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Abstract. Data stream mining has become a novel research topic of growing interest in knowl-
edge discovery. Most proposed algorithms for data stream mining assume that each data block is
basically a random sample from a stationary distribution, but many databases available violate this
assumption. That is, the class of an instance may change over time, known as concept drift. In this
paper, we propose a Sensitive Concept Drift Probing Decision Tree algorithm (SCRIPT), which is
based on the statistical X2 test, to handle the concept drift problem on data streams. Compared
with the proposed methods, the advantages of SCRIPT include: a) it can avoid unnecessary system
cost for stable data streams; b) it can immediately and efficiently corrects original classifier while
data streams are instable; c) it is more suitable to the applications in which a sensitive detection of
concept drift is required.

Key words: data mining, data streams, incremental learning, decision tree, concept drift.

1. Introduction

Data mining, an important technique used in searching for knowledge in databases, has
attracted many researchers’ attention in recent years. Among several functionalities of
data mining, classification is crucially important and has been applied successfully to
several areas (Jegelevičius et al., 2002; Remeikis et al., 2004). The popular techniques
developed for classification includes Bayesian classification, Neural Networks, Genetic
Algorithms, and Decision Trees (Gehrke et al., 2000; Han and Kamber, 2001; Mehta
et al., 1996; Misevičius, 2006; Quinlan, 1993; Rastogi and Shim, 1998; Shafer et al.,
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1996). However, in addition to displaying comparable classification accuracy to other
techniques, decision tree is more efficient and easily interpreted by human (Rastogi and
Shim, 1998). In the research domain of decision tree, several important issues, includ-
ing scalability (Gehrke et al., 2000), imbalanced dataset (Japkowicz and Stephen, 2002),
ensemble classifier (Chawla et al., 2002), incremental learning (Schlimmer and Fisher,
1986; Utgoff, 1989) etc., also have been widely studied. Since the real-world data nowa-
days might come in the form of consecutive data blocks (Domingos and Hulten, 2000),
researchers have put more and more attention on data streams mining. The related ap-
plications include e-mail sorting (Cohen, 1996), calendar scheduling (Blum, 1997), and
computer intrusion detection (Maloof and Michalski, 2000) etc. Nevertheless, most pro-
posed approaches of data stream mining assumed data blocks come under stationary
distribution. Such an assumption is unreasonable since the concept (also called target
class) of an instance might change as time goes by. That is, an instance with concept
“yes” in current data block may be with concept “no” in the next one. Such a change of
concept is known as concept drift (Harries et al., 1998; Kifer et al., 2004; Schlimmer and
Fisher, 1986; Wang et al., 2003), changing concepts (Klinkenberg and Renz, 1998), or
time-varying concepts (Kuh et al., 1991).

Window-based approaches (Hulten et al., 2001; Klinkenberg and Renz, 1998; Maloof,
2003; Widmer and Kubat, 1996) are the common solutions for the concept drift problem
on data stream. They use a fixed or sliding window (Jin and Agrawa, 2003) to select ap-
propriate training data for different time points. Weighting-based (Koychev, 2000; Kolter
and Maloof, 2003) and ensemble classifier (Fan, 2004; Street and Kim, 2001) were also
introduced to handle the concept drift problem. However, while the concept is stationary,
the methods mentioned above spend a lot unnecessary system cost, including compu-
tational cost to rebuild the decision tree or storage cost to record similar data blocks.
Moreover, they generally are not sensitive enough to the concept drift problem. For some
real-time applications such as fraudulent credit card transactions or computer virus de-
tection, a sensitive approach to detect drifting concepts would be very important since
serious damage can be therefore reduced. Finally, it is interesting to note that drifting
instances should gather in some specific areas in the dimensional space of attributes, oth-
erwise they can be regarded as noise instances. These foregoing observations motivate
us to propose a more efficient and sensitive approach to mine drifting concepts on data
streams.

In this paper, we propose a Sensitive Concept Drift Probing Decision Tree algorithm
(SCRIPT). The main contributions of SCRIPT are: a) it can avoid unnecessary system
cost for stable data streams; b) it can efficiently rebuild classifier while data streams are
instable; c) it is more suitable for the applications in which a sensitive detection of con-
cept drift is required. We evaluated SCRIPT on UCI Database (Agrawal et al., 1992) to
demonstrate its accuracy, efficiency, and sensitivity on the detection of concept drift. The
remainder of this paper is organized as follows. Section 2 introduces the concept drift
problem and some traditional data stream mining algorithms. In Section 3, we propose
our Sensitive Concept Drift Probing Decision Tree algorithm. The experimental evalua-
tion is presented in Section 4. Finally, we concludes this paper.
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2. The Problem of Concept Drift on Data Stream Mining

VFDT (Very Fast Decision Tree Learner) (Domingos and Hulten, 2000) have been pro-
posed to solve the scalable problem when learning from very large data stream. It starts
with a single leaf and starts collecting training examples from a data stream. When VFDT
gets enough data to know, with high confidence that it knows which attribute is the best
to partition the data with, it turns the leaf into an internal node and goes on splitting it.
However, as most incremental learning methods, it assumes that the data is a random
sample drawn from a stationary distribution and is inappropriate for the concept drift
mining such as credit card approval and fraud detection. CVFDT (Hulten et al., 2001)
(Concept-adapting Very Fast Decision Tree Learner), which is formerly VFDT, is a rep-
resentative window-based approach for mining concept drift on data stream. It solves
the concept drift problem by maintaining only fixed amount of data within the window.
CVFDT keeps its learned tree up-to-date with this window by monitoring the quality of
its old decisions as data moves into and out of the window. In particular, whenever a new
instance is read it is added to the statistics at all the nodes in the tree that it passes through,
the last example in the window is forgotten from every node where it had previously had
an effect, and the validity of all statistical tests are checked. If CVFDT detects a change, it
starts growing an alternate tree in parallel which is rooted at the newly-invalidated node.
When the alternate is more accurate on new data than the original, the original will be
replaced by the alternate tree.

WAH (Window-Adjustment-Heuristic) (Widmer and Kubat, 1996) and DNW (Klin-
kenberg and Renz, 1998) are also window-based algorithms, however, they use sliding
window. WAH take the actual condition of decision tree into account to dynamically
adjust the window size. After new data stream join, the doubt for concept drift will re-
duce the size of windows by 20%. Contrarily, when data are stable, a unit of window is
deleted to avoid maintaining too many unused data. When the concept seems to be sta-
ble, the original window size is maintained. If none of the conditions mentioned above
are valid, it means that more information will be needed to build classifiers. As a result,
old data will not be left out of the window and new data will also be added in it. Al-
though WAH can solve the problem of concept drift according to actual conditions, but it
is suitable only for small databases. DNW deals with the learning of training data by way
of data block, which is suitable for data stream environment. DNW has a similar way of
learning to WAH; however, they are different in condition and way of assessment. DNW
builds a classifier for each block, and compares the three parameters: accuracy, recall, and
precision for classifiers on the current blocks with the ones for the previous classifiers.
Weighting-based (Koychev, 2000; Kolter and Maloof, 2003) and ensemble classifier (Fan,
2004; Street and Kim, 2001) were also introduced to handle the concept drift problem on
data stream. Weighting-based approach provides each example with a weight according
to their age and utility for the classification task. Ensemble classifier built separate sub-
classifiers and then combines the prediction of each sub-classifier to classify the unseen
data. The main disadvantage of an ensemble classifier is the huge system cost caused by
the building and maintenance of all sub-classifiers.
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While the concept is stable, the methods mentioned above would spend unnecessary
system cost, including computational cost to build or rebuild a decision tree or storage
cost to record similar data streams. Moreover, when concept is drifting, they generally
are not sensitive enough to the concept drift problem. That is, if the proportion of drifting
instances to all instances in a data block is small, the proposed solutions can detect the
changes until the number of drifting instances reaches a threshold to cause obvious dif-
ference in accuracy or information gain. For some applications such as fraudulent credit
card transactions, the sensitivity to detect drifting concepts would be very important. In
an ensemble classifier, the fraudulent transactions might be ignored due to the predictions
of old sub-classifiers. For weighting-based approaches, even giving a high weight to the
transactions in the new data block, they might also make a wrong prediction since the
influence of old transactions. Fixed window-based approaches have a similar problem
to that in weighting-based approaches, and sliding window-based approaches would also
disregard such changes since these drifting transactions would not cause obvious variance
of accuracy or information gain.

3. Sensitive Concept Drift Probing Decision Tree Algorithm

In this section, we first give some discussions of the concept problem in Section 3.1.
We then define the CDAV which is used to probe the drifting concept in Section 3.2. In
Section 3.3, we present the correct mechanism to efficiently handle concept drift problem.
Section 3.4 is our Sensitive Concept Drift Probing Decision Tree algorithm (SCRIPT)
Algorithm. Finally, we compare the system cost among SCRIPT, DNW, and CVFDT in
Section 3.5.

3.1. Concept Stable, Concept Drift, and Concept Shift

To make readers easily understand the problem we will address later, in this paper we di-
vide the concept drift into concept stable, concept drift, and concept shift (Hsieh, 2004).
We refer to the examples in (Wang et al., 2003) and modify the figures to illustrate the
problem in Fig. 1. Fig. 1 represents a two-dimensional data stream and is divided into six
continuous data blocks according to the arriving time of data. Instances arriving between
ti and ti+1 form block Bi, and the separating line in each block stands for the optimum
classification boundary in this block. During time t0 to t1, data blocks B0 and B1 have
similar data distribution. That is, data stream during this period is stable. Thereafter in B2,
some instances shows concept drift and the optimum boundary changes. This is defined
as “concept drift”. Finally, data blocks B4 and B5 have opposite sample distribution and
this is defined as “concept shift”. Obviously, since the sample distributions of the first two
blocks B0 and B1 are quite close, we can use decision tree DT0 built by B0 as the clas-
sifier for B1 to save the computational and recording cost. Meanwhile, B2 shows slight
differences when compared with the sample distribution of B1 and an efficient approach
should make correction according to the original decision tree in stead of rebuilding it.
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Fig. 1. A data stream with the occurrence of concept drift.

Besides, in Section 2, we have showed that the proposed solutions are not sensible
enough to the drifting concepts. That is, the proposed solutions can detect the changes
until the number of drifting instances reaches a threshold to cause obvious difference
in accuracy or information gain. Here we describe another concept drift problem which
would enforce some proposed solutions such as CVFDT and DNW make a wrong pre-
diction. In order to introduce this problem, we subdivide concept drift into one-way drift
and two-way drift (Hsieh, 2004). Take Fig. 1 as the example again, we can find that some
negative data in B2 drift to be positive data in B3, known as one-way drift. However, the
positive data in B4 drift to be negative in B5, and vice versa, known as two-way drift. We
can regard two-way drift as a kind of “local” concept shift if it occurs in the internal or
leaf node of a decision tree. If the variation of information gain or gini index is used as
the criterion to judge the occurrence of concept drift, e.g., the difference of information
gain adopted in CVFDT, we can detect only one-way drift since the information gain ob-
tained from B4 would the same as B5. It is worth to note that for the real data, two-way
drift might happen. For example, a hacker in turn uses two computers with IP address
x and y to send attack packages. When an internal node, which is learned from the first
data block, splits the packages form x as safe and that from y as attack, there might be
a contrary result learned from another data block. A similar condition might be found in
trash mail protection, image comparison and so on.

3.2. Class Distribution on Attribute Values

Since the proposed solutions to mine concept-drifting data stream check the occurrence of
concept drift on the level of instance or attribute, they generally are not sensitive enough.
Besides, they are also unable to detect the two-way drift illustrated in Fig. 1. To solve
these problems, SCRIPT probe the changes at a more detailed level, which is called CDAV
(Class Distribution on Attribute Values) and defined as follows.

DEFINITION 1. Assuming that a data block contains m target classes ck (k = 1, . . . , m),
n attributes ai (i = 1, . . . , n), and each attribute ai having v attribute values aij (j =
1, . . . , v), then the distribution of target class ck on the attribute value aij is defined as a
CDAVij (Class Distribution on Attribute Values).
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With Definition 1, we can use the X2 test to check if there are concept drift between
two data blocks. X2 is a statistical measure used to test the hypothesis that two discrete
attributes are statistically independent. Applied to the concept problem, it tests the hy-
pothesis that the class distribution on an attribute value of two data blocks is identical.
The formula to computing the X2 value is

X2 =
(f ′

ijk − fijk)2

fijk
, (1)

where fijk represents the number of instances having attribute value aij and class ck in
D and f ′

ijk is that in D′. With Formula (1), we can then define the variance of a CDAVij

in the two data blocks as follows.

DEFINITION 2. For a given significant level α, the variance CDAVD→D′(i, j) of the a
CDAVij between two data blocks D and D′ in a data stream is defined as

CDAVD→D′(i, j) =
m∑

k=1

(f ′
ijk − fijk)2

fijk
. (2)

PROPOSITION. For the two data blocks D and D′, if all CDAVD→D′(i, j) < ε, then the
concept distribution on all attribute value aij in the two data blocks show no significant
difference, and neither do the accuracy of decision tree built according to D and D′,
respectively.

Proof. Since CDAVD→D′(i, j) < ε, we can obtain fijk
∼= f ′

ijk for target classes ck

(k = 1, . . . , m), attributes ai (i = 1, . . . , n) and attribute value aij .
For attribute ai, the Entropy before the splitting is

I(ai) = −
m∑

k=1

Pik log Pik,

where Pik = fi+k/N , fi+k denotes the total number of instances belonging to class ck

as shown in Table 1, and N denotes the total number of instances in the data block.
Since fijk

∼= f ′
ijk and N = N ′ we can obtain

Pik = fi+k/N =
v∑

j=1

fijk/N ∼= −
v∑

j=1

f ′
ijk/N ′ = f ′

i+k/N ′ = P ′
ik.

Continually, we can obtain that

−
m∑

k=1

Pik log Pik
∼= −

m∑
k=1

P ′
ik log P ′

ik and I(ai) ∼= I(a′
i). (3)

That is, the Entropy of attribute ai before splitting in data blocks D and D′ is similar.
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Suppose we splitting all instances N into v subset by attribute ai, the Entropy of
attribute ai after splitting is

E(ai) =
v∑

j=1

fij+

N
×

(
−

m∑
k=1

Pijk log Pijk

)
, (4)

where Pijk = fijk/fij+, fij+ denotes the total number of instances having attribute
value aij as shown in Table 1.

Since fijk
∼= f ′

ijk we can infer that for the attribute value aij

fij+
∼= f ′

ij+. (5)

As a result, we can also obtain that

Pijk
∼= P ′

ijk and −
m∑

k=1

Pijk log Pijk =∼= −
m∑

k=1

P ′
ijk log P ′

ijk. (6)

From (4), (5) and (6), we can get that

E(ai) ∼= E(a′
i). (7)

From (3) and (7), we can get that

Gain(ai) = I(ai) − E(ai) ∼= I(a′
i) − E(a′

i) = Gain(a′
i).

That is, the Information gain of attribute ai in data blocks D and D′ is similar.
As a result, the two decision trees which are respectively built by using blocks D and

D′ will be similar.

By this Proposition and Formula 2, we can detect any kind of concept drift between
two data blocks and then build an accurate decision tree. The significance level can be set
to be smaller or larger according to the needs of applications. With a given significance
level, we can obtain the ε by checking the X2 table in a statistical book. The degree

Table 1

The class distribution on an attribute ai

Class \ value ai1 ai2 . . . aiv Summation

c1 fi11 fi21 fiv1 fi+1

c2 fi12 fi22 fiv2 fi+2

...
...

...
...

...
...

cm fi1m fi21 fivm fi+m

Summation fi1+ fi2+ fiv+ N



142 C.-J. Tsai, C.-I. Lee, W.-P. Yang

of freedom will be 1 less than the number of classes. Suppose that we set the level of
significance α = 5% and there are three classes, if all CDAVD→D′(i, j)are less than ε =
5.991, that means the class distribution on all attributes shows no significant difference
between D and D′ with 95% confidence. As a result, the information gain obtained from
any attribute will show no significant difference and the decision tree need not to be
rebuilt. Note that the purpose of our Proposition is to claim that a rebuild tree will have
very similar accuracy to that of original one, rather than to guarantee the rebuild tree will
be a copy of the original one.

For clearly understand our idea, a case with two datasets D and D′ is presented in
Table 2. Each of the two sets has two attributes A1 and A2, and each attribute has three
attribute values (a11, a12, a13; a21, a22, a23). There are total 500 instances and two classes
are c1 and c2 in each dataset. Assuming that the level of significance α = 5% (degree of
freedom = 1 and ε = 3.841), we can infer the following by Formula 2:

CDAVD→D′(1, 1) = 0.6723 < ε; CDAVD→D′(1, 2) = 0.5948 < ε;

CDAVD→D′(1, 3) = 0.5326 < ε; CDAVD→D′(2, 1) = 2.7763 < ε;

CDAVD→D′(2, 2) = 1.7223 < ε; CDAVD→D′(2, 3) = 1.5948 < ε.

Since all CDAV s have no significant difference, by our Proposition mentioned above,
the decision trees built respectively with D and D′ would be very similar. To verify this,
we build the two decision trees and show the corresponding rules. The rules obtained
from data set D are:

(1) A1 = “a12” → c2; (2) A1 = “a13” → c2;
(3) A1 = “a11” ∩ A2 = “a21” → c2; (4) A1 = “a11” ∩ A2 = “a22” → c1;
(5) A1 = “a11” ∩ A2 = “a23” → c2.

And the rules obtained from data set D′ are:

(1) A1 = “a12” → c2; (2) A1 = “a13” → c2;
(3) A1 = “a11” ∩ A2 = “a21” → c2; (4) A1 = “a11” ∩ A2 = “a22” → c1;
(5) A1 = “a11” ∩ A2 = “a23” → c2.

We can find that the two decision tree have identical rules. This result corresponds to
our Proposition.

Table 2

Two data sets D and D′ without occurrence of concept drift

Dataset D D′

attribute A1 A2 A1 A2

Attribute value a11 a12 a13 a21 a22 a23 a11 a12 a13 a21 a22 a23

class c1 192 41 13 18 216 12 198 42 12 25 211 15

c2 33 142 79 74 122 58 37 133 73 76 108 65
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COROLLARY. By above Proposition, we can infer that if the variance of CDAV for
the two data blocks D and D′ is greater than or equivalent to a threshold ε, (i.e.,
CDAVD→D′(i, j) � ε), then concept drift may occur between D and D′. As a result,
the original decision tree needs to be corrected.

Here, we use the two datasets in Table 3 modified from Table 2 to illustrate this Corol-
lary. Again assuming that the level of significant α = 5% (degree of freedom= 1 and
ε = 3.841), we can infer the following by Formula 2:

CDAVD→D′(1, 1) = 3.0848 < ε; CDAVD→D′(1, 2) = 1.5402 < ε;

CDAVD→D′(1,3) = 5.9085 > ε; CDAVD→D′(2, 1) = 1.8754 < ε;

CDAVD→D′(2, 2) = 0.4274 < ε; CDAVD→D′(2, 3) = 2.7299 < ε.

Since CDAV13 achieves significant difference, by above Corollary, we can claim that
concept drift occurs and the decision trees built respectively with D and D′ would be
different. To verify this, we again show the corresponding rules for two trees as follows.
The rules obtained from data set D are:

(1) A1 = “a12” → c2; (2) A1 = “a11” ∩ A2 = “a21” → c2;
(3) A1 = “a11” ∩ A2 = “a22” → c1; (4) A1 = “a11” ∩ A2 = “a23” → c2;
(5) A1 = “a13” → c2.

And the rules obtained from data set D′ are:

(1) A1 = “a12” → c2; (2) A1 = “a11” ∩ A2 = “a21” → c2;
(3) A1 = “a11” ∩ A2 = “a22” → c1; (4) A1 = “a11” ∩ A2 = “a23” → c2;
(5) A1 = “a13” ∩ A2 = “a21” → c2; (6) A1= “a13”∩ A2= “a22”→c1;
(7) A1 = “a13” ∩ A2 = “a23” → c2.

By comparison, we can find that the rule A1 = a13 → c2 in dataset D have some
changes in data set D′; the results correspond to our Corollary.

3.3. Correcting Mechanism in SCRIPT

As described in Introduction, drifting instances should gather in some specific areas in
the dimensional space of attributes, otherwise they can be regarded as noise instances.

Table 3

Two data sets D and D′ with occurrence of concept drift

Dataset D D′

attribute A1 A2 A1 A2

Attribute value a11 a12 a13 a21 a22 a23 a11 a12 a13 a21 a22 a23

class c1 192 41 13 18 216 12 203 34 20 23 208 16

c2 33 142 79 74 122 58 42 135 66 68 118 67
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Accordingly, another advantage of CDAV is that it can reveal which attribute values
cause concept drift before building the decision tree by aggregating the drifting CDAV s.
This will enable SCRIPT to efficiently and immediately amend the original decision tree.
In the example in Table 3, we can recognize the concept drift is caused by attribute value
a13. Therefore, we can only correct the subtree rooted at a13 to efficiently correct the
decision model.

We use Fig. 2 to further illustrate the idea of correcting mechanism in SCRIPT.
Fig. 2(a) is a decision tree trained from old customer’s data to predict if a customer
will apply for credit cards. For better understanding, only the subtree rooted at attribute
“salary” is shown. A similar decision tree, except that it is trained from new customer’s
data stream, is shown in Fig. 2(b). By comparison with the CDAVs in Fig. 2(a) and
Fig. 2(b), we can find that some concept in new data block is significantly different
from that in old one. More importantly, we can find that these changes gather up in the
branch of “age < 20 and 20 � age < 40”. Accordingly, the aggregated drifting CDAVs

Fig. 2. Two data blocks with the occurrence of concept drift: (a) original data block and the corresponding
sub-tree; (b) new data block and the corresponding sub-tree.
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is 0 � age < 40 and it means that a people younger than 40 have changed his concepts
in this example. To efficiently provide a decision tree suitable for new customers’ data
block, we can only correct the subtree rooted at 0 � age < 40 as in Fig. 2(b).

Now, we detail the correcting mechanism in SCRIPT. In the processing of data stream,
when the difference of CDAV between new data block Bt and original data block Bt−i

(t � i � 1) is greater than the given threshold (the level of significance is set 0.05 as
the default), the correct methods in SCRIPT can be divided into the following cases. The
corresponding illustration of each case is shown in Fig. 3. In each case of Fig. 3, the
dotted node in the left tree (original tree) denoted the occurring of concept drift and the
dotted subtree in the right tree (new tree) is an alternate tree built by SCRIPT.

For each aggregated drifting CDAV in attribute ai with value(s) aij

a. If attribute ai was not a split attribute of a node in the original decision tree;
SCRIPT will use this attribute to split all leaf nodes by using data block Bt. Such
a variation of CDAV indicates that an attribute with originally little information
changes into an optimal split attribute due to concept drift. We illustrate this con-
dition in Fig. 3(a).

b. If attribute ai was a split attribute of a node in the original decision tree and all

Fig. 3. The illustrations of correcting mechanism in SCRIPT when concept drift occurs.
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CDAVs group in an interval aij , SCRIPT will remove the subtree rooted at the
attribute value aij from the original tree and use data block Bt to build the alter-
native tree. Such a variation means concept drift is caused by a fixed range aij of
the attribute ai. Take Fig. 3(b) for example, for the attribute age, those under 20
were originally inclined not to apply for credit cards; however, with the growing
consuming ability of students, more and more are applying.

c. If attribute ai was a split attribute of a node in the original decision tree but all
CDAVs are scattered in several interval, SCRIPT will removes the subtree rooted
at this attribute ai from the original tree and use data block Bt to build the alterna-
tive tree. Such a variation represents concept drift is caused by the attribute ai but
within multiple ranges of the attribute. For instance, for the attribute of age, people
younger than 20 and older than 40 were originally both inclined not to apply for
credit cards; however, with the change of payment types, more and more are apply-
ing. In this case, “age”, no longer the optimal split attribute, is replaced by “credit
rating”, according to a test result. This case is illustrated in Fig. 3(c).

Note that all aggregated drifting CDAVs might distribute among several attributes and
SCRIPT will check if they are in the same path in the original tree before the correctness.
If two aggregated CDAVs are in the same path, the one locates in the highest level will
be reserved and the other will be deleted.

3.4. SCRIPT Algorithm

Combine Section 3.1 to 3.3, we summary our Sensitive Concept Drift Probing Decision
Tree (SCRIPT) algorithm in this section. Based on the variation of CDAV (Class Dis-
tribution on the Attribute Value), SCRIPT aims to apply to large scale and high speed
applications which also require the sensitiveness to handle the drifting concepts. SCRIPT
cuts the data stream into sequential data blocks. When the test threshold is set as α, each
training data in the block should be read no more than once and processed in minimal
constant time while concepts are stable. While concepts are instable, SCRIPT would de-
tect concept drift, and then build the alternate tree to correct previously built tree. The
pseudo code of SCRIPT is shown in Fig. 4. Giving the size of data block N(1000 as the
default) and the significance level α(0.05 as the default), SCRIPT calculates the CDAVs
in data block B0 in Line 4 as the initial reference. Note that, N can be set larger in a high
speed environment or smaller for the real time application; however, fijk must be larger
than 5 which is a basic requirement in X2 statistics test. Similarly, α can be set smaller if
the detection of concept drift is very important and larger otherwise. The default signifi-
cant level α in SCRIPT is set as 0.05 since this value is widely used as the default in the
statistic. It is not hard to imagine that SCRIPT will be more sensitive to the concept drift
but may require more computational cost if we use a larger significant level α; on the
contrary, SCRIPT will be more tolerant to the noise data with a smaller α. The CDAV of
new coming block Bt+1 is calculated in Line 6 to 10. The CDAVs of two data blocks Bt

and Bt+1 are compared in Line 11 to 14. All drifting CDAVs are then aggregated in Line
16 for the purpose of efficiently correcting the decision model in Line 22 to 31. Finally,
the recorded information is updated in Line 32.
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Inputs: N : the size of the block (1000 as the default);
Bt: the data block in time step t;
α: the level of significance (0.05 as the default);

Procedure SCRIPT (N, α, Bt)
/* Initialization */

1. t = 0;
2. Build the original decision tree DT0 by B0;
3. Record the set of split attributes of DT0 in Splitatt [];
4. Count the CDAV s in B0 and record them in RCDAV [ ];

/* Detect the concept drift and correct the original decision tree */
5. t = t + 1
6. For the new coming data block Bt in time step t
7. For each instance (ai, ck) in Bt in S
8. For each value aij of each attribute ai ∈ A
9. For each class ck

10. Count CDAVkjk in RCDAV [ ];
11. For each CDVij in the new data block
12. If | CDAVt−1→t(i, j)| > ε
13. Record this CDAV in DCDAV [ ];
14. End if
15. If DCDAV [ ] is not empty
16. Aggregate the recorded CDAVs;
17. For all aggregated CDAVs
18. If two aggregated CDAVs are in the same path in the original decision tree
19. Reserve the one locates in the highest level in ACDAV [ ];
20. End if
21. Update ;
22. For all aggregated CDAVs belonged to attribute ai in ACDAV [ ]
23. If attribute ai is not in Splitatt []
24. Build an alternative tree rooted at this node by using Bt;
25. Elseif attribute ai is in Splitatt [] and all aggregated CDAVs in ai group in an

interval aij

26. Remove the subtree rooted at this attribute value aij from DTt−1;
27. Use the new data block Bt to build the alternative tree rooted at aij ;
28. Else
29. Remove the subtree rooted at this attribute ai from DTt−1;
30. Use the new data block Bt to build the alternative tree rooted at aj ;
31. End if
32. Update Splitatt [] , RCDAV [ ], and the recorded decision tree;
33. End If
34. Return.

Fig. 4. The pseudo code of SCRIPT algorithm.

3.5. The Comparison of System Cost Among SCRIPT, DNW, and CVFDT

In this section, we compare the system cost of SCRIPT to that of two state-of-the-art
window-based approaches: DNW and CVFDT. Assumed a data block has i attributes,
k target classes, each attribute has j attribute values, since SCRIPT records the referred
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CDAVs, it has a small memory cost O(ijk). SCRIPT also needs to record a decision
tree and the split attributes in this tree, however, the memory cost is O(n) and can be
ignored, where n is the number of nodes of the recorded decision tree. For CVFDT, since
it has to record the counting in each node of the recorded decision tree, the memory cost
needed will be O(nijk). DNW, which is a sliding window approach, might have a worst
record cost since it record instances instead counting and new data blocks might have to
be mixed into old ones. If the maintained data is w times as much as that of a new data
block, then the needed memory cost will be O(wNi), where N is the number of instances
in the block .

In the aspect of computational cost, while the concept is stable, SCRIPT only needs
to carry out i × j times of comparisons to see if there are any drifting CDAVs. There-
fore, the required computational cost of O(ij). If we use CVFDT, we have to check the
information gain for each attribute in each node of decision tree when a new data block
is given. If the tree has n nodes, the computational cost needed would be O(nijk) (Klin-
kenberg and Renz, 1998). For DNW, the computational cost would be O(nwNi) since
the tree is rebuilt from scratch. When the concept drifts, DNW and CVFDT have a sim-
ilar computational cost to that in stable stream. Since SCRIPT directly correcting some
sub-trees by checking the drifting CDAVs, the computational cost of the rebuilding is
O(ij) + O(n′ijk), where n′ � n and O(ij) is responsible for the comparison of CDAVs
and O(n′ijk) is the computational cost for the rebuilding of sub-trees. Comparisons of
system cost among SCRIPT, DNW, and CVFDT in stable and drifting data stream are
summarized in Table 4. In summary, SCRIPT has the smallest memory requirement and
computational cost when concept is stable. When concept drifts, SCRIPT still requires
the smallest memory cost and a better or comparable computational cost.

4. Empirical Analysis

In this section, two the-state-of-art data stream mining algorithms, DNW and CVFDT,
are implemented to compare with our SCRIPT. We run all experiments on a PC equipped
with Windows XP professional operating system, Pentium III 1GHz CPU and 512mb
Sdram memory. For the preset of parameters in DNW, we refer to (Klinkenberg and
Renz, 1998) and set α = 5.0, β = 0.25, and γ = 0.50.

Table 4

The Comparisons of system cost among SCRIPT, DNW, and CVFDT

Concept Stable Concept Drift
Algorithm

Memory Cost Computational Cost Memory Cost Computational Cost

DNW O(wNi) O(nwNi) O(wNi) O(nwNi)

CVFDT O(nijk) O(nijk) O(nijk) O(nijk)

SCRIPT O(ijk) O(ij) O(ijk) O(n′ijk)
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4.1. Experimental Datasets

We select three datasets from UCI databases in which the number of instances is larger
than 4000 as our experimental datasets. UCI database (UCI Repository of Machining
Learning Database) is a repository of several kinds of datasets and these datasets are
widely used by the machine learning community for the empirical analysis. The summary
of the four real datasets is shown in Table 5. To simulate a data stream, for each UCI
dataset we first divide it into three data blocks B0, B1, and B2 to simulate a stable data
stream. Then, we code a program to generate consecutively data blocks contain drifting
concepts by modifying B2. As described in Introduction and Section 2, one purpose of
SCRIPT is to detect the drifting concepts more sensitively to make it suitable for the
applications in which a small part of drifting concepts would cause large damage. To
evaluate the sensitiveness about the detection of concept drift, we set the drifting ratio as
1%; that is, there are N × (t − 2)% drifting instances in the data block Bt in time step t

(t � 2), where N is the number of instances in B0. This program works as follows. First,
it randomly picks up one instance S in data block Bt and randomly selects attributes am

(1 � m � 10) for reference. The target classes of instances, which have the same values
to that of S in all attributes am, are then changed. We limit the number of referable
attributes less than 10 since drifting concepts should be caused by some but not a lot
attribute values. For example, age and salary may influence the application of credit cards
but weight and height will not; IP address and the number of sending packages may be
the main basis to find a PC which sends virus package; fraudulent credit card transactions
can be detected by the payment amount and location. If the number of drifting instances
is less than the requirement, the program goes on next loop to get more drifting instances.
On the contrary, if there are more instances satisfy the requirement, N% instances are
randomly picked up as drifting ones. Consequently, for each UCI dataset, we generate 13
data blocks (B0 ∼ B13) and each data block is divided into 10 parts of which nine parts
are used as training dataset to calculate the execution time and the remaining one as the
testing dataset to count the accuracy. Each generated data stream would correspond to
our assumption described in Introduction and Section 3.3 that drifting instances should
gather in some specific areas in the dimensional space of attributes, otherwise they can be
regarded as noise. Finally, to get an objective result, all experiments were repeated 100
times to obtain the average.

Table 5

The summary of three experimental UCI datasets

Dataset Number of instances Number of attributes Number of classes

satimage 6435 36 6

thy 7200 21 3

spambase 4601 57 2
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4.2. The Comparison of Accuracy

Figs. 5–7 illustrates the comparison of accuracy among DNW, CVFDT, and SCRIPT on t.
In Figs. 5–7, we can find that SCRIPT has a similar accuracy to that of DNW and CVFDT
in stable data blocks B0 to B2. It follows the Proposition mentioned in Section 3.2 that
when concept is stable, the accuracy of the SCRIPT is similar to that of classifier which
is rebuilt. When there are drifting concepts from data blocks B3 to B12, we can find
SCRIPT is much more sensitive than DNW and CVFDT. That is, SCRIPT always keeps
a high accuracy but DNW and CVFDT can detect the changes until the number of drifting
instances reaches a threshold to cause obvious difference in accuracy or information gain.
Take the satimage dataset in Fig. 5 for example, DNW averagely recognizes the drifting
concepts in blocks B6, B7 and B12 and therefore reduce the window size to build an up-

Fig. 5. The comparison of accuracy on satimage.

Fig. 6. The comparison of accuracy on thy.
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Fig. 7. The comparison of accuracy on spambase.

to-date decision tree; CVFDT averagely uses the alternate subtree to correct the original
classification model to raise the accuracy in time step 7, 8 and 12. Similar conditions
occur in thy and spambase dataset: in thy, DNW usually discovers the changes in time
step 7, 8, and 12, and in time step 8 and 9 in spambase; CVFDT averagely recognizes the
drifting concepts in time step 6, 7, and 11in thy and spambase dataset.

4.3. The Comparison of Execution Time

In the aspect of comparison of execution time in Figs. 8–10, SCRIPT, DNW, and CVFDT
have a similar execution time for the building of the first decision tree in data block B0.
However, SCRIPT and CVFDT requires a little more execution time in the initial step
since SCRIPT needs to calculate the CDAVs and CVFDT must record the counts in each
node. After the beginning step, SCRIPT is much more efficient than DNW and CVFDT

Fig. 8. The comparison of execution time on satimage.
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Fig. 9. The comparison of execution time on thy.

Fig. 10. The comparison of execution time on spambase.

when concept is stable in time step 1 and 2. When concept drifts, the execution time
of SCRIPT is worse than that of CVFDT in most cases. However, this is caused by the
fact that SCRIPT recognizes the drifting concepts and therefore needs more execution
time to correct the original decision tree in these time steps. It is worth to note that when
both SCRIPT and CVFDT detect the drifting instances and correct the decision tree, e.g.,
in time step 7, 8 and 12 in Fig. 8, SCRIPT is more efficient than CVFDT. The reason
is SCRIPT can immediately know which sub-trees should be amended by checking the
drifting CDAVs but CVFDT have to check the variation of information gain node by node
from the root. Similar condition can be found in time step 6 and 7 in thy and spambase
dataset. DNW, which builds a new classifier in each time step, always has the worst
computational cost. The computational is much worse as time goes by since DNW does
not recognize the concept drift and therefore mixes the new data block into the old one.
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4.4. The Analysis of Significance Level α

Finally, in this section, we use the three drifting datasets generated in Section 4.1 to
evaluate our SCRIPT on different levels of significance. Due to the content limit and
the similar results on three datasets, we only illustrate the result of satimage in Fig. 11
and 12. As inferred in Section 3.4, SCRIPT will be more sensitive to the concept drift
but should require more computational cost if we use a larger significant level α; on the
contrary, SCRIPT will be more tolerant to the noise data with a smaller α. The experi-
mental results in the three datasets correspond to our inference. In Fig. 11, SCRIPT with
a higher significance level (0.1 in this example) can on average reach a higher accuracy.
The reason is that the hypothesis which assumes the class distribution in two data block

Fig. 11. The comparison of accuracy of SCRIPT with different levels of significance on satimage.

Fig. 12. The comparison of execution time of SCRIPT with different levels of significance on satimage.
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is identical will be rejected more easily when the significance level is larger. Therefore,
a small number of drifting instances will make SCRIPT to correct the original decision
tree. Relatively, as illustrated in Fig. 12, SCRIPT with a higher significance level aver-
agely needs more execution time to implement the correct mechanism. It is also worth
to note that in the stable data blocks B1 and B2, SCRIPT with significant level 0.01 still
correct the decision tree constructed by B0. This is occurred by the fact that we randomly
split the original dataset into three subsets to simulate a stable data stream and the three
data blocks might contain some inconsistency caused by the random sampling.

5. Conclusions

Mining drifting concepts on data stream has become a novel research topic of growing
interest in knowledge discovery. However, while the concept is stationary, the proposed
methods spend a lot unnecessary system cost, including computational cost to rebuild the
decision tree or storage cost to record similar data blocks. Moreover, they generally are
not sensitive enough to the concept drift problem. In this paper, we propose a Sensitive
Concept Drift Probing Decision Tree algorithm, called SCRIPT, to handle this problem.
The Proposition in Section 3.2 verifies the validity for SCRIPT to determine if concept
drift exists between two data blocks. The experiments in Section 4 also show that SCRIPT
can sensitively, accurately, and efficiently handle the drifting concepts on data stream.
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Efektyvus ir patikimas sprendim ↪u medžio metodas kintamos koncep-
cijos duomen ↪u gavybai

Cheng-Jung TSAI, Chien-I LEE, Wei-Pang YANG

Duomen ↪u sraut ↪u duomen ↪u gavyba yra žini ↪u technologija, kuriai pastaruoju metu skiriama ne-
mažai dėmesio. Dauguma duomen ↪u sraut ↪u tyrimo algoritm ↪u remiasi prielaida, kad analizuojami
informacijos blokai yra atsitiktiniai, o j ↪u skirstiniai stacionarūs. Tačiau daugelio duomen ↪u bazi ↪u
atveju ši prielaida nepasitvirtina. Tai, kad laikui bėgant kai kuri ↪u klasi ↪u ↪iraš ↪u turinys gali kisti, yra
apibūdinama koncepcijos kitimo s ↪avoka. Šiame darbe mes siūlome patikim ↪a koncepcijos kitimo
zondavimo sprendim ↪u medžio (Sensitive Concept Drift Probing Decision Tree (SCRIPT)) algo-
ritm ↪a, pagr↪ist ↪a statistinio X2 testo taikymu koncepcijos kitimui nagrinėti. Palyginus su žinomais
metodais SCRIPT pasižymi tokiais privalumais: a) padeda išvengti kašt ↪u, susijusi ↪u su stacionariais
duomen ↪u srautais; b) padeda greitai ir efektyviai koreguoti pradinius klasifikatorius, kai duomen ↪u
srautai yra nestabilūs; c) yra ypač efektyvi tais atvejais, kai reikalinga patikimai ↪ivertinti koncepci-
jos pokyčius.


