinger ~NLS! equation,
which is the fundamental model for numerous physical s
ations, i.e., for all nearly monochromatic wave packets
strongly dispersive, weakly nonlinear media@2#. In 1D the
NLS equation is integrable and has stable soliton soluti
@3#, whereas all localized solutions are inherently unstable
2D and will either diffract or self-focus until a catastroph
collapse occurs at a finite propagation distance. A suffici
condition for collapse fors1g11.0, which is the case we ar
interested in here, is that the Hamiltonian for the system
negative. This leads to a necessary condition for collaps

terms of the powerP15* uE1u2 drW, which must exceed the
threshold values1PNLS /g11, where PNLS511.69 is the
power of the ground-state solitary wave solution to the st
dard ~unit coefficients! 2D NLS equation~see@4# for a re-
view!.

In the opposite limit with infinitely many components
N→`, Eqs. ~1! can describe the propagation and se
focusing of partially incoherent light beams in noninstan
neous nonlinear media such as biased photorefractive m
rials @5#. Even though the photorefractive materials a
noncentrosymmetric, and thus quadratic nonlinear, their n
linearity in the direction of the bias field can be approx
mated under strong bias conditions by the cubic Kerr non
earity for broad low intensity beams. The possible existe
of spatially incoherent solitary waves has been the subjec
considerable interest since first observed in 1996@6#. In con-
trast to their coherent counterparts, which normally requ
gigawatt laser pulses, the incoherent solitons can be exc
by white light and require as little as milliwatts or even nan
4600 ©1999 The American Physical Society
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watts@7#. Due to the nature of the photorefractive nonline
ity, the theoretical studies of incoherent solitary waves h
so far been concentrated on 1D models.

Here we are interested in the incoherent coupling betw
two waves,N52, where Eqs.~1! can describe several differ
ent physical situations. In nonlinear optics the most we
known applications are to cubic nonlinear media, where t
describe the nonresonant interaction between two ortho
nally polarized waves with the same frequency@8# or two
waves with the same polarization, but different frequenc
~see, e.g.,@1#!. Furthermore, they describe the resonant int
action of a fundamental wave and its second harmonic
noncentrosymmetric crystals with both a quadratic and a
bic nonlinearity, in the limit when the interaction is far from
being phase-matched~see, e.g.,@9#!.

In plasma physics the system~1! for N52 can, for ex-
ample, describe the so-called beat-wave accelerator@10#, in
which a large-amplitude Langmuir wave is generated by
beating of two laser beams, whose frequencies differ by
proximately the plasma frequency. The longitudinal elec
cal field of this Langmuir wave can then be used to acce
ate particles. The focusing Kerr nonlinearity of this syste
originates from the relativistic correction to the mass of
particles oscillating in the strong Langmuir field@10#.

In the context of incoherent solitons, a thorough study
the fully 2D system~1! for N52 is a first step on the way to
a detailed understanding of the limitN→`, which can de-
scribe incoherent self-focusing.

As for N51 ~the NLS equation!, the system~1! can also
be integrable forN52 in 1D, but only for the specific sym
metric case whensn5s andg jn5g, i.e., when the diffrac-
tion and nonlinearity parameters are identical, respectiv
@11#. These coupled bright Manakov solitons were first o
served experimentally in 1996 in AlxGa12xAs planar
waveguides, due to the difficulty in making the interacti
completely incoherent, i.e., eliminating the four-wav
mixing terms@12#.

The system~1! with N52 has been abundantly studied
1D since first derived in 1970~see, e.g.,@13#!. Here we con-
sider the 2D case, for which much less is known. One of
earliest studies was by McKinstrie and Russel in the con
of the beat-wave accelerator@10#. They derived the so-called
virial relation for generalN-component initial conditions
For superimposed Gaussian waves, virial arguments sho
that a negative Hamiltonian was asufficientcondition for
collapse, corresponding to the fact that the total power m
be above a certain threshold value. This was confirmed
merically @10#.

The results for superimposed waves were recently
tended to arbitrary dimensions, as part of a study of reson
interaction in quadratic nonlinear media@14#. In particular,
in 2D, asufficientcondition for the absence of collapse w
derived, requiring that the power in both components is
low a certain threshold value. We note that this pow
threshold for the absence of collapse is generally lower t
the threshold for occurrence of collapse found by McKinst
and Russel.

McKinstrie and Russel also studied the so-called entra
ment effect, in which two initially separated beams fuse
fore collapsing or diffracting as one entity@10#. In the par-
ticular case of symmetric positive coefficients (sn5 1
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4 ) and two initially separated identica

Gaussian waves, they used the virial relation to show that
waves could fuse and collapse as a single entity whene
their separation was below a certain threshold value and
total power was in between the threshold for collapse of t
superimposed waves and of two waves infinitely far ap
where the system reduces to simply two uncoupled N
equations. A numerical example with the separation sligh
below ~above! the threshold confirmed that the two wav
fused before collapsing~diffracting! as one entity.

We note that the mechanism of fusion and subsequ
collapse of two beams can also be found in the sing
component NLS equation@15#. However, in this case the
relative phase of the two beams plays a crucial role~i.e., two
beams beingp out of phase can never fuse!, whereas the
dynamics naturally is phase-independent when the inte
tion is incoherent as in Eqs.~1!.

The results for initially separated waves were recently
tended to arbitrary many components in@16#. Here virial
theory and the internal structure of the Hamiltonian we
used to further divide the collapse region (H,0) into two
subregions, in which two Gaussian beams will collapse
dependently~i.e., never fuse! and fuse before collapsing, re
spectively. Variational calculations further predicted that i
tially close Gaussian beams with medium powers co
oscillate about the center of mass and cross several ti
before eventually collapsing or diffracting@16#. The oscilla-
tions in the separation were found to be damped in the
lapse regime, whereas they were increasing in amplitud
the diffraction regime.

In spite of the investigation performed by McKinstrie an
Russel@10# and later by Berge´ et al. @14,16#, the spectrum of
dynamical scenarios in incoherent two-wave interaction
scribed by Eqs.~1! is so rich that several points still need
be investigated.

First, the possibility of realizing stable solitonlike states
a 2D system~bulk medium! is of considerable interest, sinc
it may open up possibilities for all-optical switching applic
tions. So, it is worth identifying the stationary bound sta
of Eqs.~1! and investigating their stability. In this respect
was recently predicted that the so-called ground states,
fined as localized stationary waves minimizing the Ham
tonian, are stable in 1D@17# ~see also@18#!. In this case, as
for solitons of the scalar NLS equation, the derivative of t
power with respect to the soliton eigenvalue is positive@19#.
However, in 2D the same derivative is zero and this criter
only predicts so-called marginal stability of the solita
waves@16#. Although such a theoretical result can sugg
instability, numerical investigations of the existence and s
bility properties of the different solitary wave solutions a
necessary.

Furthermore, it is worth verifying numerically the suffi
cient conditions for collapse and spreading of superimpo
waves predicted theoretically in@10,14#. An important issue
is whether the corresponding power thresholds are accu
measures of the actual power threshold for collapse. As
will show, this is only the case for identical initial condition
and symmetrical system parameters (s15s2 , g11
5g22, g125g21). In the highly asymmetrical case, collaps
can still occur for positive Hamiltonians, which is in sha
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contrast to what is known from the NLS equation. We no
that the examples presented in@10,16# were all for symmetri-
cal cases.

Finally, although the process of fusion has already b
predicted theoretically and confirmed numerically in@10#,
this was for initial separations well below the diameter of t
individual wave. Clear examples of fusion when the comp
nents are well-separated still remain to be shown. Furth
more, a complete map of the different possible scenarios
remains to be given theoretically and confirmed numerica
For instance, it should be possible to separate the diffrac
regime into coupled and independent behavior also, an
seems plausible that the two components may be abl
oscillate about the center of mass and cross more than
before fusing, both in the collapse and diffraction regim
The latter was predicted from variational calculations in@16#,
but given the limitations of the variational approach, it nee
to be confirmed numerically, i.e., are the oscillations rea
increasing in amplitude in the diffraction regime, or is it a
artifact of the fixed test function?

In this paper we recall the conservation laws for localiz
solutions of Eqs.~1! for N52 ands15s2 in Sec. II. We
derive sufficient criteria for collapse and spreading from
virial relation governing the mean-square radius of the to
field in Sec. III. In Sec. IV, we find the different stationa
solitary wave solutions and investigate their stability prop
ties, both numerically and analytically. In Sec. V A we co
firm the sufficient criteria numerically and show that only
the symmetrical case do they coincide and give a good
proximation to the actual threshold. Finally, in Sec. V B, w
consider the symmetrical case and use the internal struc
of the Hamiltonian to analytically identify all four types o
scenarios: independent collapse or spreading and fusion
subsequent collapse or spreading. To do so we introd
auxiliary parameters defining the degree of spatial ove
necessary for coupled behavior. The predictions are c
firmed numerically and examples of damped oscillations
fore fusion are given in both the collapse and diffracti
regimes.

II. THE MODEL

We consider two incoherently coupled waves propaga
in a bulk Kerr medium, for whichs15s2 ~corresponding to
the case considered by McKinstrie and Russell@10#!. In this
case the equations given in the Introduction can, by mean
a proper scaling, be written in the form

i ]zE11¹2E11~h1uE1u21ruE2u2!E150, ~2!

i ]zE21¹2E21~h2uE2u21ruE1u2!E250, ~3!

whereEn5En(rW,z) is the normalized slowly varying com
plex envelope function of the moden51,2,z is the propa-
gation coordinate,rW5(x,y), and r561. In the following
we will only consider positive SPM coefficients,hn.0.

For periodic or sufficiently localized solutions, Eqs.~2!
and ~3! conserve the powerPn5Pn(En) of each mode,

Pn~En!5E uEnu2 drW, ~4!
e
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the HamiltonianH5H(En),

H~En!5E F u¹E1u21u¹E2u22
h1

2
uE1u42

h2

2
uE2u4

2ruE1E2u2GdrW, ~5!

and the momentumMW 5MW (En),

MW ~En!52E Im$E1* ¹E11E2* ¹E2%drW. ~6!

Here we have defined the integral*drW5**dx dy. Further-
more, Eqs.~2! and~3! are Hamiltonian and can be written a
Hamilton’s equationsi ]zEn5dH/dEn* , where H is the

Hamiltonian density,H5*H drW, and d/dEn denotes the
functional derivative with respect toEn .

III. VIRIAL THEORY

Consider the beam width~mean-square radius! or so-
called virial, I (z), which we define as

I ~z!5
1

PE R2~ uE1u21uE2u2!drW, ~7!

where P5P11P2 is the total power,RW 5rW2^rW&, and R2

5uRW u2. The total center of masŝrW& is defined as

^rW&5
1

PE rW~ uE1u21uE2u2! drW ~8!

and is easily found to obey the relation

d^rW&
dz

5
MW

P
⇒d2^rW&

dz2
50. ~9!

Thus, for initial conditions with zero momentum, as we w
use here, the center of mass is fixed. For periodic or su
ciently localized solutions to Eqs.~2! and ~3!, the virial sat-
isfies the relation@14#

d2I

dz2
5

8H

P
2

2M2

P2
, ~10!

whereM25uMW u2. If the right-hand side of Eq.~10! is nega-
tive, the beam widthI (z) will continuously decrease and
collapse, defined asI (z)→0, will inevitably occur at a finite
distance. ThusH2M2/(4P),0 is asufficient conditionfor
collapse~sinceP is positive definite!.

If the right-hand side of Eq.~10! is positive, H
2M2/(4P).0, we have to do further analysis to determi
whether a collapse can occur or not. For example, if
wave is given a sufficiently strong prefocusing at the inp
@dI(0)/dz,0#, a collapse could in principle develop despi
the second derivative of the virial being constant and po
tive.

First we note that a collapse of the total wave functio
I (z)5I 1(z)1I 2(z)→0, implies that each individual compo
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nent also collapses,I n(z)→0 ~since I n is positive definite!.
Here I n(z)5P21iREni2

2 , with the standardLp norm being
given by

iEnip5S E uEnup drW D 1/p

. ~11!

Conservation ofPn and the 2D bound

iEni2
4<i¹Eni2

2iREni2
2 , ~12!

further implies that the gradient norm goes to infinit
i¹Eni2

2→`, when I n(z)→0. Note that the adverse is no
true, i.e.,i¹Eni2

2→` does not imply thatI n(z)→0. Thus a
singularity, in which the gradient norm diverges, can in pr
ciple develop despite the virial being finite.

To derive a more useful criterion in terms of the pow
we use the Schwarz inequalityiE1E2i2

2<iE1i4
2iE2i4

2 and the
Sobolev inequalityiEni4

4<Ci¹Eni2
2iEni2

2 . The Sobolev in-
equality is optimized by the best constantC5Cbest
52/PNLS @20#, where PNLS511.69 is the power of the
ground-state solution of¹2E2E1E350, which can be
found numerically@20#. Furthermore, we use Eq.~12! to
connect the total power and virial,

P<2I ~ i¹E1i2
21i¹E1i2

2!. ~13!

For r>0 andhn>2r we can then bound the Hamiltonia
~5! from below as follows:

H> (
n51

2 S 12
Pn

Pn
thD i¹Eni2

2 . ~14!

If the individual powers are both below threshold,

Pn,Pn
th[

PNLS

hn1r
, ~15!

thenH and all coefficients in the sum~14! are positive, and
we can use Eqs.~13! and ~14! to boundd2I /dz2 as follows:

d2I

dz2
>a11

a2

I
, ~16!

where the constantsa1,2 are given by

a1522M2/P2<0,

a254 min$~12P1 /P1
th!,~12P2 /P2

th!%.0.

It is straightforward to do an integration of Eq.~16! and
show that collapse is only possible ifa2,0 ~see @14# for
details!.

Since a2.0 ~and H.0) always when both individua
powers are below threshold, collapse cannot occur in
case. In fact, from Eq.~14! and the conservation of~a finite!
H, it follows that any singularity, in which the gradient nor
goes to infinity, cannot occur when Eq.~15! is fulfilled for
both components. ThusPn,Pn

th is a sufficient conditionfor
the absence of collapse. In this low-power case the beam
eventually spread out withI (z)→`.
-

,

is

ill

In the case when at least one of the components ha
power above threshold, the bound~14! does not forbid col-
lapsing solutions withI n(z)→0, or any singularities with
i¹Eni2

2→`, regardless of the sign ofH and the right-hand
side of Eq.~10!, and regardless of the sign and strength
the initial gradient dI(0)/dz. This interesting property
which is due to the multicomponent nature of the system~2!
and ~3!, will be demonstrated numerically in the following
where we also confirm the sufficient conditionsH
2M2/(4P),0 for collapse andPn,Pn

th for spreading.
The virial relation for Eqs.~1! with arbitrarily many

coupled equations was first developed by McKinstrie a
Russel@10# and later by Berge´ @16#. The rigorous proof of
the absence of collapse forr>0 andhn1r>0 in the system
of two coupled Eqs.~2! and~3! when the individual powers
are below threshold was first given in@14#, and later for an
arbitrary number of equations in@16#. Here we have just
given the main steps.

Before proceeding, we would like to point out two impo
tant things to be aware of. First, the application of t
Schwarz inequalityiE1E2i2

2<iE1i4
2iE2i4

2 in deriving the
bound ~14! means that any information on the effect of a
initial separation between the two components is lost, a
that Pn

th can significantly underestimate the actual pow
threshold for large separations. Thus virial theory only giv
information about an initial separation through the sufficie
criterion for collapse,H2M2/(4P),0.

Second, the virial theory predicts whether or not a glo
collapse of the wave function into a single point will occ
over a finite distance, in which all the power becomes
cused at that point with the amplitude going to infinity~i.e.,
the virial goes to zero and, due to conservation of power,
gradient norm goes to infinity!. Typically such a collapse is
preceded by a so-called blow-up, in which the amplitu
locally goes to infinity, and the solution ceases to exist, wh
the power can still be arbitrarily distributed~i.e., the gradient
norm goes to infinity while the virial remains finite!.

This is, e.g., a well-known property of solutions to th
NLS equation in two or more transverse dimensions~see
@4#!. For the critical 2D NLS equation it is further well
established numerically that the singularity captures exa
the powerPNLS of the ground-state solitary wave solutio
and that it locally has a self-similar structure~see, e.g.,
@21,22#!.

In this work we are mainly interested in the threshold f
the development of a~collapse! singularity, and not so much
in what the specific profile looks like at this singularity. I
the following we will therefore not distinguish between
collapse and a blow-up, but use the term collapse for b
scenarios.

IV. BRIGHT SOLITARY WAVES

The system~2! and ~3! are invariant under the scaling

En �lEn , rW�lrW, z�l2z. ~17!

Keeping this in mind, we consider stationary exponentia
localized bright solitary wave solutions~with no nodes, i.e.,
lowest-order bound states! of the form
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En~rW,z!5lcn~j!eil2z, j5lr , r 5urWu, ~18!

where the soliton eigenvaluel is real and the real and sym
metric functionscn decay monotonically to zero asj in-
creases. Inserting the solution~18! into Eqs.~2! and ~3!, we
obtain the stationary equations

c̈11j21ċ12c11~h1c1
21rc2

2!c150, ~19!

c̈21j21ċ22c21~h2c2
21rc1

2!c250, ~20!

where a dot denotes differentiation with respect toj.
The individual and total power of the solutions~18! are

independent of the solution parameterl, i.e., P(En)
5P(cn) or dP(En)/dl50. Thus the solutions are so-calle
marginally stable according to the Vakhitov-Kolokolov~VK !
criterion, which requiresdP/dl.0 (dP/dl,0) for stabil-
ity ~instability! @19#. However, in contrast to the NLS equa
tion, the VK criterion for stability is only anecessary crite-
rion in this system of coupled NLS equations@16#. The proof
of it being also a sufficient criterion is still an open proble
and certainly nontrivial. In media with both quadratic a
cubic nonlinearity, examples have been given in which
VK criterion fails and predicts stability of solutions that n
merical simulations show to be unstable@23#.

Multiplying Eqs. ~19! and ~20! with c1 and c2 , respec-
tively, and integrating the sum, it is straightforward to obta
the relation Ps5i¹c1i2

21i¹c2i2
222Hs , where Ps

5P1(c1)1P2(c2) andHs5H(cn) are the total power and
Hamiltonian evaluated on the soliton solutions~18!. Doing
the same withRW •¹cn , one can obtain the relationPs

5i¹c1i2
21i¹c2i2

22Hs . Combining these two relations
we see that the Hamiltonian is zero on the soliton solutio
Hs50. Furthermore, the soliton solutions~18! have zero mo-
mentum,MW s5MW (cn)5(0,0), which means that the cent
of mass is constant,d^rW&/dz50W, and that dI(0)/dz50.
Therefore the virial relation,d2I /dz250, predicts correctly
that the width of the solitons also remains constant,I (z)
5I (0).

From the above we would expect that the soliton solutio
~18! are unstable, as is the case for the stationary solution
the 2D NLS equation, which have the same characteris
dPs /dl50, Hs50, and I (z)5I (0). Thus we expect tha
there are no stable states towards which the Gaussian in
conditions that we consider in the following sections c
evolve. For completeness, we will nevertheless briefly c
sider the regimes of the existence of the soliton soluti
~18!.

The bright solitary wave solutions~18! can be categorized
into three types, the C, W, and V solutions, borrowing t
notation from systems with bothx (2) andx (3) nonlinearities
@24#: The C solution, where both components are nonze
with no particular relative size, can generally only be fou
numerically. However, whenhn.0 andr561 fulfill one
of the requirements

~ I! r.max$h1 ,h2%,
~21!

~ II ! r,min$h1 ,h2%,
e

s,

s
to
s:

ial

-
s

o,

~III) h15h25r51,

then one C solution has the form

c2~j!5ac1~j!5
a

Ah11ra2
c~j!, ~22!

where the parametera is given by

a5H A~h12r!/~h22r! for I,II,

arbitrary for III, ~23!

and wherec(j) is the solution to the stationary nonlinea
Schrödinger ~NLS! equation

c̈1j21ċ2c1c350. ~24!

The partial powers of this C solution are thereforeP2
c

5a2P1
c5a2PNLS /(h11ra2). An analytical expression for

the solution to the 2D NLS equation is not known, but
good approximation can be found by variational techniqu
to be @25#

c~j!5A0 sech~B0j!, ~25!

whereA0
2512 ln 2/(4 ln 221) andB0

256 ln 2/(2 ln 211).
In the particular case whenh15h2 ~giving a51), the

partial powers of the C solution are identical to the thresh
powers found by virial theory,Pn

c5Pn
th5PNLS /(hn1r). In

the general case whenh1Þh2 , the two are different.
The single-component W solution exists for allh1.0. It

hasc250 andc1 is the solution to the stationary NLS equ
tion

c̈11j21ċ12c11h1c1
350. ~26!

Thus the W solution has the powerPw5P1
w5PNLS /h1 , and

is approximately given by

c1~j!5A0A1/h1 sech~B0j!. ~27!

The single-component V solution exists for allh2.0. It has
c150 andc2 is the solution to the stationary NLS equatio

c̈21j21ċ22c21h2c2
350. ~28!

Thus the V solution has the powerPv5P2
v5PNLS /h2 and is

approximately given by

c2~j!5A0A1/h2 sech~B0j!. ~29!

Note that the C solutions can also exist for negative v
ues of the SPM coefficientshn , whereas this is not the cas
for the W and V solutions.

We have numerically found the families of C, W, and
solutions using a standard relaxation technique. In Fig. 1
show the individual powersPn versus the SPM coefficien
h2.0 for h154 andr51. From the requirement~21! we
expect that the C solutions exist forh2.1, while the W and
V solutions exist for allh2.0. Furthermore, ath15h2 ,
wherea51, the partial power for the C solution should b
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equal to the corresponding threshold power for collapse,Pn
c

5Pn
th5PNLS /(h11r). The numerical results confirm tha

this is true, and that the predicted partial powers of the th
types of solutions are correct.

Using an iterative, radially symmetric, midpoint Cran
Nicholson finite difference scheme, we have performed
merical simulations of Eqs.~2! and~3! with the C, W, and V
solutions as initial conditions. We used a resolution ofdr
51023 over the intervalr 5@0,40# and a stepsize ofdz
51023. In all test cases (r51, h154, andh253,4,5) all
three types of solitary waves were observed to be unsta
with the perturbation introduced by the discrete numeri
sampling causing the center amplitude to blow up afte
finite propagation distance, just as for the critical NLS eq
tion @26#. Although this is not a proof, it suggests that so
tary waves of the form~18! are unstable for positive coeffi
cientshn.0 andr51 @see discussion below Eq.~20!#.

V. COLLAPSE IN 2D

A. Both components with the same center

In this section we numerically investigate the thresh
power for collapse, and the different possible dynamical s
narios with Gaussian initial conditions of the form

En~rW,0!5A Pn

pD2
expS 2

r 2

2D2D , ~30!

where both components are centered at the origin. In
caseM5dI(0)/dz50 and thus the virial relation~10! re-
duces todI2/dz258H/P, where the Hamiltonian can be ca
culated explicitly to

H5 (
n51

2
Pn

D2S 12
hnPn1rP32n

4p D . ~31!

A sufficient conditionfor collapse of the solution to Eqs.~2!
and ~3! with initial condition ~30! is thereforeH,0. Intro-
ducing the ratiob5P1 /P2 , which we typically fix in our
numerical simulations, we can reduceH to

H5
P

D2S 12
P

Pup
th D , ~32!

where the threshold powerPup
th is given by

FIG. 1. Individual powerP1 ~left! andP2 ~right! versush2 for
the C ~dash-dotted!, W ~dotted!, and V solutions~dashed! of Eqs.
~19! and ~20!, with h154 andr51. The solid curve indicates th
corresponding threshold powerPn

th .
e

-

le,
l
a
-

e-

is

Pup
th 5

~11b!2PNLS
Gaus

b2h11h212br
. ~33!

From Eq.~32! we see thatH,0 (H.0) corresponds to the
total power being above~below! the thresholdPup

th . Here
PNLS

Gaus54p corresponds to the power of the Gaussian
proximation to the ground-state solution to the 2D NLS E
~24!, which can be obtained by variational techniques. F
b50 (b5`) we recover the threshold powe
4p/h2 (4p/h1) for collapse of a Gaussian initial conditio
in the 2D NLS equation.

We have performed numerical simulations of the dynam
cal Eqs.~2! and ~3! using the Crank-Nicholson routine de
scribed in Sec. IV, and the initial condition~30! with P1
5P25P/2, D52, andr51. The resolution wasdr51023

over the intervalr 5@0,30# and the stepsize wasdz51022.
When the beams diffract this keeps the relative deviation
bothP andH from their respective initial values below 1026

over a distancez5@0,50#.
For this particular case, the sufficient conditions predic

from virial theory, which can be obtained from Eqs.~15!,
~32! and ~33!, reduce to

No collapse: P,Plow
th 5minH 2PNLS

r1h1
,
2PNLS

r1h2
J , ~34!

Collapse: P.Pup
th 5

2PNLS
Gaus

r1~h11h2!/2
, ~35!

where Eq.~34! is only valid forr>0 andhn>2r. Thus for
low powers fulfilling Eq.~34! the beam will spread out with
I (z)→`. For high powers fulfilling Eq.~35! the beam will
collapse at a finite distance.

In Fig. 2 we show the numerically found threshold pow
above which the solution collapses at the center at a fi
distanceZcoll,50. As the collapse is approached, the evo
tion in z becomes so fast that the numerical routine w
fixed stepsize no longer conservesP. As a convenient and
reliable definition we therefore detect a collapse as when
relative deviation ofP from its initial value has increased t
more than 1024.

For the symmetrical case~left figure! when h15h2 and
P15P2 the lower and upper thresholds become forme

FIG. 2. Threshold power versush15h2 ~left! andh2 ~right! for
h154. Solid lines represent numerical results and dotted
dashed lines represent the virial predictions~34! and ~35!, respec-
tively. The dash-dotted lines represent the predict
min$2PNLS /h1,2PNLS /h2%. The initial condition is Eq.~30! with
P15P2 , D52, andr51. The filled circle marks a case for whic
we show the specific evolution in Fig. 3.
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identical, within the approximationPNLS
Gaus'PNLS . In this

case we see that the numerically calculated threshold po
~solid curve! lies exactly on top of the lower thresholdPlow

th

52PNLS /(h21r) ~dotted curve!. For P,Plow
th we always

observed that both components spread out withI n(z)→`.
Thus the numerical results confirm that Eqs.~34! and ~35!
are sufficient conditions for spreading and collapse, resp
tively. Note that with the resolutiondr51023 the effect of
discreteness, which tends to lower the threshold power@26#,
can be neglected.

In the right side of Fig. 2 we show the threshold of co
lapse versush2 when h154 is fixed andP15P2 . We see
that when the asymmetry is weak,h2'h1 , the numerically
calculated threshold is close to the predictions~34! and~35!,
which in turn are close to each other. When the asymm
becomes pronounced, i.e., whenh2 andh1 are significantly
different, the gap betweenPlow

th andPup
th widens and we see

that the actual threshold lies in between the two limits. Ho
ever, the predictions~34! and ~35! are never violated, and
thus the numerical results also confirm the virial predictio
in this more complicated asymmetrical case.

In the highly asymmetric limit whenh1@h2 or h1
!h2 , we can obtain a good approximation to the act
collapse threshold from heuristical arguments: Take the
ample with h1@h2 and identical initial conditions for the
two components,P15P2 . Assume that we can disregard th
XPM term that couples the two modes together. In that c
the power threshold of the componentEn is simply
PNLS /hn , as in the conventional 2D NLS equation, and th
the threshold in the total power is 2PNLS /hn . Assume now
thatE1 is collapsing (P1.PNLS /h1) and thatE2 is diffract-
ing rapidly (P2!PNLS /h2). Then, even in the presence
the XPM terms, the collapse dynamics will be primar
driven by theE1 component and as a first approximation w
can disregard the rapidly decreasing influence of the diffra
ing E2 component. Since the power in each component in
vidually is conserved, the presence of the other~diffracting!
beam in the equation for a given component through
XPM term simply adds a focusing potential~for r.0),
which acts as a waveguide, and tries to keep the beam
cused. This should merely decrease the collapse thres
slightly.

According to these arguments, the actual threshold wil
close to min$2PNLS /h1,2PNLS /h2% in the highly asymmetri-
cal limits whenh1@h2 or h1!h2 , and of course also whe
the XPM term can be neglected, i.e., whenh1@r and h2
@r. Away from these limits the threshold should be som
what lower than min$2PNLS /h1,2PNLS /h2%. This is exactly
what we observe in Fig. 2.

These numerical results highlight the interesting prope
of an asymmetric multicomponent system, such as Eqs.~2!
and ~3! for h1Þh2 and P15P2 , namely that collapse is
possible even when the second derivative of the viria
always positive,d2I /dz258H/P.0, i.e., when the tota
mean-square radius is always increasing. This effect ca
be observed in, e.g., the symmetric case or the NLS equa
where there is only one wave function that determines
dynamics.

To illustrate this, we show in Fig. 3 the evolution of th
center amplitudes and the virial for the asymmetric c
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when h158h254 and P56.5 (H50.13.0 and Plow
th ,P

,Pup
th ) marked by a filled circle in Fig. 2. In this caseP1

53.25 is above the NLS thresholdPNLS /h152.92, while
P253.25 is below the NLS thresholdPNLS /h2523.38. As
expected, the first component self-focuses@ I 1(z) decreases#,
while the second component spreads out@ I 2(z) increases#. In
the end the first component ‘‘pulls’’ the center amplitude
the second component with it and a collapse singularity
velops atz53.32, in which the amplitude of both compo
nents diverges to infinity.

An equivalent discussion of collapse in media with both
x (2) and x (3) nonlinearity can be found in Refs.@14,27#.
Here this effect of asymmetry on the collapse threshold
multicomponent systems was also observed.

B. Initially separated components

After having numerically confirmed the predictions
virial theory for initial conditions with both components ce
tered at the origin, we now consider Gaussian initial con
tions of the form

En~rW,0!5A Pn

pD2
expS 2

~x2xn!21y2

2D2 D , ~36!

where the two components are located at a distanced0 away
from each other, withx152x25d0/2. In this case the virial
relation is stilld2I /dz258H/P, sinceM5dI(0)/dz50. The
Hamiltonian still has the form~32!, but now the upper powe
threshold depends on the initial separation,

Pup
th ~d0!5

4p~11b!2

b2h11h212bre2d0
2/2D2 . ~37!

FIG. 3. Evolution of~a! the amplitudesuEn(0,0,z)u and ~b! the
virials I n(z) for the first~solid! and second~dotted! component. The
total virial I (z) is shown with a dashed line.~c! and ~d!: Profiles
uEn(x,0,z)u at z50 ~dotted! and at collapsez54.77~solid!. Results
of numerical integration of Eqs.~2! and ~3! for h158h254 and
P15P253.25, corresponding to the marked point in Fig. 2.
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In contrast, the lower power threshold does not depend
the initial separation and is still given by Eq.~34!. Thus P
.Pup

th (d0) (H,0) is still a sufficient condition for collapse
and~for r>0 andhn>2r) P,Plow

th is still a sufficient con-
dition for spreading.

Introducing an initial separation of the two componen
means that the number of different dynamical scenarios
creases significantly. McKinstrie and Russel used the vi
relation to separate the (P,d0) space into regions of collaps
(H,0) and spreading (H.0) @10#. A collapse implies per
definition that the virial decreases until all the power b
comes concentrated at one point after a finite distance. T
when the two components are initially separated, it me
that they will attract and eventually fuse before collapsing
one entity. Fusion was observed numerically forH,0 where
the components subsequently collapsed as one entity,
also for H.0 where they subsequently spread out as
entity @10#. Bergérecently used the internal structure of th
Hamiltonian to separate the collapse regime into regi
where the components collapse individually and where t
fuse before collapsing@16#.

However, as we have seen in the preceding sectionH
50 is only an accurate measure of the collapse threshol
the nearly symmetric case whenh1'h2 andP1'P2 . When
the asymmetry becomes pronounced, the gap betweenPup

th

and the actual threshold power widens, and collapse can
cur well into the region whereH is positive, as we have
shown in Sec. V A. It is therefore important that the spec
examples presented in@10,16# were exactly for the symmet
ric case whenh15h2 andP15P2 .

Our aim here is to analytically map out all possible sc
narios in terms of the initial separation and power, and th
confirm the predictions numerically. We will focus on th
nearly symmetric case, whereh1'h2 and P1'P2 , and
where we can compare directly with the results and exam
of @10,16#. This simplifies the calculations considerably
that H5(12P/Pup

th )P/D250 is a good measure of the a
tual threshold between collapse and diffraction. ThusH
,0 (P.P th) is a sufficient condition for collapse, andH
.0 (P,P th) is to a good approximation a sufficient cond
tion for spreading. In other words, the Hamiltonian det
mines the dynamics of the system.

Note that in derivingPlow
th any dependence on the sepa

tion has been eliminated, as can be seen by comparing
~34! and~37! in the symmetric case. Thus, ifPlow

th is to be an
accurate measure of the actual collapse threshold, it requ
not only that the system be nearly symmetric, but also t
the separationd0 be much less than the width of the ind
vidual componentD. Even so, we will not considerPlow

th in
the theoretical analysis, since it gives no information ab
the effect ofd0 .

To determine the possible dynamics, we rewrite
Hamiltonian in the formH(d0)5H free1H int(d0), where the
free partH free5H(`) is given by

H free5
P2

D2S 1

P
2

1

P`
thD ~38!

and the interaction partH int(d0) is given by
n

-
l

-
s,
s
s

nd
e

s
y

in

c-

-
n

es

-

-
qs.

es
at

t

e

H int~d0!5
P2

D2S 1

P`
th

2
1

P0
thD e2d0

2/2D2
. ~39!

HereP 0
th5Pup

th (0) is the threshold whend050 and the two
components are superimposed, andP `

th5Pup
th (`) is the

threshold in the limitd0→`, where they are isolated from
each other and evolve independently.

We will consider positive coefficients,hn.0 andr.0,
in which casePup

th (d0) increases withd0 . ThusP 0
th,P `

th and
H int(d0) is always negative. It is straightforward to exten
the theory to negative coefficients as long asPup

th (d0) re-
mains positive for alld0 .

First we separate the (P,d0) space into regions of col
lapse and diffraction. For a given separation the thresh
power that separates these two regions is given byP
5Pup

th (d0). For a given power in the rangeP 0
th<P<P `

th we
can define the corresponding threshold value of the ini
separation,d0

th, from the relationH free1H int(d0
th)50, which

is equivalent to inverting Eq.~37!. From Eqs.~38! and ~39!
we find d0

th(P) to be

d0
th

D
5A2 lnS 12P `

th/P 0
th

12P `
th/P

D , ~40!

which is valid forP 0
th<P<P `

th. This threshold separation
was first found in@10# for the symmetric caseh15h2 and
P15P2 , and later in@16# for the general case.

By considering the internal structure of the Hamiltonia
we can further separate the collapse and diffraction regim
into each of their subregions of coupled and uncoupled
havior. Thus we can expect a strong interaction between
components whenuH intu is of the same order asuH freeu or
larger, whereas the interaction will be negligible wh
uH intu!uH freeu. This means that we can define a critical initi
separation, for whichuH intu is some given fractionu<1 of
uH freeu, and below which the interaction between the tw
components is strong enough for them to attract and merg
a finite distance.

From the definitionuH int(d0
col)/H freeu5ucol we find the

critical separation in the collapse regimed0
col to be

d0
col

D
5A2 lnF2

1

ucol
S 12P `

th/P 0
th

12P `
th/P

D G , ~41!

which is valid forP `
th<P<Pmax. The upper limitPmax is

given by

Pmax5
ucolP 0

thP `
th

~ucol11!P 0
th2P `

th
~42!

for (P `
th2P 0

th)/P 0
th,ucol , whereasPmax5` when (P `

th

2P 0
th)/P 0

th>ucol . Similarly, from the definition
uH int(d0

dif)/H freeu5udif the critical separation in the diffrac
tion regimed0

dif becomes

d0
dif

D
5A2 lnF 1

udif
S 12P `

th/P 0
th

12P `
th/P

D G , ~43!
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which is valid for Pmin<P<P `
th . The lower limit Pmin is

given by

Pmin5
udifP 0

thP `
th

~udif21!P 0
th1P `

th
. ~44!

From the predictions of virial theory we can therefo
identify the following regimes of different characteristic d
namics.

~I! When uH int /H freeu,udif and H.0, both components
will spread out independently. This is the case for low po
ersP,P `

th whend0.d0
dif .

~II ! When uH int /H freeu.udif and H.0, the components
will interact strongly and merge at a finite distance befo
eventually spreading out. This requires low powerP,P `

th

andd0
th,d0,d0

dif .
~III ! When uH int /H freeu.ucol and H,0, the components

will interact strongly and merge before collapsing at a fin
distance@with I (z)→0]. This is the case for low powersP
,P `

th whend0,d0
th , and for high powersP.P `

th whend0

,d0
col .

~IV ! When uH int /H freeu,ucol and H,0, the components
will collapse independently at a finite distance. This requi
high powerP.P `

th andd0.d0
col .

We have distinguished here between the fraction ne
sary for strong interaction in the low-power (P,P `

th) dif-
fraction regime,udif , and the high-power (P.P `

th) collapse
regime,ucol .

Collapse is a violent effect generally taking place ove
relatively short distance, whereas the components can ha
much longer interaction length when diffracting. It is ther
fore natural to expect that the initial overlap in the collap
regime, quantified byucol , should be larger than the initia
overlap in the diffraction regime,udif , in order for the waves
to fuse before having collapsed or diffracted. Furthermo
the interaction, or overlap, will increase when the beams
fract individually, even without the XPM. In contrast, a
individual collapse of the beams will decrease the beam
and thus tend to decrease the overlap. A reasonable co
ture would therefore be thatucol'1, whereasudif,0.5. How-
ever, the specific values of these fractions must be de
mined numerically.

Note thatd0
th5d0

dif when udif51. In this case the theory
would predict that regime II with strongly coupled but di
fractive behavior is absent. In the particular degenerate c
whenudif5ucol51, the expressions for all the characteris
separationsd0

th, d0
dif , and d0

col could be combined into one
corresponding to Eq.~40! with the parentheses replaced by
numerical value sign.

The approach of using the internal structure of the Ham
tonian to characterize the dynamics was first applied in@16#,
but without specifically introducing the additional degrees
freedomudif anducol . InsteaduH intu5uH freeu was assumed to
give the critical separation, which we see corresponds to
degenerate caseudif5ucol51. Furthermore, the existence o
the cutoffPmax has not been investigated yet.

Thus the separation of the diffraction region into the tw
regimes I and II, which originates fromudifÞ1, has not been
considered before, and numerical examples confirming
independent behavior predicted in regimes I and IV ha
-
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also not been presented. Here we give clear numerical
amples of all four types of behavior, and present a comp
map of the different regimes, to be compared with the th
retical prediction given in Fig. 4.

We now consider the particular symmetric case wh
h15h254, r51, D52, and P15P25P/2. Then P 0

th

58p/5,P `
th52p, and the threshold and critical separatio

become

d0
dif5A8 lnS P/udif

8p24PD , Pmin,P,P `
th ,

d0
th5A8 lnS P

8p24PD , P 0
th,P,P `

th, ~45!

d0
col5A8 lnS P/ucol

4P28p D , P `
th,P,Pmax,

where Pmin58pudif /(4udif11) and Pmax58pucol /(4ucol
21) for ucol.0.25, andPmax5` for ucol<0.25. In Fig. 4 we
show the theoretically predicted regimes in theP2d0 plane
for udif50.2 anducol51.

To integrate Eqs.~2! and ~3! numerically, we use a spli
step Fourier technique, with a resolution ofdx5dy50.1, a
step size ofdz51022, and the initial condition~36! with
D52. Generally we have used 5123256 mesh points~512 in
x), except for the examples shown in Figs. 5–8 and
where we have used 5123512 points. The allowable relative
deviation of the conserved power from its initial value
1024. In the theoretical discussion we assume thatudif
50.2 anducol51, as in Fig. 4.

We identify the different scenarios by tracking the amp
tude distribution uEn(x,0,z)u and the ‘‘virtual point’’ of
maximum amplitude@xm(z),A(z)#, which is found using a
parabolic approximation foruE1(x,y,z)u between the three
points x0 and x06dx, where (x0 ,y0) is the point of maxi-
mum uE1(x,y,z)u on the discrete mesh. Due to the spec
symmetry of the initial condition, the amplitude is the sam
for the two components, the separation the separatio
d(z)52xm(z), and the virial is I (z)5(2/P)*r 2uE1u2 drW,
since^rW&50W .

FIG. 4. Theoretically predicted regions of characteristic dyna
ics in the P2d0 plane for h15h254, r51, P15P2 , D52, udif

50.2, anducol51. The solid curves representd0
dif and d0

col, the
dashed curved0

th, and dotted lines indicate the limitsP 0
th

55.03,P `
th56.28, andPmax58.38. Pointsa2d indicate specific

cases considered numerically in Figs. 5–8.
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In Fig. 5 we show an example from the low-power regim
I with P54.6 andd055, above the critical separationd0

dif

53.1. Since the Hamiltonian is positive,H50.62, and
uH intu50.01 is only 3% ofuH freeu50.31, which is less than
udif520%, we expect both components to spread out w

FIG. 5. Contour plot~30 equidistant levels between 0.01 an
0.458! of uE1(x,0,z)u ~top! and uE2(x,0,z)u ~middle!, found by nu-
merical integration of Eqs.~2! and ~3! for h15h254 andr51.
The bottom figure shows the corresponding evolution of the se
ration ud(z)u ~solid! and the normalized virialI (z)/I (0) ~dotted!
and amplitudeA(z)/A(0) ~dashed!. The initial condition is Eq.~36!
with D52, P15P252.3, andd055, corresponding to pointa in
Fig. 4.

FIG. 6. As Fig. 5, but forP15P252.8 andd054, correspond-
ing to pointb in Fig. 4.
le

interacting only weakly. As expected, we see the spread
@ I (z) increases continuously#, but despite the low power o
the beams the interaction is still strong enough for them
attract and move towards each other. However, before t
cross, the emitted radiation has propagated through thx
boundaries and starts to influence the dynamics at arouz
512, causing the until then monotonically decreasing se
ration to increase. Atz519.5 the radiation coming throug
the y boundaries even pushes the centery0 away from y0
50 ~not shown!.

We will define such a scenario, in which the spreadi
and consequent decay of the amplitude is so fast thatA(z)

a-

FIG. 7. As Fig. 5, but forP15P253.1 andd054, correspond-
ing to pointc in Fig. 4.

FIG. 8. As Fig. 5, but forP15P253.3 andd054, correspond-
ing to pointd in Fig. 4.
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drops to half its initial valueA(0) before the beams hav
crossed asindependent spreading. The attraction still observ-
able in this regime can be explained from geometrical opt
in that the opposite beam acts as a gradient in the refrac
index.

In Fig. 6 we show an example from the low-power regim
II with P55.6 andd054, in between the critical separatio
d0

dif54.3 and the threshold separationd0
th52.4. In this case

the Hamiltonian is still positive,H50.11, but nowuH intu
50.04 is 27% of uH freeu50.15, which is more thanudif

520%. Thus we expect the interaction to be strong, e
though the beams will ultimately spread out. As expect
we see that the beams attract each other strongly and cro
z59.83, and even a second time at aroundz541, although
influenced by radiation coming through the boundaries
this point.

It appears as if they perform damped oscillations ab
the center of mass (x,y)5(0,0) that could possibly continu
over an even longer distance if the initial separation had b
closer to the threshold separation for collapse. Oscillation
the separation between the beams in the diffraction regi
but close to the thresholdd0

th(P), were predicted analytically
in @16# from variational calculations. However, the oscill
tions were found to increase in amplitude. This is clearly
artifact of the variational approach and its main approxim
tion, in which the solution is assumed to keep a prescri
test profile during evolution.

We define such a scenario, in which the beams cros
least once before the amplitude has decayed to half its in
valueA(0), asfusion1spreading.

In Fig. 7 we show an example from the low-power regi
of regime III with P56.2 andd054, below the threshold
separationd0

th54.8. In this case the Hamiltonian is slight
negative,H520.03, anduH intu50.05 is dominant compare
to uH freeu50.02. Thus we expect the components to inter
strongly and cross at least once before eventually collaps
This is also confirmed by the numerical simulation, whi
shows that the beams cross atz58.57, with the amplitude
blowing up soon thereafter atz58.98, as they again com
close together after one cycle of a highly damped oscillati
with d(z) reaching onlyd(z)520.19.

We define such a scenario, in which the beams cros
least once before collapsing, asfusion1collapse.

Note that the amplitude blows up before all the power h
collapsed into the single point (x,y)5(0,0) and the virial has
reached zero, which is a well-known phenomenon in c
lapse studies~see the discussion in Sec. III!. In general, the
collapse distance predicted from virial theory should
viewed only as an upper limit of the actual collapse distan

In Fig. 8 we show an example from the high-power r
gime IV with P56.6 andd054, slightly above the critical
separationd0

col53.6. In this case the Hamiltonian is negativ
H520.14, with uH intu50.06 being 75% ofuH freeu50.08,
i.e., belowucol51. Thus we expect that the components w
attract each other, but not be able to fuse before collap
almost at their initial position. This is confirmed by the n
merical simulation, showing that the beams collapse az
55.04, with the separation having only decreased by 18%
d(z)53.28.
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We define such a scenario, in which the beams do
cross before collapsing, asindependent collapse.

Using these definitions of the different types of charact
istic dynamics, we have made extensive numerical calc
tions and recorded the regions in which they occur. The
sults are shown in Fig. 9, which confirms the existence
four regions of different dynamical behavior.

We see that the numerically found power threshold
collapse is slightly lower, but otherwise follows the theore
ical curvePth(d0). The shift ofDP'0.3 can be attributed to
three effects. First of all, the Gaussian initial condition d
fers from the stationary ground-state solutions found in S
IV, and thus power is lost to radiation in the initial ‘‘adjus
ment’’ phase~see Figs. 5, 6, and 10!. ThusDP'0.3 corre-
sponds approximately to the difference betweenP `

th52p
56.28 calculated from the Gaussian initial condition, a
P `

th5PNLS/255.85, which is the exact threshold in the lim
d0→`, where the dynamical equations reduce to two u
coupled 2D NLS equations. Furthermore, a certain amo
of power is lost to radiation during collision, and therefo
does not participate in the collapse process. Finally, it is w
known that the discreteness imposed by the numerical
lowers the threshold power@26#.

Taking into account the shiftDP'0.3 towards lower
powers, the limit between independent and strongly coup
~fusion! behavior in the low-power diffraction region is op
timally reproduced by the estimated critical separat
d0

dif(P) when udif50.25. From the high-power collapse re
gion we see thatucol51 is not necessary. Instead we find th
ucol50.75 optimizes the fit of the estimated critical sepa
tion d0

col(P) to the numerical data.
The damped oscillation in the separation between two

coherently coupled beams, which was observed in Fig. 6
of particular interest. Since such oscillations require that
beams keep their shape over a considerable distance,
can only be observed for beam powers close to the thres
for collapseP th(d0) ~as also found in@16#! where the beams
are marginally stable with the collapse length~or diffraction
length! going to infinity. In Fig. 10 we show an example o
damped oscillations in the low-power collapse regime
where the beams eventually collapse after having cros
four times. Such damped oscillations ending with fusion a
collapse as a single entity were recently predicted fr
variational calculations@16#. In contrast to the diffraction

FIG. 9. Numerically found regions of characteristic dynamics
the P2d0 plane for h15h254, r51, P15P2 , D52. Dashed
curves representd0

dif , d0
th, and d0

col for udif50.25 anducol50.75.
Dotted lines indicateP 0

th55.03 andP `
th56.28.
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regime, where the variational approach predicted that
amplitude increased, its main assumption of a constant
profile seems therefore to be a good approximation in
collapse regime~see the discussion in connection with Fi
6!.

We note that no such oscillations have been observed
two coherently coupled Gaussian beams described by
single-component 2D NLS equation@15#, which is similar to
Eqs. ~2! and ~3! in the sense that it also allows no stab
solitary waves towards which the beams can evolve. T
reason for this is that one can only compare the evolution
the total intensity in the two systems. This is confirmed
the profiles of the total intensity shown in Fig. 10, fro
which we see that the two beams cannot be separated
appear as a single hump even when they are farthest a
after the first crossing. The reason why we can separate t
is that they are incoherent, i.e., they each have a dist
mark, such as, e.g., orthogonal polarizations or different
quencies. In the NLS equation, when two coherent bea
~two humps in the amplitude of the NLS solution! are too
close, they have no such individual mark, and therefore t
cannot be separated, but appear as a single hump solut

In isotropic bulk media that allow the existence of stab
2D solitary waves, such as saturable Kerr media, fusion
two input beams into a single soliton or two solitons formi
a bound state can be observed@28#.

To illustrate the specific transitions between the differ
regimes, we show in Fig. 11 the diffraction distanceZdiff at
which the amplitude has decayed to half its initial value,

FIG. 10. As Fig. 5, but forP15P252.9 andd055, correspond-
ing to pointe in Fig. 9. The additional bottom figure shows the to
intensity profile uE1(x,0,z)u21uE2(x,0,z)u2 ~solid! and the indi-
vidual profilesuEn(x,0,z)u2 ~dashed and dotted! at z525, marked
by a vertical line in the upper three figures.
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distance of the first crossingZcross, the collapse distance
Zcoll , and the distance between the center of the two com
nents at collapseDsep5ud0(Zcoll)u, versus the total powerP
for fixed initial separationd054.

At high powers we see that the collapse distance is sh
the crossing distance is undefined, andDsep'd0 , i.e., the
beams collapse individually and we are in regime IV. Up
decreasing the power, the collapse distance increases an
separationDsep decreases. WhenDsep reaches zero atP
56.2 the crossing distance becomes well-defined and bi
cates from theZcoll curve, i.e., we have~at least one! crossing
and subsequent collapse and we enter into regime III. U
decreasing the power further, the collapse distance goe
infinity and is no longer defined below the thresholdP
55.6, where we instead have~at least one! crossing with
subsequent diffraction and we enter into regime II. Fina
below P54.7, the beams are no longer able to cross bef
the amplitude has decayed to half its initial value (Zdiff
,Zcross). ThusZcross is no longer defined and we enter in
regime I.

In Fig. 12 we fix instead the power and show the dep
dence on the separationd0 . For low powersP55.6 we see
that both the crossing and collapse distances are w
defined, with Zcross,Zcoll and Dsep50. Thus we have~at
least one! crossing with subsequent collapse in regime I
Increasingd0 , the crossing and collapse distances also
crease. When the beams are further separated thand053.8,
they no longer collapse, and we enter into regime II of fus
and diffraction. Eventually the beams are so far apart

FIG. 11. Zcoll ~solid!, Zdiff ~dotted!, Zcross ~dashed!, and Dsep

~dash-dotted! versusP for d054, corresponding to horizontal cut
in Fig. 9.

FIG. 12. Zcoll ~solid!, Zcross~dashed!, andDsep~dash-dotted! ver-
susd0 for P55.6 ~left! andP57.8 ~right!, corresponding to verti-
cal cuts in Fig. 9.
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tially (d0.6.0) that they diffract independently, and we a
in regime I.

For high powersP57.8 there is always collapse. Atd0
51.9 there is a transition between regimes III and IV
coupled and uncoupled collapse. Starting at small ini
separations theZcross and Zcoll curves bifurcate into each
other at this value, and the collapse separation starts to
crease. For sufficiently large separations both compon
collapse at the point of initial excitation,Dsep5d0 , and the
collapse distance saturates to the constant valueZcoll52.5.

VI. SUMMARY AND DISCUSSION

We have studied the properties of two incoheren
coupled localized waves in bulk cubic media with two tran
verse dimensions, described by the equations

i ]zE11~]x
21]y

2!E11~h1uE1u21ruE2u2!E150,

i ]zE21~]x
21]y

2!E21~h2uE2u21ruE1u2!E250,

wherer561. This represents the simplest scaled version
a general physical system that has equal diffraction coe
cients, but can include walk-off. The main scope of the pa
has been to give a complete description of the possible
namics, both analytically and numerically.

As a first step we have used virial theory to derive
sufficient condition for collapse~negative Hamiltonian,H
,0), which is valid for arbitrary values of the paramete
and a sufficient condition for spreading~low power of both
components,Pn,Pn

th), which is valid for r>0 and hn>
2r. These conditions were derived in@10# and@14#, respec-
tively, so we have only given a brief summary for the pres
notation.

However, in doing so we have emphasized an interes
property of this multicomponent system: The system c
serves the individual power in each component, but, ne
theless, when only one of the components has a power be
the thresholdPn

th , both components can still collapse, ev
when the Hamiltonian is positive, and the beam is give
strong prefocusing at the input~negative initial derivative of
the virial!. Furthermore, the use of the Schwarz inequality
the derivation means thatPn

th can significantly underestimat
the actual threshold power for collapse when the two co
ponents are initially separated. These facts underline thaH
,0 andPn,Pn

th aresufficientconditions.
To see whether the system has stable bound state

wards which a given input condition can evolve, we ha
numerically found the different types of families of statio
ary bright solitonlike solutions, which exist for positive SP
coefficients,hn.0. Sech-profile solutions calculated usin
variational techniques are found to accurately represent
numerically found solutions. Simple calculations show th
the Hamiltonian is zero on the soliton solutions, and that
derivative of the power with respect to the soliton eigenva
is also zero.

This predicts that the soliton solutions are so-called m
ginally stable, just as for the 2D NLS equation. In oth
words, this theoretical result suggests that the solitons
unstable, which is confirmed numerically for a number
test cases, where the solutions were observed to coll
f
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after a finite propagation distance. A rigorous proof of th
instability would be an important subject for further studie

In our numerical studies we have considered Gauss
initial conditions, for which the Hamiltonian can be calc
lated explicitly, and the sufficient conditions for collapse a
spreading reduce to the total power being above and be
certain threshold values,P.Pup

th (d0) and P,Plow
th , respec-

tively, where the threshold for collapse depends on the ini
separationd0 of the two components.

Fixing r51 and tracing the collapse threshold in th
(h1 ,h2) space, we have numerically confirmed these su
cient conditions for the particular case when the two com

nents are identical,E1(rW,0)5E2(rW,0), and superimposed
d050. In doing so we have emphasized an important diff

ence between symmetric systems withh15h2 and E1(rW,0)

5E2(rW,0), and asymmetric systems withh1Þh2 and/or

E1(rW,0)ÞE2(rW,0): The sufficient conditions for collapse an
spreading are to a good approximation necessary condit
also, only if the system is symmetric. This has not be
considered in the literature so far, and is important when
wants to accurately predict the regions of different dynami
behavior.

Finally we have studied the more general case when
two components are initially separated. In view of the abo
mentioned result we have for simplicity considered on
nearly symmetric systems in the theoretical treatment. In
caseH50, or equivalentlyP5Pup

th (d0), gives an accurate
prediction of the actual threshold for collapse.

Using virial theory and the internal structure of th
Hamiltonian, we have found the regions of different dynam
cal behavior in terms of the total power and the initial sep
ration. The conditionH(d0)5H free1H int(d0)50 separates
the phase space into two regions with collapse and spr
ing, respectively. From the relative strength of the interact
part uH int(d0)u and the free partuH freeu, each of these region
is then separated into two subregions of uncoupled
coupled behavior. To do so we have had to introduce t
additional parametersudif anducol , which gives the fraction
uH int(d0)/H freeu, or the degree of initial overlap, required fo
the attraction to be strong enough to cause the componen
cross before a collapse occurs (ucol), or before they have
diffracted so much that they are essentially in the linear
gime (udif). We have presented heuristical arguments for
approximate values ofudif and ucol , but in principle they
must be determined numerically.

In summary, the theory gives three characteristic pow
dependent initial separations, which divides the phase sp
into four regions of different dynamical behavior. For th
symmetric case withr51,hn54, and identical initial condi-
tions for the two components, we have performed extens
numerical calculations and traced the characteristic sep
tions. The results verify the predictions of the four regio
and give the fractionsucol'0.75 andudif'0.25. Thus, as
heuristical arguments predict, the initial overlap must
larger in the collapse region than in the diffraction region
order for the components to fuse. A numerical example
the dynamics in each region is presented.

This completes the pioneering work of McKinstrie an
Russel@10#, who first used virial theory to find the charac
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teristic separation dividing collapsing and diffracting so
tions, and gave two numerical examples of fusion with s
sequent collapse and spreading. Furthermore, it comp
the recent work of Berge´ @16#, who first used the interna
structure of the Hamiltonian to separate the collapse reg
into subregions of fusion before collapse and independ
collapse. Here the fractionsudif anducol were not introduced,
but uH int(d0)u5uH freeu was assumed to give the separatr
which is why the specific separation of the diffraction regi
into coupled and uncoupled behavior was not determine

Close to the threshold for collapse the solution is marg
ally stable and the two components keep their shape ov
considerable distance, with the collapse or diffraction len
going to infinity. In this region we have observed that t
components were able to cross several times before fus
We have shown two numerical examples of this oscillat
behavior, in which the two components performed damp
oscillations around the center of mass, before eventually
lapsing and diffracting as one entity, respectively.

Such oscillations of initially close Gaussian beams w
medium powers were predicted from variational calculatio
@16#. In the collapse regime the oscillations were found to
damped, corresponding to what we observe. However, in
diffraction regime the amplitude of the oscillations we
e-
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found to increase indefinitely, which contradicts our nume
cal results. This is clearly an artifact of the variational a
proach and its main approximation, in which the solution
assumed to keep a prescribed test profile during evolut
An interesting subject for further studies would be to adj
the variational approach appropriately, such as to be abl
theoretically predict the damped oscillations in the diffra
tion regime also.

Here and in@10,16# specific examples have been given f
a symmetric system. We do not expect the existence of
four different regions to change qualitatively for asymmet
systems, but in any case, a thorough study of the asymm
case would be important. Furthermore, the influence of
four-wave-mixing terms, which are neglected in our mod
should be investigated.
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