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Abstract
Background: When analysing microarray and other small sample size biological datasets, care is
needed to avoid various biases. We analyse a form of bias, stratification bias, that can substantially
affect analyses using sample-reuse validation techniques and lead to inaccurate results. This bias is
due to imperfect stratification of samples in the training and test sets and the dependency between
these stratification errors, i.e. the variations in class proportions in the training and test sets are
negatively correlated.

Results: We show that when estimating the performance of classifiers on low signal datasets (i.e.
those which are difficult to classify), which are typical of many prognostic microarray studies,
commonly used performance measures can suffer from a substantial negative bias. For error rate
this bias is only severe in quite restricted situations, but can be much larger and more frequent
when using ranking measures such as the receiver operating characteristic (ROC) curve and area
under the ROC (AUC). Substantial biases are shown in simulations and on the van 't Veer breast
cancer dataset. The classification error rate can have large negative biases for balanced datasets,
whereas the AUC shows substantial pessimistic biases even for imbalanced datasets. In simulation
studies using 10-fold cross-validation, AUC values of less than 0.3 can be observed on random
datasets rather than the expected 0.5. Further experiments on the van 't Veer breast cancer dataset
show these biases exist in practice.

Conclusion: Stratification bias can substantially affect several performance measures. In
computing the AUC, the strategy of pooling the test samples from the various folds of cross-
validation can lead to large biases; computing it as the average of per-fold estimates avoids this bias
and is thus the recommended approach. As a more general solution applicable to other
performance measures, we show that stratified repeated holdout and a modified version of k-fold
cross-validation, balanced, stratified cross-validation and balanced leave-one-out cross-validation, avoids
the bias. Therefore for model selection and evaluation of microarray and other small biological
datasets, these methods should be used and unstratified versions avoided. In particular, the
commonly used (unbalanced) leave-one-out cross-validation should not be used to estimate AUC
for small datasets.

Published: 2 September 2007

BMC Bioinformatics 2007, 8:326 doi:10.1186/1471-2105-8-326

Received: 6 February 2007
Accepted: 2 September 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/326

© 2007 Parker et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



BMC Bioinformatics 2007, 8:326 http://www.biomedcentral.com/1471-2105/8/326

Page 2 of 16
(page number not for citation purposes)

Background
When analysing microarray datasets for class comparison
and class prediction [1] purposes, the generalisation per-
formance of machine learning algorithms such as linear
discriminant analysis (LDA) and support vector machines
(SVM) is typically estimated using sample-reuse tech-
niques, as the sample sizes are often too small to use a sep-
arate withheld test set: such schemes include k-fold cross-
validation (CV), leave-one-out CV (LOOCV), bootstrap
methods, or repeated holdout (also known as random
splitting) [2-4]. The estimates of generalisation perform-
ance are then used for model selection, parameter tuning,
feature selection, or performance evaluation in empirical
comparisons of machine learning methods. When com-
paring the results of different classifiers it is also necessary
to test for statistical significance [5,6]. Microarray data is
atypical of the data commonly classified by machine
learning methods as it often has a small sample size and
low discriminability between the classes e.g. in cancer
prognostic and therapeutic response studies. Various
biases can occur in such a setting when using the above
mentioned validation schemes [7]. For example, Ambr-
oise and McLachlan [8] and Simon et al. [1] demonstrated
an optimistic selection bias that occurs when gene selec-
tion is done using the entire dataset rather than separately
for each resampled training set. This bias arises through
incorporation of information from the test sets into the
training of the classifier. Varma and Simon [9] demon-
strated in a simulation study the optimistic hyperparame-
ter selection bias [10] which occurs when reporting the
best error rates achieved on the validation set used to tune
classifier (hyper)parameters, rather than using a nested
CV or separate test set to evaluate the classifier.

It is also known that in some limited situations, such as
when measuring the error rate of a classifier on a perfectly
balanced dataset, large pessimistic biases can occur when
using CV [10,11] due to negatively correlated class pro-
portions between the training sets and their correspond-
ing test sets (where by pessimistic we mean that the
measured performance is less than the true generalisation
error). However, because of the limited circumstances in
which this bias appears to be an issue (i.e. small, bal-
anced, low signal datasets) it has been largely ignored in
the literature.

What has not been previously appreciated is that this sys-
tematic bias due to inadequate stratification is quite per-
vasive and can occur in a wide variety of contexts,
including when using ranking performance measures
such as the frequently used area under the receiver operat-
ing characteristic curve (AUC). This is not obvious as the
AUC is considered to be a measure that is insensitive to
varying class proportions. Importantly, with these meas-
ures we show that the bias can also occur in highly imbal-

anced or skewed datasets, and indeed the effect of the
stratification bias can be larger for these performance
measures than for the standard error rate.

Many microarray studies have small datasets and weak
signals (the signal strength here means the inherent dis-
criminability of the signal, i.e. how well an optimal classi-
fier can perform), thus the bias is especially important and
steps should be taken to minimise it. We demonstrate sev-
eral techniques including careful implementation of the
AUC calculation and stratified variants of resampling
schemes that can be used to remove or minimise the bias.

Review of ROC and AUC calculation
For comparing and assessing the performance of gene
selection and classification algorithms in the analysis of
microarray and other biological datasets, the receiver
operating characteristic curve (ROC) and the associated
AUC are popular measures of performance [12]. They
have several advantages over error rate [13-15] including
insensitivity to the prior class probabilities and class-spe-
cific error costs. This is especially important in the case of
microarray observational studies where the particular
class proportions used may be unrelated to clinical preva-
lence, and in class comparison (i.e. differential gene
expression) studies where an inherent measure of the dis-
criminability of the signal using a given classifier is
required. The ROC shows the trade-off between sensitivity
and specificity for a two-class classifier or diagnostic sys-
tem. It has long been used in medical diagnosis [16] and
has become widely used in evaluating machine learning
algorithms [17]. The AUC summarises an ROC and pro-
vides a single measure of the performance of a classifier
and the discriminability of a signal: a random signal has
an AUC of 0.5 and a perfectly discriminable signal has
AUC of 1.0.

The AUC of a classifier with a scoring output, such as the
probability of a sample being class 1, can be computed
without first constructing an explicit ROC curve [18]:

where n+ and n- are the numbers of positive and negative

samples, , and ri is the rank of the ith positive

sample in the sorted classifier output (sorted in decreasing
order of scores or posterior probabilities). Similarly, the
ROC curve can be computed by an incremental algorithm
which scans the sorted outputs [19]. The AUC is equiva-
lent to the Wilcoxon-Mann-Whitney statistic, which
measures the probability that two random samples from
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different classes will be ranked in the correct order [20].
An estimate of the standard error of the AUC is given ana-
lytically by the Hanley-McNeil estimate [20]. When com-
bining the results of the folds or replicates of a validation
procedure to compute an overall estimate of the ROC
curves or AUC, there are two main approaches: the pooling
and averaging strategies [10,13,19,21]. The pooling strat-
egy involves collecting the classifier scoring outputs deter-
mined on each test set and calculating the AUC on this set
of combined outputs. In the averaging strategy, a separate
AUC is computed for each test set, and the mean of these
AUCs is computed. Note that the pooling strategy is the
only method of measuring AUC (and calculating ROC
curves) when using LOOCV. Both strategies are used in
practice and the current literature is equivocal about
which approach is to be recommended (both approaches
are described as valid estimates of AUC and ROC curves in
[10,19,22]). Witten and Frank [10] note that the pooling
strategy has the advantage that it is easier to implement.
Also, it is expected to have a lower variance. In part, this is
because when taking an average over f averages, each cal-
culated over n results of a random variable X, we get the

following variance: . In

contrast if we calculate a direct average over all results
(like the pooling strategy) the variance will be lower:

. The difference in variance is

only significant when n or f is small.

The pooling approach assumes that the results of each
fold is a sample from the same population [21]. In the
next section we show that this assumption is generally not
valid for CV or bootstrap and can lead to large pessimistic
biases.

Methods
Theoretical analysis
The fundamental issue is that most classifiers incorporate
the prior probabilities of the classes, estimated from the
training set, either as an explicit prior term, as is the case
for generative classifiers such as LDA, or implicitly (see
below). When using CV this estimate is negatively corre-
lated with the class proportions of the corresponding test
set. We now analyse the bias that arises from this negative
correlation.

Analysis of bias in error rate and AUC estimation
CV uses sampling without replacement to partition the
dataset into training and test sets, thus any deviation from
the class proportions of the whole dataset in a training set

leads to an opposite deviation in the corresponding test
set. More specifically, the correlation of the class propor-
tions of a training and test set pair is -1. For small datasets,
unstratified CV can lead to large variations in the training
and test set class proportions, so a large negative covari-
ance between training and test sets class proportions
exists. Stratified CV [10] is a CV variant which ensures that
the proportions of the classes in the test sets of the folds
are as close as possible to the overall class proportions.
Stratified CV can reduce the above mentioned covariance
but not remove it entirely due to irreducible quantisation
errors which are significant for small test set sizes. For
example, a 10-fold stratified CV on a dataset with 30 sam-
ples has three samples in each fold, and cannot be strati-
fied correctly for two classes in equal proportions.
Somewhat surprisingly, as shown in the empirical section
of this paper, this tiny error can still lead to substantial
biases. The same reasoning applies when using repeated
holdout.

By contrast, bootstrap methods use sampling with
replacement. A training set of the same size as the whole
dataset is created by randomly sampling the whole dataset
with replacement, with the remaining unsampled
instances forming the test set. The test and training sets,
excluding replicates, have a similar covariance of the class
proportions as a 2 : 1 repeated holdout, although the
added variance of the replicate samples leads to a some-
what smaller correlation of approximately -0.7.

Using Bayesian decision theoretic analysis, we show that
this negative covariance between training and test set pro-
portions can lead to large biases in error rate and AUC
estimation. Let fk(x) be the class-conditional density of

feature vector x in class G = k, and let !k be the prior prob-

ability of class k, such that , then Bayes theo-

rem gives the posterior probabilities

and, assuming the two class case with classes 1 and 2, the
log ratio is

Note that as the signal becomes weaker, i.e. as the first
term diminishes, the prior probabilities assume increased
relative importance. The Bayes decision rule for the two
class case is to classify a sample as class 1 when the likeli-
hood ratio f1(x)/f2(x) exceeds a threshold t, where for the

Var X
f naverage est( ) ∝

− ⋅ −
1

1 1

Var X
f npool est( ) ∝

⋅ −
1

1

π ll
K
=∑ =1 1

Pr( | )
( )

( )
G k X x

f x

f x
k k

l ll
K

= = =
=∑

π
π1

log
Pr( | )
Pr( | )

log
( )
( )

log
G X x
G X x

f x
f x

= =
= =

= +1
2

1

2

1

2

π
π

(1)



BMC Bioinformatics 2007, 8:326 http://www.biomedcentral.com/1471-2105/8/326

Page 4 of 16
(page number not for citation purposes)

Bayes (minimum error) rate t is the inverse ratio of the
prior proportions, !2/!1.

First we consider the bias in error rate. During CV or boot-
strap, the prior proportions used to determine the classifi-
cation threshold are estimated from the training set,

, but due to incomplete stratification this

will typically differ from the prior proportions of the

whole data set, . The corresponding test set

proportions are negatively correlated, and so if

, then

. Hence, as noted by Kohavi

[11], for a no-signal balanced dataset (i.e. equal class pro-
portions), where the likelihood ratio and the ratio of prior

proportions of the whole dataset, , = 1, the

opposite decision to the correct classification for the test
set elements will be reached, leading to a pessimistic bias
and worse-than-random results. That is, for a no-signal
dataset the optimal Bayes classifier is a majority-voter, and
in this case, the majority class on the training set is the
opposite to that of the test set.

If there is a signal (i.e. the first term of eq. 1 > 0), then the
classification accuracy will be pessimistically biased by
this effect to a lesser extent, depending on the signal
strength.

In the above analysis, the stratification bias for error rate
only manifested when the dataset was balanced, however
it can occur more widely in microarray studies. The aim in
class comparison studies of microarrays is to determine
the inherent discriminability of the genes in distinguish-
ing the classes. A preprocessing technique in this case is to
balance the classes by subsampling the majority class so
that only the feature information is used in discriminating
the classes and not the prior probabilities. Another tech-
nique applicable to classifiers that minimise regularised
risk, such as Support Vector Machines (SVMs), is to use
class dependent regularisation inversely proportional to
the class proportions. Otherwise, for very imbalanced
classes the classifier can effectively turn into a majority
voter where no feature information is actually used to dis-
tinguish the classes. Note that with such preprocessing,
the bias in error rate will also occur for imbalanced data-
sets.

Now we consider the bias in AUC estimation using the
pooling strategy. An equivalent formulation of the Bayes
decision rule described above for the two class case is that
the posterior probability Pr(G = k|X = x) exceeds a thresh-

old t, where for the Bayes decision rule t = 0.5. For a given
trained classifier, varying the threshold in either of these
formulations across its full range will generate equivalent
ROC curves, and hence AUC. As the ROC curve measures
the inherent discriminability of the class conditional dis-
tributions irrespective of the prior class probabilities, cal-
culation using the likelihood ratio formulation would be
preferred [22]. In practice, however, most classifiers will
return an estimate of the posterior probability, or a related
uncalibrated measure such as the decision value, or dis-
tance to the hyperplane separating the classes, in SVMs,
and so this second formulation is typically used.

The pooling strategy for AUC calculation assumes that the
classifier outputs across folds of CV are comparable and
thus can be globally ordered. This is the case if the AUC is
calculated using the likelihood ratio for ranking; if the
AUC is calculated using posterior probabilities (or deci-
sion values) for ranking as is usually done, the prior prob-
abilities will vary in each training set because of
incomplete stratification, and hence the classifier outputs
will not be comparable across folds. This can lead to test
samples in different folds being ranked in the wrong
order:

Assume a two-class classification problem with classes 1
and 2, using the posterior probabilities (of being class 1)
for ranking the samples. Let

 where  is

the overall class proportions in the full dataset and " may
not equal 1 due to incomplete stratification. Consider any
fold. Suppose " > 1, i.e. class 1 is over-represented in the
training set. Then the prior term of eq. 1 is

, and log " > 0.

Thus, the samples in the test set of this fold will overall
receive a higher ranking than in a completely stratified
fold.

However, due to the negative correlation between the
training and test set proportions,

, where # < 1 i.e. class 1 is

under-represented and class 2 is over-represented in the
test set. This means that proportionally more samples of
class 2 get this higher ranking than samples of class 1. By
symmetry, the reverse applies when " < 1, i.e. in the test
sets where class 1 is over-represented, samples get lower
rankings.

As the AUC is an estimate of the probability of two inde-
pendent samples being ranked in the correct order, it can
be seen that this will lead to a pessimistic bias of the AUC
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towards 0 if the samples are ranked together as in the
pooling method. Note that this bias becomes more sub-
stantial as the predictions become less certain; when the
predictor is a constant uncertain predictor (i.e. P(G = i|X =
x) = 0.5, i $ 1, 2) the bias is large and leads to an AUC less
than the expected 0.5.

In contrast, the stratification bias discussed here does not
affect AUC calculated using the averaging strategy which
averages the AUC computed per test set over all folds.
Within each test set, the AUC is insensitive to class propor-
tions and so is accurate, and as a rank ordering between
folds is not required, no bias will occur in the overall AUC
estimate.

Application to practical induction algorithms
The classifier resulting from the Bayesian decision theo-
retic analysis, the Bayes classifier, is the optimal classifier.
Practical induction algorithms aim to approximate the
Bayesian decision theoretic analysis described above to
varying extents, and suffer from stratification bias to vary-
ing degrees. A generative classifier such as LDA approxi-
mates this analysis by effectively estimating an underlying
model incorporating class conditional likelihoods and
prior class proportions as described above [23]. For LDA
the class conditional likelihoods are modelled as multi-
variate Gaussians. Therefore, as analysed in the previous
section, the degree of stratification bias depends on the
signal strength: for low signal datasets, the relative impor-
tance of the prior term increases and so the relative strati-
fication bias increases. In the limit of a no-signal dataset,
only the prior term remains and the classifier becomes a
simple majority voter with maximal stratification bias.

Some variants of LDA assume that the prior proportions
are the same for all classes, and so the prior term is
ignored. Such classifiers include minimum distance (aka
nearest centroid) and nearest Mahalanobis distance classi-
fiers [23], which are simple versions of LDA that classify a
sample to the nearest class mean. As they exclude the prior
term, they are not affected by the form of stratification
bias described here. Other classifiers, including non-para-
metric classifiers such as k-nearest neighbour and discrim-
inative classifiers such as SVMs, approximate the ideal
Bayes classifier, including the prior term, indirectly. Such
induction algorithms still implicitly incorporate prior
probability information by inducing a classifier optimised
for imbalanced datasets, and in the limit for random sig-
nals they will tend towards a majority voter. This means
that the above analysis applies as well to these classifiers
and they suffer from stratification bias accordingly, but
without an explicit calculation of prior proportions they
are more difficult to study analytically. SVMs are discrim-
inative in that they find a separating hyperplane between
the two classes and do not directly estimate the class-con-

ditional likelihoods and prior proportions of the classes;
they can output for ranking purposes the internal decision
values used for classification (normally the distances to
the hyperplane separating the classes). Therefore SVMs are
affected by the class prior probabilities only implicitly and
incompletely due to shifts in the hyperplane with varying
class proportions, and so are only partially affected by the
form of stratification bias discussed here. SVMs that gen-
erate a posterior probability estimate [24] approximate
the Bayesian analysis above and thus are expected to be
substantially affected by this stratification bias. Note that
while we have limited the analysis to the two-class prob-
lem, the same arguments apply in the multiclass case, and
to multiclass extensions of AUC. In addition to the strati-
fication bias discussed above, there is a similar additional
bias that can affect the pooling strategy of AUC estima-
tion. Any non-systematic noise across the folds or repli-
cates of the validation scheme, due to slightly different
classifiers learnt from the training sets, will perturb the
ranking values or probabilities and attenuate the AUC
towards the random value of 0.5 (as opposed to the bias
towards an AUC of 0 for the correlated noise in stratifica-
tion bias).

Also, note that this analysis assumes homogeneous data
in each of the labelled classes, as is the typical assumption
in machine learning algorithms. If the classes in fact are
heterogeneous with unidentified subclasses, then these
internal subclasses may themselves not be fully stratified
across folds (even when using stratified versions of CV),
and so a similar analysis would apply to the subclasses in
this case, although affecting the first, likelihood, term of
eq. 1 rather than the second, prior probability, term as
analysed here. Further analysis of this form of stratifica-
tion bias in such heterogeneous datasets is outside the
scope of this paper and is a focus of future research.

Ameliorating stratification bias
As described above, the bias is introduced by the negative
covariance of the training and test set class proportions
across the folds or replicates of the validation scheme.
Therefore, approaches to remove this bias are focused on
removing this covariance.

As noted previously, for estimating AUC, the averaging
strategy does not suffer from this stratification bias. A
more general approach, applicable also to other perform-
ance measures, is to use a sample-reuse method that does
not introduce these correlated class proportions. Stratified
repeated holdout samples independently from each of the
classes in the proportion of the original dataset [25]. Strat-
ified bootstrap sampling [4] similarly ensures that the
training set has classes in the same proportions as the orig-
inal set by sampling with replacement separately from
each class. As the covariance and correlation between a
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constant (here the training set class proportions) and
another random variable (the test set proportions) equals
0, these approaches completely remove this form of strat-
ification bias.

For cross-validation, although stratified CV [10] removes
the bulk of the covariance, a significant amount can
remain, especially for imbalanced datasets and small test
set sizes. When the sample size for each class is not a mul-
tiple of the number of folds the stratification is incom-
plete, causing the proportion of samples in the training
sets to differ. As shown in the empirical section, this resid-
ual covariance can lead to substantial biases when the test
sets are small.

As noted above, if the class proportions in the training sets
are constant across all folds, then they are uncorrelated
with the test set class proportions and no stratification
bias is present. This suggests a modification to the stand-
ard CV to eliminate the stratification bias: ensure that the
training set class proportions are representative of the
overall data class proportions but remain constant across
all folds. We describe a new validation method, balanced,
stratified CV (BSCV), which does this. It sub-samples to
exclude a small number of random samples from the
training set in each fold. Given a stratified k-fold cross val-
idation (or LOOCV) partition, let Tcf be the count of class
c in the training set of fold f, and define Mc = minfTcf to be
the minimum count of class c in the training sets across all
folds; then, in each training set Tcf - Mc samples are ran-
domly deleted for each class c. As all classes will have
count Mc in each training set, there will be no correlation
between training and test set class proportions, removing
the bias. Furthermore, as the number of elements of each
class varies by only 1 among the training sets for stratified
CV, the maximum number of removed elements from
each training set is the number of classes: in the two class
case at most two samples are removed. A potential draw-
back is the slightly smaller training sets, however, as at
most one sample per class is removed, the degradation in
performance due to learning curve effects is minimal and
is dominated by the stratification bias. The pseudo-code
of BSCV is given in Algorithm 1. To implement BSCV only
minor modifications to stratified CV are needed. BSCV
applied to LOOCV is denoted as balanced LOOCV, as
LOOCV cannot be otherwise stratified. In the case of bal-
anced LOOCV, only a single sample needs to be removed
from each training set.

Input: training sets Ti of the m folds provided by stratified
CV, number of classes n

Output: training sets Ti of BSCV

for i = 1 to n do

for j = 1 to m do

Cij = |{x $ Tj|x is of class i}|

end for

end for

for i = 1 to n do

Mi = minj Cij

end for

for i = 1 to n do

for j = 1 to m do

remove (Cij - Mi) random samples of class i from Tj

end for

end for

Algorithm 1: BSCV algorithm

Empirical analysis
To evaluate empirically the effect of the stratification bias
analysed in the previous sections, we performed experi-
ments using Monte Carlo simulation and a real-world
dataset. The sample-reuse validation schemes examined
included stratified and unstratified CV, LOOCV, and
bootstrap. All CVs were 10-fold with no repetitions where
not indicated otherwise. The zero estimator %0 bootstrap
version was used in the bootstrap experiments as the aim
was to investigate the relative performance differences due
to stratification bias; the 0.632 and 0.632+ estimators
bootstrap versions [26] correct for the learning curve effect
of their smaller training set by incorporation of the resub-
stitution error, which could confound the bias we are
investigating.

For SVM, the AUC can be computed by ranking on either
the decision values or the estimated posterior probabili-
ties. In the simulation experiments, estimated posterior
probabilities were used, while for the real-world exam-
ples, decision values were used.

The grey lines in figures 1, 2, 3, 5, 6, 7 and 8 show the opti-
mal values for AUC and the optimal (Bayes) error rate for
class proportion 0.5. If both optimal AUC and error rate
are shown, the line for AUC is solid. The R code and data
for the experiments are available from the authors upon
request.
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Simulation
We performed Monte Carlo simulations using 1 and 10-
dimensional normal distributions, the latter to approxi-
mately simulate ten significantly differentially expressed

genes in a microarray study, as may be selected by some
gene selection method (applied per fold). Samples were
drawn from two multivariate Gaussian distributions (one
Gaussian per class). The discriminability (or Mahalanobis

Simulation results averaged over 500 runs using DLDA and versions of CV for a random signalFigure 1
Simulation results averaged over 500 runs using DLDA and versions of CV for a random signal. The two classes 
have the same univariate Gaussian distribution (d' = 0), where the known mean and variance are used by the classifier. The 
number of samples is 30. The blue circles and green diamonds show the AUC computed using the pooling and averging strat-
egy. The accuracy and balanced accuracy (1-BER) are shown as red triangles and black crosses.
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distance)  measures the

degree of separation of the Gaussians. In our simulations
we used &0 = 0, ' = I and varied &1 to set the discriminabil-

ity of the signal.

A d' of 0 is a random signal and corresponds to an error
rate and AUC of 0.5; a d' of 0.5 is a weak signal; a d'of 1.0
is a moderate to strong signal; and a d' of 2.0 is a very
strong signal. In the results section, we show the estimated
error rate and optimal AUC corresponding to each simu-
lation d' as a grey line. Two classes of induction algorithm
were compared: diagonal LDA (DLDA) and SVMs. DLDA
is a version of LDA that uses the assumption of independ-
ent features such that the covariance matrix is diagonal,
which matches the simulation data model. Note that
DLDA as defined here incorporates both the class condi-
tional likelihood and prior proportion terms of eq. 1, as
defined in [23], as opposed to the definition that excludes
the prior term used in [2].

The performance measures examined were classification
accuracy (1-error rate), AUC, and balanced error rate
(BER). BER is an estimate of classifier performance inde-
pendent of class proportions, defined as the mean of the
false positive and false negative rates. In the simulations,
we computed the optimal Bayes error rate and estimated
the optimal AUC using Monte Carlo estimation from the
known distributions. The simulations were repeated 500
times which was sufficient to generate small standard
errors on the plots to allow the demonstration of the bias
effects with statistical significance. Each bootstrap valida-
tion procedure used 10 replications.

Real-world dataset
We used the van 't Veer [27] breast cancer dataset as an
example of a relatively weak-signal prognostic microarray
study. The dataset contains 98 samples, with 52 in the
poor prognosis (distant metastases developed in less than
5 years) class, and 46 in the good prognosis class. This
dataset was classified using an SVM (linear kernel; C = 10)
and all 5952 genes. The classifier output was the decision
values and not posterior probabilities. The AUC was com-
puted using both the pooling and averaging strategies.
Random subsamples were used to generate curves of var-
ying sample sizes.

A useful check for remaining bias in classifier evaluation
is to perform a label permutation test. Permutation of the
class labels yields a no-signal dataset with an expected ran-
dom performance over multiple permutations. Any signif-
icant deviations of the mean performance from the
expected random performance level are likely caused by
some uncorrected bias; such a check will also detect the
other forms of bias discussed in the introduction. The per-

′ = − −−d t( ) ( )µ µ µ µ0 1
1

0 1Σ

Simulation results using DLDA and 10-fold unstratified CV for a weak signalFigure 2
Simulation results using DLDA and 10-fold unstrati-
fied CV for a weak signal. Same experimental setup as in 
additional figure 1(a), but d' = 0.5.
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Simulation results using weighted SVMFigure 3
Simulation results using weighted SVM. The dataset 
was balanced through weighting by the inverse of the overall 
class proportions. Uses CV and SVM on a dataset of size 30 
and discriminability d' = 0.5. The blue circles and red triangles 
show the AUC calculated using the pooling strategy and the 
classification accuracy.
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Correlation and covariance of class proportions between the training and test setsFigure 4
Correlation and covariance of class proportions between the training and test sets. The class proportions of the 
whole data sets are 0.5.
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Simulated classification results using DLDA (using known mean and variance) with varying separation of the meansFigure 5
Simulated classification results using DLDA (using known mean and variance) with varying separation of the 
means. The two classes have a univariate Gaussian distribution.
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Simulated classification results using DLDA for varying class proportionsFigure 6
Simulated classification results using DLDA for varying class proportions. The two classes have a univariate Gaus-
sian distribution and d' = 0.2. The mean and variance of the Gaussians were estimated from the data.
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Simulated classification results for various induction algorithmsFigure 7
Simulated classification results for various induction algorithms. The two classes have a multivariate Gaussian distri-
bution (10 dimensions). The discriminability d' is 1 and the data set contains 50 elements.
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mutation test was applied for measuring AUC and error
rate. In the case of error rate, the initial dataset was bal-
anced by subsampling of the majority class to 46 samples,
and stratified sampling of this balanced dataset was used,
leading to an expected error rate of 0.5. Except where oth-
erwise noted, at least 500 repetitions were performed for
all experiments. Each bootstrap run consisted of 50 repli-
cates.

Results and discussion
Simulation
Figure 1(a) shows an unstratified 10-fold CV estimate of
AUC, accuracy and balanced accuracy (1-BER) for a size
30, simulated no-signal (d' = 0) univariate Gaussian data-
set. The induction algorithm was DLDA, where the known
distribution means and variances were used directly. The
class proportions were varied from 0.1 to 0.9. For such a
random dataset, the expected AUC and balanced accuracy
is 0.5, and the expected accuracy at proportion 0.5 is 0.5
(and for data with majority class in proportion p, the
expected accuracy is p). For proportions close to 0.5, the
accuracy and balanced accuracy show a substantial pessi-
mistic stratification bias below the expected 0.5 level. The
AUC computed using the pooling strategy similarly shows
a large pessimistic bias below the expected 0.5 and this
occurs at all proportions, with a larger bias for imbalanced
datasets. The AUC computed using the averaging strategy
does not show any stratification bias, as expected, and lies
on the 0.5 line. Stratified CV removes much of the stratifi-

cation bias but there remains residual bias in accuracy,
balanced accuracy and pooled AUC. Figure 1(c) shows the
same situation as figure 1(a) but using balanced, stratified
CV: BSCV shows no stratification bias.

Figure 2 shows a similar simulation to 1(a), but with a
weak signal univariate Gaussian dataset (d' = 0.5). Note
that the stratification biases for accuracy and AUC are still
present but less than in figure 1. AUC computed using the
averaging strategy shows no bias.

Figure 3 shows AUC and accuracy for a dataset corrected
for class imbalance before analysis. A 5-dimensional d' =
0.5 signal was used with a linear SVM (C = 1) weighted to
approximate a balanced dataset, by adjusting the weights
parameter and the decision threshold by the inverse of the
class proportions of the whole dataset; balancing the data-
set by subsampling the majority class would give similar
results. The results show that, in this situation, the stratifi-
cation bias affecting the error rate occurs at all proportions
indicating that it can occur more widely than may be
expected.

Figure 4 shows the covariance between the training and
test set class proportions using various sample-reuse vali-
dation schemes. In general, the covariance decreases with
increasing sample size. Unstratified cross-validation and
unstratified bootstrap have the largest covariance,
although the correlation of bootstrap is smaller due to the

Same experimental setup as in figure 7, but AUC is calculated by averaging over the foldsFigure 8
Same experimental setup as in figure 7, but AUC is calculated by averaging over the folds.
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sampling with replacement. Also, note that with stratified
CV, the covariance drops to zero when the sample size is
a multiple of twice the fold number, in which case the
data can be perfectly stratified, but for other sample sizes,
some residual covariance remains. BSCV and stratified
bootstrap, by contrast, remove the covariance completely.

Figure 5 shows AUC computed using the pooling strategy
with DLDA and evaluated with various validation
schemes. The classes of the simulated dataset have univar-
iate Gaussian distributions with varying d' of 0.2 and 0.5
(d' of 1.0 and 2.0 are shown in supplementary figure 2
[see Additional file 1]), the sample sizes range from 10 to
100, and the class proportions are 0.5. Note that, as
expected, the pessimistic bias for each validation method
closely follows the covariance curves of figure 4(a). With
increasing discriminability d' the bias decreases and the
averaged performance measure becomes the same value
for all validation schemes. The standard errors for the
plots in figure 5 (over the 500 iterations) were lower than
0.01. The bias of CV was found to be statistically signifi-
cant with p values lower than 0.001 up to a data set size of
60 (d' = 0.5).

Figure 6 shows the same data as figure 5(a), but for vary-
ing class proportions. Also, in this case the DLDA uses cal-
culated estimates of mean and variance, and so is a more
realistic simulation of DLDA classification. The BSCV
obtained the highest AUC. Due to the parameter estima-
tion task in this simulation, learning curve effects are now
superimposed on the stratification bias, and so all curves
show worse results at smaller sample sizes. Again the
biases are highly statistically significant, as the standard
errors of the plots were lower than 0.015 at all points.
Note that the Hanley-McNeil estimate for the standard
error of AUC on a single sample of the simulation 6(b) at
sample size 50 is 0.08, and that the magnitude of the bias
exceeds this, indicating that this bias could substantially
affect performance evaluation of small, very low-signal
datasets in practice.

Figure 7 shows the stratification bias for AUC computed
for various induction algorithms: linear kernel SVM with
cost parameter C varied from 0.1 to 100, SVM with radial
basis function ((2 = 5), DLDA (with mean and variance
estimated from the data), and a minimum distance classi-
fier. The classes of the dataset had a 10-dimensional Gaus-
sian distribution with d' = 1.0. The results for d' = 0.5 are
available as supplementary figure 3 [see Additional file 1].
The dataset size was 50 and the pooling method was used
to compute AUC.

The results for unstratified cross-validation (CV) shows
that all classifiers are pessimistically biased compared
with the BSCV results, indeed, many classifiers show

AUCs below the random 0.5 level for imbalanced data-
sets. As expected, the minimum distance classifier, not
incorporating prior proportions, does not show any sig-
nificant stratification bias. Importantly, the relative order-
ing of the classifiers differs from CV to BSCV, e.g. using
CV, linear SVM with C = 100 would appear to be worse
than RBF SVM for not too extreme proportions while it is
clearly better using BSCV. Thus, this experiment also dem-
onstrates that model selection could be impacted by strat-
ification bias.

Using BSCV, which removes the stratification bias, DLDA
and minimum distance classifier have equal AUCs, as
expected, and they are both the best performing classifiers
(as their models match the simulation). The stratification
bias of the SVMs is actually greater than that for DLDA in
this simulation. This is due to the SVMs being less effective
classifers on this dataset and showing a lower AUC. As dis-
cussed in the theoretical analysis section, with a weaker
signal the prior proportions assume greater relative
importance and thus leads to an increased stratification
bias. For comparison, the Hanley-McNeil estimate of SE
of the AUC for a single sample of the simulation at pro-
portion 0.3 (and AUC = 0.6) is 0.085, and this is compa-
rable to the bias shown in some SVMs at this class
proportion. Note that all of the induction algorithms have
somewhat lower AUC at the limits of the class propor-
tions, even with BSCV: this is due in part to such imbal-
anced datasets being intrinsically more difficult to classify,
and not only due to stratification bias. The standard errors
of all plots were lower than 0.01. For all proportions and
all classifiers, except the minimum distance classifier, the
difference in AUC between CV and BSCV was found to be
statistical significant with p values lower than 0.005.

We also reran the experiments using 10-times repeated CV
and BSCV averaging results over 200 runs. The obtained
graphs are almost identical to those in Figure 7 and are
therefore not depicted. The standard deviations for the
two representative classifiers when using non-repeated
and repeated CV and BSCV are given in supplementary
figure 1 [see Additional file 1]. The standard deviations
decrease only moderately when using the 10-times
repeated versions instead of single runs of CV and BSCV.
The reason for this is that the noise between the different
runs mainly stems from the difference in the data sets and
not from the different separation of the data set into folds.

Figure 8 shows the same curves as figure 7 except that in
this case AUC is computed using the averaging strategy.
Note that all curves are substantially similar and unshifted
across the two validation schemes, indicating that the
averaging approach is unaffected by the form of stratifica-
tion bias discussed here, as expected. The results for BSCV
using the pooling method is substantially similar to the
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corresponding averaged AUC estimates, except that is
slightly biased downwards due to inter-fold noise attenu-
ating the pooling results.

Real-world dataset
Figure 9 shows the results of AUC estimation for the van
't Veer breast cancer dataset using SVM classification (with
linear kernel), comparing both the pooling and averaging
strategies. Figure 9(a) shows the results for cross-valida-
tion; 9(b) shows the results for LOOCV and bootstrap.
The results for AUC calculation using a pooling strategy
show that there is a substantial systematic pessimistic bias
for the unstratified versions of cross-validation and boot-
strap compared with the stratified versions. Also, stratified
CV still shows some downward bias compared with bal-
anced, stratified CV. LOOCV, which can only be used with
a pooling strategy, shows substantial biases unless the bal-
anced version, balanced LOOCV, is used. The perform-
ance of the balanced LOOCV is superior to the other
pooled methods at small sample sizes as the training set
of the folds is as large as possible. AUCs computed using
the averaging strategy, by contrast, are not shifted relative
to each other, when using either stratified or unstratified
validation, and all reach the same asymptotic value, indi-
cating that they do not suffer from the stratification bias.
The results on the full dataset for the averaged AUC esti-
mates are slightly higher than those for the pooling meth-
ods, including the stratified and balanced versions. This is
due to the attenuation due to non-systematic classifier dif-
ferences across folds, as described previously. Figure 10(a)

and 10(b) show the standard deviations for figures 9(a)
and 9(b), respectively. Note that the variance with strati-
fied CV and balanced, stratified CV when using the aver-
aging method is lower compared with unstratified CV,
suggesting that such stratified validation schemes can give
a worthwhile improvement in variance when used with
averaged AUC estimation. Repeated cross validation
would lower the variance further, as discussed in the sim-
ulation section. The Hanley-McNeil estimate for a sample
size of 50 is 0.07, which approximately matches the
empirical standard deviations at this sample size. The
stratification bias at this sample size for linear SVM (C =
0.01) is substantially less than the SE in this case.

The next series of experiments used a randomised version
of the van 't Veer dataset. Figure 11(a) shows the results
for a linear kernel SVM using the pooling strategy for AUC
estimation. Balanced, stratified CV and balanced LOOCV
are approximately at the expected 0.5 line. Unstratified CV
and LOOCV are pessimistically biased. Stratified CV
shows some small remaining stratification bias for small
sample sizes – figure 4 showed that stratified CV has some
remaining covariance between training and test sizes and
so this bias is expected. Note that stratified bootstrap also
shows some remaining stratification bias for very small
sample sizes. Although in theory stratified bootstrap has
no covariance between training and test set sizes, the
training set sizes are made constant by sample replication,
and presumably the effect of a duplicate sample on the
training of the classifier would be weaker than a truly

AUC estimates for van 't Veer breast cancer dataset using linear SVMFigure 9
AUC estimates for van 't Veer breast cancer dataset using linear SVM.
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independent pattern, and so the "effective" training set
size of a class is less than the sample size would suggest
(for example, consider 1-nearest neighbour: in 1-NN
duplicates in the training set have absolutely no impact on
the classification). Also, results for SVM with a radial basis
function (RBF), aka Gaussian kernel, with parameter val-

ues C = 1 and (2 = 0.5 are presented. Only 100 random
permutations were done with this SVM type due to the
computational cost, which however is sufficient to dem-
onstrate the bias. It is known that for such kernels, which
increase the effective dimensionality of the data, the SVM
will underfit and tend to a majority voter in large areas of

Standard deviations of AUC estimates for van 't Veer dataset using linear SVMFigure 10
Standard deviations of AUC estimates for van 't Veer dataset using linear SVM.
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AUC and ROC curve estimates for randomised van 't Veer datasetFigure 11
AUC and ROC curve estimates for randomised van 't Veer dataset. Error bars for ROC curves are 1 SE.
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the parameter space [28], and so rely maximally upon the
prior proportion information; therefore it would be
expected to perform poorly and suffer maximally from
stratification bias. Indeed, figure 11(a) demonstrates very
large pessimistic biases. The Hanley-McNeil SE estimate
for sample size 50 is 0.08; note that the stratification bias
for the RBF SVM exceeds the SE, indeed, some care would
be needed to avoid confusing such a large negative AUC
with a genuine signal. Note that stratified CV still shows
substantial biases.

Figure 11(b) shows the ROC curves corresponding to fig-
ure 11(a) for 10-fold CV and a sample size of 50. The ROC
curves were produced by pooling the samples of the folds
of the cross-validation and computing a combined ROC
curve. To generate confidence bounds, this was repeated
100 times and the vertically averaged curve displayed with
standard error bars [29]. For CV the randomised dataset
produces worse-than-random ROC curves with the pool-
ing strategy, showing that the pooling strategy should also
be avoided for ROC curve generation. With CV, the RBF
kernel SVM shows large stratification biases, and the lin-
ear SVM using decision values shows only small biases at
this sample size; BSCV applied to the linear SVM shows no
substantial bias. Also shown are the results of the version
of SVM returning posterior probabilities which, as
expected, suffers more from stratification bias than the
version using decision values. The final experiments
investigated the effect of stratification bias on error rate.
As above, a randomised version of the van 't Veer dataset
was used. Figure 12 shows the results for both SVM ker-
nels. BSCV is not biased and is at the expected 0.5 error

rate; CV is the most pessimistically biased, and stratified
CV removes most of the bias and is also at the expected
0.5 level, except for small sample sizes. The biases for the
RBF kernel are especially substantial and larger than for
the linear SVM. Note that stratified cross-validation still
suffers from substantial bias in this case. Such large strati-
fication biases of error rate could have an impact on
model selection and evaluation, as the extent of the bias
depends on the classifier type.

Conclusion
In this paper we have analysed a previously under-appre-
ciated bias which can strongly affect evaluation of small
sample size (e.g. < 100), low-signal datasets typical of
microarray studies. We showed that common sample-
reuse validation schemes such as CV and bootstrap can
lead to large pessimistic biases due to correlated class pro-
portions between training and test sets.

We have performed a systematic study of this bias using
simulation and a real-world dataset, and have demon-
strated and evaluated how this bias can affect not only
accuracy, but also AUC estimates. In low-signal microar-
ray datasets, this bias can dominate the signal, and con-
found both model evaluation and model selection. In the
case of model evaluation, while in practical applications a
pessimistic bias can be, arguably, less detrimental than an
optimistic bias, both are important to correct. A pessimis-
tic bias could cause the rejection of a model which other-
wise fulfills the required criteria. For example, when
evaluating the effect of features in low-signal datasets in
bioinformatics applications (e.g. whether a small gene set
is predictive in microarray applications) a pessimistic bias
can cause useful features to be misinterpreted or missed.
In the case of model selection, the ranking of the perform-
ance of the models may change as different classifiers suf-
fer from this stratification bias to differing extents, as
noted in the experimental section (e.g. the minimum dis-
tance classifier is not affected by this bias and so may be
favoured).

From the analysis in this paper, we have identified several
approaches to ameliorate or remove this form of stratifi-
cation bias and allow more accurate estimates of error rate
and AUC for small, low-signal datasets: For AUC and ROC
curve estimation, very substantial systematic stratification
biases are introduced by the "pooling" estimation strat-
egy; by contrast, we have shown that the "averaging" strat-
egy of estimating the AUC per-fold avoids this bias and is
the recommended approach. Note that (unbalanced)
LOOCV, although commonly used for evaluating small
datasets [7], can only use the pooling strategy and so is
contraindicated when evaluating AUC. LOOCV can also
exhibit a substantially biased error rate for weak signal,

Error rate estimates for randomised van 't Veer datasetFigure 12
Error rate estimates for randomised van 't Veer dataset.
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small, balanced, datasets and so should be avoided for
such datasets.

As a general solution to remove this form of stratification
bias, which can also be used with other performance
measures including error rate and BER, we have demon-
strated that the newly introduced balanced, stratified
cross-validation and balanced LOOCV; stratified boot-
strap; or stratified repeated holdout can avoid this stratifi-
cation bias, and are recommended over their unstratified
versions.
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