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In a finite atomless measure space (X, I', p), the optimization problem of vector-
valued n-set functions defined on a convex subfamily § of I"=Ix ... xI' is
investigated. The necessary and sufficient conditions of Pareto optimal solution or
proper R” -solution of optimization problem with differentiable vector valued n-set
functions are given.  © 1991 Academic Press, Inc.

1. INTRODUCTION

The general theory for optimizing set functions was first developed by
Morris [12]. This type of problem arises in various areas and has many
interesting applications in mathematics, engineering, and statistics, for
example, in fluid flow, electrical insulator design, optimal plasma confine-
ment (see Ref [12]), and Neyman-Pearson lemma of statistics (see
Ref. [3]). There are many results on the optimization problem of set
functions, one can consult Refs. [12, 1, 2, 4-10, 14]. All the previous
results on this type of problem are only confined to set functions of a single
set. Corley [3] started to give the concepts of partial derivatives and
derivatives of real-valued n-set functions and developed the general theory
of n-set functions. In [7], we study the vector valued n-set functions
optimization problem. This paper is a continuous work of [7].
Throughout this paper, we assume that (X, [, u) is a finite atomless
measure space with L,(X, I', u) separable. For any ne N, we let R” be the
n-dimensional Euclidean space. We also let SclI"=Ix ---xI be a
subfamily of /™ and F: S—»R”, H: S—>R’, and G: §—> R™ be vector-
valued n-set functions defined on S.
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We consider two optimization problems as

minimize F(A,, .., 4,)
(P)
subject to (A4,, ..., 4,)€S, G(A4, .., 4,)£0, H(A;, .., 4,)=0,
and
minimize F(A,, .., 4,)

. (P1)
subject to (A4,, .., 4,)el™, G(4,,..,4,)=0.

In [7], we define the derivative of vector-valued n-set functions, we
establish the necessary and sufficient conditions for the existence of a weak
local minimum to problem (P1) in terms of the partial derivative of vector-
valued n-set functions involved. This paper is a continuous work of [7].
The sufficient conditions of Pareto optimal solution to problem (P) and
the necessary conditions of pareto optimal solution of (P1) with non-
convex differentiable n-set functions are developed. The necessary and
sufficient conditions of proper R -solution to problem (P1) with convex
differentiable vector-valued n-set function are also derived.

2. PRELIMINARIES

We define a pseudometric d on ["=Ix --- xI'={(A,, .., A,)|A;€T,
i=1,2,..,n}as

n 172
AL@1r s @) (A1 A1 ={ 3 (@, 44)T}

where (2,, .., 2,), (44, .., A,)e ' and Q, 44, denote the symmetric dif-
ference for Q; and A;. For fe L (X, I, p) and Qe I', the integral fgfdu
will be deroted by </, xo>, where y, denotes the characteristic function
of Q.

DEerFINITION 2.1. A set function F: I'— R is said to be differentiable at
Qe I if there exists fe L,(X, I, u) the derivative of F at £ such that
F(A)=F(Q)+ {f, xa— x> + 1(Q 44) E(Q, A),
where lim g 44,0 E(2, 4)=0.
We define the partial derivatives of n-set functions.
DerFINITION 22, Let F: I > R and (Q,, .., 2,)eI'". Then F is said to
have partial derivative with respect to A, if the set function

H(A,)=F(Ql, waey Qi-l’ Ai’ Qi+l’ cosy Qn)
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has derivative hg, at Q,. In this case we define the ith partial derivative of

Using the partial derivative of n-set function, we can define the derivative
of vector-valued n-set functions.

DerNITION 2.3 [7]. Let S<r@", F=(F,.,F,): S-R" and
(2, ..,92,)eS. Then F is said to be differentiable at (£, ..., Q2,) if the
partials f7, ,i=1,2,.., n, of F,exist for each j=1,2, .., m and satisfy

F(Ay, ., A,)
=F&,,.,2,)+ ( St Xt = X5 s 20 S Gy Xty = x;;,))
=1 i=1

+ We((2y, ... 2,), (4;, ..., 4,)),

1

for all (4,, ..., 4,)€ S, where

We(2,, ... 2,), (A4, ... 4,)) N

0
d(£2,, ... 2,), (4, .., 4,))

as d((2,..,2,), (4,,..,4,))—0. If F is differentiable at every point
(2,, .., 2,) of S, we say that F is differentiable on S.

Throughout the paper if F=(F,,..,F,): ScI”>R? G=(G, .., G,):
S—-R"and H=(H,, .., H,): S—> R’ are differentiable at (2,, ..., 2,), we
will denote /¥, g”, and AY the ith partial derivatives of F;, G;, and H, at
(24, .., 2,) respectively.

For two vectors x=(x,,..,x,) and y=(y,,..,p,) in p-dimensional
Euclidean space R?, we introduce the following notations

(1) x<yiff x,<yforalli=1,2,..,p.
2) x<yiff x;<y;foralli=1,2, .., pand x+#y.
(3) x=yiff x;<y,foralli=1,2, ., p
The nonnegative orthant and the nonpositive orthant in R” are denoted by
R? ={xeR”; x£0} and R? = {xeR? x <0},

respectively, where 0 is the zero vector (0,0, .., 0) in R”. We also denote
{x, y>=%F x;y; as the inner product of x=(x,,.,x,) and y=
(y1, . ¥,) in R?. For a set E< R?, the set of all interior points of E will
be denoted by int £ and the set of closure of E in R? will be denoted by E.

DreFINITION 24, A set EcR? is said to be R -convex if E+R” is a
convex set in R”,
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DEFINITION 2.5. A point x* is a lower efficient point of Ec R” if x*€ E
and there is no xe E such that x < x*. We denote the set of all lower
efficient points of E by e(E).

LEMMA 2.6 [14]. Suppose that for a point x* e EC R?, there exists a
peint RZ such that (i, x*) < {ji, x) for x€ E. Then x* € ¢(E).

DEerFINITION 2.7. A point x* € R” is said to be a properly efficient point
of EcR” if x*ee(E) and E+ R? —x*nR” = {0}.

DerFINITION 2.8. Given a p-dimensional vector-valued function f=
(f1s - )y X>R?, fieL (X, T,p), i=1,.,p, we say that f separates
Qel if ({fi,xa)s > {fp Xo>) is a properly efficient point of the set
Y= {(<f1’ XA>’ ees <fp’ XA)); 4 Er}

It follows from [12, Proposition 3.2 and Lemma 3.3], for any (2, 4, A)e
I'x I'x [0, 1], there exist sequences {,} and {4,} in I" such that

XQ,,_W:" j‘XA\.Q and xA,,,*w:” (1 _ﬂ‘)X{)\A (1)
implies
X.Q,,uA,,u(QmA)LAXA+(1—A)Xﬂ (2)

where w* stands for the w*-convergence. The sequence {V,(1)=Q,u 4,
(2n A)} satisfying (1) and (2) is called the Morris sequence associated
with (2, 4, 1).

DEFINITION 2.9. A subfamily S of I'" is convex if given (2, .., 2,),
(A, .., 4,)€ S, and Ae[0, 1], there exists a Morris sequence {V¥(1)}
in I" associated with (£, 4,,4) for each i=1,.,n such that
(V%(A), ..., V¥(A))e S for all ke N, where N is the set of natural numbers.

DEFINITION 2.10. A set function F= (Fy, ..., F,): S — R” is called convex
on a convex subfamily § of /" if for each (2,, .., 2,) and (4, .., 4,)€ S,
4€[0, 1] there exists a Morris sequence {¥%*(4)} in I" associated with
(Q,, 4;, ) for each i=1, .., n such that (V*(4), .., V¥(4))e S for all ke N
and

kﬁ FV(A), s Va(2))

<AF(Ay, oy A,)+ (1= A) F(Q4, ... 2,).
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LEmMA 2.11 [15, Lemma 2.4). Let E be a R’ -convex set. Then y e E
satisfies

[E+R, - yo] nR? = {0}
iff there exists a vector peint R’ such that

{py yoy<{p, y)  forany yeE.

Lemma 2.12 (Liapunov [13]). Let fi, .., f,€ L{(X, I, u), then the set
{({Srs xaDs s {fps 2a)s A€ T} is convex and compact.

3. MaIN RESULTS

Throughout this paper, we will denote A4 = {(A4, ., 4,) e I,
G(Ay, .. 4,) S0}, A ={(Ay, .., A,)eT", G(A,,..,4,)<0}, and A=
{(A4y,.,4,)€S, G(A,,..,4,)<0, H(A,,.,4,)=0}. The following
lemma follows immediately from the definition of convex subfamily and
properties of Morris sequence.

LEmMMA 3.1, Let (2,,.,R2,)el and G: I'" > R™ be convex, then for
each 6 >0 the set

Bé((Qla seey Qn))
={(Ay, ., A) €T d((Ay, ., A,), (2, ... 2,)) <8, G(A,, .., 4,) <0}
is a convex subfamily of I'".

Proof. Suppose (A, ..., 4,), (8, .., @,) e Bs((2,, .., 2,))and A€ [0, 1].
Then (A,,..,4,), (2,,.,9,)el", G(4,,..,4,)<0, G(&,,..,80,)<0,
d(Ay, .y A,), (R4, .. )<, d((L,,..,92,), (2,,.,2,))<d, and for
each i=1,2, .., n, there exists a Morris sequence {V*(1)} in I" associated
with (2,, 4,4) such that (V*(1), .., V¥(A))e I'" for all ke N. Since

lim d((V¥(A), .., VE(A), (2, .., 2,))

k— oo

n 12
=klim {Z ”X;{‘(,{)“XQJ'{‘}

— OC .
i=1

n 1/2
~( % i+ (1= Dt~ xal)

i=1

n 1/2
= { ¥ 1AGa — xe) + (1= D) (xe,— 2o/ in}

i=1
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n 1/2
5 Hx:;,—x;;,llb)
i=1

i=

n 1/2
sx(z ||xAi—xﬂ,||il) +(1—x)(
i=1

= (i [u(A,.A.Q,.)]Z)U2+ (1—4) <i [#(Q,-AQ,.)]Z)I/Z

= Ad((Ayy oy A,); (24,0 R,))+ (1 —2) d((Dy, ., ,), (24, ., 2,))
<A6+(1—A)s=4.

Hence there exists a natural number M, such that
a(VE(A), ... VE(A)), (R4, .. 2,)) <0 forall k=M, (3)
since G is convex,

BB GV5(L), s VE(A)) S AG(A,, s A,)+ (1= 2) G, .y B,) <O.
k— o

Therefore, there exists a natural number M, such that
G(VEQA), .., VE(A) <. 4)
Let M =max{M,, M,}, then from (3) and (4), we see that if k> M,
d(VE(4), .., VE(R)), (2,4, ... 2,)) < and G(VX(A), ... VE(A)) <.

Thus (V%(1), ... VE(1)) € Bs((£2,, .., ?,)) for k=M. This shows that
B;((2,, .., 2,)) is a convex subfamily of I'".

COROLLARY 3.2. Let (Q,,..,82,)el" and G:I'" - R™ be a convex set
Sfunction, then the set A’ is a convex subfamily of I'".

Proof. It is easy to see that A'=3_, B,.((2,, .., 2,)) where

m=1

Bm((gl’ e Qn))
={(Ayyor A,) T d((A s A,), (821, ., 2,)) <mand G(4,..., 4,) <0}

and the corollary follows immediately from Lemma 3.1.

For any S/, we denote S the w*-closure of ys={x,;4€S} in
Lo (X, T, pu), then I'={feL,(X, I, u); 0<f<1} [1, Corollary 3.6]. For
feT, we denote N(f) the family of all w*-neighborhood of f in I'. Since
I is w*-compact and L,(X.I,u) is separable, I" is metrizable [1].
Therefore I'x --- x I'= ()" is also metrizable.
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Lemma 33 [7]). Let F=(F,,..,F,). I'">R” be differentiable and
convex on I'", then for all (A,, .., A4,), (2,,..,8Q,)el"

F4,,..,4,)
= FQ,,..,Q )+<2 <f'l XA, — , Z <f'p Xa,— XQ;>>-

i=1
A set function F: S — R” is said to be w*-continuous at (2,, ..., 2 )e S,
if for any sequence {(Q%, .., Q%)} in S and for each i=1, ..., n, Lot 2 1e,
as k— oo implies F(Q,, .., Q,)=1lim, _ , F(Q*, .., Q%). F is said to be
w*.continuous on S, if F is w*-continuous at each point (©,, .., Q2,)eS.

LEMMA 3.4. Let S be a convex subfamily of I'" and F:S > R? be a
w*-continuous and convex set function. Then the set F(S) is R” -convex.

Proof. The proof of this lemma is similar to Lemma 3.1 of [2].

LEMMA 3.5. Let F: I'" > R”? f)e w*-gontinuous and G: I"— RrR™ lze con-
vex. Suppose that there exists (2, .., 2,)e I'" such that G(§,, .., 2,) <0.
Then F(A)=F(A’) and F(A4) is R% -convex.

Proof. Since (£,, .., 2,)<0, A" is not empty. Let (2,, .., 2,)e A" and
(A4, .., A,)€ A, for each i=1, .., n and each positive integer m, let {V,, ,}
be the Morris sequence in I” such that

-1 1
XVm,k ask — oo ;Xg, (1 —_> XA:

By the convexity of G,

lim GV > s V,’:,,k)).<_.;11-G((Q,, s 2+ (1 —’—L—) G((A,y, .., 14,))<0.

k — oo

Thus there exists a natural number M such that
G((Vhir o Vi i) <0 for k=M.

This shows that (V,, ., .., V. )€ A’ for k> M. Hence

(v s oo Xy ) € Xar={(X3ys o X8)s By s BYEA' Yy < P o x T,

We note that (y,, .., X4,) is @ cluster point of {(XV,‘,.,k’ s X0 keN}.
Since I’ is metrizable in the w*-topology and I'x --- x I is metrizable,
there exists a subsequence {(V}, s V)3 of {(Vm k>~ Vi )} such that
xvi — 4, for each i=1, .., n. Since F is w*-continuous, we have

as !l - oo

im F((V}, ... V7)) =F((4,, .. 4,)).

=]
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This shows that F(A,.., 4,)e F(A’). Therefore F(A)=F(A') and the
lemma follows immediately from Lemma 3.4 and Corollary 3.2.

We say (2, .., 2,)€ A (resp. (2, .., 2,)€ A) is a Pareto optimal solu-
tion to problem (P) (resp. (P1)) if

F(Q,, .., 2,)ce(d) (resp. F(Q,, .., 2,) € e(A)).

DEFINITION 3.6. (£, .., 2,)€ 4 is said to be a proper R, -solution of
(P1) if F(d)+ R? — F(2,, . 2,)nR? = {0}.

LeMMA 3.7. Suppose that S is a nonempty subfamily of I'", F=
(Fy, ... F,): S>> R?, and F(S) is R? — convex. Then (2,,..,89,)eS is a
proper R” -solution of (P1) if and only if (R, .., Q,) is optimal for (P1(1))
Jfor some Leint R, where

P
min Y, A,Fi(Ay, .., 4,)

i=1 (P1(2))
subject to (A4, ..., A,)€S.

Proof. The proof of this lemma is the same as Theorem 3.1 of [2].

THeOREM 38. Let F=(F,..,F,). I'">R” be w*-continuous and
convex and G: I'"—R™ be convex. Suppose that there exists
(@,,..,92,)el" such that G(,, .., 2,)<0. Then (2,,..,2,)€A is a
proper R? -solution if and only if (2,, .., Q2,) is optimal for (MP1(1)) for
some L= (4, .., 4,) eint R% where

14
min Y, 4,F(A4,, .., 4,)

i=1 (MP1(4))
subject to (A4, ..., A,) € A.

Proof. This theorem follows immediately from Lemmas 3.5 and 3.7.

DEeFINITION 3.9. A point (2, ..., 2,)e I'" is said to be a local minimum
to problem (P1) if there exists 6 > 0 such that F(Q,, .., Q,) S F(4,, .., 4,)
for all (4,,.,4,)el, G(4,,..,4,)<0 satisfying d[(4,, .. 4,),
(2, ..,2,)]<4.

LemMa 3.10 [3, Corollary 3.9]. In problem (P1) if F:I'" > R! and
G=(Gy, .., G,): I'" > R™ are differentiable at (2, .., 2,)eI"". Suppose
that (Q,, ..., 2,) is a local minimum to problem (P1) and that there exists
(@, .., 82,)eI" such that

Gi(2,,..92,)+ ) g5, G, X~ Xa,» <0, j=1.,m (5)
i=1

.....
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Then there exist A,, ..., A, such that

(r+3 1" 14~ ta,) >0 (6)
Jj=1
forall Aeli=1,. ., n
2GRy, ... 2,)=0 (7)
Ay s Ay 20 (8)
Gi(2,,.,02,)<0, j=1,.,m, 9)

where g% s is the ith partial derivative of G; at (Q,,.., Q).

.....

THEOREM 3.11 (Necessary and Sufficient Conditions for Constrained
Local Minimum). In problem (P1), if F=(F,,..,F,). I'"—> R’ and
G=(Gy,..,G,): I'"->R™ are convex on I'" and differentiable at
(2y,..,R2,)el", suppose that (2,,..,82,) is a proper R? -solution of
problem (P1). Suppose further that there exist (£,,..,Q,) and
(B, .., B,)e I'" such that

(@, . 9,,)+<z (el o ta—Tadee 3. (g8 gn,x:z,—xg,->)<0
i=1 =1

= i= (10)
and
G(B,, .., B,)<0. (11)

Then there exist A= (Ay, ..., A,)eint R? , u=(u,, .., u,,) € R™ such that

14 m
<Z LT+ Y u,-g”,x,h—xg,>>0, i=1,.,m A,el, (12)

i=1 j=1
wGQ, . 2,)=0, j=1,..m (13)
G(2,,..2,)<0, j=1,..m (14)

Conversely, if there exist A= (A,, .., A,)eint R, , u=(uy, .., #,,) €R", and
(By, ., B,)ETI™ such that (11), (12), (13), and (14) hold, then (2,, .., 2,)
is a proper R’ -solution of problem (P1).

Proof. Since (2,, .., Q2,) is a proper R? -solution of problem (P1), it
follows from Theorem 3.8 that there exists A= (4,, .., 4,) eint R, such that

(A F(Ay, oy 4,))> 2 <A F(Q4, ..., 2,)D

for all (A,, .., 4,) € A. Then by Lemma 3.10, there exists u=(1t,, ..., ) €
R7 such that (12), (13), (14) are true.

409/161/2-6
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Conversely, if there exist A= (4, .., 4,)eintR%, u=(u,, .., p,)€R?
and (B, .., B,)e I'" such that (11), (12), (13), and (14) hold. Since F and
G are differentiable and convex on I, it follows from Lemma 3.3 that for
all (4,,..,4,)el™"

FlA,,..,A,)—-F(Q,,..,Q,)

g <Z <fi1’ XA,-_XQ,>’ R Z <fip’ XA,-_X.Q,->> (15)

G(Ay,...4,)—G(2,,..,2,)

g(z <gil’ XA,-_XQ,->’ o0y Z <gim, XA,-_XQ,->> (16)

i=1 i=1

Since Aeint RZ, ue R, it follows from (15), 16), and (12) that
Chy F(Ayy oy 4,) = F(R¢, ., 2,)) + {p, G(Ay, o, 4,) = G(Q4, ., 2,))

> <l, (Z N Ha= X2 Ds o ,2 S, xA,.—xg,->)>

+ <#9 (z <gila XA,-—X.Qi>, () Z <gim, XA,—X!)i>>>

i=1
n p m
=Y, <Z L+ Y e XA.»“XQ,»>>0~
i=1 \j=1 j=1

As peR%, u,G(L2,, .., 2,)=0, j=1,..,m, we have

(A, F(Ay, ., A,)— F(Q4, ... 2,)>
=, F(Ay, ., A4,)— F(Q4, .., 2,)>+ {p, G(Ay, ... 4,) —G(2y, .., 2,))
=0

For any (A4,,.,4,)eA, (£2,,..,8,) is a proper R? -solution follows
immediately from Theorem 3.8.

Remark 3.12. In Theorem 3.11, if the condition
p m s
< Y ALY+ Y u g% XA,~"XQ,~> =0
j=1 i=1
forall i=1,..,n and all A,eT is replaced by

n P m
> <Z LT+ Y u,-g",xm—xs:,->>0
Jj=1 j=1

i=1 i=

for all (A,, .., A,)e I'", we see that the theorem is still true.
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As a consequence of Theorem 3.11, we have the following two theorems.

THEOREM 3.13. In problem (Pl), let F=(F,,..,F,):. I'">R’ and
G=(G,,..,G,) I'">R" be convex on I" and differentiable at
K2,, .., 2,) € I'". Suppose that (2, ..,82,) is a proper R -solution
of problem (P1). Suppose further that there exist (2, .. Q .) and
(B, .., B,)eI'" such that

6@y, 9>+(z (& ot~ Lo dn z (g% g",m-—xg,>)<0

i=1

and G(By, .., B,) <0, then there exists p=(yty, ..., 4,,) € R such that for
eachi=1, .., n,

(f”+ Y ouigl e [P+ Z U g )separates Q,, (17)
Jj=1 Jj=1

WGAR,s r 2,)=0, j=1,..m (18)

G2y, )0, j=1,.,m, (19)

where gk 5 denotes ith partial derivative of G, at (2,,..,9,).

Proof. 1t follows from Theorem 3.11, there exist A={(4(,..,4,)€
int RE, p=(u, .. h,)€ €R% such that (12), (13), and (14) are true.
Without loss of generality, we may assume that 37, 1,= 1. In view of
(12), we have for each i=1,2, .., n,

(™, 1t = 20 0s o <SP, xA,—xQ,>)>+<z g, xA,—in>>0
j=1

forall A,el. (20)

Since 37_, 4,=1, it follows from (20) that

A (S, X4~ Xe s RGAS X4~ Xe)
+(< > g xA,~xg,.>, < DI 4 xA,—xg,.>)> 20 forall A.el.
j=1 i=1

Therefore for each i=1, .., #n and (4, .., A,)e ",

({8 et (7 § st
< << i Xﬂf>»---»<f"”+§lu,-g"f,xg,>)>. (21
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Then by Lemma 2.6 and (21),

(<fi1 + Z u 8", XQ,>’ . <fip+ Y uigl, xgl_>> ee(Y)),

j=1

where

Y,~={<<f“+ Y ugY xA,.>, <f""+ Y wg xA,.>);AieF}-
j=1 Jj=1

Since Y, is convex by Liapunov’s Lemma (Lemma 2.12), we get by (21)
and Lemma 2.11 that

<<f RN LA xp,.>, <f P+ ugY 19i>)
i=1 i=1

is a properly efficient point of Y, for each i=1, .., n
This shows that for each i=1, ..., n

<f” + Z Ajgif, e [P+ Z Ajgﬁ) separates £,
Jj=1 j=1

and the proof of the theorem is completed.

The following theorem gives the sufficient conditions for the existence of
the proper R -solution.

THEOREM 3.14. In problem (P1) if F and G are differentiable and convex
on I'". Suppose that there exist (B, .., B,)eI™, A=(4,,.., 4,)eint R
p="(11s s P ) ERT such that (11), (17), (18), and (19) hold, then
(2., ... 2,)eI'" is a proper R? -solution of problem (P1).

Proof. By Lemmas 2.11 and 2.12, there exists A= (4,, .., 4,)eint R/
such that for each i=1, .., n and for all 4,e I,

=i
() (s )

<z, (<f“+ e xA,.—xg,.>, <f”’+ S g, xA,.—xn,.>)> >0 (22)
j=1 j=1
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for all i-—l ,n and A,e . Without loss of generality, we may assume
that 37 = 1 From (22) and Y.7_, A.=1, we see that

Jj=1"%
Z<Z if”+2uj ,xA,.—xg,>>0
i=1 ‘j=1

for all (4,, .., 4,)eI"". By Theorem 3.11 and Remark 3.12, we complete
the proof of the theorem.

j=1 ]

DEerFNITION 3.15. A set function F: S — R is called quasiconvex on a
convex subfamily S of I'" if for each (2,,..,2,), (4;,..,4,) in S,
4€ [0, 1], there exists a Morris sequence {V*(4)} in I associated with
(2,, 4,, 4) for each i=1, .., n such that (V¥(4), .., VX(1))e S for all ke N
and

lim F(VX(A), .., VE(L)) <max{F(Q,, .., Q,), F(4,, ., 4,)}.
k— oo
DerINITION 3.16. A set function F=(F,,..,F,): S—R” is called

quasiconvex on a convex subfamily S of I'", if for each i=1, .., p, F, is
quasiconvex on S.

Remark. 1t is easy to see that if a set function is convex, then it is
quasiconvex, but the converse is not true, in [8], we give an example of a
quasiconvex set function which is not convex.

LEMMA 3.17. Let S be a nonempty convex subfamily of I'" and F=
(Fy, .., F,): S—R? be differentiable and quasiconvex on S. If for any
(2,,..,82,), (4, .., 4,)eS with F(A,, .., A,)S F(Q,, .., 2,) then

(Z S, Xa—Xa,) Z i XA,—XQ>>§0.

i=1

Proof. Since F is quasiconvex on S, it follows that F; is quasiconvex on
S for each j=1,..,n Let 1€(0, 1), then there exists a Morris sequence
{V¥(A)} in I' associated with (,, 4,, 1) for each i=1, .., n such that
(VE(4), .. VE(A))e S for all ke N and

H_l P)(V,;(i)’ seey V,;('l)) S F']‘(Qla ooy Qn)
k—

Since F is differentiable at (2, ..., 2,) e S, it follows that
F,(VE(4), ., VE(4))

=F;(2,,..,2,)+ Z S, XVf(A)—Xa,->

i=1

+d(VI(A), s V(D)) (21, s 2,))- E(VE(R), ., V(D)) (24, s 2,,)),
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as  d((V4(A), ... VE(A)), (2, .., 2,)) = 0.
In theorem 3 of [7], we show that

Em d((VE(A), . VE(A), (21, ., 2,))

k— 0

CE((VE(A), .., VE(A)), (24, ..., 2,)) € 0(A).

Hence
fm F(V5(A), ... VE(1)
k—
=F'j({‘?l, vy Qn)+ A Z <flja XAi—X,Q,-> +0(/1)
i=1
sF‘j(‘(213 cery Qn)
That is,
1N Y v, —v_ Ndolll<O nrall =1 n
AL NI KA T e, TORAITNY, Vo0 an J= 5, a0 P
i=1

Dividing both sides of the above inequality by 4 and letting A — 0, we have

Y S g~ ra><0,  forall j=1,..p.
i=1

It follows that
< Z <, X=X s oo Z S XA,-—XQ,>) <0.
i=1 i=1

The following theorem gives sufficient conditions for existence of a
Pareto optimal solution to problem (P) with convex objective function and
non-convex constrained functions.

THEOREM 3.18. In problem (P), if S is a convex subfamily of I'" and
(2., ... 2,)€S. Suppose that

(i) - F, G, and H are differentiable at (2, .., 2-,).
(i) F: S — R” is a convex set function.
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(i) G,=(G,,..,G,) and H=(H,, .., H,) are quasiconvex on S,
where I={i; G,(2,, ... Q) 0} = {5y, 8}

(iv) There exists ueint R%2 , v,e R/, , weR’", , such that

(0 " tamtadn TS0 100 ))
+<v,,(i (8", a,— Xa 2 8%, X4~ Ae >>

\/

i <W’ ( DR Piah P Z <h", x4 — XQ,->>> >0

i=1 i=1
(V) G(‘Ql’ "y Qn) éO'
(vi) H(Q,,..Q,)=0.

Then (2, .., 2,) is a Pareto optimal solution to problem (P).

Proof. Suppose that (2, .., 2,) is not a Pareto optimal solution to
problem (P). Then there exists (4,, .., 4,) & I'" such that

F(A,, ., A,)—F,, .., 2,)<0,
G(4,, .., A4,) <0,
H(A,, .., A,)=0.

Hence
Gi(Ay, .., 4,)2G,(L24, .., 2,)=0,
H(A,,..,4,)=H(Q,,..,2,)=0.

By the convexity of F and quasiconvexity of G, and H, Lemmas 3.3 and
3.18, we have

(Z LR T R xQ,.>>

i=1 i=1

éF(Ah-"" An)_F(Qh---’ Qn)goa (23)

(Z &%\ A — Aoy Z (8%, X4 e, >> <0, (24)

=1 i=1

(2<h",xA—xg z<h",xA >)§0. (25)

=1 -
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Since u>0, v =0, w=0, it follows from (23), (24), (25) that we have
<u’ ( Z <fi1’ XA,-_XQ,->1 “ees Z <fip’ XA,'—X{),->>>
i=1 i=1
+ <U1, ( Z (gis', XA,-—X,Q,->’ wes Z <gis,-’ XA,-‘XQ;>)>
i=1 i=1

+ (0 (2 Chs = 2030 T < =223 ) ) <O

This inequality contradicts hypothesis (iv). Hence (2, .., 2,) is a Pareto
optimal solution to problem (P).

DEFINITION 3.19. Let S be a nonempty subfamily of I and let
F=(F,, .., F,): §— R? be differentiable on S. The set function F is said
to be pseudoconvex on S if for each (24, ..., 2,) and (44, .., 4,) in S, with

( ™ ta— oo 3 P 0 xg,.>> >0
i=1 i=1
we have

F(A,, . A)ZF&,, ... 2,).

Remark. 1t follows from Lemma 3.3 that if F is a convex set function,
then it is pseudoconvex, but the converse is not true. In [8], we give an
example to show that a pseudoconvex set function is not convex.

THEOREM 3.20. In problem (P), suppose that
(i) F, G,, and H are differentiable at (Q,, ..., 2,)e S< I'", where
I={i;G(2,,..,2,)=0}={s,, .., 5;}.

(i) There exist ucint R? , veR’,, and we R’; such that

(( £ <" ta toem 3 <Lt 103))
+<”’(.Z (8™ x4 XaDs > X 8% xA,—xn,.>>>

(0 E = tadien ¥ K= 12>) )20 (26)

i=1 i=1

for all (A,, .., A,)€A.
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(i) G(Q,,..Q,)<0.
(iv) H(®,,.,Q,)=0.
(V) XL uF+X,,v,G+)_, wH, is pseudoconvex on S.

Then (2., ..., 2,) is a Pareto optimal solution to problem (P).

Proof. Assume that (Q,,..,%,) is not a Pareto optimal solution
to problem (P), then there exists (A,,.., A,)ed, G(4,,..,4,)£0,
H(A,, ..., 4,)=0 such that

FA,, ..., 4,)<FKQ,,..,2,)
By (i), (iv), we see that
Gi(Ay, ., 4,)20=G,(2,,.,2,)
and

H(A,, . A,)=H(,,..,Q,)=0.

Since ueint R%, ve R/, it follows that
<us F(Al’ ey An)> + <U, GI(AI’ ey An)> + <W, H(Ala seey An)>
< <u’ F(Qla seey Qn)> + <U7 GI(QI’ (it Qn)> + <W, H(Ql’ weey Qn))

By assumption, ¥/, u,F;+3%,.,v,G,+2"_, w,H; is pseudoconvex at
(2, .., 2,), we have

<u, (é SN A= X205 o Z A XA,—XD,->>>

i=1

+<v,(2 8™, Xa— XD - 2, <8, XA,-'“XQ,»>)>
i=1 i

i=1

+<W,(Z <h“: XA,_XQ,->’ ety Z <hir’ XA,——XQ,'>>><0 (27)
i=1 i=1

for all (A,,..,4,)eA. But (27) contradicts hypothesis (ii). Hence
(24, .., 2,) is a Pareto optimal solution to problem (P).

THEOREM 3.21. In problem (P), suppose that S is a convex subfamily of
re(Q,,.,Q,)eS, and

(1) F, G, and H are differentiable at (Q,, ..., Q,).
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i) There exist ueint R2 , veR”, we R”, such that
+ + +

P
(@) Y u,F;is pseudoconvex on S,
i=1
(b) Y v,G,is quasiconvex on S,
iefl
r
(c) Y. w,H,is quasiconvex on S,

i=1

@ (T St t0)em ¥ 0= 10)))
< (Z &Y 14— g 2 (87 xA,~xg,.>)>

i=1

< (z<h“,xA, Yo 0 S <h"',xA,.—xg,.>>>>0

for all (A4, ..., 4,)e A.
(iii) (v, G(2,, ... 2,)>=0.
Giv) G(Q,,..,2,)=0.
(v) H(R,,..,2,)=0.
Then (2, .., 2,) is a Pareto optimal solution to problem (P).
Proof. Since (v, G(2,,..,2,)>=0, G(2,, ..,2,)<0, v=0, it follows

that
v,G,(2,, .., 2,)=0 for all i.

Therefore
Z v,G(R2,, .., 2,)=0.

iel
For any (A4,, .., 4,)€ S with G(4,, .., 4,) £0, we have
Y 0,Gi( Ay, s 4,)< Y 0,62y, -, 2,,).
iel iel
Since ;. ,v;G; is quasiconvex on S, it follows that
(o0 (£ <8 tatadon T (e ta1ad) )0 8
for (A4,,..,A4,)eA. As v,=0 for each je {1, .., m}\I=(¢, .., t,), we have
(mnr (£ <8 ta =t 3 <" k0202 ) ) =0 (29)

i=1
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for —all (4,,.,4,) €A Similarly ¥, wH{(4,,.,4,) =

YioawiH (L, ..,2,)=0 for all (4,,.,4,)ed As ¥  wH is
quasiconvex on S, we have

<w,(z " a— 0 s o S (A7, xA/-xg,>)><o (30)
i=1 i=1

for all (A4,, .., 4,)e A. By (ii)(d), (28), (29), and (30), we have

n

<us<z <f“’ XA,-—X.Q,>a ey Z <fipa XA,—XQ,->>>>O
i=1

i=1 =

for all (A4, .., 4,)€ A. Since 7 u;F, is assumed to be pseudoconvex on
S, we have

{u, F(Ay, oy A,)) 2 u, F(R2,, ..., 2,,)

for all (A,,..,4,)eA. For ueint R”?, it follows from Lemma 2.6 that

+
(2, .., 2,) is a Pareto optimal solution to problem (P).

LemMa 322 [5]. In problem (P1), (2,,..,R,) is a Pareto optimal
solution if and only if (Q,, .., Q,) minimize each F; on the constraint set
Ci={(Ay, s AT F(Ay, ... A,)SF(Qy, ... 2,),
i#jand G(Ay, .., 4,)<0}. (31)

The following theorem establishes necessary conditions for a Pareto
optimal solution of problem (P1) when the set functions are differentiable.

THEOREM 3.23. Let the set functions F=(Fy, .., F,): I"">R? and G=
(Gy, ., G,,): IT'" = R™ be differentiable on I'". Suppose that (2,, .., 2,) is a
Pareto optimal solution of (Pl) and for each s=1,.., p there exist
(23, ... Q%)e I'" such that

681, 20)+( T 8hap tir=tade o ¥ <85 e 1a))<0
i=1 i=1

and for each j=1, .., p, j#s
( Y S e X Xn)) <0,
i=1

then there exist v=(v,,..,v,)eintR%, 32 v;=1, i=(4),..,4,)eR”
such that

P m
< Z "jf’sjm ,,,,, 2t 2 480 .. XAi—XQ;> 20 (32)
1 \j=1 =1

J=
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for all (A, .., A,)el™

Y v,G,(2y, . 2,)=0

j=1

G(Q,.»2,)20, j=1,.,m

(A, A,,j, respect;&ély.

Proof. Since (2,, .., 22,) is a Pareto optimal solution of (P1), it follows
from Lemma 3.23 that (Q,, .., 2,) minimizes each F; on the constraint set
C; of (31). Then by Lemma 3.9 for each i=1,..,n, j=1, .., p, there exist
ﬂlj’ ey ﬁmj’ )’11-, aory 'y]‘_ 1,3 Yj+ 1,79 = 'ij such that

o m N P .
<f.¥)1,__,,{2,, + z ﬁk] g}l)(l ,,,,,,,, 2, + Z 'ijf.'\!;h.u,ﬂ,,’ XA,'— Xﬂ,> 2 0 (33)
k=1

k=1
k)

for all A,el’
Z Bijk(Ql’ eeey Qn)=09
k=1

Gk(gls“‘9 Q")SO, k_—"l,...,m

Letting j=1, ..., p in (33) and then summing up, we obtain

<(1 + ; yl,) +(1 +ig v,,,-) 13...a

P
+Y ¥ ﬁ <gh . Q",x,‘i—xgi>>>0 forall A,erl.

=1 k=1
Letting
p P
H; 21 By
ﬂs=1+27sp V= pj ’ Ak=—Lp_l-—_]'7
j=1 j=1H; j=1H
Jj#Es

then 37, v;=1, v=(vy, ., v,)€int R, , A=(4y, .., 1, )e RY and for all
i=1,.,n

? m
< Z ijzl,...,g,,"' Z ljgzl,...,n,,’ XA;’_X.Q,-> =0 forall A.el.
j=

j=1

1

m m P ﬁl

S 4G @1s s @)= X Y 554 61, 20)
Jj=1

jlzljll

i Y BiG/(82,,...2,)=0.

j=1Hij=1 i=1
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Hence

Z < Z vjflfll ..... Qn+ 2 A’jgllj)l,.“‘[),,’ XA,'_X.Q,> 20

i=1 \j=1 j=1

for all (4,, .., 4,)e I'". We complete the proof of the theorem.

1.

10.

11.
12.

13.
14.

15.
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