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Abstract 

 

Purpose: Congenital achromatopsia or rod monochromatism is a rare autosomal recessive 

condition defined by a severe loss of cone photoreceptor function in which rods purportedly 

retain normal or near-to-normal function. This report describes the results of 

electroretinography in two siblings with CNGB3-associated achromatopsia.  

 

Methods:  Full field light- and dark-adapted ERGs were recorded using standard protocols 

detailed by the International Society for Clinical Electrophysiology of Vision (ISCEV). We 

also examined rod mediated ERGs using series of stimuli that varied over a 6 log unit range 

of retinal illuminances (-1.9 – 3.5 log scotopic Trolands). 

 

Results:  Dark-adapted ERGs in achromatopsia patients exhibited severely reduced b-wave 

amplitudes with abnormal b:a ratios (1.3 and 0.6). In comparison, the reduction in a-wave 

amplitude was less marked. The rod mediated ERG took on an electronegative appearance 

at high stimulus illuminances.  

 

Conclusion:  Although the defect that causes achromatopsia is primarily in the cone 

photoreceptors, our results reveal an accompanying disruption of rod function that is more 

severe than has previously been reported. The differential effects on the b-wave relative to 

the a-wave, points to an inner-retinal locus for the disruption of rod function in these patients. 

 

 

Key words: achromatopsia, rods, electroretinogram 
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Introduction 

 

Complete achromatopsia (ACHM), also known as rod monochromacy, is a rare autosomal 

recessive congenital condition with a prevalence of 1:30,000, characterised by complete or 

partial loss of cone function [1]. Clinically, patients present with photophobia, nystagmus, 

severely reduced visual acuity (20/200) and severe colour vision deficits [2]. Currently, six 

genes have been implicated in the generation of this disease, all of which encode crucial 

steps in the cone photo-transduction cycle. Two genes encoding for the cyclic nucleotide 

gated (CNG) channels alpha (α) and beta (β) (CNGA3, CNGB3) account for approximately 

25% and 60% of the all mutations, respectively, with the rarer mutations found in the 

GNAT2, PDE6C, PDE6H, ATF6 genes [1, 3]. Over 140 mutations have been discovered in 

the CNGA3 and CNGB3 genes, most of which result in a failure to produce α or β subunits. 

In the normal functioning retina the CNG channels, located in the plasma membrane of the 

outer segment, are held open in darkness by cyclic guanosine monophosphate (cGMP), 

creating an inward positive current. When light causes hydrolysis of cGMP the channels are 

closed causing a hyperpolarisation of the cell; without functional subunits, CNG channels 

remain constantly closed, preventing cone hyperpolarisation. In adults this can frequently 

result in the degeneration of cone photoreceptors. However, evidence of foveal disruption 

and hypoplasia has also been shown in young children [4 -7]. In a few cases, some residual 

cones may remain, although they too may later progressively decline [7-9]. 

 

In the light of the above findings, the canonical view of congenital ACHM has been that it is a 

condition that primarily leads to cone dysfunction, leaving rod photoreceptoral function 

largely intact [1,2,10-17]. However, the phenotype is highly variable and a growing body of 

experimental evidence indicates that ACHM may not only lead to structural and functional 

abnormalities within the cone photoreceptor population, but also may affect rod function as 

well. Rod dysfunction in ACHM, as assessed using ERG, has been noted in several studies, 

typically ranging from a mild [6, 18-22] to a moderate reduction in the rod ERG amplitude 
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[23-25]. This can make discrimination between achromatopsia and cone-rod dystrophy 

(CORD) more difficult. Previously, the understanding was that the former was typically a 

stationary disease, associated with a normal rod ERG, whereas the latter was progressive in 

nature, affecting both rods and cones [26]. An additional confounding factor is that both 

CNGA3 and CNGB3 genes have been implicated in autosomal recessive cone rod 

dystrophy (arCORD) [23-28]. In addition, structural changes more frequently associated with 

CORD, such as macular atrophy, have been reported in achromatopsia [14, 22]. In essence, 

the changes in amplitude noted to the rod ERG in achromatopsia generally remain in the 

sub-normal to moderate category compared to severely reduced or abolished rod response 

found in CORD [12, 25].      

 

In this report we present electro-retinographic results from two siblings with a homozygous 

1148delC (Thr383fs) mutation in CNGB3. Interestingly, both of these siblings exhibit ERG 

findings which show severe disruption of the rod system, specifically confined to the inner 

retina, resulting in an electronegative ERG.   
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Materials and Methods 
 

Participants and clinical assessment 

 

Two siblings from a consanguineous Pakistani family living in the UK, both with molecularly 

confirmed CNGB3-associated ACHM were examined (see table 1 for a summary of the main 

features). In brief, the patients were first examined at 1 year of age presenting with the 

classical features of ACHM - congenital nystagmus, reduced vision and photophobia. Over 

three decades changes in visual function have been minimal, with VA having remained 

constant. The most significant changes have been structural with progressive macular 

atrophy being noted on successive retinal examinations. The patients do not report any 

symptoms of nyctalopia and prefer conditions of low illumination. 

 

At the time of this study the patients were 31 yrs (Px1) and 38 yrs  (Px 2) old and full clinical 

history and assessment of the participants was performed which included Snellen visual 

acuity, colour vision testing using the Colour Assessment and Diagnosis  (CAD)  Test (City 

University, London), as well as Ocular Coherence Tomography (OCT). In addition, 

Goldmann visual fields (Haag Streit, Bern, Switzerland) were assessed using the largest 

target on both ACHM patients (see figure 1). The subjects gave informed consent prior to the 

commencement of the experiments and the study was conducted using a process that had 

been approved by the Leeds Research Ethics Committee and met the tenets of the Helsinki 

declaration.  

 

Table 1 and figure 1 here 
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Genetic Assessment 

One of the siblings (Patient 1) had previously been recruited to an earlier study investigating 

the molecular genetic basis for inherited retinal disease (IRD). As part of this study, patients’ 

DNA was analysed by Sanger sequencing of genes known at that time to be associated with 

ACHM in a step-by-step procedure. The proband was found to be homozygous for a null 

allele in CNGB3 (NM_019098.4; c.1148delC, p.T383Ifs*13), the most frequently reported 

cause of ACHM in those of European ancestry [29]. Segregation analysis confirmed that 

Patient 2 was also homozygous for the c.1148delC allele.  

 

Electrophysiological Assessment 

Full-field ERGs were recorded using a ColorDome (Diagnosys LLC, Lowell, MA, USA) four 

primary ganzfeld stimulator and were obtained using standard protocols detailed by the 

International Society for Clinical Electrophysiology of Vision (ISCEV) [30]. The light-adapted 

(LA) single flash and 30Hz flicker stimuli (both 3.0 cd/s/m2) were used to assess the cone 

system. Following a period of 20 minutes dark adaptation, a 0.01cd/s/m2 (DA0.01) and 10.0 

cd/s/m2 (DA10.0) flash stimuli were used to elicit rod responses. In addition to the standard 

ISCEV stimuli we also examined rod mediated ERGs in our patient group and an age-

matched control using series of stimuli that varied over a wider range (~ 6 log units) of retinal 

illuminance from -1.9 – 3.6 log scotopic trolands. ERGs were recorded using these stimuli 

which consisted of brief (4ms) white flashes delivered after 20 mins of dark adaptation.  

 

ERGs were recorded from the right eye using a silver/nylon corneal fibre electrode (Dept. of 

Physics and Clinical Engineering, Royal Liverpool University Hospital, UK) referenced to a 

9mm Ag/AgCl electrode (Biosense Medical, Chelmsford, UK) on the outer canthus; a similar 

electrode was placed on the forehead to serve as ground. Impedance was maintained below 
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5 kΩ. Signals were recorded using the Espion E2 system (Diagnosys LLC, Lowell, MA, USA) 

which amplified and filtered (bandwidth = 1 to 300 Hz) the ERGs and digitised them at a rate 

of 1000Hz. Participants viewed the stimuli monocularly with a dilated pupil (1% 

Tropicamide). 

 

Figure 2 and Table 2 here 

 

Results 

Figure 2 shows the standard ISCEV full-field ERG responses from the ACHM patients as 

well as a set of responses from a representative age-matched normal subject. The light-

adapted single flash and the photopic flicker responses were undetectable in both ACHM 

patients, consistent with the severe cone dysfunction typically reported for this condition [23]. 

The DA0.01 responses were also abnormal, with a severe loss of b-wave amplitude (Table 

2). Patient 1’s responses are reduced by 74%, whilst Patient 2 has lost 87% of their b-wave 

amplitude compared to our normal mean value. The DA10.0 waveforms also exhibit 

significant loss of b-wave amplitude, and for Patient 2 the waveforms are electronegative. A 

smaller reduction is noted in a-wave amplitude which may be explained by the loss of input 

from the dark adapted cone system [31]. Implicit times of the a- and b-waves are also 

increased compared to normative data (see table 2).   

 

Figure 3 here 

 

Figure 3 shows the ERG waveforms for dark adapted ERGs recorded as a function of retinal 

illuminance across a 6 log unit scale (-1.9 – 3.6 log scot trolands). The data show clear 

Page 7 of 20

URL: http://mc.manuscriptcentral.com/nopg E-mail:  ophthalmicgenetics@yahoo.com

Ophthalmic Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

8 
 

qualitative differences between the ERG waveforms obtained from an individual with normal 

rod function compared to those obtained from the 2 rod monochromats across the same 

illuminance range. In particular, the responses generated at low retinal illuminances (-1.9  –  

-0.9 log scot trolands) are markedly attenuated in the rod monochromats compared to the 

normal ERGs. In fact b-wave amplitude is reduced across the whole illuminance range in the 

rod monochromats and again the development of the electronegative response in Patient 2 

can be clearly observed beyond 1.1 log scot trolands.  

 

Figure 4 here 

 

In Figure 4 peak amplitudes and implicit times of the a- and b-waves have been plotted as a 

function of retinal illuminance for a normal control participant and the ACHM patients 1 and 

2. As indicated by the waveforms in Figure 3, the greatest difference is in b-wave amplitude 

(fig 4A). The illuminance response function from the normal subject exhibits an initial steep 

increase in b-wave amplitude up to 1 log scot troland after which it reaches saturation. This 

saturating response function of the dark adapted ERG has been described previously and is 

considered to be the result of an algebraic interaction between receptoral and post-

receptoral retinal responses at higher illuminances [32, 33]. In contrast, the b-wave 

amplitude illuminance-response functions from the two monochromats are markedly 

different; with b-wave amplitude exhibiting a much shallower, monotonic increase with 

increasing retinal illuminance. The illuminance response of the a-wave (fig 4C), by 

comparison, appears to be similar across the rod monochromats and the normal. In terms of 

a- and b-wave implicit times (fig 4B & D) the biggest differences between the control subject 

and patients occur at low retinal illuminances (< 1 log scot trolands) where the ERGs from 

the rod monochromats have considerably longer a- and b-wave implicit times. However, as 
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retinal illuminance increases the differences in implicit times between the normal and the 

achromatopsic patients becomes less marked. 

 

Discussion 

In this case study we have reported the results of visual electrophysiology in two siblings 

with CNGB3-associated achromatopsia and have demonstrated the existence of an 

unusually severe deficit of rod-mediated retinal function. As would commonly be expected in 

cases of complete ACHM, electroretinography reveals a complete loss of cone function. 

However, this deficit is also accompanied by marked abnormalities of the rod mediated dark-

adapted b-wave ERG responses. Whilst CNGB3 mutations with moderate rod dysfunction 

have previously been reported in the literature [21-24] we are not aware of any cases 

demonstrating such severe rod involvement as exhibited by the individuals examined here. 

In particular, the electronegative appearance of the dark-adapted ERGs to more intense 

stimuli is a previously unreported finding for this specific mutation. 

 

Rod function was assessed using standard ISCEV protocols. The dark-adapted (DA) rod 

stimulus (0.01 cd/s/m2) elicits an ERG in the normal population that is typically dominated by 

a large positive component (the b-wave) with a peak occurring at approximately 100 ms after 

stimulus onset. This response reflects the activity of rod ON-bipolar cells from the inner 

nuclear layer of the retina [34, 35]. As the intensity of the stimulus is increased, the b-wave is 

preceded by a negative a-wave in the dark-adapted ERG, which predominantly reflects 

activity in the outer segments of the rod photoreceptors [31, 35]. The data presented here 

show that patients with CNGB3 associated achromatopsia have significant functional 

abnormalities in their rod system which accompanies severe cone dysfunction. This rod 

dysfunction is in the ACHM patients is manifest in the severely attenuated b-wave 

amplitudes of the dark adapted ERGs. In comparison, the a-waves of these responses are 
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less drastically affected. Whilst there is some reduction in a-wave amplitude across the 

illuminance range tested (something which most likely attributable to the loss of contribution 

from the dark adapted cones [31, 35]), on the whole, a-wave amplitudes in the ACHM 

patients are comparable to normals. This differential effect on the b- and a-waves has not 

previously been reported and is significant because it points to a post-receptoral, inner 

retinal origin for this loss of rod function. It suggests that the deficit is at the level of the rod 

ON-bipolar cells, rather than at the level of the rod photoreceptors.  

 

The reasons for the deficits in rod-mediated retinal function are not entirely clear. It is 

unlikely to be simply an age-related loss of rod function. The ages of the two ACHM patients 

in this study fall well within the range of previous study [5] where the ACHM patient cohort 

exhibits milder rod deficits than those reported here. Furthermore, the study by Moskowitz 

and colleagues [24] report rod deficits in a much younger group (median age 2.7 yrs) of 

ACHM patients. Genetic testing for the patients examined in this study was performed by 

successive Sanger sequencing of the following genes until a cause was identified (CNGA3, 

CNGB3, GNAT2, PDE6C). There remains the slim possibility that the family also segregate 

another monogenic retinopathy. However, the fact that the ERG shows a near normal a-

wave with more severe b-wave reduction, specifically suggests a predominantly inner retina 

dysfunction, which is not a classical feature associated with cone-rod dystrophy.  A more 

likely explanation is that the environment created by degenerating cones may play a part in 

the generation of dysfunction in rod-mediated vision. Macular atrophy was an acquired 

feature in both patients suggesting there is some outer retinal degeneration at the macula 

and supporting the idea that rod dysfunction may be a secondary feature of cone death. In 

addition, work in mouse models has shown significant correlations between cone cell death 

and CNG channel abnormalities. A recent review of cone cell death in achromatopsia [36] 

has outlined several mechanisms that may contribute to cone apoptosis; stress markers 

associated with the endoplasmic reticulum are increased in CNGA3-/- and CNGA3-/- knockout 
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mice.  Abnormal levels of cellular Ca2++ or cGMP often associated with ACHM have been 

shown to increase endoplasmic reticulum stress [37].  

 

Recent advances in adaptive optics have made it possible to examine the structure of the 

both inner and outer segments of the photoreceptor layer in vivo using adaptive optics 

scanning laser ophthalmoscopy (AOSLO) [38, 39]. Imaging in patients with ACHM has 

shown significant loss and disruption of cone photoreceptors, but no real evidence of a 

decrease in the number of rods [5, 7]. However, changes in rod structure have been 

observed. Typically, the diameter of a rod photoreceptor in a healthy retina at 10o 

eccentricity is approximately 2.3µm. Measurements of rod diameter in patients with ACHM in 

a similar region were shown to be on average 1µm greater [4]. This increase in diameter 

may be as a direct result of increased space in the retina which allows rods to expand 

following the loss of cone cells [24]. Increases in rod diameter naturally occur in the ageing 

retina as the overall number of rod cells is reduced [40]. It has been suggested that 

structural changes like these may well result in an alteration of the photo-transduction 

process and even post-receptoral connections [24].  

 

In summary, we believe this report further adds to the evidence that achromatopsia 

associated with a homozygous mutation in the CNGB3 gene can lead to abnormalities of rod 

mediated vision as well cone dysfunction. More significantly, we have shown for the first 

time, the presence of an electronegative ERG that occurs as a consequence of this 

mutation.  The deficits in the rod responses reported here are more severe than those that 

have been previously reported in ACHM patients. A key finding of this study is that it is the 

rod b-wave that is more severely affected, compared to the a-wave, which is relatively well 

preserved. This points to a post-receptoral/inner retinal site for the pathological changes in 

rod function found in these patients.   
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Patient 

 
Sex 

 
Age 

 
Symptoms 

 
VA 

 
Fundus 

Px 1 Male 34yrs Nystagmus 
Photophobia,  
no colour 
vision 

CF (RE & LE) Severe macular 
atrophy, 

Px 2 Female 38yrs Nystagmus, 
Photophobia,  
no colour 
vision 

2/60 (RE & LE) Severe macular 
atrophy, 

 

Table 1. Summary of the main clinical details of the ACHM patients. 

 

 

 

 

Patients Light adapted 
Single Flash ERG 

Light adapted 
Flicker ERG 

Dark adapted 
0.01 cd/s/m

2
 ERG 

Dark adapted 
10.0 cd/s/m

2 
ERG 

Px 1  
a-wave amp 
b-wave amp 
a-wave lat 
b-wave lat 

 
X 
X 
X 
X 
 

 
X 
X 
X 
X 

 
---- 

42.16 
---- 

114.0 

 
85.0 

114.37 
16.0 
57.0 

Px 2 
a-wave amp 
b-wave amp 
a-wave lat 
b-wave lat 
 

 
X 
X 
X 
X 

 
X 
X 
X 
X 

 
---- 

21.25 
---- 
90.0 

 
83.93 
44.39 
14.0 
57.0 

Normal  
a-wave amp 
b-wave amp 
a-wave lat 
b-wave lat 
 

 
17.95 ± 1.87 
82.38 ± 7.85 
15.15 ± 0.36 
28.75 ± 0.37 

 
---- 

47.17 ± 5.41 
---- 

26.24 ± 0.52 

 
---- 

163.15 ± 15.88 
---- 

92.33 ± 3.02 

 
131.35 ± 10.92 
271.01 ± 14.82 

12.82 ± 0.53 
50.66 ± 2.37 

 

Table 2.  Summary of the amplitude (amp) and latency (lat) measurements for ERGs elicited by the standard 
ISCEV protocols. X denotes that no data could be obtained as the waveform component was undetectable, --- 
denotes that no measurements were taken for that particular component. Normal values are based on n=70 
subjects assessed in the University of Bradford Electrodiagnostic Unit. 
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Figure Legends 
 
 

Figure 1. a) Goldman visual field plots, and b) fundus photographs for RE only of ACHM 
patients 1 & 2.  c) Colour discrimination thresholds plotted on a CIE 1931 (xy) chromaticity 
diagram for 16 different coloured targets along red, green, blue & yellow colour axes. Normal 
colour discrimination thresholds (+/- 1 SD) are indicated by the central grey ellipse. Both rod 
monochromats (only data from Patient 2 are shown) exhibit elevated discrimination 
thresholds consistent with severe L-, M- and S-cone dysfunction. d) OCT image of macular 
region of the RE of ACHM patient 1.  
 

 

Figure 2. ISCEV standard full-field ERGs (RE only) recorded from 2 patients diagnosed with 
ACHM (rows I – II) plus a data set from a representative of our normal control group (row III). 
Column 1: light adapted single flash response (3.0 cd/s/m2); Column 2: 30Hz flicker stimulus 
(3.0 cd/s/m2); Column 3; dark-adapted (rod only) response (0.01cd/s/m2); Column 4: bright 
flash (10.0 cd/s/m2).  

 

Figure 3. Dark-adapted ERGs generated by a series of stimuli of increasing retinal 
illuminance (-1.9 – 3.6 log scot trolands). ERGs from the age-matched normal control are 
shown in the first column with responses from the two ACHM patients shown in columns 2- 
3. ERG responses were not recorded to the two highest luminances for Px 1.   

 

 

Figure 4. Plots of b-wave amplitude (A) and implicit time (B) and a-wave amplitude (C) and 
implicit time (D) as a function of retinal illuminance for the data shown in figure 3 for the 2 
rod monochromats and the age-matched control subject. 
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Figure 1. a) Goldman visual field plots, and b) fundus photographs for RE only of ACHM patients 1 & 2.  c) 
Colour discrimination thresholds plotted on a CIE 1931 (xy) chromaticity diagram for 16 different coloured 
targets along red, green, blue & yellow colour axes. Normal colour discrimination thresholds (+/- 1 SD) are 

indicated by the central grey ellipse. Both rod monochromats (only data from Patient 2 are shown) exhibit 
elevated discrimination thresholds consistent with severe L-, M- and S-cone dysfunction. d) OCT image of 

macular region of the RE of ACHM patient 1.  
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Figure 2. ISCEV standard full-field ERGs (RE only) recorded from 2 patients diagnosed with ACHM (rows I – 
II) plus a data set from a representative of our normal control group (row III). Column 1: light adapted 
single flash response (3.0 cd/s/m2); Column 2: 30Hz flicker stimulus (3.0 cd/s/m2); Column 3; dark-

adapted (rod only) response (0.01cd/s/m2); Column 4: bright flash (10.0 cd/s/m2).  
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Figure 3. Dark-adapted ERGs generated by a series of stimuli of increasing retinal illuminance (-1.9 – 3.6 log 
scot trolands). ERGs from the age-matched normal control are shown in the first column with responses 
from the two ACHM patients shown in columns 2- 3. ERG responses were not recorded to the two highest 

luminances for Px 1.    
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Figure 4. Plots of b-wave amplitude (A) and implicit time (B) and a-wave amplitude (C) and implicit time (D) 
as a function of retinal illuminance for the data shown in figure 3 for the 2 rod monochromats and the age-

matched control subject.  
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