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Abstract. In this article, we describe the betamix command, which fits mix-
ture regression models for dependent variables bounded in an interval. The model
is a generalization of the truncated inflated beta regression model introduced in
Pereira, Botter, and Sandoval (2012, Communications in Statistics—Theory and

Methods 41: 907–919) and the mixture beta regression model in Verkuilen and
Smithson (2012, Journal of Educational and Behavioral Statistics 37: 82–113) for
variables with truncated supports at either the top or the bottom of the distri-
bution. betamix accepts dependent variables defined in any range that are then
transformed to the interval (0, 1) before estimation.

Keywords: st0513, betamix, truncated inflated beta mixture, beta regression, mix-
ture model, cross-sectional data, mapping

1 Introduction

Continuous response variables that are bounded at both ends arise in many areas. De-
pendent variables measuring proportions, ratios, and rates are common in the empirical
literature. They are often limited to the open unit interval (0, 1), but in many cases,
values in both boundaries are not only possible but appear with high frequency. Ap-
plications where the variables are bounded in alternative intervals linearly transform
the dependent variable to the (0, 1) interval. Some examples include modeling the
rates of employee participation in pension plans (Papke and Wooldridge 1996), the per-
centage of women on municipal councils or executive committees (De Paola, Scoppa,
and Lombardo 2010), an index measuring central bank independence (Berggren, Daun-
feldt, and Hellstrø̈m 2014), the proportion of a firm’s total capital accounted for by its
long-term debt (Cook, Kieschnick, and McCullough 2008), quality adjusted life years
(Basu and Manca 2012), and the score of reading accuracy (Smithson and Verkuilen
2006).

Modeling variables bounded at both ends presents several problems. The usual
linear regression model is not appropriate for bounded dependent variables, because
the predictions of the model can lie outside the boundary limits. A common solu-

c© 2018 StataCorp LLC st0513



52 Fitting mixture regression models for bounded dependent variables

tion is to transform the dependent variable so that it takes values in the real line and
then use standard regression models on the transformed dependent variable. How-
ever, this approach has an important limitation in that it ignores that the moments
of the distribution of a bounded variable are related; as the mean response moves
toward a boundary value, the variance and skewness of the variable will tend to de-
crease and increase, respectively. Fractional response models (Papke and Wooldridge
1996, 2008) and models based on the beta distribution have been suggested as alterna-
tives (Paolino 2001; Kieschnick and McCullough 2003; Ferrari and Cribari-Neto 2004;
Smithson and Verkuilen 2006). Fractional response models (Papke and Wooldridge
1996; 2008) assume that the dependent variable takes values in the unit interval [0, 1].
Papke and Wooldridge (1996) specified a functional form for the conditional mean of
the dependent variable and proposed the use of a quasilikelihood procedure to estimate
the parameters. These models are very useful if the main interest is in the conditional
mean of the dependent variable and, if the conditional mean is correctly specified, the
parameter estimates are consistent.

The standard beta regression model (Paolino 2001; Ferrari and Cribari-Neto 2004;
Smithson and Verkuilen 2006) assumes that the dependent variable is continuous in
the open unit interval (0, 1). Unlike the fractional response model described above,
the beta regression model assumes a distribution for the dependent variable condi-
tional on the covariates, and its parameters are estimated using maximum likelihood.
A drawback of this model is that distributional misspecification leads to inconsistent
parameter estimates. However, it is more suitable if the interest is in the whole dis-
tribution. This model has been generalized to allow for values at either boundary or
both boundaries by adding a degenerate distribution with probability masses at the
boundary values (Cook, Kieschnick, and McCullough 2008; Ospina and Ferrari 2010,
2012b; Basu and Manca 2012). Pereira, Botter, and Sandoval (2012, 2013) extend the
framework to model variables such as the ratio of the unemployment benefit to the
maximum benefit. This ratio can take the value of zero (if the person is not eligible)
or any real number in the interval (τ, 1), where τ is the minimum benefit. The ra-
tio is also likely to have positive probabilities at the values τ and at 1. This model
was termed the truncated inflated beta distribution. The model is a mixture of the
beta distribution in the interval (τ, 1) and the trinomial distribution with probabil-
ity masses at 0, τ , and 1. A related strand of the literature extends the standard beta
regression model to allow for mixtures of C-components of beta regressions. This exten-
sion is helpful when the distribution of the dependent variable presents characteristics
that cannot be captured by a single beta distribution such as multimodality. Allowing
for mixtures can help overcome misspecification problems in the conditional distribu-
tion of the dependent variable. Some examples of mixtures of beta distributions are
found in Ji et al. (2005), Verkuilen and Smithson (2012), and Kent et al. (2015). In
Gray, Hernández Alava, and Wailoo (Forthcoming), we combine these extensions into a
single model to address the problems of modeling health-related quality of life (HRQoL)
in health economics.1

1. An alternative model in this context is the adjusted limited dependent variable mixture
model, which can be fit using the community-contributed aldvmm command discussed in
Hernández Alava and Wailoo (2015).
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In this article, we present the command betamix, which can be used to fit mixture
regression models for dependent variables that are bounded in an interval and can have
truncated supports either at the top or at the bottom of the distribution. It extends one
of the parameterizations of the community-contributed commands betafit and zoib

and the Stata command betareg in several directions.2 First, it generalizes them to
mixtures of beta distributions, allowing the model to capture multimodality. Second,
it allows the user to model response variables that have a gap between one of the
boundaries and the continuous part of the distribution. Third, it can deal with positive
probabilities at either boundary or both boundaries and at the truncation point. Fourth,
there is no need to manually transform response variables defined in intervals other than
(0, 1), because betamix will transform the dependent variable using the supplied options.

This article is organized as follows: section 2 gives a brief overview of the model;
section 3 describes the betamix syntax and options, including the syntax for predict;
section 4 illustrates the syntax of the command and the interpretation of the model
using a fictional dataset; and section 5 concludes.

2 A general beta mixture regression model

There are two possible parameterizations of the beta distribution bounded in the interval
(0, 1). The most common one uses two shape parameters (Johnson, Kotz, and Balakr-
ishnan 1995). An alternative parameterization presented in Ferrari and Cribari-Neto
(2004) defines the model in terms of its mean, µ, and a precision parameter, φ. In this
parameterization, the mean and the variance of y are given by

E (y) = µ a < µ < b

and

var (y) =
(µ− a) (b− µ)

1 + φ
φ > 0

The variance of y is a function of µ (the mean of y) and decreases as the precision
parameter φ increases. The density of the variable y can then be written as

f (y;µ, φ, a, b) =
Γ(φ)(y − a)(

µ−a
b−a )φ−1

(b− y)(
b−µ
b−a )φ−1

Γ
{(

µ−a
b−a

)

φ
}

Γ
{(

b−µ
b−a

)

φ
}

(b− a)
φ−1

y ∈ (a, b) (1)

where Γ(·) is the gamma function (see Pereira, Botter, and Sandoval [2012]). The trans-
formed variable

yT = (y − a) / (b− a) 0 < yT < 1

has a standard beta distribution with mean (µ− a) / (b− a) and precision parameter φ.

2. The community-contributed commands betamix, betafit (Buis, Cox, and Jenkins 2003), and zoib

(Buis 2010) use a logit and log link for the conditional mean and the conditional scale, respectively.
The Stata command betareg allows for a number of different links for both.
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Beta distributions are convenient in modeling because they can display a variety of
shapes depending on the values of their two parameters, µ and φ. They are symmetric if
µ = (a+ b) /2 and asymmetric for any other value of µ. They can also be bell-, J-, and
U-shaped. Figure 1 plots several beta probability densities for alternative combinations
of µ and φ for a variable defined in the (0, 1) interval. At a value of µ = 0.5 and small
values of φ, the beta distribution is U-shaped; if µ = 0.5 and φ = 2, the distribution
becomes the uniform distribution; and as φ increases, the variance decreases, and the
distribution becomes more concentrated around its mean.
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Figure 1. Probability density of the beta distribution for alternative combinations of µ
and φ

Given a sample y1, y2, . . . , yn of independent random variables, each following the
probability density in (1), the beta regression model can be obtained by assuming that
a function v (·) of the mean of yi can be written as a linear combination of the set of
covariates in the vector zi,

v

(

µi − a

b− a

)

= z′iβ

where β is a vector of parameters and v (·) is a strictly monotonic and twice differentiable
link function that maps the open interval (0, 1) into R. This parameterization simplifies
the interpretation of β. A number of link functions can be used, but the logit link
is commonly found in applications because the coefficients of the regression can be
interpreted as log odds. Using the logit link, we can write the mean of yi as
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µi (zi;β) = a+ (b− a)
exp (z′iβ)

1 + exp (z′iβ)

Pereira, Botter, and Sandoval (2012, 2013) present a more general beta regression
model for variables defined at zero and in the interval [τ, 1], which they named the
“truncated inflated beta regression model”. It is a mixture model of a multinomial dis-
tribution (with probability masses at 0, τ , and 1) and a beta distribution defined in the
open interval (τ, 1). In Gray, Hernández Alava, and Wailoo (Forthcoming), we extend
the framework to the case where the second part can be a mixture of C-components of
beta distributions incorporating the beta mixture described in Verkuilen and Smithson
(2012). Mixtures of beta distributions can display a number of distributional shapes.
Figure 2 shows two examples. The left panel plots a 50:50 mixture of two beta distri-
butions, both with the same relatively high-precision parameter φ = 50 but with very
different means, µ = 0.05 and µ = 0.80. This mixture displays the usual bimodal shape.
The right panel also plots a 50:50 mixture, but the means of the 2 components are closer
together (µ = 0.60 and µ = 0.75), and the precision parameters are different (φ = 10
and φ = 100, respectively). This mixture density is asymmetric with a bump on the
left tail. Both densities show characteristics that cannot be captured with a single beta
distribution.
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Figure 2. Mixture densities of beta distributions

Let us assume that the response variable yi is defined at the point a and in the interval
[τ, b] with a < τ < b. The density of yi conditional on three possibly different column
vectors of covariates xi1, xi2, and xi3 can be written as

g (yi|xi1,xi2,xi3) =



























P (yi = a|xi3) if yi = a
P (yi = τ |xi3) if yi = τ
P (yi = b|xi3) if yi = b
[

1−
∑

s=a,τ,b

P (yi = s|xi3)

]

h (yi|xi1,xi2) if yi ∈ (τ, b)

(2)
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The probabilities P (yi|xi3) are derived from a multinomial logit model

P (yi = k|xi3) =
exp (x′

i3γk)

1 +
∑

s=a,τ,b

exp (x′
i3γs)

for k = a, τ, b (3)

where xi3 is a column vector of variables that affect the probability of a boundary value
of the response variable and γk is the vector of corresponding coefficients.

The probability density function h (·) is a mixture of C-components of beta distri-
butions with means µci (zi;βc) and precision parameters φc, where c = 1, . . . , C,

h (yi|xi1,xi2) =
C
∑

c=1

[P (c|xi2) f {yi;µci(xi1;βc), φc, τ, b}] (4)

where f (·) is the beta density defined in (1). A multinomial logit model for the proba-
bility of latent class membership is assumed to be

P (c|xi2) =
exp (x′

i2δc)
∑C

j=1 exp (x
′
i2δj)

(5)

where xi2 is a vector of variables that affect the probability of component membership,
δc is the vector of corresponding coefficients, and C is the number of classes used in
the analysis. One set of coefficients δc is normalized to zero for identification. In the
intercept-only model, the probabilities of component membership are constant for all
individuals.

Using (2), (3), (4), and (5), we can write the log likelihood of the sample y1, y2, . . . , yn
as

ln l (γ, β, δ, φ) =
∑

i:yi=a

lnP (yi = a|xi3,γ) +
∑

i:yi=τ

lnP (yi = τ |xi3,γ)

+
∑

i:yi=b

lnP (yi = b|xi3,γ)

+
∑

i:yi∈p

ln







1−
∑

s=a,τ,b

P (yi = s|xi3,γ)







+
∑

i:yi∈(τ,b)

ln

(

C
∑

c=1

[P (c|xi2) f {yi;µci(xi1;βc), φc, τ, b}]

)

where i = 1, . . . , n.

The command betamix described in the section below can fit models with and
without truncation and models where the truncation is either at the bottom or at the
top of the interval range. The simplest model it can fit is a beta regression model
using the alternative parameterization described above. This model can already be fit
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in Stata using betareg or the community-contributed command betafit. In addition,
the command betamix can fit a finite mixture model using a beta distribution. If there
are boundary values, betamix warns the user and adds a small amount of noise (1e–6)
to the boundary values after the response variable has been transformed to the interval
[0, 1] as in Basu and Manca (2012). This solution is not satisfactory when there are
many observations at the boundary values. Provided there is theoretical justification,
the user can request that betamix add a second part to the model to add probability
masses at any combination of the boundary points and the truncation value (if there is
one).3

The description of the model above assumes constant precision parameters, but
betamix allows the precision parameters to depend on covariates using a log link such
that

ln(φ) = x′
i4α

These models tend to be more difficult to fit and require good starting values. A
good procedure to follow here is to start by fitting a model with constant precision as
a stepping stone for the full model (Verkuilen and Smithson 2012).

We recommend that the reader become familiar with the idiosyncrasies of fitting
mixture models (McLachlan and Peel 2000) before attempting to fit one. In particular,
it is important to emphasize that mixture models are known to have multiple optima,
and it is important to search for a global solution. Determining the number of compo-
nents in a mixture is also not straightforward, and the analyst must exercise judgment
in determining the appropriate number of components. Likelihood-ratio tests cannot
be used to test models with different numbers of components, because it involves test-
ing at the edge of the parameter space. The Bayesian information criterion (BIC) has
been proposed as a useful indicator of the number of appropriate components, but other
approaches also exist.

Exercise caution when using maximum likelihood estimation in small samples. Bias
is usually not a problem in large samples, but in small samples, bias-corrected proce-
dures are needed. It has been shown (Ospina, Cribari-Neto, and Vasconcellos 2006,
2011; Kosmidis and Firth 2010; Ospina and Ferrari 2012a) that for beta regressions,
the biases of the regression parameters tend to be small, but larger biases are found
for the precision parameter. In addition, the standard errors of the parameters are sys-
tematically underestimated, leading to an exaggeration of the parameters’ significance.
Ospina, Cribari-Neto, and Vasconcellos (2006) and Kosmidis and Firth (2010) use the
same dataset (sample size n = 32) to compare the effect of different adjustment proce-
dures on the 12 estimated parameters and their standard errors. The present version of
betamix does not implement any bias-correction procedures for small samples.

3. The online supplementary material in Smithson and Verkuilen (2006) discusses alternative methods
and recommends checking the sensitivity of the estimated parameters to different procedures.
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3 Command syntax

3.1 betamix

Syntax

betamix depvar
[

if
] [

in
] [

weight
] [

, muvar(varlist) phivar(varlist)

ncomponents(#) probabilities(varlist) pmass(numlist) pmvar(varlist)

lbound(#) ubound(#) trun(trun) tbound(#) constraints(constraints)

vce(vcetype) level(#) maximize options search(spec) repeat(#)
]

Description

betamix is a community-contributed command that fits a generalized beta regression
model using the truncated inflated beta model of Pereira, Botter, and Sandoval (2013)
and the mixture beta regression model in Verkuilen and Smithson (2012).

Options

muvar(varlist) specifies a set of variables to be included in the mean of the beta regres-
sion mixtures. The default is a constant mean.

phivar(varlist) specifies a set of variables to be included in the precision of the beta
regression mixtures. The default is a constant precision parameter.

ncomponents(#) specifies the number of mixture components. # should be an integer.
The default is ncomponents(1).

probabilities(varlist) specifies a set of variables used to model the probability of
component membership. The probabilities are specified using a multinomial logit
parameterization. The default is constant probabilities.

pmass(numlist) specifies a list of exactly three number indicators (top inside bottom)
showing the presence and position of the probability masses. For example, pmass(1
0 0) specifies a probability mass at b, the top limit of the dependent variable only;
pmass(0 0 0) specifies no probability masses (a beta mixture regression model);
pmass(1 0 1) specifies a model with probability masses at both limits of the de-
pendent variable but no probability mass at the truncation point. The default is no
probability masses at any point. Note that pmass() requires a list of exactly three
numbers, even if the model has no truncation.

pmvar(varlist) specifies the variables used in the inflation part of the model. The model
allows for a different set of variables to be used in this part of the model, but in most
cases, it is reasonable for the same set of variables to appear in both the inflation
model and the mixture of beta regressions. The default is constant probabilities.
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lbound(#) specifies the user-supplied lower limit of the dependent variable. The default
is lbound(0). Use this option if the dependent variable is limited in the interval
(a, b). In this case, the upper bound of the interval also needs to be supplied using
the option below.

ubound(#) specifies the user-supplied upper limit of the dependent variable. The de-
fault is ubound(1). Use this option if the dependent variable is limited in the interval
(a, b). In this case, the lower bound of the interval also needs to be supplied using
the option above.

trun(trun) determines whether there is truncation in the model and, if so, whether
it is at the bottom or the top end. trun may be none, top, or bottom. Use none

if no truncation is required; use top if the truncation (gap) is at the top [that is,
the dependent variable is defined only in the interval (lbound(), tbound()) and
the value ubound()]; use bottom if the truncation (gap) is at the bottom [that is,
the dependent variable is defined only at the value lbound() and in the interval
(tbound(), ubound())]. The default is trun(none).

tbound(#) specifies the user-supplied truncation value. If a truncation value is speci-
fied, then the option trun() must be specified as top or bottom.

constraints(constraints); see [R] estimation options.

vce(vcetype) specifies how to estimate the variance–covariance matrix corresponding
to the parameter estimates. vcetype may be oim, opg, robust, or cluster clustvar.
The default is vce(oim). The current version of betamix does not allow bootstrap

or jacknife estimators; see [R] vce option.

level(#); see [R] estimation options.

maximize options: difficult, technique(algorithm spec), iterate(#),
[

no
]

log,
trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), gtolerance(#), nrtolerance(#), nonrtolerance,
from(init specs); see [R] maximize.

search(spec) specifies whether to use ml’s initial search algorithm. spec may be on or
off. The default is search(on).

repeat(#) specifies the number of random attempts to be made to find a better initial-
value vector. This option is used in conjunction with search(on). The default is
repeat(100).

The likelihood functions of mixture models have multiple optima. The options
difficult, trace, search(spec), and from(init specs) are especially useful when the
default option does not achieve convergence.
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3.2 predict

Syntax

predict
[

type
]

newvar
[

if
] [

in
] [

, outcome(outcome)
]

predict {stub* |newvar1 ... newvarq}
[

if
] [

in
]

, scores

Description

Stata’s standard predict command can be used following betamix to obtain predicted
values using the first syntax as well as the equation-level scores using the second syntax.

Options

outcome(outcome) specifies the predictions to be stored. There are two options for
outcome: y or all. The default is outcome(y), which stores only the dependent
variable prediction in newvar. Use all to also obtain the predicted conditional
means, precision parameters, and probabilities for each component in the mix-
ture. These are stored as newvar mu1, newvar mu2, . . . , newvar phi1, newvar phi2,
. . . and newvar p1, newvar p2, . . . , respectively. If an inflation model is specified,
all also stores the predicted probabilities of the multinomial logit part in new-

var lb, newvar ub, and newvar tb corresponding to the predicted probabilities of
the lower bound, upper bound, and truncation bound. The probability of an ob-
servation belonging to the beta mixture part of the model can be calculated as
1− newvar lb− newvar ub− newvar tb.

scores calculates equation-level score variables.

4 The betamix command in practice

This section illustrates the use of the betamix command using a fictional dataset
(betamix example data.dta) that can be downloaded when installing the command.

Economic evaluation is used by many decision makers around the world to inform
healthcare funding decisions by comparing benefits and costs. EQ-5D-3L (EuroQol Group
1990) is often used to construct measures of health benefits and is thus central to those
decisions. The EQ-5D-3L instrument describes health using five different dimensions
(mobility, self-care, usual activities, pain and discomfort, anxiety and depression), each
with three possible levels (no problems, some problems, extreme problems). In total, EQ-

5D-3L can describe 243 different health states. Separate studies have assigned country-
specific values to each health state. A value of 1 represents perfect health, a value of
0 represents a health state considered equivalent to being dead, and negative values
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represent health states worse than death.4 Therefore, EQ-5D-3L is a limited dependent
variable with a lower limit equal to the value of the worst health state and an upper
value of 1. In some cases, data on EQ-5D-3L have not been collected, and there is the
need to predict what EQ-5D-3L would have been based on other available measures.

In this example, we are interested in estimating HRQoL measured by EQ-5D-3L5 as
a function of a number of covariates. The data have 5,000 observations and is described
below:

. use betamix_example_data

. describe

Contains data from betamix_example_data.dta
obs: 5,000
vars: 5 23 May 2017 15:27
size: 90,000

storage display value
variable name type format label variable label

pain float %9.0g VAS pain scale [0,1]
haq_disability float %9.0g Health Assessment Questionnaire
eq5d_3l double %10.0g EQ-5D-3L utility
gender byte %8.0g gender_lbl

Gender (dummy variable)
age byte %8.0g Age in years

Sorted by: eq5d_3l

There are four additional variables in the dataset: the health assessment question-
naire (HAQ) disability index, the pain score, age, and gender. The first two variables
are collected in the HAQ questionnaire typically used in studies on rheumatoid arthritis
(Fries, Spitz, and Young 1982). The HAQ disability index measures physical function-
ality ranging from 0 to 3, with 0 indicating no or mild difficulties and 3 indicating very
severe disability. The HAQ questionnaire also includes a rating scale for pain severity.6

Summary statistics for the variables included in the dataset are shown below.

. summarize

Variable Obs Mean Std. Dev. Min Max

pain 5,000 .0343357 .0239183 0 .1331617
haq_disabi~y 5,000 1.447728 .450958 0 3

eq5d_3l 5,000 .682108 .2246177 -.429 1
gender 5,000 .3954 .4889853 0 1

age 5,000 61.9178 11.00144 13 97

The average age in the dataset is 62 years, and 40% of the individuals are male.
Figure 3 shows a histogram of the dependent variable EQ-5D-3L. The histogram presents
a number of distributional characteristics that will need addressing when modeling.

4. For example, health states associated with extreme pain are often valued below zero in general
population studies.

5. In this example, we use the UK valuation (Dolan et al. 1995).
6. A horizontal visual analog scale going from no pain to severe pain is used.
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EQ-5D-3L (UK valuation) is bounded between −0.594 and 1. Both of these values are
possible. In the present dataset, there are no observations at the lower limit of −0.594.
There is a pile of observations at the upper boundary of 1 (full health) and a gap between
this mass at 1 and the previous value. This gap is not a sample issue, but a property of
EQ-5D-3L. There is a theoretical gap between 1 and the next feasible value. The size of
the gap is country specific, and in the UK case, there are no values between 1 and 0.883
creating a gap of 0.117. This gap is large relative to the total length of the EQ-5D-3L

interval (1.594). The distribution is also multimodal, and conditioning on variables is
usually not enough to capture this aspect of the distribution. These idiosyncrasies have
been previously reported (see, for example, Hernández Alava, Wailoo, and Ara [2012]).
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Figure 3. Distribution of EQ-5D-3L

The dataset will be used in two examples in sections 4.1 and 4.2: The first example
will analyze the subsample of observations that are not in full health and show how
to fit a mixture of beta regressions. The second example will use the full sample and,
building on section 4.1, will show how to estimate an inflated truncated mixture of beta
regressions.

4.1 Example 1: A mixture of beta regressions

For the purpose of this example and to show a simple version of the command, we ignore
the observations at full health. In this subsample, the distribution of EQ-5D-3L has a
theoretical lower boundary of −0.594 and an upper boundary of 0.883 (highest EQ-5D-3L

value below full health). There are no observations at the lower boundary, but there
are four observations at the upper boundary.7

We start by estimating a beta regression. Building on those results, we then estimate
a mixture of beta regressions and compare the results.

We create local macros with the theoretical boundary values of the dependent vari-
able as follows:

7. Note that the boundary values of the beta distribution should be the theoretical values, which do
not always coincide with the boundaries of the observed data in a sample.
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. local a = -0.594

. local b = 0.883

As a first step, we fit a beta regression model conditioning on age, gender, HAQ

disability index, and pain. This model can already be fit using the betareg command
by transforming the dependent variable and changing the observations at the boundaries
by a small amount. Because there are only observations on the upper boundary, this
model can be fit as follows:

. generate double eq5d_3l_t =(eq5d_3l-`a´)/(`b´-`a´) if eq5d_3l < 1
(539 missing values generated)

. replace eq5d_3l_t = eq5d_3l_t - 1e-6 if eq5d_3l_t==1
(4 real changes made)

. betareg eq5d_3l_t i.gender age haq_disability pain

(output omitted )

Using betamix, we can estimate the same beta regression as follows:

. betamix eq5d_3l if eq5d_3l < 1, muvar(i.gender age haq_disability pain)
> lbound(`a´) ubound(`b´)
Warning. Some observations are on the upper boundary but no probability mass.
A value of 1 is not supported by the beta distribution.
-1e-6 will be added to those observations.

initial: log likelihood = 3633.5637

(output omitted )

Iteration 5: log likelihood = 5507.4545

1 component Beta Mixture Model Number of obs = 4,461
Wald chi2(4) = 4854.70

Log likelihood = 5507.4545 Prob > chi2 = 0.0000

eq5d_3l Coef. Std. Err. z P>|z| [95% Conf. Interval]

C1_mu
gender
Male -.1906903 .0175407 -10.87 0.000 -.2250695 -.1563112

age .0007741 .0007811 0.99 0.322 -.0007568 .0023051
haq_disability -.9759785 .0247947 -39.36 0.000 -1.024575 -.9273818

pain -15.17255 .4339471 -34.96 0.000 -16.02307 -14.32203
_cons 3.826647 .0620419 61.68 0.000 3.705047 3.948247

C1_lnphi
_cons 2.974057 .021377 139.12 0.000 2.932158 3.015955

C1_phi 19.57115 .4183728 18.76809 20.40857

. matrix param = e(b)

. estimates store beta1lc

The command issues a warning: there are four observations with values of the de-
pendent variable at the upper bound. Those values will be changed (on the transformed
variable) by a small amount.
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All variables, with the exception of age, appear significant at conventional signifi-
cance levels. Higher levels of disability (as measured by HAQ disability index) and pain
are associated with lower levels of HRQoL (EQ-5D-3L), as expected. On average, males
have lower levels of EQ-5D-3L in this sample. The fitted model assumes a constant pre-
cision parameter φ. Because a log link is used to ensure that the precision parameter
is positive, the value of the untransformed parameter φ = 19.57 is also shown at the
bottom of the output table.

Although the direction of the effect can be found directly from the estimates to
find the magnitude of the effects and to interpret the estimates, it is helpful to use
margins. Here margins is used following estimation to find the predicted EQ-5D-3L for
the estimation sample. The mean predicted EQ-5D-3L is 0.6366, close to the mean in the
estimation sample (0.6437).

. margins

Predictive margins Number of obs = 4,461
Model VCE : OIM

Expression : Prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons .6366395 .0017476 364.29 0.000 .6332143 .6400648

. summarize eq5d_3l if e(sample)==1

Variable Obs Mean Std. Dev. Min Max

eq5d_3l 4,461 .6436987 .2070316 -.429 .883

In some cases, it is plausible that the variance of the distribution depends on ob-
served covariates through their effect on the precision parameter φ. Models where the
precision parameter is a function of covariates are more difficult to fit, and it is always
recommended to start by fitting a model with constant variance and use it as a stepping
stone.8

We now show how the command betamix can be used to fit a more general model
using mixtures of beta regressions. As always, when one fits mixture models, it is
important that searches be carried out to ensure convergence to a global maximum
(see section 2). The repeat() option can be used to increase the number of random
attempts to find better starting values. Alternatively, if more control over the search
strategy is required, the model can be optimized for a small number of iterations using
a large number of different starting values. After this step, only the most promising
trials (those with the highest likelihoods) are fully optimized, and the model with the
highest likelihood is chosen.9

8. The accompanying do-file shows an example of how to specify and fit a model where φ is a function
of a covariate.

9. The accompanying example do-file provides examples of searching procedures and the repeat()

option.
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We now fit a two-component beta regression mixture model. With the option
from(), we use the estimated parameters from the beta regression estimated earlier
as initial parameter values to start the optimization.

. betamix eq5d_3l if eq5d_3l < 1, muvar(i.gender age haq_disability pain)
> lbound(`a´) ubound(`b´) ncomponents(2) from(param)
Warning. Some observations are on the upper boundary but no probability mass.
A value of 1 is not supported by the beta distribution.
-1e-6 will be added to those observations.

initial: log likelihood = 3953.8933

(output omitted )

Iteration 9: log likelihood = 6620.1281

2 component Beta Mixture Model Number of obs = 4,461
Wald chi2(8) = 6125.70

Log likelihood = 6620.1281 Prob > chi2 = 0.0000

eq5d_3l Coef. Std. Err. z P>|z| [95% Conf. Interval]

C1_mu
gender
Male -.1939933 .0140936 -13.76 0.000 -.2216163 -.1663703

age .0017032 .0006329 2.69 0.007 .0004628 .0029436
haq_disability -.8513914 .0195477 -43.55 0.000 -.8897041 -.8130786

pain -5.37046 .3753207 -14.31 0.000 -6.106075 -4.634845
_cons 3.463807 .0491347 70.50 0.000 3.367505 3.560109

C1_lnphi
_cons 4.399757 .0322272 136.52 0.000 4.336593 4.462922

C2_mu
gender
Male -.1192919 .0418525 -2.85 0.004 -.2013214 -.0372625

age -.0013071 .0018824 -0.69 0.487 -.0049965 .0023823
haq_disability -1.077175 .0588744 -18.30 0.000 -1.192567 -.9617834

pain -25.83155 .9151444 -28.23 0.000 -27.6252 -24.0379
_cons 4.215672 .1446903 29.14 0.000 3.932084 4.49926

C2_lnphi
_cons 2.657526 .0476911 55.72 0.000 2.564053 2.750999

Prob_C1
_cons .9734091 .0585439 16.63 0.000 .8586651 1.088153

C1_phi 81.43111 2.624296 76.44666 86.74056
C2_phi 14.26096 .6801207 12.98836 15.65826

pi1 .7257985 .0116511 .7023817 .7480338
pi2 .2742015 .0116511 .2519662 .2976183

. matrix param2=e(b)

. estimates store beta2lc

The output now gives the parameter estimates for the two components of the model
and for the multinomial logit10 that determines component membership. Note that in
this model, the probability of class membership is constant, but it can be allowed to

10. In this case, the model reduces to a logit model because there are only two components.
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vary across individuals by including variables in the multinomial logit model using the
probabilities() option of betamix. Because the probability of belonging to each com-
ponent is constant, the bottom of the output table shows these probabilities (pi1 and
pi2) in an interpretable metric along with the precision parameters of both components
(C1 phi and C2 phi).

In both components of the mixture, the HAQ disability index and pain score are
negatively associated with average EQ-5D-3L, and being male is associated with lower
average EQ-5D-3L, just as they were in the beta regression model. Age is significant in the
first component, where being older has a positive influence on EQ-5D-3L. Component 1 is
a dominant component with a probability (pi1) of 0.73. It is useful to use the predict
command after estimation to visualize the two different components of the mixture.

. predict yhat2, outcome(all)

. summarize yhat2* if e(sample)==1

Variable Obs Mean Std. Dev. Min Max

yhat2_mu1 4,461 .6954906 .0731658 .2635273 .8368744
yhat2_phi1 4,461 81.43111 0 81.43111 81.43111

yhat2_p1 4,461 .7257985 0 .7257985 .7257985
yhat2_mu2 4,461 .5599013 .2167423 -.3759323 .853509

yhat2_phi2 4,461 14.26096 0 14.26096 14.26096

yhat2_p2 4,461 .2742015 0 .2742015 .2742015
yhat2 4,461 .6583118 .1101933 .0881865 .8409589

In the estimation sample, the first component is estimated to have a mean EQ-5D-3L

of 0.6955 and a precision parameter φ = 81.43, whereas the second component has a
slightly lower mean of 0.5599 and a more dispersed variance (φ = 14.26). Figure 4
plots the probability density of the mixture at this average together with each of the
two individual components. The mixture probability density is more similar to the
dominant component, but it has heavier tails.
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Figure 4. Probability densities of the two-component beta mixture and each individual
component
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As noted earlier, margins can be used to help interpret the model. For example,
margins is used below to find the average EQ-5D-3L for groups of patients with different
levels of pain.

. margins, at(pain=(0(0.05)0.2))

Predictive margins Number of obs = 4,461
Model VCE : OIM

Expression : Prediction, predict()

1._at : pain = 0

2._at : pain = .05

3._at : pain = .1

4._at : pain = .15

5._at : pain = .2

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .736477 .0021127 348.60 0.000 .7323362 .7406177
2 .641518 .0022414 286.22 0.000 .637125 .645911
3 .4912133 .0078346 62.70 0.000 .4758577 .5065689
4 .3413173 .0122964 27.76 0.000 .3172167 .3654178
5 .2366953 .0151763 15.60 0.000 .2069503 .2664404

The plot of the predictive margins is shown in figure 5. Patients who report no pain
have the highest predicted EQ-5D-3L. Predicted EQ-5D-3L decreases as reported pain
increases.
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Figure 5. Predictive margins with 95% confidence interval

The model with a mixture of two components can be compared with the beta re-
gression model using information criteria. In particular, BIC has been shown to give a
good indication of the number of components in a mixture. The mixture model has the
lower Akaike information criterion (AIC) and BIC (see below), indicating that it fits the
data better.
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. estimates stats _all

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

beta1lc 4,461 . 5507.454 6 -11002.91 -10964.49
beta2lc 4,461 . 6620.128 13 -13214.26 -13131.02

Note: N=Obs used in calculating BIC; see [R] BIC note.

Figure 6 compares the probability densities of the mixture of two components and
the beta regression model (calculated at the average). The mixture distribution has a
larger peak at a higher value and flatter tails than the single component beta regression
model.
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Figure 6. Probability densities of the two-component beta mixture versus the beta
regression

Models with a higher number of components should also be fit and compared to
determine the best-fitting model.

4.2 Example 2: An inflated truncated mixture of beta regressions

In this example, we use the full dataset, which now includes the mass of values at the
upper boundary of full health. Including these values creates a gap between the upper
boundary and the previous feasible value (0.883) (see figure 3).11

We first fit an inflated truncated beta regression model. The new upper bound
is now 1 (ub(1)), and the model includes a truncation at the top of the distribu-
tion with no density between 0.883 and 1 (tb(0.883) trun(top)). The lower bound
remains the same (lb(-0.594)). We allow the same variables to enter the beta re-
gression (muvar(i.gender age haq disability pain)) and the inflation part of the
model (pmvar(i.gender age haq disability pain)). There is inflation at the upper

11. For examples of more complex models than those estimated here in the area of health economics,
see Gray, Hernández Alava, and Wailoo (Forthcoming).
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bound but no inflation at the truncation point or at the lower bound (pmass(1 0 0)).
In this example, it is not necessary to include an inflation at the truncation value be-
cause there are only four observations with an EQ-5D-3L of 0.883. As in the previous
example, there are no observations at the lower bound. The syntax to fit this model is
reproduced below:

. betamix eq5d_3l, muvar(i.gender age haq_disability pain) lbound(-0.594)
> ubound(1) tbound(0.883) pmass(1 0 0) pmvar(i.gender age haq_disability pain)
> trun(top) from(param)

Note that this model is not the same as the Heckman selection model. It is equivalent
to a two-part model, fit jointly under conditional independence between the two parts
of the model. The output of this model is reproduced below:

Warning. Some observations are on the truncated boundary but no probability mass.
A value of 1 is not supported by the beta distribution.
-1e-6 will be added to those observations.

Fitting full beta mixture model

initial: log likelihood = 2041.7186

(output omitted )

Iteration 5: log likelihood = 4507.4772

1 component Beta Mixture Model with inflation Number of obs = 5,000
Wald chi2(8) = 5477.05

Log likelihood = 4507.4772 Prob > chi2 = 0.0000

eq5d_3l Coef. Std. Err. z P>|z| [95% Conf. Interval]

C1_mu
gender
Male -.1906903 .0175407 -10.87 0.000 -.2250695 -.1563112

age .0007741 .0007811 0.99 0.322 -.0007568 .0023051
haq_disability -.9759784 .0247947 -39.36 0.000 -1.024575 -.9273818

pain -15.17255 .4339471 -34.96 0.000 -16.02307 -14.32203
_cons 3.826647 .0620419 61.68 0.000 3.705047 3.948247

C1_lnphi
_cons 2.974056 .021377 139.12 0.000 2.932158 3.015955

PM_ub
gender
Male -.4074599 .1191221 -3.42 0.001 -.6409349 -.1739848

age -.0006401 .0052235 -0.12 0.902 -.0108779 .0095978
haq_disability -2.729829 .1830281 -14.91 0.000 -3.088558 -2.371101

pain -81.13075 5.093264 -15.93 0.000 -91.11337 -71.14814
_cons 2.735824 .3788839 7.22 0.000 1.993225 3.478423

C1_phi 19.57115 .4183728 18.76809 20.40856

. estimates store infbeta1LC

. matrix param2=e(b)

The output table now has an additional equation, PM ub, corresponding to the infla-
tion part of the model at perfect health. Men are less likely than women to be in perfect
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health. The likelihood of being in perfect health decreases as age, pain, and the HAQ

disability index increase. Note that, because this is a two-part model, the parameter
estimates of the beta regression part of the model are the same as the parameters of
the beta regression model fit in section 4.1.

Using the estimated parameters to initialize the algorithms, we also estimated the
inflated truncated beta mixtures of two and three components. We also attempted to
estimate a four-component mixture, but convergence was a problem. Results for the
inflated truncated beta mixture of the three-component model are presented below:

. betamix eq5d_3l, muvar(i.gender age haq_disability pain) ncomponents(3)
> lbound(-0.594) ubound(1) tbound(0.883) pmass(1 0 0)
> pmvar(i.gender age haq_disability pain) trun(top) repeat(500)
Warning. Some observations are on the truncated boundary but no probability mass.
A value of 1 is not supported by the beta distribution.
-1e-6 will be added to those observations.

Fitting part 1: multinomial logit model

Fitting full beta mixture model

initial: log likelihood = -977.04385

(output omitted )

Iteration 22: log likelihood = 5669.5447

3 component Beta Mixture Model with inflation Number of obs = 5,000
Wald chi2(16) = 6338.24

Log likelihood = 5669.5447 Prob > chi2 = 0.0000
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eq5d_3l Coef. Std. Err. z P>|z| [95% Conf. Interval]

C1_mu
gender
Male -.1423077 .0506814 -2.81 0.005 -.2416414 -.0429739

age .0010803 .0021846 0.49 0.621 -.0032015 .0053621
haq_disability -1.108207 .0702167 -15.78 0.000 -1.245829 -.9705848

pain -28.63576 1.197209 -23.92 0.000 -30.98225 -26.28927
_cons 4.399697 .1652882 26.62 0.000 4.075738 4.723656

C1_lnphi
_cons 2.926432 .0667624 43.83 0.000 2.79558 3.057284

C2_mu
gender
Male -.1943955 .013987 -13.90 0.000 -.2218095 -.1669814

age .0015787 .0006276 2.52 0.012 .0003486 .0028088
haq_disability -.8512454 .0193374 -44.02 0.000 -.889146 -.8133448

pain -5.181831 .3752138 -13.81 0.000 -5.917236 -4.446425
_cons 3.455749 .0487475 70.89 0.000 3.360206 3.551292

C2_lnphi
_cons 4.366229 .0321085 135.98 0.000 4.303298 4.429161

C3_mu
gender
Male -.109573 .0435234 -2.52 0.012 -.1948773 -.0242687

age -.004191 .0019958 -2.10 0.036 -.0081028 -.0002792
haq_disability -.4509987 .0664523 -6.79 0.000 -.5812428 -.3207545

pain -5.012307 .879802 -5.70 0.000 -6.736687 -3.287927
_cons 1.332298 .1896052 7.03 0.000 .9606781 1.703917

C3_lnphi
_cons 4.978456 .1803428 27.61 0.000 4.624991 5.331922

Prob_C1
_cons 1.912517 .1730229 11.05 0.000 1.573398 2.251635

Prob_C2
_cons 3.115297 .1364868 22.82 0.000 2.847788 3.382806

PM_ub
gender
Male -.4074599 .1191221 -3.42 0.001 -.640935 -.1739848

age -.0006401 .0052235 -0.12 0.902 -.0108779 .0095978
haq_disability -2.72983 .1830281 -14.91 0.000 -3.088558 -2.371101

pain -81.13075 5.093264 -15.93 0.000 -91.11337 -71.14814
_cons 2.735824 .3788839 7.22 0.000 1.993226 3.478423

C1_phi 18.66093 1.245848 16.37212 21.2697
C2_phi 78.74615 2.52842 73.94325 83.86102
C3_phi 145.25 26.19479 102.0018 206.8351

pi1 .2233604 .0138256 .1974356 .251622
pi2 .7436474 .0125776 .7182305 .7675138
pi3 .0329922 .0045296 .0241143 .04187

. estimates store infbeta3LC
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Both the AIC and BIC are lowest for the three-component truncated inflated beta
mixture model, suggesting it has the best model fit among the three models.

. estimates stats infbeta1LC infbeta2LC infbeta3LC

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

infbeta1LC 5,000 . 4507.477 11 -8992.954 -8921.265
infbeta2LC 5,000 . 5620.151 18 -11204.3 -11086.99
infbeta3LC 5,000 . 5669.545 25 -11289.09 -11126.16

Note: N=Obs used in calculating BIC; see [R] BIC note.

We again use predict to help visualize the components:

. predict yhat3, outcome(all)

. summarize yhat3*

Variable Obs Mean Std. Dev. Min Max

yhat3_mu1 5,000 .6141761 .2183959 -.3875231 .8636973
yhat3_phi1 5,000 18.66093 0 18.66093 18.66093

yhat3_p1 5,000 .2233604 0 .2233604 .2233604
yhat3_mu2 5,000 .7041177 .0750912 .2646665 .8360863

yhat3_phi2 5,000 78.74615 0 78.74615 78.74615

yhat3_p2 5,000 .7436474 0 .7436474 .7436474
yhat3_mu3 5,000 .2181699 .1072245 -.1579969 .4943131

yhat3_phi3 5,000 145.25 0 145.25 145.25
yhat3_p3 5,000 .0329922 0 .0329922 .0329922
yhat3_ub 5,000 .1078 .1867089 9.17e-07 .9079351

yhat3 5,000 .6919097 .1326988 .1050494 .9841948

In this sample, we see two components toward the top of the distribution with means
0.70 and 0.61 and a third component lower down in the distribution with mean 0.22.
This third component has a much lower probability than the other two components
(0.03) and appears to be capturing the mode at lower values of EQ-5D-3L, seen in figure 3.
Figure 7 plots the probability density of the three-component mixture and each of the
components separately. It is clear in this case that this third component, although small,
is important in modeling this dataset and helps handle the relatively small number of
individuals with EQ-5D-3L values close to the value of death.

5 Concluding remarks

In this article, we described the community-contributed betamix command, which fits
mixture regression models for bounded dependent variables using the beta distribution.
The betamix command generalizes the Stata command betareg and the community-
contributed commands betafit or zoib. betamix allows the model to capture multi-
modality and other distributional shapes. It can accommodate response variables that
have a gap between one of the boundary values and the continuous part of the distribu-
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Figure 7. Probability densities of the three-component truncated inflated beta mixture
model each individual component (for values below full health)

tion and can model positive probabilities at the boundaries and the truncation value.
There is no need to manually transform variables bounded in the interval (a, b) to the
(0, 1) interval, because the command will take care of the transformation.

It is important to start fitting less complex models and slowly build them up; oth-
erwise, convergence problems are likely. The likelihood functions of mixture models
are known to have multiple optima. It is important to thoroughly search around the
parameter space to avoid local solutions.
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