UNIVERSITY of York

This is a repository copy of Diversity and composition of tropical butterflies along an Afromontane agricultural gradient in the Jimma Highlands, Ethiopia.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129734/

Version: Accepted Version

Article:

Norfolk, Olivia, Asale, Abebe, Temesgen, Tsegab et al. (4 more authors) (2017) Diversity and composition of tropical butterflies along an Afromontane agricultural gradient in the Jimma Highlands, Ethiopia. Biotropica. pp. 346-354. ISSN 0006-3606

https://doi.org/10.1111/btp.12421

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Norfolk <i>et al</i> .	Butterfly diversity along an agricultural gradient
2	Diversity and composition of	tropical butterflies along an Afromontane
3	agricultural gradient in the J	imma Highlands, Ethiopia
4 5	Olivia Norfolk ^{1,2} , Abebe Asale ³ , Ts Marchant ¹ and Delenasaw Yewhala	egab Temesgen ³ , Dereje Denu ³ , Philip J. Platts ⁴ , Rob w ^{5,6}
6 7	¹ York Institute for Tropical Ecosys Heslington, York, UK, YO10 5NG	tems, Environment Department, University of York,
8	² Department of Life Sciences, Ang	lia Ruskin University, Cambridge, UK, CB1 1PT
9	³ Department of Biology, College o	f Natural Sciences, Jimma University, Jimma, Ethiopia
10	⁴ Department of Biology, University	of York, Heslington, York, UK, YO10 5DD
11 12	⁵ Department of Medical Laboratory Jimma University, Jimma, Ethiopia	Sciences and Pathology, College of Health Sciences,

13 ⁶Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia

1 ABSTRACT

2 Afromontane landscapes are typically characterised by a mosaic of smallholder farms and the biodiversity impacts of these practices will vary in accordance to local management and 3 landscape context. Here we assess how tropical butterfly diversity is maintained across an 4 agricultural landscape in the Jimma Highlands of Ethiopia. We used transect surveys to 5 6 sample understory butterfly communities within degraded natural forest, semi-managed 7 coffee forest (SMCF), exotic timber plantations, open woodland, croplands and pasture. Surveys were conducted in 29 one-hectare plots and repeated five times between January and 8 June 2013. We found that natural forest supports higher butterfly diversity than all 9 10 agricultural plots (measured with Hill's numbers). SMCF and timber plantations retain relatively high abundance and diversity, but these metrics drop off sharply in open woodland, 11 12 cropland and pasture. SMCF and timber plantations share the majority of their species with 13 natural forest and support an equivalent abundance of forest-dependent species, with no increase in widespread species. There was some incongruence in the responses of families 14 15 and sub-families, notably that Lycaenidae are strongly associated with open woodland and pasture. Adult butterflies clearly utilise forested agricultural practices such as SMCF and 16 timber plantations, but species diversity declines steeply with distance from natural forest 17 18 suggesting that earlier life-stages may depend on host plants and/or microclimatic conditions that are lost under agricultural management. From a management perspective, the protection 19 of natural forest remains a priority for tropical butterfly conservation, but understanding 20 functioning of the wider landscape mosaic is important as SMCF and timber plantations may 21 22 act as habitat corridors that facilitate movement between forest fragments.

Keywords: Africa; agroforestry; cropland; coffee; Ethiopia; farming; land-use change;
tropical forest

1 TROPICAL DEFORESTATION IS A MAJOR DRIVER OF BIODIVERSITY DECLINES (Dirzo & Raven 2 2003, Gaston et al. 2003), one which continues at pace in response to anthropological 3 pressures such as increasing food and timber demands (Geist & Lambin 2002, Lawrence & 4 Vandecar 2015, Lewis *et al.* 2015). Expanding production landscapes are unlikely to match 5 the conservation value of natural forests, but many traditional agricultural systems can 6 provide an important refuge for biodiversity (Torquebiau 1992, Bhagwat et al. 2008, Jose 7 2009). Afromontane landscapes tend to incorporate a broad range of agricultural systems, 8 ranging from traditional agroforestry systems, mono-culture timber plantations, mixed 9 croplands to pasture. Understanding the extent to which these different agricultural systems 10 contribute towards the maintenance of tropical biodiversity will help inform future landscape 11 management and may facilitate the development of nature-based strategies that enhance food 12 production whilst maintaining biodiversity and ecosystem services (Fischer et al. 2014). 13 Tropical butterflies are a highly diverse group of organisms (Bonebrake et al. 2010) that due to short generation times and high mobility tend to exhibit high sensitivity to land-use change 14 15 (Lawton et al. 1998, Thomas et al. 2001). In general, butterfly diversity tends to decrease when tropical forest is converted into agricultural land, but the magnitude of this effect can 16 17 differ quite considerably between agricultural systems. Studies in Indonesia and South 18 America have found that agricultural landscapes support reduced butterfly species richness when compared to tropical forest, but that agroforestry systems support higher numbers of 19 species than annual cropland and pasture (Schulze et al. 2004, Barlow et al. 2007, 20 Francesconi et al. 2013). In Western Africa, cashew forest plantations have been linked to a 21 22 reduction in butterfly species richness (Vasconcelos et al. 2015) as have annual cultures, 23 though Cameroonian agroforests can support species richness equal to natural forest (Bobo et al. 2006). The conservation value of agricultural systems can also vary in accordance with 24 landscape context and tends to decrease with isolation from natural forest (Horner-Devine et 25

al. 2003, Schulze *et al.* 2004, Munyuli 2013). In Costa Rica, plots incorporating both
 agroforestry and natural forest supported higher species richness than forest plots alone
 (Horner-Devine *et al.* 2003), further emphasising the importance of assessing agricultural
 impacts in the context of the wider landscape.

5 In Ethiopia, forest cover has declined from 40% to 2.7% since the beginning of the 20th century, primarily as a result of expanding agricultural pressures (Pohjonen & Pukkala 6 7 1990). The Ethiopian Highlands are a major component of the Eastern Afromontane Biodiversity Hotspot (Mittermeier et al. 2004), covering half of its area, yet the impacts of 8 9 agricultural expansion on biodiversity remain relatively understudied. Highland communities 10 such as the Jimma Highlands (Fig S1) have a long history of coffee production, with wild 11 coffee traditionally harvested from natural forests. To increase yields coffee growers modify natural forests by thinning trees and removing lianas and shrubs. These semi-managed coffee 12 forests (SMCFs) form a characteristic feature of the Jimma Highlands and the retention of 13 canopy trees means that they are likely to play a valuable role in the conservation of forest-14 dependent wildlife, especially when compared with more intensive forms of land use. Indeed 15 Ethiopian shaded coffee has been shown to support high levels of bird diversity (Buechley et 16 al. 2015) and may have similar benefits for tropical butterflies in the region. 17

The Jimma Highlands also support exotic timber plantations which have expanded 18 19 five-fold in the past 20 years due to increasing demands for timber and firewood (Bekele 2011). These monoculture plantations do not retain native forest trees but do support some 20 21 ground flora and understory species associated in un-cleared forest. At lower elevations agricultural practices become more intensive and are typified by croplands of annual cultivars 22 23 and pasture. This study assesses the relative value of these agricultural systems in terms of tropical butterfly conservation, comparing butterfly abundance, diversity and composition 24 25 along a land-use gradient ranging from natural forest to SMCF, timber plantation, open

woodland, cropland and pasture. We consider how local land use, tree diversity and
 landscape factors influence butterfly communities, allowing us to assess the relative
 contribution that different agricultural practices make towards butterfly conservation in the
 region.

5 METHODS

6 STUDY SITE. - The study took place in the Jimma Highlands of south-western Ethiopia, along 7 a 20 km transect running between the Gumay and Setema Districts. The study transect spanned an altitudinal gradient of 1500 m to 2226 m and incorporated a range of land-use 8 9 types that are representative of the region, from the intensively managed pasture and cropland associated with the lowlands, up towards the lesser disturbed forest of the highlands (Fig S1). 10 Land use was classified into six distinct categories: natural forest, semi-managed coffee 11 12 forest (SMCF), timber plantation, open woodland, cropland and pasture. The characteristics of these land-use categories are defined in Table 1. 13

14 BUTTERFLY SURVEYS. -We conducted butterfly surveys in 29 × 1 ha plots (Fig. S1),

15 encompassing natural forest (4 plots), SMCF (7), timber plantation (3), open woodland (4),

16 cropland (6) and pasture (5). We selected plots through a stratified random sampling design,

17 whereby we identified the main land-use types for the transect using 2008 SPOT5 satellite

imagery (Hailu et al., 2014) and placed the 1 ha plots randomly in each land-use type. We

19 surveyed each plot five times between January and June 2015, a period that encompassed the

20 end of the dry season and the beginning of the rainy season (survey one, 31 December 2014 –

21 9 January 2015; survey two, 26 January – 5 February; survey 3, 28 March – 6 April; survey

22 four, 2–11 May; survey five, 1-10 June).

23 Within each plot, we recorded butterflies along five 50 m line transects, spaced at 25 m

24 intervals and traversed in alternate directions. We walked transects at a steady pace,

1 recording all butterflies observed within 2.5 m either side of the transects and 5 m vertically. 2 When possible we photographed butterflies during the transect counts to aid identification. 3 The majority of individuals were identified to species level, but when species level 4 identification was not possible, butterflies were classified into morpho-species. Surveys were all conducted between 0900 h and 1630 h on sunny, windless days. Data collected from the 5 five transects were pooled per plot. Species were assigned to ecological habitat categories in 6 7 accordance with Munyuli (2012) (nomenclature adapted from Larsen 1996): FDS, forest 8 dependent species; FEW, forest edge and woodland species; MS, migratory species; OHPS, 9 open habitat specialists; or WSS, widespread species. 10 ENVIRONMENTAL VARIABLES.-We conducted tree surveys in all 29 plots in April 2014. We identified to species level all woody stems with a diameter at breast height $(dbh) \ge 10$ cm. 11 12 Using these data we calculated stem density and tree species richness per 1 ha plot. We also 13 surveyed herbaceous plants and shrubs in five $1 \text{ m} \times 1 \text{ m}$ quadrats that were randomly distributed within each plot, identifying all individuals to species level and then collated these 14 15 data per plot. In order to consider the effect of isolation from natural forest, we estimated linear distance 16 from each sampling point to the nearest patch of natural forest using land cover data that was 17 created using a supervised classification of SPOT satellite imagery for the year 2008 (Hailu 18 et al., 2014). Plots were also categorised into five altitudinal bands for analyses: 1) 1500-19 1636 m; 2) 1637-1779 m; 3) 1780-1836 m; 4) 1837- 2089 m and 5) 2090- 2226 m. 20

21 STATISTICAL ANALYSIS.- Statistical analyses were conducted in R version 3.2 (R Core Team,

22 2015) using the vegan package (Oksanen et al. 2012). Species accumulation curves were

23 created for each land-use type. Alpha diversity was calculated for each point count using

24 Hill's numbers (Hill 1973). Hill's numbers are defined to the order of q (^qD), whereby

parameter q indicates the weight given towards rare or common species. ⁰D (species richness)
is insensitive to relative frequencies, and is therefore weighted towards rare species, ¹D
(exponential of Shannon) is weighted towards common species, and ²D (inverse Simpson) is
weighted towards abundant species. These diversity indices are particularly useful because
they are scalable and can provide insight into the representation of rare, common and
abundant species within different land-use types (Jost 2006, Tuomisto 2010, Chao et al.
2012).

8 Pair-wise species similarity was calculated between natural forest and the five other land-use types (Forest-Plantation, Forest-SMCF, Forest-Woodland, Forest-Cropland, Forest-9 10 Pasture). Species similarity was also weighted by the aforementioned q to provide insight into the relative abundance of those shared species; q=0 was calculated as the Sorenson similarity 11 index (insensitive to species abundance), q=1 as the Horn index (weighted towards common 12 13 species) and q=2 as the Morisita index (weighted towards abundant species) (Chao et al. 2012). This combination of metrics provides insight into not only the proportion of species 14 15 shared, but the relative abundances of those shared species

Linear mixed-effect models were used to assess the impact of land use and 16 environmental variables on butterfly abundance and all three measures of Hill's diversity 17 using the lme4 package (Bates 2005). Response variables were log-transformed to normalise 18 the data. The fixed effects included in the full models were: 1) management type, 2) distance 19 from nearest patch of natural forest (considered zero for plots within natural forest) and 3) 20 vegetation (tree density, tree species richness, herb species richness, shrub species richness). 21 22 Initial investigation suggested that there was considerable seasonal variation in abundance and species richness. To account for this temporal variation in the replicated plots, we 23 included survey round as a random intercept. We also included altitudinal zone as a random 24 25 intercept to account for spatial autocorrelation of plots along the altitudinal gradient. Best

1 fitting models were selected using the dredge function in R, which returned models with the lowest AIC values (delta AIC \leq 4). The strength of the fixed effects retained in the best 2 fitting models were assessed using marginal R² values calculated using the MuMIn package 3 4 (Barton 2014) and their significance was determined by comparing the fit of subsequent models using Chi-squared tests (Zuur et al. 2009). Equivalent models were also run for 5 butterfly abundance within the five ecological habitat categories (FDS, FEW, MS, OHPS and 6 7 WSS), and within the six most abundant sub-families (Coliadinae, Pierinae, Satyrinae, 8 Heliconiinae, Lycaeninae and Papilioninae).

Non-metric multidimensional scaling (NDMS) was used to assess how community
composition was affected by land use. This unconstrained ordination technique collapses the
species data into two dimensions, allowing differences between land-use categories to be
visualised. Because it relies upon rank-orders (rather than absolute abundance) it can
accommodate non-linear species responses, allowing the detection of underlying responses to
environmental change (Oksanen et al. 2012). The significance of land use was assessed using
permutation tests (999 permutations) with the envfit function in R.

16 **RESULTS**

17 A total of 6616 butterflies were recorded, belonging to 64 species (and six morpho-species), the majority of which were fruit-feeding butterflies from the family Nymphalidae (44), 18 19 followed by Pieridae (19), Papilionidae (5) and Lycaenidae (2) (Table S1 for full species list). 20 Species accumulation curves had not reached their asymptotes, but there was clear separation 21 between land-use types, with natural forest, timber plantation and SMCF exhibiting steeper rates of accumulation than open woodland, pasture and cropland (Fig. 1a). Estimated species 22 23 richness was highest within timber plantations (Chao \pm SE: 79 \pm 17), followed by SMCF (72) \pm 9) and forest (64 \pm 3). Estimated species richness was similar in open woodland (48 \pm 6), 24

pasture (51 ± 12) and cropland (49 ± 11). Of the 70 recorded species, three nymphalid species
were unique to natural forest (*Précis octavia, Charaxes karkloof* and *Acraea cerasa*), two to
SMCF (*Acraea alciope* and *Junonia natalica*), one to woodland (*Pseudacraea eurytus*) and
one to pasture (*Junonia hierta*). Timber plantation and cropland did not contain any unique
species. The most numerous species overall was *Colias electo* (16% of all individuals), which
was found to be most abundant in natural forest, SMCF and plantation.

7 Butterfly abundance per plot differed significantly between land-use types (Table 2) and was highest in SMCF (Individuals per ha \pm SE: 41 \pm 5), natural forest (37 \pm 6) and 8 plantations (35 \pm 5). Open woodland supported intermediate levels of abundance (23 \pm 6), but 9 10 numbers dropped sharply in pasture (10 ± 3) and cropland (6 ± 1) . Hill's diversity per plot also differed significantly with land use at all levels of q (Table 2). Natural forest supported 11 the highest levels of butterfly diversity (Fig. 1b) followed by plantation and SMCF. Open 12 13 woodland supported intermediate levels of diversity, but pasture and cropland supported less than a quarter of the diversity associated with natural forest, SMCF and plantation. These 14 15 trends were true at all levels of q, indicating higher numbers of rare, common and abundant species in the forested habitats. Diversity decreased steeply to the order of q in forest, 16 17 plantations and SMCF indicating that high numbers of species occurred at low abundances, 18 with fewer species common or abundant. Within pasture and cropland, diversity showed little decline to the order of q, indicating similar numbers of rare, common and abundant species. 19

Butterfly communities associated with timber plantation and SMFC exhibited high levels of species similarity with natural forest communities (Fig. 2). Similarity to forest was high for all orders of q (>80% of species shared), suggesting that not only are timber plantations and SMCF supporting similar species to those in the forest, but that those species are occurring at similar relative abundance. Open woodland, cropland and pasture showed much lower levels of similarity to natural forest communities. These habitats all exhibited a

sharp drop in similarity between q=0 and q=1 suggesting that although approximately 60% of
forest species were present in open woodland, pasture and cropland, the identities of common
and abundant species differed considerably from those associated with natural forest.

In addition to land use, the best-fitting models included distance from the nearest
patch of natural forest, with butterfly abundance and diversity (at all orders of q) declining
with distance (Table 2). At distances of 500 m diversity was approximately half of that
associated with plots adjacent to natural forest, with diversity halving again by 1000 m (Fig.
3). Vegetative variables (tree density and tree, herb and liana species richness) explained little
variation and were not retained in the final models.

COMMUNITY COMPOSITION. - Forty-two of the 70 recorded butterfly species were assigned to 10 11 an ecological habitat category (Table S1), with the categorised species making up 78% of all observed individuals. The majority of butterflies were migratory species (57% of categorised 12 observations), followed by open habitat specialists (20%) and widespread species (13%). 13 14 Forest-dependent species and forest edge/woodland species made up just 7% and 1% of 15 observations respectively. All ecological habitat categories exhibited a significant response to land use (Table S3), but the strength and direction of the trends differed between groups. 16 Migratory and forest-dependent species showed the strongest responses to land use (Fig. 4a & 17 c). Both groups occurred at similar abundance in natural forest, timber plantation and SMCF, 18 with numbers dropping off sharply in the other land-use types. Forest edge/woodland species 19 20 showed similar patterns, but trends were less pronounced (Fig. 4b). Open habitat specialists occurred in the lowest numbers within cropland and pasture and were most abundant within 21 22 timber plantation (Fig. 4d). Widespread species showed a strong preference for open 23 woodland (Fig. 4e).

1 All of the common families and sub-families were significantly affected by land use (Table 2 S2), but again the strength and direction of the effect differed between groups (Fig. S2). 3 Within the Pieridae, the abundance of Coliadinae was strongly influenced by land use, with 4 butterflies occurring at high numbers within natural forest, timber plantation and SMCF, and declining sharply in open woodland, pasture and cropland (Fig. S2a). Pierinae showed a 5 weaker response, but exhibited similar trends (Fig. S2b). The Nymphalidae also tended to 6 7 occur at low abundance within open woodland, cropland and pasture, though trends differed 8 between sub-families; butterflies from Satyrinae were most abundant within plantations (Fig. 9 S2c-d), whereas those from Heliconiinae occurred at low numbers within plantations and 10 were most abundant in natural forest. Papilonidae exhibited similar trends and were most 11 abundant in forest, followed by plantations and SMCF (Fig. S2e). In contrast to the other sub-12 families, Lycaeninae occurred in low numbers in natural forest, timber plantation, SMCF and cropland, but were highly abundant in open woodland habitats, with intermediate numbers 13 observed in pasture (Fig. S2f). 14

NDMS ordination showed that butterfly communities overlapped considerably
between all land-use types, with no significant separation between the land-use categories
(Fig. S3: R²=0.036, P=0.396). The ordination did reveal some differences in the composition
of butterfly families, with species from Lycaenidae showing strong positive loadings with
NDMS axis-1 in association with open woodland and pasture habitats.

20 DISCUSSION

Butterfly communities in the Jimma Highlands are strongly influenced by agricultural land
use, with both abundance and species diversity decreasing sharply in non-wooded farmland
such as cropland and pasture. Natural forest supports the highest level of butterfly diversity
per plot, but estimates of species richness across all plots suggests that semi-managed coffee

forests (SMCFs) and timber plantations support a similar number of species as natural forest,
perhaps due to turnover of species between plots. Though SMCFs and plantations were
utilised by adult forest butterflies, we found that both abundance and diversity declined with
distance from natural forest. This suggests that the persistence of forest species may be
contingent on larval host plants or microclimatic conditions present only in the natural forest.
Shaded coffee systems are frequently associated with positive biodiversity benefits,

7 outperforming sun coffee farms in terms of butterfly species richness (Perfecto et al. 2003), bird abundance (Komar 2006) and subsequent avian ecosystem services such as pest control 8 (Perfecto et al. 2004, Kellermann et al. 2008). Other studies have even found that coffee 9 10 agroforest can support higher butterfly species richness than natural forest (Bobo et al. 2006). In the Jimma Highlands, we found that SMCF and timber plantations are utilised by equally 11 12 diverse butterfly communities, despite the considerable reduction of tree species diversity 13 within plantations. Exotic timber plantations tend to be considered in a less positive light from a conservation perspective, but studies in Brazil have found that although butterfly 14 15 diversity decreases from natural forest into Eucalyptus plantations (Barlow et al. 2007), the plantations do support a relatively diverse community that benefit from the species-rich 16 17 understory vegetation. Korean pine plantations have even been shown to maintain butterfly 18 species richness at levels equivalent to natural forest (Lee *et al.* 2014). Our results confirm that timber plantations are utilised by adult forest butterflies, and at equivalent levels to more 19 diverse agroforestry systems such as SMCF. 20

SPECIES COMPOSITION AND ECOLOGICAL HABITAT CATEGORIES. - Measures of species diversity
can be misleading from a conservation perspective, as disturbed forest can often support
elevated butterfly species richness as a consequence of increasing numbers of opportunistic
and widespread species (Spitzer *et al.* 1993, Spitzer *et al.* 1997, Bobo *et al.* 2006). In our
study, species similarity was extremely high between natural forest and SMCF and timber

1 plantation (>80% species shared), suggesting that both of these agricultural habitats are being 2 utilised by forest species and not just by opportunistic, widespread species. Consideration of 3 ecological habitat categories confirmed that SMCF and timber plantation support similar 4 numbers of forest-dependent species as natural forest, with no increase in the abundance of widespread species. However, timber plantations do appear to support elevated numbers of 5 open habitat specialists from the sub-family Satyrinnae, a pattern also observed in Brazilian 6 7 Eucalyptus plantations (Barlow et al. 2007). The Satyrianne exhibit diverse responses to 8 forest disturbance, with some species preferring dense undergrowth (Brown & Freitas 2000, 9 Ghazoul 2002) and others flourishing in the open habitats associated within forest disturbance (Daily & Ehrlich 1995, Shahabuddin & Terborgh 1999). Here the high numbers of open 10 habitat specialists presumably reflects a lack of dense undergrowth within the plantations as 11 12 compared to natural forest and SMCF.

13 Tropical butterflies can exhibit considerable vertical stratification from ground to canopy level (Molleman et al. 2006, Ribeiro et al. 2015), with canopy assemblages showing a 14 15 higher susceptibility to decline in disturbed forest or logged forest than those found at ground level (Whitworth et al. 2016, Dumbrell & Hill 2005). Since we used transect surveys 16 17 focussed on ground-level species, canopy species are likely to be under-represented in our 18 results. Additional sampling of canopy assemblages could reveal a stronger decline from natural forest into SMCF and plantation forest, since the modified tree communities are likely 19 to be associated with changes in canopy structure. 20

PROXIMITY TO NATURAL FOREST. - We recorded a high diversity of adult butterflies in
both SMCF and timber plantation, however habitat requirements for butterflies can vary
through their life cycle. Larval stages often depend on a specific host plant and require
distinct microclimatic conditions from their adult counterparts (Fartmann 2006), and though
adult butterflies are frequently observed using forest gaps and edge habitats for basking and

nectaring (Hill *et al.* 2001, Tropek & Konvicka 2010, Vlasanek *et al.* 2013), they typically
depend on larval host plants in the understory. An intensive mark-release-recapture study in
Papa New Guinea showed that many tropical butterflies can disperse up to 1 km from their
larval host plant (Vlasanek *et al.* 2013), so the presence of adult butterflies within SMCF and
timber plantation does not guarantee that these habitats in isolation could support the
observed butterfly diversity.

7 This is consistent with our finding that butterfly abundance and diversity both decreased with distance from natural forest, with diversity declining by more than half over 8 distances greater than 500 m. Other studies in tropical agricultural landscapes have found that 9 10 agricultural land use has a stronger effect on butterfly diversity than proximity to forest (Perfecto et al. 2003, Francesconi et al. 2013), but on a wider scale, isolation from contiguous 11 12 forest is negatively correlated with the species richness of fruit-feeding butterflies in Bornean 13 forest fragments (Benedick et al. 2006). Landscape effects are known to impact butterfly meta-population dynamics in temperate systems (Hanski & Thomas 1994, Hill et al. 1996, 14 15 Thomas et al. 2001), with occasional immigration from source populations rescuing isolated populations at marginal 'sink' sites from extinction (Hanski & Ovaskainen 2003). The meta-16 17 population dynamics of tropical systems are less well-established (Bonebrake et al. 2010), 18 but large areas of forest are likely to act as source populations for more isolated forest fragments. Since SMCF and timber plantations are used by a wide diversity of adult 19 butterflies they may be able to increase the permeability of the agricultural matrix by acting 20 21 as habitat corridors that enable movement between remaining fragments of natural forest (Haddad & Tewksbury 2005). 22

CONCLUSIONS. - Tropical butterflies are adversely affected by agricultural conversion of
natural forest in the Jimma Highlands, but the impact varies dramatically between
agricultural practices. Butterfly abundance and diversity are particularly low in non-wooded

1 habitats such as cropland and pasture, so the expansion of these agricultural practices would 2 have strong negative implications for butterfly conservation in the region. Semi-managed 3 coffee forests (SMCF) and timber plantations are utilised by a wide variety of forest 4 butterflies, but diversity declines with increasing distance from natural forest suggesting that natural forest remains crucial to the butterfly life-cycle. From a management perspective, the 5 6 maintenance of natural forest should be a priority for the conservation of forest butterflies, 7 but SMCF and timber plantations may have the potential to act as habitat corridors that 8 facilitate movement of adult butterflies between otherwise isolated forest fragments.

9 ACKNOWLEDGEMENTS

Funded by the Ministry for Foreign Affairs of Finland through the CHIESA project
(<u>http://chiesa.icipe.org/</u>).

Data Availability: The data used in this study are archived at the Dryad Digital Repository
(http://dx.doi.org/10.5061/dryad.h6t7g).

1 LITERATURE CITED

2	BARLOW, J., I. S. ARAUJO, W. L. OVERAL, T. A. GARDNER, F. DA SILVA MENDES, I. R. LAKE,
3	AND C. A. PERES. 2009. Diversity and composition of fruit-feeding butterflies in
4	tropical Eucalyptus plantations. Plantation Forests and Biodiversity: Oxymoron or
5	Opportunity?, pp. 165-180. Springer.
6	BARLOW, J. O. S., W. L. OVERAL, I. S. ARAUJO, T. A. GARDNER, AND C. A. PERES. 2007. The
7	value of primary, secondary and plantation forests for fruit-feeding butterflies in the
8	Brazilian Amazon. J. Appl. Ecol. 44: 1001-1012.
9	BEKELE, M. 2011. Forest Plantations and Woodlots In Ethiopia: A Platform for Stakeholders
10	in African Forestry. African Forest Forum. Working Paper Series.
11	BENEDICK, S., J. K. HILL, N. MUSTAFFA, V. K. CHEY, M. MARYATI, J. B. SEARLE, M.
12	SCHILTHUIZEN, AND K. C. HAMER. 2006. Impacts of rain forest fragmentation on
13	butterflies in northern Borneo: species richness, turnover and the value of small
14	fragments. J. Appl. Ecol. 43: 967-977.
15	BHAGWAT, S. A., K. J. WILLIS, H. J. B. BIRKS, AND R. J. WHITTAKER. 2008. Agroforestry: a
16	refuge for tropical biodiversity? Trends. Ecol. Evolut. 23: 261-267.
17	BOBO, K. S., M. WALTERT, H. FERMON, J. NJOKAGBOR, AND M. MÜHLENBERG. 2006. From
18	Forest to Farmland: Butterfly Diversity and Habitat Associations Along a Gradient of
19	Forest Conversion in Southwestern Cameroon. J. Insect Conserv. 10: 29-42.
20	BONEBRAKE, T. C., L. C. PONISIO, C. L. BOGGS, AND P. R. EHRLICH. 2010. More than just
21	indicators: A review of tropical butterfly ecology and conservation. Biol. Conserv.
22	143: 1831-1841.

1	BROOKS, T. M., R. A. MITTERMEIER, C. G. MITTERMEIER, G. A. B. DA FONSECA, A. B.
2	RYLANDS, W. R. KONSTANT, P. FLICK, J. PILGRIM, S. OLDFIELD, G. MAGIN, AND C.
3	HILTON-TAYLOR. 2002. Habitat Loss and Extinction in the Hotspots of Biodiversity.
4	Conserv. Biol. 16: 909-923.
5	BROWN, K. S., AND A. V. L. FREITAS. 2000. Atlantic Forest Butterflies: Indicators for
6	Landscape Conservation. Biotropica 32: 934-956.
7	BUECHLEY, E. R., Ç. H. ŞEKERCIOĞLU, A. ATICKEM, G. GEBREMICHAEL, J. K. NDUNGU, B. A.
8	MAHAMUED, T. BEYENE, T. MEKONNEN, AND L. LENS. 2015. Importance of Ethiopian
9	shade coffee farms for forest bird conservation. Biol. Conserv. 188: 50-60.
10	DAILY, G.C. AND P.R. EHRLICH. 1995. Preservation of biodiversity in small rain-forest
11	patches – rapid evaluations using butterfly trapping. Biodiv. Conserv. 4: 35–55.
12	DIRZO, R., AND P. H. RAVEN. 2003. Global state of biodiversity and loss. Ann. Rev. Environ.
13	Res. 28: 137-167.
14	DUMBRELL, A. J., AND J. K. HILL. 2005. Impacts of selective logging on canopy and ground
15	assemblages of tropical forest butterflies: Implications for sampling. Biol. Conserv.
16	125: 123-131.
17	FARTMANN, T. 2006. Oviposition preferences, adjacency of old woodland and isolation
18	explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in
19	calcareous grasslands in central Germany. Annales Zoologici Fennici. 43: 335-347.
20	FISCHER, J., D. J. ABSON, V. BUTSIC, M. J. CHAPPELL, J. EKROOS, J. HANSPACH, T.
21	KUEMMERLE, H. G. SMITH, AND H. VON WEHRDEN. 2014. Land Sparing Versus Land
22	Sharing: Moving Forward. Conserv. Lett. 7: 149-157.

1	FRANCESCONI, W., P. K. R. NAIR, D. LEVEY, J. DANIELS, AND L. CULLEN, JR. 2013. Butterfly
2	distribution in fragmented landscapes containing agroforestry practices in
3	Southeastern Brazil. Agroforest. Syst. 87: 1321-1338.
4	GASTON, K. J., T. M. BLACKBURN, AND K. K. GOLDEWIJK. 2003. Habitat conversion and
5	global avian biodiversity loss. Proc. Roy. Soc. London B: Biol. Sci. 270: 1293-1300.
6	GEIST, H. J., AND E. F. LAMBIN. 2002. Proximate Causes and Underlying Driving Forces of
7	Tropical Deforestation Tropical forests are disappearing as the result of many
8	pressures, both local and regional, acting in various combinations in different
9	geographical locations. BioScience 52: 143-150.
10	GHAZOUL, J. 2002. Impact of logging on the richness and diversity of forest butterflies in a
11	tropical dry forest in Thailand. Biodiv. Conserv. 11: 521-541.
12	HADDAD, N.M. AND J.J. TEWKSBURY. 2005. Low-quality habitat corridors as movement
13	conduits for two butterfly species. Ecol. App. 15: 250-257.
14	HAILU, B.T., MAEDA, E.E., HURSKAINEN, P. AND PELLIKKA, P. K. E. 2014. Object-based
15	image analysis for distinguishing indigenous and exotic forests in coffee production
16	areas of Ethiopia. Appl. Geomatics 6: 207-214.
17	HANSKI, I. 1999. Metapopulation Ecology. Oxford University Press, Oxford, UK.
18	HANSKI, I., AND O. OVASKAINEN. 2003. Metapopulation theory for fragmented landscapes.
19	Theor. Popul. Biol. 64: 119-127.
20	HANSKI, I., AND C. D. THOMAS. 1994. Metapopulation dynamics and conservation: a spatially
21	explicit model applied to butterflies. Biol. Conserv. 68: 167-180.

1	HILL, J. K., C. D. THOMAS, AND O. T. LEWIS. 1996. Effects of Habitat Patch Size and Isolation
2	on Dispersal by Hesperia comma Butterflies: Implications for Metapopulation
3	Structure. J. Anim. Ecol. 65: 725-735.
4	HILL, J.K., HAMER, K.C., TANGAH, J. AND M. DAWOOD. 2001. Ecology of tropical butterflies
5	in rainforest gaps. Oecologia. 128: 294–302.
6	HORNER-DEVINE, M. C., G. C. DAILY, P. R. EHRLICH, AND C. L. BOGGS. 2003. Countryside
7	biogeography of tropical butterflies. Conserv. Biol. 17: 168-177.
8	JOSE, S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview.
9	Agroforest. Syst. 76: 1-10.
10	KELLERMANN, J. L., M. D. JOHNSON, A. M. STERCHO, AND S. C. HACKETT. 2008. Ecological
11	and economic services provided by birds on Jamaican Blue Mountain coffee farms.
12	Conserv. Biol. 22: 1177-1185.
13	KOMAR, O. 2006. Ecology and conservation of birds in coffee plantations of El Salvador,
14	Central America. PhD dissertation. University of Kansas, USA.
15	LARSEN, T.B. 1996. The Butterflies of Kenya and Their Natural History, Oxford University
16	Press, Oxford, UK.
17	LAWRENCE, D., AND K. VANDECAR. 2015. Effects of tropical deforestation on climate and
18	agriculture. Nat. Climate Change 5: 27-36.
19	LAWTON, J. H., D. E. BIGNELL, B. BOLTON, G. F. BLOEMERS, P. EGGLETON, P. M. HAMMOND,
20	M. HODDA, R. D. HOLT, T. B. LARSEN, N. A. MAWDSLEY, N. E. STORK, D. S.
21	SRIVASTAVA, AND A. D. WATT. 1998. Biodiversity inventories, indicator taxa and
22	effects of habitat modification in tropical forest. Nature 391: 72-76.

1	LEE, C. M., TS. KWON, SS. KIM, JD. SOHN, AND BW. LEE. 2014. Effects of forest
2	degradation on butterfly communities in the Gwangneung Forest. Entomological
3	Science 17: 293-301.
4	LEWIS, S. L., D. P. EDWARDS, AND D. GALBRAITH. 2015. Increasing human dominance of
5	tropical forests. Science 349: 827-832.
6	MOLLEMAN, F., A. KOP, P. BRAKEFIELD, P. DE VRIES, AND B. ZWAAN. 2006. Vertical and
7	Temporal Patterns of Biodiversity of Fruit-Feeding Butterflies in a Tropical Forest in
8	Uganda. Biodiv. Conserv. 15: 107-121.
9	MUNYULI, M.B., 2012. Butterfly diversity from farmlands of central Uganda. Psyche. Article
10	ID: 481509: 1-23.
11	MUNYULI, M. B. T. 2013. Drivers of species richness and abundance of butterflies in coffee-
12	banana agroforests in Uganda. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 9: 298-
13	310.
14	MYERS, N., R. A. MITTERMEIER, C. G. MITTERMEIER, G. A. B. DA FONSECA, AND J. KENT.
15	2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
16	PERFECTO, I., A. MAS, T. DIETSCH, AND J. VANDERMEER. 2003. Conservation of biodiversity
17	in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodiv. Conserv.
18	12: 1239-1252.
19	PERFECTO, I., J. H. VANDERMEER, G. L. BAUTISTA, G. I. NUNEZ, R. GREENBERG, P. BICHIER,
20	AND S. LANGRIDGE. 2004. Greater predation in shaded coffee farms: the role of
21	resident neotropical birds. Ecol. 85: 2677-2681.

1	POHJONEN, V., AND T. PUKKALA. 1990. Eucalyptus globulus in Ethiopian forestry. Forest
2	Ecol. Management 36: 19-31.
3	RIBEIRO, D. B., M. R. WILLIAMS, A. SPECHT, AND A. V. L. FREITAS. 2015. Vertical and
4	temporal variability in the probability of detection of fruit-feeding butterflies and
5	moths (Lepidoptera) in tropical forest. Austral Entomol. 55:112-120.
6	SCHULZE, C., I. STEFFAN-DEWENTER, AND T. TSCHARNTKE. 2004. Effects of Land Use on
7	Butterfly Communities at the Rain Forest Margin: A Case Study from Central
8	Sulawesi. In G. Gerold, M. Fremerey and E. Guhardja (Eds.). Land Use, Nature
9	Conservation and the Stability of Rainforest Margins in Southeast Asia, pp. 281-297.
10	Springer Berlin Heidelberg.
11	SHAHABUDDIN, G. AND J. W. TERBORGH. 1999. Frugivorous butterflies in Venezuelan forest
12	fragments: abundance, diversity and the effects of isolation. J. Trop. Ecol. 15: 703-
13	722.
14	THOMAS, J. A., N. A. D. BOURN, R. T. CLARKE, K. E. STEWART, D. J. SIMCOX, G. S. PEARMAN
15	R. CURTIS, AND B. GOODGER. 2001. The quality and isolation of habitat patches both
16	determine where butterflies persist in fragmented landscapes. Proc. Roy. Soc. London
17	B: Biol. Sci. 268: 1791-1796.
18	TORQUEBIAU, E. 1992. Are tropical agroforestry home gardens sustainable? Agr, Ecosyst.
19	Environ. 41: 189-207.
20	TROPEK, R. AND M. KONVICKA. 2010. Forest eternal? Endemic butterflies of the Bamenda
21	highlands, Cameroon, avoid close-canopy forest. Afr. J. Ecol. 48: 428-437.

1	VASCONCELOS, S., P. RODRIGUES, L. PALMA, L. F. MENDES, A. PALMINHA, L. CATARINO, AND
2	P. BEJA. 2015. Through the eye of a butterfly: Assessing biodiversity impacts of
3	cashew expansion in West Africa. Biol. Conserv. 191: 779-786.
4	VLASANEK, P., SAM, L. AND V. NOVOTNY. 2013. Dispersal of butterflies in a New Guinea
5	rainforest: using mark-recapture methods in a large, homogeneous habitat. Ecol. Ent.
6	38: 560-569.
7	WHITWORTH, A., J. VILLACAMPA, A. BROWN, R.P. HUARCAYA, R. DOWNIE AND R. MACLEOD
8	2016. Past Human Disturbance Effects upon Biodiversity are Greatest in the Canopy;
9	A Case Study on Rainforest Butterflies. PloS one, 11: 0150520.

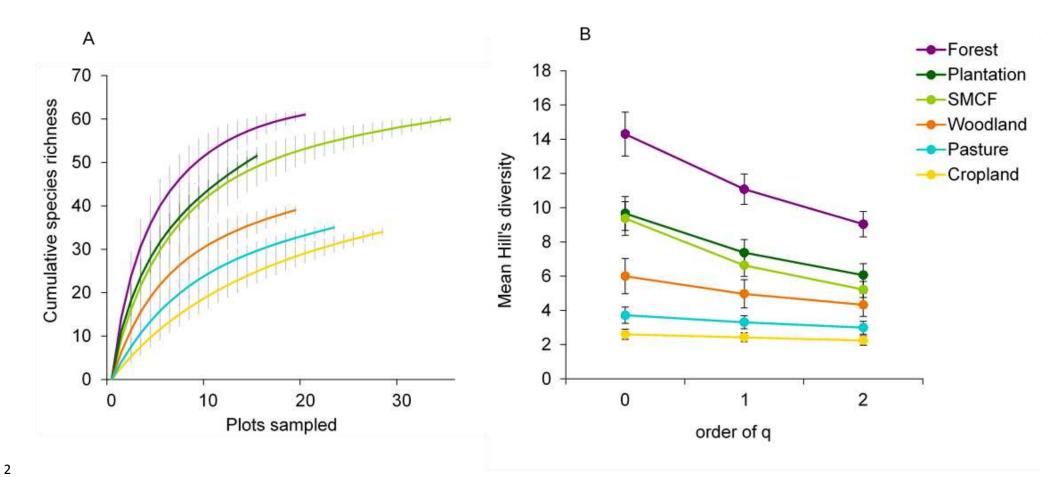
1 TABLE 1. Characteristics of the six land-use categories, with mean tree density and species

2 richness per 1 ha plot.

	Description	Dominant tree species	Mean tree density (± SEM)	Mean tree sp. richness (± SEM)
Natural forest	Uncultivated forest dominated by indigenous trees	Apodytes dimidiate, Galiniera saxifrage, Syzygium guineense Millettia ferruginea and Chionanthus mildbraedii	258 ± 50	15 ± 1
Timber plantation	Monoculture timber plantations	Pinus patula, Grevillea robusta or Eucalyptus camaldulensis	751 ± 254	1 ± 0
SMCF	Semi-managed coffee forest: mixed indigenous shade trees managed to provide optimal conditions for cultivation of <i>Coffea</i> <i>arabica</i>	Croton macrostachyus, Albizia gummifera, Ehreta cymosa and Cordia africana	136 ± 27	15 ± 1
Open woodland	Patchy open woodland	Maesa lanceolate and Acacia abyssinica	122 ± 47	11 ± 1
Pasture	Areas grazed by livestock	Acacia abyssinica and Ficus vasta	10 ± 3	4 ± 1
Cropland	Cultivated for annual crops (maize, sorghum and teff)	Cordia africana and Acacia abyssinica	7 ± 2	2 ± 0.5

1	TABLE 2. Results from best-fitting linear mixed-effect models explaining butterfly
2	abundance and Hill's diversity (⁰ D, ¹ D, ² D). Models included survey round and altitudinal
3	zone as random effects. Marginal R^2 values represent the variation explained by the
4	associated fixed effect, with the significance determined by comparing the fit of subsequent
5	models using Chi-squared. Asterisks indicate significance level (*** P< 0.001; ** P< 0.01).

		Marginal R ² _{GLMM}	AIC	Δ AIC	χ^2
Abundance	~ land-use + distance from natural forest	0.51	377	0	
	~ land-use only	0.48	388	11	53.54 ***
	~ distance from natural forest only	0.19	422	44	8.79 **
⁰ D	~ land-use + distance from natural forest	0.49	207	0	
	~ land-use only	0.48	218	11	53.04 ***
	~ distance from natural forest only	0.14	274	68	9.10**
	~ land-use + distance from natural forest	0.46	174	0	
1 D	~ land-use only	0.46	183	10	72.92 ***
	~ distance from natural forest only	0.13	222	49	7.53 **
	~ land-use + distance from natural forest	0.38	190	0	
² D	~ land-use only	0.38	200	10	55.25 ***
	~ distance from natural forest only	0.10	221	31	7.20 **


FIGURE 1. (a) Species accumulation curves and (b) Hill's diversity associated with the six
land-use categories. Hill's diversity indices represent the mean diversity per plot (± SEM)
and are weighted to the order of q, which reflects the sensitivity of the indices to the relative
abundance of species: q=0 is sensitive to rare species, q=1 is sensitive to common species and
q=2 is sensitive to highly abundant species.

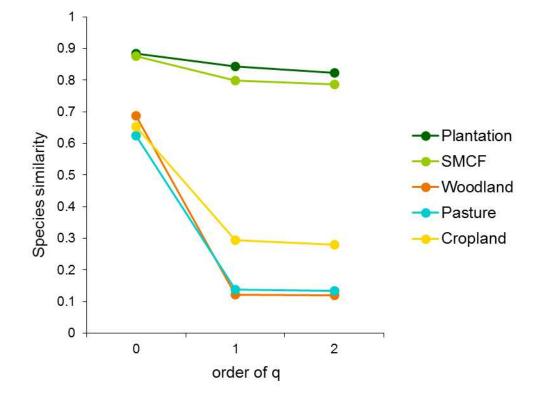
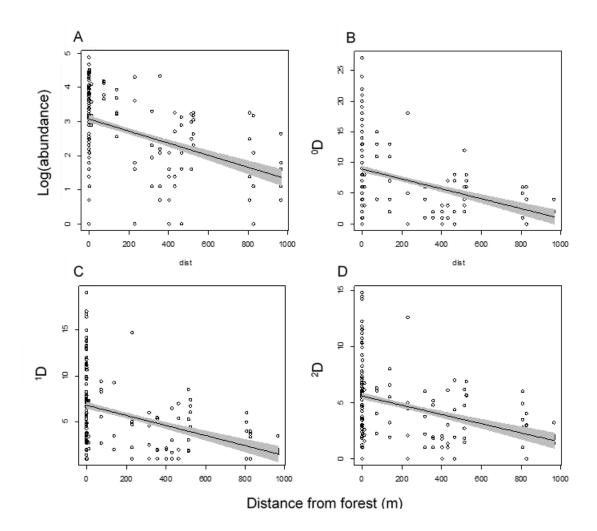

FIGURE 2. Species similarity of butterfly communities in the agricultural land-use categories
as compared to natural forest. Species similarity is calculated using three indices that are
weighted to the order of q; q=0 represents similarity of rare species, q=1 of common species
and q=2 of abundant species.

FIGURE 3. Effect of distance from natural forest on butterfly abundance (a) and Hill'sdiversity (b)-(d).


12 FIGURE 4. Impact of land use on butterfly abundance across five ecological habitat

13 categories. Bars represent mean abundance per plot and error bars represent SEM.

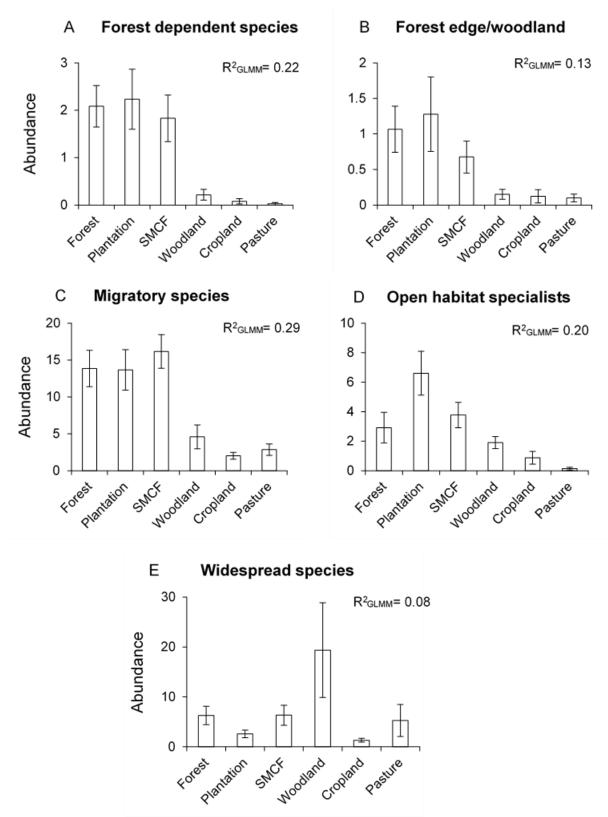


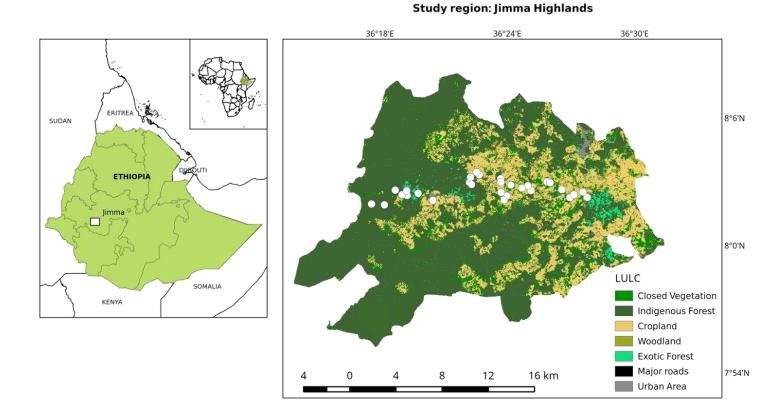
FIG 3

- 1 Table S1. List of butterfly species and their total abundance within each land-use category.
- 2 Ecological habitat categories are defined according to Munyuli (2012): FDS= forest
- 3 dependent species, FEW= forest edge and woodland species, MS= migratory species, OHPS=
- 4 open habitat specialist, WSS= widespread species.

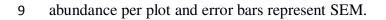
	Habitat cat.	NF	SMCF	PLNT	WD	CRP	PAST
LYCAENIDAE							
Polymmatinae							
Polymmatinae sp1			31		156		64
Polymmatinae sp2			41		195		58
NYMPHALIDAE							
Biblidinae							
Eurytela dryope (Cramer, 1775)	WSS	3	11	1	4		
Sevenia boisduvali (Wallengren, 1857)	FDS	1	22	3			
Charaxinae			_	-		2	1
<i>Charaxes brutus</i> (Cramer, 1779)	FEW	1	5	5		3	1
Charaxes karkloof van Someren & Jackson, 1957		1					
Danainae			2				
Amauris albimaculata Butler, 1875	FDS	3	3				
Amauris echeria (Stoll, 1790)		2	17		4	1	
Amauris ochlea (Boisduval, 1847)		5	10	1			2
Danaus chrysippus (Linnaeus, 1758)	MS	6	7	4	1	1	3
Danainane sp1		5	6				
Heliconiinae		1.6		-			
Acraea acara Hewitson, 1865		16	4	6	1	1	1
Acraea aganice Hewitson, 1852		9	-	3			
Acraea alciope Hewitson, 1852	FDS	_	5	-			
Acraea anacreon Trimen, 1868		5		2			
Acraea cabira Hopffer, 1855	FEW	7		2			
Acraea cerasa Hewitson, 1861	Mag	1	_				
Acraea encedon (L.)	WSS	5	5				
Acraea esebria Hewitson, 1861		26	13				
Acraea horta (L.)		8	1	2	1	1	
Acraea lycoa Godart, 1819	FDS	8	6	1		1	1
Acraea rahira Boisduval, 1833	MOG	20	10 5			7	
Acraea serena (Fabricius, 1775)	WSS	20	5			3	

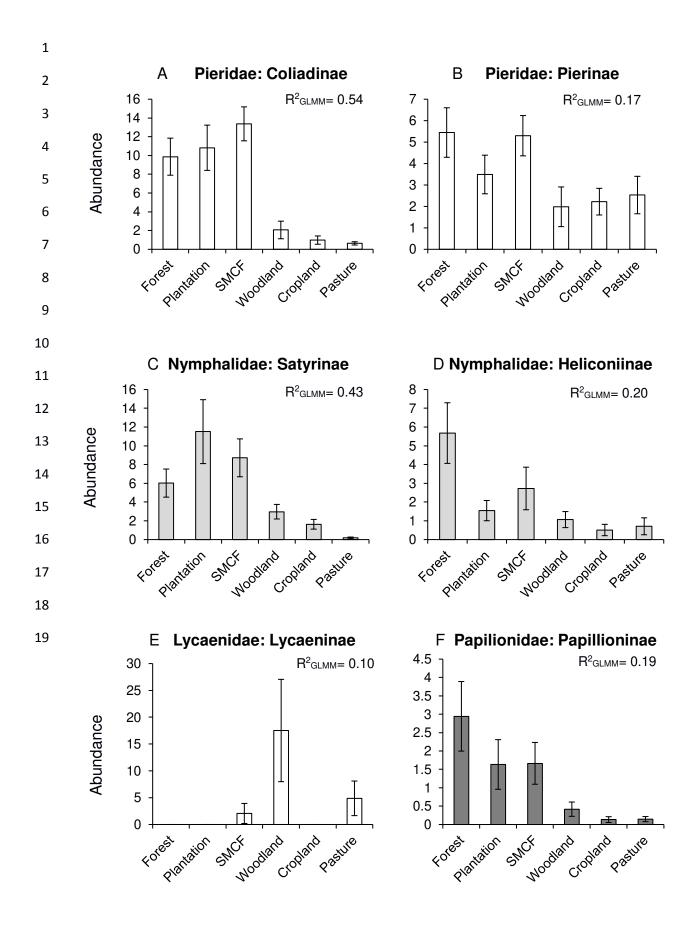
Phalanta phalantha (Drury, [1773])	MS	3	22	1	11	3	10
Libytheinae							
Libythea labdaca Westwood, 1851	MS	9	11	14	9		
Limenitidinae							
Neptis goochii Trimen, 1879		18	30	1	2		5
Neptis laeta Overlaet, 1955	WSS	33	67	12	10		4
Neptis saclava Boisduval, 1833	WSS	9	13	1	1		2
Pseudacraea eurytus (L.)	FDS				2		
Nymphalinae							
Hypolimnas anthedon (Doubleday, 1845)		7	13	1	2	4	3
Hypolimnas misippus (Linnaeus, 1764)	MS	6	10		1		2
Junonia hierta (Fabricius, 1798)	MS						1
Junonia natalica (Felder & Felder, 1860)			2				
Junonia oenone (Linnaeus, 1758)	WSS		3		8	25	1
Junonia terea (Drury, 1773)	WSS	13	1	11	9		4
Precis octavia (Cramer, 1777)	WSS	10					
Protogoniomorpha anacardii (L.)	FDS	5	12	10	1		
Protogoniomorpha parhassus (Drury, 1782)	FDS	3	9	13			
Vanessa dimorphica (Howarth, 1966)		6		14		2	1
Satyrinae							
Bicyclus anynana (Butler, 1879)	OHPS	35	54	66	18		1
Bicyclus safitza (Westwood, 1850)		51	145	60	12	6	
Satyrinae sp1		9	17	12	4	4	1
Melanitis leda (Linnaeus, 1758)	WSS	2	11	2	5	13	
<i>Ypthima asterope</i> (Klug, 1832)	OHPS	9	39	21	9	11	
<i>Ypthima impure</i> Elwes & Edwards, 189	OHPS	15	40	12	11	16	3
PAPILIONIDAE							
Papilioninae							
Graphium Leonidas (Fabricius, 1793)	MS	2	2		3	1	
Papilio dardanus Brown, 1776	WSS	28	20	4			
Papilio demodocus Esper, 1798	MS	14	12	3	2	2	1
Papilio euphranor Trimen, 1868		4	6	7			1
Papilio nireus (L.)	FEW	11	19	11	3	1	2
PIERIDAE							
Coliadinae							
Catopsilia florella (Fabricius, 1775)	MS	9	1	1			
Catopsilia gorgophone (Boisduval, 1836)		3		5		5	
Catopsilia sp1		7	10	1	3	2	5
Colias electo (L.)	MS	95	374	102	32	2	3
Coliadinae sp1			6			16	2
r							

Eurema brigitta (Stoll, [1780])	MS	8	10	14		3	
Eurema desjardinsii (Boisduval, 1833)	MS	17	13	7			
Eurema hecabe (L.)	MS	54	43	31	6	2	6
Coliadinae sp2		6	12	1			
Pierinae							
Belenois aurota (Fabricius, 1793)	MS	16	4	14	6	23	11
Belenois creona (Cramer, 1776)	MS	13	15	4	5	2	11
Belenois gidica (Godart, [1819])	MS	14	6	2	13	19	12
Belenois raffrayi (Oberthür, 1878)	FDS	6	9				
Belenois zochalia (Boisduval, 1836)		21	14	11	7	10	16
Leptosia alcesta (Stoll, [1782])	WSS	3	13	8	1		
Mylothris rueppellii (Koch, 1865)		9	59	8	7	8	9
Pieris brassicae (L.)		22	46	4	1	3	3
Pieris rapae (L.)		6	19	1		1	1

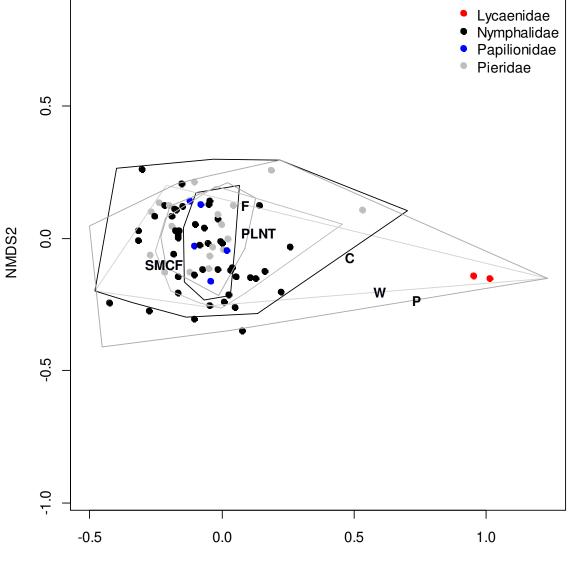

1	Table S2. The effect of land-use on butterfly abundance within common sub-families. Results
2	from linear mixed-effect models including survey month and altitudinal zone as random
3	effects. Marginal R ² values represent the variation explained by land-use, with the
4	significance determined by comparing the fit of land-use model to a null model using Chi-
5	squared. Asterisks indicate significance level (*** P< 0.001; ** P< 0.01).

		Marginal R ² _{GLMM}	AIC	Delta AIC	χ^2 (df=5)
Pieridae					
Coliadinae	~ Land-use	0.54	381	0	107.47***
	~ Null model		472	91	
Pierinae	~ Land-use	0.17	352	0	
	~ Null model		366	14	31.21***
Nymphalydiae					
Satyrinane	~ Land-use	0.43	381	0	75.02***
	~ Null model		440	59	
Heliconiinae	~ Land-use	0.20	357	0	31.26***
	~ Null model		370	13	
Lycaenidae	~ Land-use	0.10	381	0	19.09**
Lycaeninae	~ Null model		383	2	
Papilionidae	~ Land-use	0.19	280	0	32.58***
Papilioninae	~ Null model		292	12	


Table S3. The effect of land use on butterfly abundance within ecological habitat categories.
Results from linear mixed-effect models including survey month and altitudinal zone as
random effects. Marginal R² values represent the variation explained by land-use, with the
significance determined by comparing the fit of land-use model to a null model using Chisquared. Asterisks indicate significance level (*** P< 0.001; ** P< 0.01).


		$\begin{array}{c} Marginal \\ R^2_{GLMM} \end{array}$	AIC	Delta AIC	χ^2 (df=5)
Ecological habit	at category				
Forest Dependent	~ Land-use	0.22	593	0	23.44***
	~ Null model		609	15	
Forest Edge/Woodland	~ Land-use	0.13	455	0	13.81*
	~ Null model		456	1	
Migratory species	~ Land-use	0.29	1021	0	24.36**
	~ Null model		1056	35	
Open habitat specialists	~ Land-use	0.20	794	0	18.28**
	~ Null model		813	19	
Widespread	~ Land-use	0.08	1231	0	0.013*
	~ Null model		1259	28	

- Figure S1. Map of the study site in the Jimma Highlands, southwestern Ethiopia depicting
 main land-use categories along the altitudinal transect. White circles indicate locations of
 sampled plots.



8 Figure S2. Abundance of sub-families within the six land-use categories. Bars represent mean

- 1 Figure S3. Non-metric multidimensional scaling plot illustrating butterfly community
- 2 structure in relation to land-use. Circles represent butterfly species, with colours indicating
- 3 their family. Land-use categories: F= natural forest, PLNT= plantation, SMCF= semi-
- 4 managed coffee forest, W= open woodland, C= cropland and P= pasture.

NMDS1