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Abstract
The catalytic behaviour of Co3Mo3C, Co6Mo6C, Co3Mo3N and Co6Mo6N for methane cracking has been studied to determine 
the relationship between the methane cracking activity and the chemical composition. The characterisation of post-reaction 
samples showed a complex phase composition with the presence of Co3Mo3C, α-Co and β-Mo2C as catalytic phases and the 
deposition of different forms of carbon during reaction.
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1  Introduction

The design of novel and efficient materials for catalytic reac-
tions is of major interest. Although, many of the materials 
studied in heterogeneous catalysis are metal and metal oxide 
based, attention has been directed towards the development 
of entirely novel catalyst families that could display modified 
performance. Examples of the materials investigated include 
carbides, nitrides and boron alloys [1–3]. Amongst these 
materials, carbides have arguably received the most atten-
tion due to the perceived analogies between their behaviour 
and that of precious metals, suggesting them to be potential 
replacements. In this context, the presence of interstitial car-
bon species has been argued to modify the electronic proper-
ties of the parent metal in systems such as those based upon 
molybdenum or tungsten, making them akin to precious met-
als such as platinum [4, 5].

Within the literature, metal carbides are known to pos-
sess activity for a wide range of applications including 
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Fischer–Tropsch processes [6–8], hydrogenation [9–11], 
dehydroaromatisation [12], oxygen and hydrogen evolution 
[13] and ammonia decomposition [14, 15]. In more recent 
work, the reactivity of cobalt molybdenum carbide was stud-
ied for ammonia synthesis to gain an enhanced understand-
ing of the potential role of lattice composition (i.e. the influ-
ence of the presence of interstitial carbon versus interstitial 
nitrogen) upon catalytic activity [16]. Although Co3Mo3C 
was found to be active for ammonia synthesis, the material 
was only active at higher temperature (500 °C) compared to 
its nitride counterpart which is active at 400 °C, and such 
activity was associated with the presence of some lattice 
nitrogen residing in 16c Wyckoff sites as determined from 
in-situ neutron diffraction studies.

In the current manuscript, comparison is made between 
the performance of Co3Mo3C and Co6Mo6C for methane 
cracking to determine the role of stoichiometry and such 
performance is contrasted with their isostructural nitride 
counterparts. The methane cracking reaction is of poten-
tial interest as an environmentally friendly approach for 
COx-free hydrogen production [17–19].

2 � Experimental

2.1 � Materials Preparation

The preparation of cobalt molybdenum related materials has 
been documented in detail in our previous work [16, 20]. In 
a typical synthesis, CoMoO4 was prepared by adding 5.59 g 
of Co(NO3)2·6H2O (> 98%, Sigma-Aldrich) and 4.00 g of 
(NH4)6Mo7O24·4H2O (99.98%, Sigma-Aldrich) dissolved in 
200 mL of deionized water. The solution was then heated to 
85 °C and held at this temperature for 5 h. The resulting pur-
ple precipitate was filtered and washed with deionized water 
and ethanol. The precipitate was then calcined in static air 
at 500 °C for 5 h to obtain dehydrated cobalt molybdate. 
Co3Mo3N was prepared by ammonolysis of CoMoO4 under 
NH3 (BOC, 99.98%) at a flow rate of 100 mL min−1 at 
785 °C for 5 h. The temperature was increased from ambi-
ent to 357 °C at 5.6 °C min−1, then after to 447 °C min−1 
at 0.2 °C min−1 before being finally increased to 785 °C at 
2.1 °C min−1. Co3Mo3C was prepared by the carburization 
of Co3Mo3N under 20 vol% CH4 in H2 (BOC, 99.98%) at a 
flow rate of 12 mL min−1 at 700 °C for 2 h with a ramp rate 
of 6 °C min−1 to reach 350 °C followed by 1 °C min−1 to 
attain 700 °C. Co6Mo6C was prepared by reducing Co3Mo3C 
at 900 °C for 5 h under 60 mL min−1 of a 75 vol% H2 in Ar 
(BOC, 99.98%) gas mixture.

2.2 � Materials Characterization

X-ray diffraction patterns were collected on a Pana-
lytical X’Pert PRO instrument, using Cu Kα radiation 
(λ = 0.154 nm) over a 2θ range of 5°–85°, a step size of 
0.0167°, and a counting time of 1 s per step. Samples were 
prepared by compaction into a Si sample holder. Phase 
identification was obtained by comparison with JCPDS 
database files. The surface areas of the samples were deter-
mined by application of the BET method to N2 physisorp-
tion isotherms collected at − 196 °C upon samples previ-
ously degassed at 110 °C under vacuum for 12 h. Scanning 
electron microscopy was performed on Philips XLSEM and 
FEI Quanta 200F Environmental instruments operating at 
20 kV for the investigation of morphology. Samples were 
coated with an Au/Pd alloy prior to imaging. CHN analysis 
was undertaken by combustion using an Exeter Analytical 
CE-440 Elemental Analyzer. Thermogravimetric analysis 
(TGA) was carried out using a TA instruments QA instru-
ment with measurements being undertaken in temperature 
range from room temperature to 1000 °C (ramp rate 10 
degrees per minute) under a flow rate of 50 mL min−1 of 
air. Raman spectra of the samples were recorded at room 
temperature on a Horiba Jobin Yvon LabRam HR confocal 
Raman microscope, using a laser excitation of 523 nm.

2.3 � Catalytic Activity Tests

Methane cracking reactions were performed using 0.2 g of 
material which was placed in a quartz tube reactor under a 
gas feed of 12 mL min−1 of a mixture of 75 vol% CH4 in 
N2 (BOC, 99.98%) at 800 °C for 8 h on stream. Hydrogen 
production was monitored by online gas chromatography 
(GC) using a TCD with Ar as carrier gas and employing 
a Molecular Sieve 13× column. The gas exhaust was also 
analysed in a periodic manner for the determination of COx 
by off-line FTIR analyses employing a gas-phase FTIR cell 
which could be isolated and by-passed for off-line analyses. 
FTIR spectra were recorded using a FTIR-8400S, Shimadzu 
apparatus. Each spectrum was collected at a spectral resolu-
tion of 2 cm−1, applying a scan range of 500–3500 cm−1.

3 � Results

The structural and textural properties of the cobalt molyb-
denum based materials following the different nitridation 
and carburisation processes were monitored using a range of 
techniques. The results of the structural characterisation by 
XRD have been reported previously [16]. Powder XRD and 
neutron diffraction studies have confirmed the formation of 
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high quality pure phases of Co3Mo3C, Co6Mo6C, Co3Mo3N 
and Co6Mo6N. These results can be found in the Supplemen-
tary Information (Figs. S1, S2).

Raman spectra of the pre-reaction cobalt molybdenum 
materials are presented in Fig. 1. The Raman bands at 354, 
806, 866, 930 and 941 cm−1 are consistent with the pres-
ence of a surface cobalt molybdate phase [21] as might 

be expected resulting from the presence of a surface pas-
sivation layer [22] for the carbide and nitride materials, 
which are known to be air-sensitive. Importantly, no Raman 
bands related to carbon deposition during the synthesis of 
Co3Mo3C and Co6Mo6C samples were observed which is 
consistent with the preparation of non-coked materials.

The SEM images presented in Fig. 2 demonstrate that 
all the materials prepared are pseudomorphic and exhibit 
a needle-like morphology as reported elsewhere [16]. The 
surface areas of the materials were determined to be 7, 18, 
4 and 13 m2 g−1 for CoMoO4, Co3Mo3N, Co6Mo6N and 
Co3Mo3C respectively (Table 1). The lower surface area of 
the Co6Mo6C phase (∼ 3 m2 g−1), can be attributed to the 
higher reaction temperature applied in its preparation.

The role of the nature of the stoichiometry and also the 
interstitial element present in the catalytic methane cracking 
activity of cobalt molybdenum materials was investigated 
by comparing the activity of the Co3Mo3C and Co6Mo6C 
to Co3Mo3N and Co6Mo6N materials. The reaction profiles 
illustrating the evolution of the mass normalised hydro-
gen formation rate as a function of time on stream is pre-
sented Fig. 3. Although, all materials displayed activity 

Fig. 1   Raman spectra of as prepared materials (a) CoMoO4, (b) 
Co3Mo3N, (c) Co3Mo3C, (d) Co6Mo6N and (e) Co6Mo6C

Fig. 2   SEM images of as 
prepared materials: a Co3Mo3N, 
b Co3Mo3C, c Co6Mo6N and d 
Co6Mo6C
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for hydrogen production, clear differences in the hydrogen 
formation rates are observed. Hydrogen production tended 
to reach a plateau after 120 min on stream. However, in the 
case of the Co3Mo3C sample, less reproducible behaviour 
occurred, which was possibly related to carbon build-up 
during the reaction resulting in reactor blockage. Similar 
observations were witnessed upon repeating the experiment 
and the structural and textural properties of the post-reaction 
samples were all similar (Fig. S3). Due to the fact that the 
performance of Co3Mo3C is less reproducible, its reaction 
profile is not presented in Fig. 3 but is instead shown in Fig. 
S2.

In the presence of N2 and H2, as is the case in this study, 
Co3Mo3N and Co3Mo3C have been reported to be active cat-
alytic systems for ammonia generation at ambient pressure 

[16]. However, the reaction is thermodynamically unfavour-
able at high temperature and ammonia content at equilibrium 
is ~ 0.001 mol% at ca. 800 °C. Thus, the consumption of 
hydrogen to generate ammonia by reaction with the N2 inter-
nal standard within the methane feed under these conditions 
can be safely ruled out.

In the case of cobalt molybdenum nitride and carbides, 
off-line FTIR spectra recorded periodically during reaction 
showed that the production of CO and CO2 during meth-
ane cracking was below the detection limit. However, as 
might be expected, CO and CO2 were clearly observed when 
CoMoO4 was used as a catalyst (Fig. 4). FTIR analysis of 
gas products from this sample shows after 20 min of reac-
tion, bands at 660 and 2360 cm−1 which can be related to 

Table 1   Summary of the textural and structural characterisation of post-reaction catalysts

N.d. not detected
a Nitrogen analysis undertaken using an Exeter Analytical CE-440 Elemental Analyser
b SBET is the specific surface area evaluated using the BET model

Post-reaction XRD phase Nitrogen contenta/wt% Carbon contenta/wt% SBET
b/m2 g−1

As-prepared Post-reaction As-prepared Post-reaction As prepared Post-reaction

CoMoO4 Graphite (003-0401), β-Mo2C (001-1188), 
α-Co (01-089-7093)

– N.d. – 71 ± 1 7 31

Co3Mo3N Co3Mo3C (03-065-7128), graphite (003-
0401), β-Mo2C (001-1188), α-Co (01-089-
7093)

3.0 ± 0.1 N N.d. – 85 ± 3 18 63

Co3Mo3C Co3Mo3C (03-065-7128), graphite (003-
0401), β-Mo2C (001-1188), α-Co (01-089-
7093)

– N.d. 2.5 ± 0.1 84 ± 1 13 50

Co6Mo6N Co3Mo3C (03-065-7128), graphite (003-
0401), β-Mo2C (001-1188), α-Co (01-089-
7093)

1.6 ± 0.1 N N.d. – 84 ± 1 4 59

Co6Mo6C Co3Mo3C (03-065-7128), graphite (003-
0401)

– N.d. 1.3 ± 0.1 69 ± 1 3 24

Fig. 3   Hydrogen formation rates as a function of time on stream for 
methane cracking over (a) CoMoO4, (b) Co6Mo6C, (c) Co3Mo3N and 
(d) Co6Mo6N at 800 °C

Fig. 4   FTIR analyses of gas-phase products from CoMoO4 reacted 
with CH4/N2 (a) the feed gas, (b) 800  °C, (c) 800  °C 20  min, (d) 
800 °C 50 min, and (e) 800 °C 60 min. Bands 1 and 3 are related to 
gas-phase CO2 whereas band is 2 related to gas-phase CO
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CO2 and at 2177 cm−1 which is assigned to CO. However, 
the production of CO and CO2 ceased after 50 min of reac-
tion. It is noteworthy that the production of CO, even in 
small concentrations, can be harmful in the case of some 

downstream applications such as the use of H2 in PEM fuel 
cells [23, 24]. The results presented herein suggest, beyond 
the initial loss of the surface passivation layer upon reaction, 
the use of cobalt molybdenum nitrides or carbides might 
be suitable for the production of COx-free hydrogen from 
methane cracking for such applications.

The characterisation of the post-reaction materials is 
presented in Figs. 5, 6, 7, 8 and 9 and in Table 1. Figure 5 
presents the post-reaction powder XRD patterns. The XRD 
results are consistent with the formation of graphite as 
expected. In addition, a number of significant phase transfor-
mations to the original materials have occurred upon reac-
tion (Fig. 5; Table 1). In most cases, Co3Mo3C appeared to 
be the predominant phase, although the formation of some 
β-Mo2C and α-Co is also apparent. However, interestingly, 
in the case of CoMoO4, only β-Mo2C, α-Co and graphite 
were evident after reaction with the ternary carbide phase 
being absent.

As shown in Fig.  6, morphological changes also 
occurred upon reaction. The agglomerated needle-like 
morphology was transformed to agglomerated block like 
structures. In contrast, post-reaction Co6Mo6C appeared to 

Fig. 5   Powder X-ray diffraction patterns of the post-reaction: 
(a) CoMoO4, (b) Co3Mo3N, (c) Co3Mo3C, (d) Co6Mo6N and (e) 
Co6Mo6C materials. Diamond: Co3Mo3C (03-065-7128), asterisk: 
graphite (003-0401), open circle: β-Mo2C (001-1188), open square: 
α-Co (01-089-7093)

Fig. 6   SEM post-reaction 
images of: a Co3Mo3N, b 
Co3Mo3C, c Co6Mo6N and d 
Co6Mo6C
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exhibit larger particle sizes compared to its post-reaction 
Co3Mo3N, Co3Mo3C and Co6Mo6N counterparts within 
the statistical limitations of the observations made. It 
is also interesting to note that in general, post-reaction 
catalyst displayed a higher surface area than pre-reaction 
materials. Both the drastic change in morphology and the 
enhanced surface area can be, at least partly, attributed to 
the significant deposition of carbon as a result of reaction. 
The comparatively lower surface area evident in the case 
of Co6Mo6C is in accordance with the large particle size 
observed for this sample by SEM.

The CoMoO4 and Co6Mo6C post-reaction samples were 
found to contain ~ 70 wt% C (Table 1), with a higher post-
reaction carbon content (~ 84 wt% C) evident for Co3Mo3C, 
Co3Mo3N and Co6Mo6N as would be anticipated from their 
higher hydrogen formation rates. The nature of the carbona-
ceous species deposited was characterized by Raman spec-
troscopy. Post-reaction Raman spectra, presented in Fig. 7, 
provide strong evidence of the presence of disordered and 
graphitic carbon with Raman bands observed at 1350 and 
1582 cm−1 labelled (D) and (G) respectively [25]. An addi-
tional band, of lower intensity, at 1620 cm−1 labelled as D′ 
was observed for the Co3Mo3N, Co3Mo3C and Co6Mo6N 
samples. In the literature, several explanations exist and the 
additional band can be correlated in principle to the pres-
ence of a high concentration of defects [26–28]. Additional 
Raman bands related to cobalt molybdate were detected in 
the post-reaction CoMoO4 and post-reaction Co3Mo3C.

To further characterise the nature of the carbon deposit 
after reaction, TGA in air was carried out over the tem-
perature range 100–1000 °C (Fig. 8). It was observed that 
the carbon oxidation started for all materials from 500 °C 
and was complete by 700 °C. Beyond, this point no further 
change in the weight of the material was observed. The total 
weight loss was between 60 and 80 wt% which accords well 
with the results of post-reaction elemental analysis (Table 1). 
The first derivative profiles for the different post-reaction 
materials are presented in Fig. 9. In all materials, two weight 
loss regions have been observed. The first weight loss peak is 
observed in the temperature range between 500 and 600 °C 
while the second weight loss peak is observed at higher tem-
peratures (600–700 °C). The contribution of the first peak 
was particularly significant in the post-reaction CoMoO4 
material and to some extent in the Co3Mo3C. However, the 
oxidation of carbon in Co3Mo3N, Co6Mo6N and Co6Mo6C 
materials occurred mainly at temperature ranging between 
600 and 700 °C. The contrast between the two oxidation 
regions could suggest the presence of two forms of carbon. 
However, the presence of the oxide phase, as evidenced in 
their Raman spectra, in the case of post-reaction CoMoO4 
and post-reaction Co3Mo3C as observed by Raman spectra 
(Fig. 7) may have enhanced the oxidation of carbon at low 
temperature.

Fig. 7   Raman spectra of the post-reaction materials (a) CoMoO4, (b) 
Co3Mo3N, (c) Co3Mo3C, (d) Co6Mo6N and (e) Co6Mo6C

Fig. 8   TGA traces under air for post-reaction materials: (purple) 
CoMoO4, (red) Co3Mo3N, (green) Co3Mo3C, (black) Co6Mo6N and 
(blue) Co6Mo6C

Fig. 9   Derivative weight curves for post-reaction materials under 
air (a) CoMoO4, (b) Co3Mo3N, (c) Co3Mo3C, (d) Co6Mo6N and (e) 
Co6Mo6C
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4 � Discussion

The topotactic transformation pathways and pseudomor-
phic nature of the cobalt molybdenum carbide and nitride 
families evident in this study offers, in principle, an ele-
gant route to study the effect of interstitial carbon/nitrogen 
on the catalytic activity of cobalt molybdenum materials 
for methane cracking. All the prepared materials possess 
activity for hydrogen production at 800 °C. Interestingly, 
the catalytic activity of these materials varied depending 
upon initial composition with Co6Mo6N being the most 
active (Fig. 3). The activity of the material was found to 
stabilise around 1.8 mmol H2 gcatalyst

−1 min−1, which is 
high when compared against the activity of some other 
nitride systems (e.g. 180 µmol H2 gcatalyst

−1 min reported 
for a  silicon-vanadium nitride nanocomposite under 
directly comparable conditions) [29]. In fact, the activ-
ity of the Co6Mo6N is directly comparable to the activity 
of iron oxide (for which a rate of 1 mmol H2 gcatalyst

−1 
min−1 was previously reported for iron oxide under the 
same reaction conditions) [30]. In general, the activity of 
the carbides and nitrides presented a normalised hydrogen 
production rate ranging from 1.1 to 1.8 mmol H2 gcatalyst

−1 
min−1. A slightly lower activity (0.8 mmol H2 gcatalyst

−1 
min−1) was found for the CoMoO4 system. In addition to 
the relatively enhanced activity of the cobalt molybdenum 
carbide and nitride systems when compared to the oxide 
counterpart, the absence of significant production of COx, 
beyond that which might be expected from conversion of 
the surface passivation layer, during the methane crack-
ing reaction is of potential interest in relation to free of 
COx-H2 production.

As expected, the production of H2 was accompanied by 
carbon deposition. Due to the nature of the reaction, the 
amount of carbon deposited on carbide and nitride systems 
can be correlated directly to the activity of methane crack-
ing as expected. Elemental analysis showed significant 
deposition of carbon ~ 85 wt% on Co3Mo3N, Co3Mo3C 
and Co6Mo6N confirming the high activity of these materi-
als, in spite of the less reproducible hydrogen production 
behaviour of Co3Mo3C. Thermogravimetric analyses con-
ducted under air confirmed that the weight loss associated 
with carbon oxidation to be consistent with the elemental 
analyses of post-reaction materials. The nature of the car-
bon present upon reaction has been investigated by Raman 
spectroscopy (Fig. 7). The Raman futures were dominated 
by the presence of two forms of carbon: disordered and 
graphitic carbon. The existence of several forms of carbon 
was also evident from the derivative weight curves for 
post-reaction samples.

While it is tempting to discuss the activity of the 
catalysts against their initial composition, post-reaction 

analysis revealed changes in the structural properties 
upon reaction. As might be expected under the reaction 
conditions applied, post-reaction powder XRD (Fig. 5), 
showed the carburisation of all the materials studied when 
reacted. However, the products of carburisation slightly 
differ depending on the initial composition. In the post-
reaction CoMoO4, only β-Mo2C (001-1188) and α-Co (01-
089-7093) are observed as a result of the carburisation 
of CoMoO4 as well as graphite generated from methane 
cracking. However, a mixture of Co3Mo3C (03-065-7128), 
α-Co (01-089-7093) and β-Mo2C (001-1188) is detected 
upon reaction of Co3Mo3N, Co3Mo3C and Co6Mo6N with 
methane. In the case of Co6Mo6C relocation of the carbon 
located in the 8a (0 0 0) Wyckoff site to the 16c (1/8 1/8 
1/8) site occurs associated with the formation of Co3Mo3C 
without clear evidence of the formation of β-Mo2C and 
α-Co [01-089-7093 (001-1188)] phases as observed in the 
previous cases.

In summary, for the three most active catalysts, the phases 
detected after reaction comprised a mixture of Co3Mo3C 
(03-065-7128), α-Co (01-089-7093) and β-Mo2C (001-
1188). While, for the least active material CoMoO4, only 
the β-Mo2C and α-Co (01-089-7093) were detected. Another 
major aspect, where differences are potentially evident, is 
the accessible surface area of the active phases. The surface 
area measured in post-reaction Co3Mo3N, Co3Mo3C and 
Co6Mo6N samples ranged between 50 and 63 m2 g−1 while 
in the case of CoMoO4 and Co6Mo6C the surface area was 
limited to ~ 30 m2 g−1. Despite the fact that no simple link 
can be established between the catalytic activity to phase 
composition and accessible surface area, it can be argued 
that the presence of Co3Mo3C, α-Co and β-Mo2C and high 
surface area leads to an enhanced activity for methane crack-
ing. In addition, the initial composition seems to play an 
important role in the final activity of the catalysts. These dif-
ferences may indicate differences in the active surface com-
position resulting from the carburisation process of different 
cobalt molybdenum precursors. Further characterisation of 
the carburisation process of cobalt molybdenum materials by 
in-situ neutron diffraction, in condition of relevance to this 
study, are currently under investigation and will bring new 
insight to the process. Elsewhere, cobalt-molybdenum oxy-
carbide surface phases have been proposed to be of impor-
tance for activity and lifetime [31]. 

5 � Conclusion

A range of cobalt molybdenum containg materials have 
been prepared and tested as catalysts for the production of 
hydrogen from methane at 800 °C. After a short induction 
period, all samples were active and stable for the generation 
of hydrogen over the period tested, with the exception of 
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Co3Mo3C. Amongst the evaluated materials, the Co6Mo6N 
sample showed the highest activity of about 1.8 mmol H2 
g−1 min−1, comparable to those observed for iron oxide sys-
tems under similar reaction conditions. The results revealed 
that a significant phase transformation from metal nitrides 
to Co3Mo3C and β-Mo2C occurred throughout the methane 
cracking reaction. Interestingly, in the case of Co6Mo6C 
relocation of the carbon located in the 0 0 0 (8a) site to 1/8 
1/8 1/8 (16c) sites resulting in the formation of Co3Mo3C 
was observed. Furthermore, results from Raman spectros-
copy and powder XRD show that at least two forms of 
carbon are formed on the catalyst surface during methane 
decomposition.
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