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Synopsis Three industrially-relevant glucoamylase structures have been determined revealing how 

the starch-binding module can adopt different orientations relative to the catalytic domain.  

Abstract Glucoamylases (GA’s) are one of the most important classes of enzymes in the industrial 

degradation of starch biomass. They consist of a catalytic domain and a carbohydrate binding domain 

(CBM), with the latter being important for the interaction with polymeric substrate. Whereas the 

catalytic mechanism and the structure of the individual domains are well known, the spatial 

arrangement of the domains with each other and its influence on activity are not fully understood. We 

have crystallised and determined the structure of three industrially used fungal glucoamylases, two of 

which are full length. We show for the first time that the relative orientation between the CBM and 

the catalytic domain is flexible as they can adopt different orientations independently of ligand 

binding, suggesting a role as an anchor to increase the contact time and relative concentration of 

substrate near the active site. The flexibility in orientation of the two domains presented a 

considerable challenge for the crystallisation of the enzymes. 

Keywords: Starch; glucoamylase; carbohydrate-binding module;  

 

1. Introduction 
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Starch and glycogen are one of the major reserves of carbon and energy for all life. Furthermore, 

starch is one of the most important commodities for the food industry as well as for biofuel production 

(reviewed in (Torney et al., 2007, Lovegrove et al., 2017)). Due to the high stability of the glycosidic 

bond (Wolfenden et al., 1998) and the internal structure of starch, current industrial processes to 

modify and break it down usually require harsh conditions. In nature there is a huge variety of 

specialised enzymes that modify and degrade glycogen and raw starch (reviewed in (Whelan, 1971)). 

In contrast, in industry the non-enzymatic modification and breakdown of raw starch mostly requires 

harsh conditions not desired in green environmentally friendly processes (Xu et al., 2016). The use of 

enzymes proved to be a sustainable alternative to chemical processes and is now a multi-billion-dollar 

market (Chemier et al., 2009). Among the most important classes of enzymes for the complete 

degradation of starch are glucoamylases, members of the glycoside hydrolase family 15 (GH15; 

reviewed in CAZypedia (Consortium, 2017) at 

https://www.cazypedia.org/index.php/Glycoside_Hydrolase_Family_15) of the CAZy 

database  (http://www.cazy.org)  (Lombard et al., 2014), which catalyse the cleavage of the α-1,4- and 

α-1,6-glycosidic bonds. Glucoamylases use a classical acid/base Koshland type inverting mechanism, 

releasing β-glucose from the non-reducing end of an α-glucan chain (Koshland, 1953, Weil, 1954, 

Pazur & Ando, 1959;1960). Fungal enzymes in particular are widely used for the complete 

degradation of starch to glucose (reviewed in (Norouzian et al., 2006)) and early on their heavy use 

sparked high interest in the structural and functional characterisation of microbial glucoamylases from 

a variety of sources (bacterial, fungal and eukaryotic). All glucoamylases possess a common catalytic 

domain, which can be followed or preceded by additional domains, usually carbohydrate binding 

modules (CBM’s) (reviewed in (Boraston et al., 2004, Marin-Navarro & Polaina, 2011)). The 

catalytic domain alone is able to degrade oligosaccharides, but for the interaction and degradation of 

raw starch, the carbohydrate binding domain proved to be essential (Stoffer et al., 1993, Sauer et al., 

2000).  

 

The first crystal structure of a glucoamylase was that of the catalytic domain of the Aspergillus 

awamori var. X100 glucoamylase (Aleshin et al., 1992). The structure revealed a 13 α-helix fold with 

an (α/α)6-helical bundle as core, with the active site in a deep funnel-like structure at the N-terminal 

side of the helical bundle. A subsequent structure of a complex with the well-known inhibitor 

acarbose allowed the identification of two conserved catalytic glutamic acid residues and important 

interactions in up to four well defined subsites (Aleshin et al., 1994). The structure confirmed that 

glucoamylases employ a single displacement mechanism with inversion of the anomeric centre first 

deduced by Weil et al. (Weil, 1954). Insight into the interaction with raw starch was gained through 

various NMR and crystal structures of an isolated CBM alone and in complex with β-cyclodextrin or 

isomaltose (Sorimachi et al., 1997, Chu et al., 2014). The CBM forms a twisted β-sandwich domain 
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and at least two different starch binding sites have been identified in the A. niger CBM (Sorimachi et 

al., 1997). The relative orientation of the catalytic domain and the CBM to one another and their 

interaction was studied with scanning tunnelling microscopy, suggesting an average distance of 90 Å 

and multiple different conformations (Kramer et al., 1993, Sauer et al., 2000). The first crystal 

structure of a full length glucoamylase was solved from Hypocrea jecorina in 2008 (Bott et al., 2008), 

and showed the CBM in a single orientation consistent with feeding an amylose chain into the active 

site. However, a single structure cannot reflect the flexible orientation observed using scanning 

tunnelling microscopy and light scattering, thought to be important for the complete degradation of 

starch (Kramer et al., 1993, Payre et al., 1999).  

Here, we have crystallised and determined the X-ray structures of three industrially-relevant 

glucoamylases. We describe the full-length structures for Hormoconis resinae GA (HrGA) and 

Penicillium oxalicum GA (PoGA) in their native states, as well as the catalytic domain of Aspergillus 

niger GA (AnGA). Two distinct relative conformations for the CBM were observed and reveal for the 

first time that, independent of ligand binding, multiple conformations are adopted. This advances our 

understanding of how glucoamylases interact with the substrate and subsequently degrade the starch 

polymer into its monomers.  

2. Material and Methods 

2.1. Cloning, expression, purification 

The genes encoding the glucoamylases (UNIPROT accession numbers: AnGA P69328, HrGA 

Q03045 and PoGA S7ZIW0) were cloned, expressed in A. niger and the proteins purified as described 

for PoGA in Patent WO 2011127802 A1. Briefly, the culture broth from fermentation of A. niger 

MBin118 harbouring the glucoamylase gene was filtrated through a 0.22 μm PES filter, and applied 

on an α-cyclodextrin affinity gel column previously equilibrated in 50 mM NaOAc, 150 mM NaCI, 

pH 4.5 buffer. Unbound material was washed off the column with equilibration buffer and the 

glucoamylase was eluted using the same buffer containing 10 mM β-cyclodextrin over 3 column 

volumes. The glucoamylase activity of the eluent was checked to see if the glucoamylase had bound 

to the α-cyclodextrin affinity gel. The purified glucoamylase sample was then dialysed against 20 

mM NaOAc, pH 5.0. The purity was finally checked by SDS-PAGE, and only a single band was 

observed. Purified proteins were provided from Novozymes to the University of York. PoGA was 

further treated with endo-H to minimize N-glycosylation. 

2.2. Crystallisation 

For all three proteins, initial crystallisation screening was carried out using sitting-drop vapour-

diffusion with drops set up using a Mosquito Crystal liquid handling robot (TTP LabTech, UK) with 

150 nl protein solution plus 150 nl reservoir solution in 96-well format plates (MRC 2-well 



Acta Crystallographica Section D    research papers 

4 

 

crystallisation microplate, Swissci, Switzerland) equilibrated against 54 µl reservoir solution. 

Experiments were carried out at room temperature with a number of commercial screens. 

Crystallisation of the intact proteins proved to be a challenge, presumably due to microheterogenity as 

a result of non-uniform glycosylation.  

Penicillium oxalicum  

Prior to crystallisation, the protein was concentrated to 48 mg/ml by ultrafiltration in an Amicon 

centrifugation filter unit (Millipore), aliquoted to 50 µl; aliquots that were not immediately set up for 

crystallisation were flash frozen in liquid nitrogen and stored at -80°C to use later in optimisations. 

The protein concentration was determined using a Coomassie (Bradford) assay (Bradford, 1976), with 

bovine serum albumin (BSA) as standard. The protein was diluted to several concentrations in the 

range 10-48 mg/ml for the initial crystallisation trials. 

No hits appeared in the initial screens until an additional purification step by ion exchange was 

introduced. Anion exchange (pI is 6.0) was carried out in 20 mM Tris-HCl pH 7.5, with shallow 

gradient elution in 20 mM TrisHCl pH 7.5, 1 M NaCl. The asymmetrical peak started eluting at 

50 mM NaCl, the shoulder was separated from the main peak and fractions corresponding to the main 

peak were pooled and concentrated to 10 mg/ml.  

Initial hits were obtained in PACT premier™ HT-96 (Molecular Dimensions), with the best being 

very small clusters in condition E8 (0.2 M Na2SO4, 20% PEG3350). Seeding stock was prepared from 

condition E8 and MMS (microseed matrix screening, recent review in (D'Arcy et al., 2014)) 

performed according to the published protocols (Shaw Stewart et al., 2011). Briefly, crystals from the 

initial successful drop were transferred onto a glass slide, crushed, and collected in a Seed BeadTM 

(HR2-320, Hampton research) with 50 µl well solution added, vortexed for one minute, and used as 

an initial seeding stock: unused seeding stocks were stored at -20°C for later experiments. MMS was 

carried out with 150 nl protein solution plus 100 nl reservoir solution plus 50nl seeding stock, using a 

Mosquito Crystal liquid handling robot, in the PACT premier™ HT-96 screen. Following MMS, the 

best hit was obtained in condition C1 (PCB – sodium propionate + sodium cacodylate + Bis-Tris-

propane buffer pH 4.0, 25% PEG1500). These again were clusters of inter-grown crystals, but bigger 

and better defined than the initial ones. Final optimisation was carried out using the Silver Bullets 

screen (HR2-096, Hampton Research), where different additives found successful for various proteins 

in the past are added to the same “hit” condition while seeding with the same seeding stock as before 

(PACT E8). This was successful and produced diffraction-quality crystals in condition G2 (0.2% 

thiodiglycolic acid, 0.2% adipic acid, 0.2% benzoic acid, 0.2% oxalic acid anhydrous, 0.2% 

terephthalic acid, 20 mM Hepes pH 6.8). To summarise, the condition that gave the final crystals was 

PACT C1 (100 nl) with added Silver Bullets G2 (50 nl) and seeding stock from PACT E8 (Table 1). 

The crystals were cryoprotected with PEG1500, added to the crystallisation condition to a final 



Acta Crystallographica Section D    research papers 

5 

 

concentration of 34%. Data were collected at the Diamond Light Source beamline I04-1 to 2.0Å 

resolution. The data were indexed and integrated with XDS (Kabsch, 2010) and subsequently scaled 

and merged with Aimless (Evans & Murshudov, 2013). 

Aspergillus niger 

A number of hits appeared in the initial screens, a single crystal suitable for diffraction being obtained 

in condition H8 of the Index screen (HR2-144, Hampton Research) - 0.1 M Hepes pH 7.5, 25% PEG 

3350. Without further cryoprotection due to the 25% PEG content, the crystals were flash frozen in 

liquid nitrogen and data were collected at beamline ID14-1 of the ESRF to a resolution of 2.3 Å. 

However, the diffraction was of limited quality with streaking of the spots, some evidence of splitting 

and possible ice rings. In addition, after structure solution, the crystal, as described below, only 

contained the catalytic domain of the protein. X-ray data were processed with XDS (Kabsch, 2010), 

followed by AIMLESS (Evans & Murshudov, 2013) for scaling and merging.   

Hormoconis resinae  

The protein was co-crystallised with 7.5 mM acarbose. Large orthogonal crystals formed in condition 

C5 of the Index screen (60% tacsimate pH 7.0), the best of which diffracted to 6 Å at a home source 

(Rigaku MicroMax 007HF rotating anode), using 25% glycerol as cryoprotectant. Data were collected 

on beamline ID14-2 at the ESRF to a maximum resolution of 3.6 Å, processed with MOSFLM  

(Leslie, 2006)  and scaled with AIMLESS (Evans & Murshudov, 2013).  

Data processing statistics for all three enzymes are given in Table 2. 

 

2.3. Structure solution and refinement 

The structures were solved by molecular replacement using PHASER (McCoy et al., 2007) with the 

catalytic domain of A. awamori GA as search model (PDB-ID: 1GLM). The solution of AnGA was 

problematical. The images were initially integrated in space group P1, while intensity statistics 

suggested the crystal was twinned. Merging the data and indeed refining the model was tried in space 

group P1 with four molecules per AU, in P 21 with two, and in P 212121 with a single molecular in the 

AU: for each of these the refined R and Rfree were around 25 and 32% respectively. It was therefore 

decided to use the higher symmetry orthorhombic space group for the analysis, while accepting that 

the data and refinement statistics are poor for a structure at this resolution. Fortunately the AnGA 

structure is of least importance to the conclusions of this work, since it lacks the starch binding 

domain and another structure of the catalytic domain solved at higher resolution, is already available 

(Lee & Paetzel, 2011). For HrGA and PoGA additional unexplained density was attributed to the 

CBM, which was subsequently placed by an additional round of molecular replacement using the 

CBM from H. jecorina (PDB-ID:2VN4) as a model. The structures were subsequently rebuilt in real 
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space using Coot (Emsley et al., 2010) followed by reciprocal space refinement with REFMAC 

(Murshudov et al., 1997) within CCP4i2 (Potterton et al., 2018). The respective glycosylation was 

added in Coot and refined in REFMAC using dictionaries created with PRIVATEER (Agirre et al., 

2015). The dictionaries allowed the use of additional monoperiodic torsion restraints to stabilise the 

conformation of the carbohydrates rings. All other linker parameters were taken from the CCP4 

monomer library. The quality of the final models was evaluated using Molprobity (Chen et al., 2010) 

as part of the PHENIX package (Adams et al., 2011) and PRIVATEER. Figures of the structural 

models were prepared with CCP4mg (McNicholas et al., 2011). Final refinement statistics are given 

in Table 3. 

 

3. Results 

3.1. Crystallisation and Structure determination. 

Purified recombinantly-expressed glucoamylases from the three organisms were crystallised in either 

glycosylated form for AnGA and HrGA or de-glycosylated form in the case of PoGA. Data were 

collected for the partially deglycosylated PoGA to 2.0 Å, for AnGA to 2.3 Å, and for the glycosylated 

HrGA to 3.6 Å resolution. The structures were solved by molecular replacement using the catalytic 

domain of A. awamori glucoamylase. Initial refinement revealed additional density for the linker 

region in all three structures, as well as several N- and O-glycosylation sites. Surprisingly the CBM in 

A. niger could not be seen, and closer inspection of the crystal packing indicated that the CBM cannot 

be accommodated in the crystal lattice and was probably cleaved off during crystallisation. For the 

other two structures the full CBM could be built. The final model of AnGA includes one protein 

molecule in the asymmetric unit (AU) with residues built from 25 to 491, three N-acetyl glucosamine, 

two mannose residues, as part of the N- and O-glycosylation sites and was refined to a final R/Rfree of 

25.1/34.3 %. The PoGA model included one molecule in the AU comprising residues 30 to 616, three 

N-glycosylation sites, a Bis-Tris-propane (BTP), two PEG molecules and was refined to an R/Rfree of 

18.7/22.0 %. The HrGA model with two molecules in the AU included residues 29 to 616, up to seven 

N-glycosylation sites and had acarbose bound in the active site. The model was refined to an R/Rfree of 

23.8/25.4 %. 

3.2. Overall structure 

The catalytic domains of all three structures superimpose with an r.m.s.d. of 1.2Å over max. 452 

residues, despite an overall low sequence identity of approximately 50 % (Fig. 1, Sup. Fig. 1). The 

domain follows the canonical fold with an (α/α)6 barrel. In all three structures, the part of the linker 

domain interacting with the catalytic domain is structurally conserved.  
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The C-terminal CBM adopts the well-known β-sandwich motif, a hallmark of carbohydrate binding 

modules. A sequence comparison classifies both the PoCBM and the HrCBM into CAZy family 

CBM20 (Boraston et al., 2004, Lombard et al., 2014). In addition, the CBMs of HrGA and PoGA 

adopt two different relative conformations with respect to the catalytic domain with concomitant 

differences in the position of the C-terminal part of the linker (Fig. 1). Due to the different positions 

HrGA has an extended arrangement of both domains, whereas PoGA adopts an overall more compact 

structure.  

3.3. Protein glycosylation 

3.3.1. N-glycosylation 

The catalytic domain of AnGA has two resolved N-glycosylation sites at N195 and N419, with two 

GlcNAc residues visible at N195 and one at N419.  

The full-length structures of HrGA and PoGA show a greater degree of N-glycosylation, which is 

most extensive for HrGA, where the resolved sites are at N99, N200, N427, N500, N514, N528 and 

N587. N200 is the only site that shows branching of the glycosylation chain. In PoGA three 

glycosylation sites at N184, N410 and N514 are observed. The most extensive at N184 is structurally 

equivalent to N200 in HrGA and N195 in AnGA. 

3.3.2. O-glycosylation 

O-glycosylation was only observed in AnGA, in particular in the linker domain, which would connect 

to the CBM. Only two sites, at S483 and S484 could be modelled with confidence. 

3.4. Inhibitor binding 

HrGA was co-crystallised with the well-known inhibitor acarbose. Clear density corresponding to the 

inhibitor was found in the active site of both independent monomers. In both monomers an acarbose 

molecule was fitted and refined, assuming full occupancy. The resulting average B-value of 41.3 Å2 is 

similar to the surrounding residues and supports the full occupancy.  The inhibitor occupies the active 

site pocket with the cyclohexitol moiety of acarviosine populating the -1 subsite (subsite 

nomenclature in (Davies et al., 1997) – briefly, subsites are labelled from -n to +n, with -n at the non-

reducing end and +n the reducing end. Cleavage occurs between the -1 and +1 subsites. ). There are 

further interactions with the sugars in subsite +1 (4-amino-4,6-Deoxy-glucose) and +2 (glucose), 

whereas the terminal sugar is not stabilised by direct interactions with the protein. The inhibitor 

interacts with HrGA by multiple hydrogen bonds and hydrophobic interactions with conserved 

residues in the active site (Fig. S2). The catalytic acid E208 forms a hydrogen bond with the bridging 

nitrogen in acarbose as expected for a productive complex with substrate having a glycosidic bond.  
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The catalytic base E432 is at a distance of 3.9 Å from the anomeric carbon, but is hydrogen bonded to 

Y76. The PoGA substrate binding site is occupied with a Bis-Tris-propane molecule (BTP), part of 

the crystallisation medium, which spans subsite -1 and +1 with multiple hydrogen bonds including to 

the catalytic acid. The BTP molecule refines with an average B of 38 Å2 at full occupancy, which is 

similar to the surrounding residues. In AnGA, the active site is empty. There are no significant shifts 

for side chains lining the active site between the three structures indicating a rigid active site. 

 

4. Discussion 

The structures of the three glucoamylases show a high degree of conservation in the catalytic domain, 

as well as for the part of the linker which interacts with the catalytic domain. Whereas for AnGA the 

CBM-domain was missing, a full-length model could be built for HrGA and PoGA.  

In the active site of HrGA one acarbose molecule was identified. The residues interacting with 

acarbose are identical to those described for A. awamori GA (Aleshin et al., 1994) with the catalytic 

acid E208 interacting with the iminolinkage of acarbose and E432, the catalytic base, approximately 4 

Å away. The arrangement and distance between the two catalytic residues support the proposed 

inverting mechanism for these enzymes (Weil, 1954, Pazur & Ando, 1959;1960, McCarter & Withers, 

1994). In PoGA a BTP molecule was modelled into the active site forming key interactions with 

residues in subsite -1 and +1. A similar situation was observed for the structure of the catalytic 

domain of AnGA (Lee & Paetzel, 2011), where a Tris and a glycerol molecule were found in subsites 

-1 and +1 respectively. Tris and its derivatives are well known inhibitors of glycoside hydrolases 

(Roberts & Davies, 2012), which even led to the development of inhibitors sharing common 

characteristics (Taylor et al., 2007).  

All three structures reveal several glycosylation sites in the N-terminal domain, as well as in the CBM 

for PoGA and HrGA. The N-glycosylation sites are highly conserved, suggesting a functional role for 

example in protein secretion or stability. The N-glycosylation site in AnGA at N195 corresponds to 

N184 in PoGA and N200 in HrGA, which shows the highest degree of complexity of all sites in the 

latter two. Residual density suggests additional sugars in AnGA at this site, but the quality of the 

electron density did not allow a further extension of the glycosylation tree. This site is close to the 

linker connecting the CBM and might be of special importance for the linker stability. The importance 

of this site is further supported by the fact that the treatment of PoGA with endo-H still left this site 

intact. The N-glycosylation sites N528 and 587 in the CBM of HrGA are in close proximity to the 

proposed starch binding site 1 in AnGA CBM (Sorimachi et al., 1997), suggesting that only binding 

site 2 is involved in the interaction with the substrate in HrGA.  
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Interestingly, O-glycosylation was only found in AnGA, specifically in the linker region. Though 

more sites are known (Lee & Paetzel, 2011), only two (S483 and S484) could be modelled with 

confidence. Another model, refined to higher resolution, showed up to seven glycosylation sites with 

an eighth suggested, but not modelled (Lee & Paetzel, 2011). The role of this specific linker 

glycosylation is not known, but a role in protein stability was proposed (Goto et al., 1997). 

Additionally it was shown that the extent of the O-glycosylation influences the susceptibility of 

AnGA to proteolytic degradation, which decreases with higher glycosylation (Le Gal-Coeffet et al., 

1995).  

The potential variability in the glycosylation pattern might also explain the positive effect of ion 

exchange purification fine tuning on crystallisation, which is in agreement with the suggestion that the 

protein naturally occurs in multiple species, due to possible glycosylation microheterogenity and/or 

conformational variability resulting in slight variations of the overall surface charge. Selecting a 

species with homogenous surface charge by separating a narrow peak fragment facilitated forming 

crystal contacts favourable for crystallisation. 

Of particular interest in this study is the CBM domain (CAZy family CBM20) and its role in the 

degradation of raw starch. For both HrGA and PoGA the CBM linked to the catalytic domain could 

be clearly modelled, with both domains forming a β-sandwich, a well-known structural motif for 

CBM’s.  Glycoside hydrolase structures with intact appended CBMs are extremely rare, rarer still if 

connected by a flexible linker. It is therefore difficult to know if these rare observations reflect a 

unique orientation, or one favoured by a certain crystal packing environment. Therefore, the most 

important observation is that the CBM domains in the two structures, reported here, adopt very 

different relative orientations with respect to the catalytic domain (Fig. 2) and to the orientation 

observed in the crystal structure for H. jecorina GA solved independently (Bott et al., 2008). Whereas 

HrGA adopts a more extended structure with the two domains separated, PoGA adopts a rather 

compact arrangement. A flexible arrangement with different relative conformations for the CBM was 

previously proposed based on single molecule scanning tunnelling microscopy and light scattering 

data collected on AnGA (Kramer et al., 1993, Payre et al., 1999), which suggested that the average 

distance between the two domains is about 90 Å (Kramer et al., 1993), corresponding to a rather 

extended arrangement. However, it was proposed that for the proper function a closer distance is 

necessary (Payre et al., 1999). Indeed dynamic light scattering experiments pointed to a 

hydrodynamic radius between 60 to 75 Å upon ligand binding (Payre et al., 1999). The structure of H. 

jecorina GA was solved independently in two different crystal forms, with both domains in close 

proximity (Bott et al., 2008), and these authors concluded that the compact conformation is the 

dominant active one. Further support for this model comes from the fact that this would bring the 

second CBM substrate binding site close to the active site. A model with amylose as substrate was 

developed, which takes advantage of the close proximity of the second substrate binding site in CBM 
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and the active site in the catalytic module (Bott et al., 2008). Such a compact conformation is also 

supported by heterobifunctional inhibitors that can bridge the catalytic site and the CBM binding site 

(Payre et al., 1999, Sauer et al., 2000). Furthermore, multiple salt bridges and hydrophobic 

interactions have been proposed to stabilise this conformation. Nevertheless, in HrGa compared to 

HjGA the CBM is in a conformation where the proposed starch binding site is remote from the active 

site, despite co-crystallisation with acarbose. Comparing the compact conformation of PoGA with 

HjGA shows that the CBM in PoGA is in a more elevated position relative to the catalytic domain 

(Fig. 2), and in addition is stabilised by multiple hydrogen bonds and hydrophobic interactions as 

well. Furthermore, no GA specific inhibitor was present during the crystallisation. Though a BisTris-

propane buffer molecule was identified in the active site, which might be a weak inhibitor for GA’s 

(Roberts & Davies, 2012). Taken together all the results gathered on different GA’s point to the 

conclusion that the precise orientation of the CBM with respect to the catalytic domain is neither 

important, nor stabilised by specific interactions between the domains, or favoured by binding of 

inhibitors in the active site and therefore does not influence the activity. Furthermore, GA variants 

with different linker lengths showed virtually no difference in activity provided the linker has a 

minimal length of 17 residues to prevent steric clashes between the two domains (Sauer et al., 2001). 

Additionally, the issue still engenders controversy due to an alternative model, involving an extended 

conformation and subsequent dimerization, based on the results of small angle X-ray scattering 

(SAXS) of AnGA  (Jorgensen et al., 2008). Indeed, analysis of the potential stable oligomers in the 

crystal revealed a dimer for HrGA with the two CBM’s part of the interface (Fig. 3) showing some 

resemblance to the proposed SAXS model.  

In summary, we solved the crystal structures of three industrially relevant glucoamylases, with two in 

the intact two domain form. We show for the first time that the carbohydrate binding module can 

adopt multiple relative orientations with respect to the catalytic module, independent of a bound 

ligand in the active site. The results are in agreement with single molecule data and kinetic analysis of 

linker variants. Nevertheless, further research is needed to clarify the mode of action with respect to 

synergy of binding and oligomerisation on raw starch.  Taken together the data strongly indicate that 

many relative orientations are accessible in solution and contribute to the enhanced activity towards 

polymeric substrate by increasing the relative local substrate concentration, the probability of contact 

with the substrate and may allow the catalytic domain to reach multiple structurally weak points in 

starch without dissociation from the substrate.  
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Figure 1 Stereo ribbon diagram of the tertiary structure of GA. A) Side view of AnGA (red), HrGA 

(yellow) and PoGA (blue) with the relative domain orientation for the CBM of HrGA and PoGA. The 

active site is indicated with acarbose in sphere representation, observed in HrGA. The corresponding 

glycosylation sites are shown as glycoblocks (McNicholas & Agirre, 2017), coloured according to the 

residue type. The superposition is based on secondary structure superposition of the catalytic domains. 

B) Top view along the (α/α)6-barrel.  

 

Figure 2 Stereo representation of the relative orientation of the CBM with respect to the catalytic 

domain from the side (a) and from the front (b). HrGA is coloured in yellow, PoGA in blue and HjGA 

(PDB-ID 2vn7) in green. The active site is indicated with acarbose in sphere representation.The 

glycosylation sites are shown as glycoblocks (McNicholas & Agirre, 2017) and coloured according to 

the residue type.  

 

Figure 3 Potential dimer of HrGA determined from the crystal structure using PISA (Krissinel, 

2015). The bound inhibitor acarbose is shown in sphere representation, whereas the glycosylation is 

shown as glycoblocks (McNicholas & Agirre, 2017). 

 

 

Table 1 Crystallisation  

  PoGA  AnGA  HrGA 

Method   
Vapour diffusion, 
sitting drop, 
MMS 

Vapour diffusion, 
sitting drop 

Vapour diffusion, 
sitting drop 

Plate type MRC 2-well crystallization microplate, Swissci, Switzerland 

Temperature (K) 293 

Protein concentration 10 mg/ml 18 mg/ml 37 mg/ml 

Buffer composition of protein solution 

20 mM Tris-HCl 

pH 7.5, 50mM 

NaCl  

25 mM piperazine 

pH 5.0, 150mM 

NaCl 

20 mM Na-acetate 

pH 5.0 

Seeding stock composition PACT E8: 0.2 M 

Na2SO4, 20% 
N/A N/A 



Acta Crystallographica Section D    research papers 

12 

 

PEG3350 

Composition of reservoir solution 

PACT condition 

C1: PCB – sodium 

propionate + 

sodium cacodylate 

+ Bis-Tris-propane 

buffer pH 4.0, 25% 

PEG1500; + 1/3 

Silver bullet 

condition G2: 0.2% 

thiodiglycolic acid, 

0.2% adipic acid, 

0.2% benzoic acid, 

0.2% oxalic acid 

anhydrous, 0.2% 

terephthalic acid, 

20 mM Hepes pH 

6.8 

Index H8: 0.1 M 

Hepes pH 7.5, 25% 

PEG 3350 

Index C5  (60% 

tacsimate pH 7.0) 

Volume and ratio of drop 

200nl protein + 

150nl reservoir 

(containing 100nl 

screen condition + 

50nl Silver 

bullets)+50nl 

seeding stock 

150nl protein + 

150nl reservoir 

150nl protein + 

150nl reservoir 

Volume of reservoir 54 µl 

 

Table 2 Data collection and processing  

Values for the outer shell are given in parentheses.  

 PoGA AnGA HrGA 

Diffraction  

source Diamond I04-1 ESRF ID14-1 ESRF ID14-2 

Wavelength 

(Å) 0.9173 
 

0.9334 
 

0.933 

Temperature 100 100 100 
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(K) 

Detector Pilatus 2M ADSC Q210 CCD 
 

ADSC Q210 CCD 
 

Crystal-

detector 

distance 

(mm) 222.7 

 

227.2 

 

307.5 

Rotation 

range per 

image (°) 

0.2 
 

0.5 

 

1.0 

Total rotation 

range (°) 
180 180 121 

Exposure 

time per 

image (s) 

0.2 
 

3 

 

10 

Space group H32 P212121  P212121 

a, b, c (Å)  189.3,189.3,115.4 56.4,73.1,102.9 138.0,149.8,192.4 

α, β, γ (°)  90,90,120 90, 90, 90 90,90,90 

Mosaicity (°)  0.24 1.13 1.53 

Resolution 

range (Å) 47.31-2.00 44.64-2.3 59.98-3.60 

Total No. of 

reflections 
548252(35057) 138362(13756) 248567(25376) 

No. of unique 

reflections 53301(3921) 19454(1870) 38033(3798) 

Completeness 

(%) 100(100) 99.5(99.9) 81.8(68.0) 

Redundancy 10.3 7.1(7.4) 6.5(5.5) 〈I/σ(I)〉  6.2(1.0) # 6.3(1.3) 10.5(2.5) 

R r.i.m.  0.225(2.284) 0.071(0.556) 0.142(0.675) 

CC(1/2) 0.994(0.394) 0.995(0.816) 0.994(0.889) 

Overall B 

factor from 
28.3 36.16 45.0 
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Wilson plot 

(Å2)  

# Resolution limit judged based on CC(1/2), which is 0.394 for  PoGA and 0.816 for AnGA in highest 

resolution shell.  The 〈 I/σ(I)〉 drops below 2.0 at a resolution of 2.18 Å for PoGA and 2.58 Å for AnGA.  

† Redundancy-independent merging R factor Rr.i.m (Diederichs & Karplus, 1997) 

 

 

Table 3 Structure solution and refinement  

 

 PoGA AnGA HrGA 

PDB code 6FHV 6FRV 6FHW 

Resolution 

range (Å) 47.31-2.00 44.64-2.30 59.58-3.60 

Completeness 

(%) 100 99.6 81.8 

No. of 

reflections, 

working set 
53296 19520 37085 

No. of 

reflections, 

test set 
2614 974 1887 

Final Rcryst  18.7 25.1 23.6 

Final Rfree  22.0 34.2 25.4 

Cruickshank 

DPI 
0.1525 0.5677  

No. of non-H 

atoms 
 

 
 

 Protein 4576 3542 8959 

 Ligand  120 64 429 

 Water 257 27  

 Total 5403 3633 9388 
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R.m.s. 

deviations  
 

 
 

 Bonds (Å) 0.0146 0.0089 0.0101 

 Angles (°) 1.632 1.267 1.684 

Average B 

factors (Å2)  
 

 
 

 Protein 24.1 58.0 55 

 Ligand  44.7 60.0 83.6 

 Water 37.0 40.7  

Ramachandran 

plot  
 

 
 

 Most 

favoured (%) 
96.4 91.3 91.2 

 Allowed (%) 3.6 7.6 8.2 
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Figure S1 Sequence alignment of AnGA, HrGA and PoGA obtained using MUSCLE (Edgar, 2004) 

and visualized using ALINE (Bond & Schuttelkopf, 2009). Amino acids identical for all three 

proteins are outlined in red, for two – in yellow. The catalytic acid and base are marked with a star.   

 

Figure S2 Schematic representation of the interaction of acarbose in the active site of HrGA. 

Hydrogen bonds are shown as dotted lines and the monomers of acarbose are numbered according 

their position in the subsites of the GA binding site Figure was prepared using ChemDraw (Perkin 

Elmer Informatics Inc.).  
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