A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity

Marlou L Dirks^{1*}, Francis B Stephens^{1*}, Sarah R Jackman¹, Jesús Galera Gordo¹, David Machin¹,

Richard M Pulsford¹, Luc JC van Loon², and Benjamin T Wall¹

*These authors contributed equally to this work

¹Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, United Kingdom ²Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre⁺, the Netherlands

Corresponding author:

Benjamin T. Wall, PhD Department of Sport and Health Sciences College of Life and Environmental Sciences St Luke's Campus, Heavitree Road University of Exeter Exeter, EX1 2LU UK Tel: +44 (0)1392 724774 Email: <u>b.t.wall@exeter.ac.uk</u>

Running title:	Acute transcriptional responses with bed rest
Keywords:	Disuse, glucose tolerance, insulin resistance, nutrition, transcriptional response
Word count:	6654

Abbreviations

AUC, area under the curve; BR-B, bed rest-balanced; BR-M, bed rest-matched; CGMS, continuous glucose monitoring system; CHO, carbohydrate; CON, control; Dm, dry matter; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; MVPA, moderate-to-vigorous physical activity; OGTT, oral glucose tolerance test; RER, respiratory exchange ratio; RMR, resting metabolic rate; 1RM, one-repetition maximum

1 New Findings

2

3 What is the central question of this study?

4 What are the initial metabolic and molecular events that underpin bed rest-induced skeletal muscle

5 deconditioning, and what is the contribution of energy balance?

6 What is the main finding and its importance?

7 A single day of bed rest, irrespective of energy balance, did not lead to overt changes in skeletal muscle

8 gene expression or insulin sensitivity. More than one day of physical inactivity is required to observe

9 the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and

10 consequent alterations in energy balance.

11 Abstract

The initial metabolic and molecular events that underpin disuse-induced skeletal muscle 12 deconditioning, and the contribution of energy balance, remain to be investigated. Ten young, healthy 13 14 males (age: 25±1 y; BMI: 25.3±0.8 kg m⁻²) underwent three 24 h laboratory-based experimental periods 15 in a randomized, crossover manner: 1) controlled habitual physical activity with an energy-balanced diet (CON); 2) strict bed rest with a diet to maintain energy balance (BR-B); and 3) strict bed rest with 16 a diet identical to CON, consequently resulting in positive energy balance. Continuous glucose 17 monitoring was performed throughout each visit, with vastus lateralis muscle biopsies and an oral 18 glucose tolerance test performed before and after. In parallel with muscle samples collected from a 19 previous 7-day bed rest study, biopsies were used to examine expression of genes associated with the 20 regulation of muscle mass and insulin sensitivity. A single day of bed rest, irrespective of energy 21 22 balance, did not lead to overt changes in whole-body substrate oxidation, indices of insulin sensitivity (i.e. HOMA-IR (BR-B: from 2.7±1.7 to 3.1±1.5, P>0.05), Matsuda (BR-B: from 5.9±3.3 to 5.2±2.9, 23 P>0.05)), or 24 h glycaemic control/variability compared to CON. Seven days of bed rest led to ~30-24 25 55% lower expression of genes involved in insulin signalling, lipid storage/oxidation, and muscle 26 protein breakdown, whereas no such changes were observed after one day of bed rest. In conclusion, 27 more than one day of physical inactivity is required to observe the insulin resistance and robust skeletal 28 muscle transcriptional responses associated with bed rest and consequent alterations in energy balance. 29

³⁰ Abstract word count: 250

31 Introduction

The recovery from illness or rehabilitation after injury often requires a period of local (e.g. limb 32 immobilization) or whole-body (e.g. bed rest) muscle disuse. Even in otherwise healthy humans, a 33 single bout of muscle disuse leads to rapid skeletal muscle loss of approximately 0.5-0.6% per day 34 35 (Deitrick, 1948; Gibson et al., 1987; Wall & van Loon, 2013). This muscle atrophy is accompanied by a decrease in functional capacity (Deitrick, 1948; Gibson et al., 1987), insulin sensitivity (Stuart et al., 36 1988; Mikines et al., 1991; Dirks et al., 2016), glucose tolerance (Yanagibori et al., 1994; Dirks et al., 37 38 2016), and basal metabolic rate (Haruna et al., 1994). However, the underlying mechanisms responsible for disuse-induced skeletal muscle deconditioning remain incompletely understood. 39 40 We (Dirks et al., 2016) and others (Stuart et al., 1988; Mikines et al., 1991; Bienso et al., 2012) have 41 previously shown that muscle atrophy observed following one week of bed rest is associated with a 42 $\sim 30\%$ decrease in insulin sensitivity. However, it has been demonstrated that changes in glucose

43 homeostasis and insulin sensitivity already occur after 3-5 days of muscle disuse (Yanagibori et al., 44 1994; Reidy et al., 2017), which suggests these processes may be evident even sooner. A major health 45 consequence of impaired insulin sensitivity is reduced blood clearance of ingested carbohydrates and, 46 as a result, greater frequency and magnitude of hyperglycaemic excursions throughout the day (van 47 Dijk & van Loon, 2015), which is also linked to the development of metabolic inflexibility (i.e. reduced 48 ability to appropriately switch between the oxidation of fat and carbohydrate depending on prandial 49 status (Kelley & Mandarino, 2000)). Aside from the development of insulin resistance and metabolic 50 inflexibility, disuse-induced deconditioning also includes an imbalance between muscle protein 51 synthesis and breakdown (Wall et al., 2013) and the accumulation of lipid in skeletal muscle tissue (Cree et al., 2010; Bergouignan et al., 2011). Although it generally takes several days or weeks for these 52 changes to occur, the identification of early transcriptional changes that occur prior to (or coincide with) 53 the onset of insulin resistance could point at mechanisms responsible for the muscle deconditioning that 54 is observed later on. Consequently, the primary aim of this study was to establish which aspects of 55 glucose intolerance occur first, if at all, and how these are related to the early skeletal muscle 56 transcriptional response that could account for the well-established deconditioning in muscle 57 58 metabolism and the development of insulin resistance during muscle disuse.

59 A consideration of muscle disuse research is how to isolate the impact of physical inactivity *per se*, and 60 not the influence of a concomitant (due to altered energy demands) change in energy intake. That is to 61 say, changes in energy balance and/or macronutrient intake can impact on insulin sensitivity and muscle 62 mass independently of physical activity status (Hulston et al., 2015; Backx et al., 2016). For example, 63 maintaining a habitual diet during a period of physical inactivity will impose a positive energy balance and would therefore exacerbate the impact of muscle disuse on insulin sensitivity and muscle atrophy 64 (Biolo et al., 2008; Peterson et al., 2017). However, decreasing energy intake during physical inactivity, 65 in line with reduced energy demands, inevitably leads to changes in absolute or relative protein intake, 66 factors which have been shown to accelerate muscle disuse atrophy (Biolo et al., 2007). As such, a 67 secondary aim of this study was to investigate the impact of reducing (according to reduced energy 68 69 requirements) or maintaining (matched to an individual's habitual diet) energy intake on the muscle 70 transcriptional response and glucose homeostasis during a single day of bed rest.

71 In the present study we hypothesised that a single day of bed rest would lead to a coordinated 72 transcriptional response within skeletal muscle tissue associated with alterations in the expression of 73 genes relating to muscle mass and insulin sensitivity, which would be accompanied by the onset of 74 whole-body insulin resistance and impaired blood glucose homeostasis. To address the relative impact 75 of muscle disuse *per se* vs alterations in diet, we applied a fully controlled diet under three separate 76 conditions: 1) maintaining energy balance in a control condition (habitual physical activity; CON), 2) 77 maintaining energy balance during bed rest (BR-B), 3) matching the CON diet but under bed rested 78 conditions (i.e. resulting in a positive energy balance; BR-M). Furthermore, to design a true control 79 condition that could represent habitual, 'free-living' physical activity, but be performed under 80 laboratory conditions, we used free-living accelerometry data to design individualised 24 h activity patterns for each volunteer. 81

82 Methods

83

84 *Ethical approval*

All subjects were informed on the nature and risks of the experiment before written informed consent was obtained. The study was approved by the Department of Sport and Health Sciences, University of Exeter's Ethical Committee (proposal reference number 141203/B/09) in accordance with the Declaration of Helsinki (version October 2013). This study was registered at clinicaltrials.gov as NCT02981927.

90

91 Subjects

Ten healthy young men (age: 25±1 y; BMI: 25.3±0.8 kg·m⁻²) were included in the present study. 92 93 Subjects' characteristics are presented in Table 1. Prior to inclusion in the study, subjects completed a 94 routine medical screening to ensure suitability for acceptance onto the study. During the screening, subjects completed a general health questionnaire and height, weight, and resting blood pressure were 95 determined. Exclusion criteria were: a BMI below 18.5 or above 30 kg·m⁻², regular smoker, a (family) 96 97 history of thrombosis, type-2 diabetes mellitus and any major current back, knee or shoulder complaints. 98 Furthermore, subjects who had been involved in structured and prolonged resistance-type exercise 99 training during the six months prior to the study were excluded. Subjects were also instructed to cease 100 taking any nutritional supplements for two weeks prior to the study until all study visits were completed.

101

102 *Experimental overview*

In a randomized, crossover design, subjects participated in three 24 h metabolic test days each including an overnight stay within the laboratory (**Figure 1**). During the control (CON) visit, subjects maintained a supervised, pre-designed 24 h period of habitual physical activity within the confines of the laboratories and University campus and were provided a diet designed to maintain energy balance. On the two other visits, subjects underwent a 24 h period of strict bed rest and were provided with either a diet with reduced energy content designed to maintain energy balance during bed rest (bed rest-balance; BR-B) or the same diet as during the control visit, which was 133% of energy requirements (bed rest110 matched; BR-M). At the beginning and end of study visit a muscle biopsy was obtained, an oral glucose 111 tolerance test (OGTT) was performed, and resting energy expenditure and whole body substrate 112 oxidation were determined under fasting conditions. Muscle strength was assessed prior to the first 113 experimental visit, and immediately following the three visits. In addition, interstitial continuous 114 glucose monitoring was applied during the test days.

115

116 Pre-testing

Following acceptance onto the study, two pre-testing visits were conducted. During the first pre-testing 117 118 visit, subjects arrived at the laboratory in the overnight fasted state where body composition (body fat 119 and lean mass) was determined by Air Displacement Plethysmography (Bodpod; Life Measurement, 120 Inc., Concord, CA, USA). Thereafter, resting metabolic rate and whole body substrate oxidation were 121 determined using expired gas collections through a facemask for indirect calorimetry (Cortex Metalyzer 122 2R gas analyser, Cortex, Leipzig, Germany). First, subjects were asked to lie quiet and still in a supine 123 position for 30 min, after which a 30 min measurement period commenced. The last 10 min of this measurement period was used to obtain average $\dot{V}O_2$ and $\dot{V}CO_2$ values to determine substrate oxidation 124 125 rates according to the non-protein stoichiometric equations detailed by Frayn (Frayn, 1983). Total 126 energy expenditure during this period was then calculated as the sum of energy production from fat and 127 carbohydrate, assuming that the oxidation of 1 g of triacylglycerol (862 g mol⁻¹) liberates 39.4 kJ and 1 g of glucose (180 g mol⁻¹) liberates 15.6 kJ of energy. This was then used to calculate resting 24 h energy 128 129 expenditure.

130 Subjects were then given a list of all food products in the standardized diet, and were asked to indicate if they had any intolerances or allergies, or if there were products they could not eat. Based on this, a 131 standardized diet was created that consisted of breakfast, lunch, mid afternoon snack, dinner, and pre 132 bedtime snack. The nutritional content and macronutrient composition of the diet was calculated using 133 134 specific nutritional software (Nutritics Professional Nutritional Analysis Software, Swords, Co. Dublin, Ireland). Subjects were then issued with two accelerometers that were worn simultaneously for three 135 days. An activPAL[™] (PAL Technologies Ltd, Glasgow, UK) was adhered to the anterior aspect of the 136 137 mid-thigh using a waterproof dressing in order to measure daily minutes of sitting, standing, walking. 138 A GENEActiv accelerometer (ActivInsights, Kimbolton, Cambridge, UK) was worn on the left wrist to classify daily physical activity by intensity. Physical activity data from the GENEActiv monitors was 139 processed in R using the GGIR package (http://cran.r-project.org) and activity intensity estimated using 140 previously validated cut points (Esliger et al., 2011). Finally, unilateral maximal leg extension strength 141 142 (one-repetition maximum, 1-RM) was estimated for both legs separately. All subjects warmed up briefly (10 min cycling at 100 W) and were then instructed and familiarized with safe lifting technique 143 144 for the leg extension exercise. Maximum strength was estimated using the multiple repetitions testing 145 procedure for each leg separately (Mayhew et al., 1995). At least two days later, subjects attended the 146 laboratory to confirm single leg one repetition maximum (1RM; (Kraemer & Fry, 1995)). Briefly, the 147 load was set at 97.5% of the estimated 1-RM from the previous visit, and increased after each successful 148 lift until failure. Two minute rest periods were allowed between lifts. A repetition was considered valid 149 when the subject used proper form and was able to complete the entire lift in a controlled manner 150 without assistance. The maximum strength obtained during this visit was taken as their baseline for the 151 duration of the study.

152

153 Dietary and physical activity control designs

154 Two diets were designed for each subject individually containing their selected meals and snacks (see above). The two diets differed only in their energy content (amount of each chosen meal provided) and 155 156 therefore their macronutrient compositions were identical, i.e. 56 en% carbohydrate; 32 en% fat; 12 en% protein (Table 2). The first diet was designed to provide energy balance during a day of habitual 157 physical activity (for the CON and BR-M visits), and was calculated as 24 h resting energy expenditure 158 multiplied by an activity factor of 1.6. The second diet was designed to provide energy balance during 159 a day of bed rest (BR-B visit) and was calculated as 24 h resting energy expenditure multiplied by an 160 activity factor of 1.2. As a result, during the BR-M visits, subjects' energy intake was 33% greater than 161 162 during BR-B.

For the CON visit, a day mimicking habitual free-living physical activity was individually designed for
each subject based upon physical activity diaries and accelerometer data collected during the pre-testing
period. Average values for minutes spent sitting, standing and walking were computed across

measurement days for the following periods: 11:00-14:00, 14:00-17:00, 17:00-20:00 and 20:00-23:00.
Within each corresponding period during the control visit, the total minutes in each behaviour and the
distribution of any prolonged bouts of activity were replicated as far as the experimental protocols
would allow. In addition, all regular volitional exercise reported in the physical activity diary was
replicated in terms of mode, intensity/workload and duration. Any walking activity and volitional
exercise habitually undertaken prior to 11:00 was replicated between 11:00 and 14:00. An example plan
for the CON visit can be seen in Figure 2.

173

174 Experimental visits

175 Following inclusion and pre-testing, subjects participated in three experimental test days after having 176 refrained from strenuous physical activity and alcohol for 2 days prior. To standardise pre-trial dietary 177 intake, subjects were asked to record their food intake on the evening prior to the first experimental 178 visit, and to replicate this prior to the following two visits. Subjects arrived at the laboratory at 07.00 in 179 the fasted state, voided their bladder and rested semi supine on a hospital bed. A single muscle biopsy 180 was taken from *m. vastus lateralis*. A cannula was placed into an antecubital vein in their forearm and 181 a facemask was applied for 30 min of expired gas collections, with the final 10 min being used to 182 determine metabolic rate and whole body substrate oxidation via indirect calorimetry (Cortex Metalyzer 2R gas analyser, Cortex, Leipzig, Germany; calculations described above). A baseline venous blood 183 sample was obtained (8 mL) and subjects then ingested 75 g glucose dissolved in 300 mL water 184 (Dextrose, BulkPowders.com), signifying the beginning of a 120 min OGTT period. A venous blood 185 186 sample was drawn from the cannula every 15 min for the measurement of glucose and insulin, and indirect calorimetry was performed throughout the 120 min OGTT period. 187

For the CON visit, the end of the OGTT signified the beginning of the day of pre-determined physical activity. For each three hour period (11:00-14:00, 14:00-17:00, 17:00-20:00 and 20:00-23:00) time spent (minutes) sitting, standing and walking, and any exercise behaviour were prescribed in order to mimic habitual free-living behaviour. Subjects were monitored throughout the day by members of the research team, and constant feedback was provided to ensure the required amount of each activity was undertaken in each 3 h block as far as possible. All the conditions were performed within the university campus and subjects were accompanied by a researcher at all times. Lying time was considered as asitting condition. Subjects returned to bed and asked to sleep at 23:00.

For the BR-B and BR-M visits, following the biopsy and OGTT subjects remained (semi)supine for the 196 rest of the day and night, with an optional pillow under their head. All toilet activities were performed 197 198 using a bedpan, and meals were served in bed and consumed in a supine position to ensure no weight bearing or upright posturing occurred for the 24 h period. Subjects were accompanied by a member of 199 200 the research team continuously through the day and evening, and laptops, TV/DVDs, books and games 201 were available for entertainment. At night, subjects could communicate with the researchers who were 202 available in an adjacent room by the use of baby monitors (also serving to ensure no major movements 203 were taking place in the researchers' absence). Lights were switched off and subjects requested to sleep 204 at 23:00.

For all visits, meals were provided following metabolic testing at identical times: 11:00 (breakfast), 14:00 (lunch), 16:30 (snack), 19:00 (dinner), and 21:00 (snack). The next morning, subjects were woken up at 7:00 and an indirect calorimetry and OGTTs were performed in the same manner as the previous day. Thereafter, subjects were provided with breakfast and walked to the gym to perform the 1-RM test in an identical manner as during the second pre-testing visit.

210

211 Continuous blood glucose monitoring system (CGMS)

Glucose sensors (Enlite®, Medtronic Inc, Northridge, CA, USA) were placed subcutaneously at the 212 213 side of the abdomen and attached to a continuous glucose monitoring system (CGMS; iPRO2®, 214 Medtronic Inc, Northridge, CA, USA) on the day prior to the experimental visit. Within several hours after placing the probe, the device started collecting a blood glucose reading every 5 min. Data were 215 collected from the start of the pre-OGTT until after the post-OGTT, after which the probe was removed. 216 Such an approach has been shown to generate accurate glucose readings representative of plasma 217 218 glucose levels for at least 6 days (Keenan et al., 2012). The recorded data was analysed for glycaemic control (i.e. average 24 h glucose, and glucose area under the curve (AUC)) and glycaemic variability 219 (SD, CONGA1, CONGA2). The CONGA1 and CONGA2 indices were determined by calculating the 220

difference between each glucose concentration and the reading 1 (CONGA1) or 2 (CONGA2) hours
earlier, and taking the SD of those differences (McDonnell *et al.*, 2005).

223

224 Blood analyses

225 Blood samples (5 mL) were collected for determination of plasma glucose and serum insulin concentrations prior to and during the OGTT. A small part (1 mL) was immediately analysed for whole 226 blood glucose concentrations (YSI 2300 PLUS, Yellow Springs, OH, USA). The second part was 227 228 collected in BD vacutainers (SST II) which were left to clot at room temperature for at least 30 min and 229 then centrifuged at 3000 x g and 21°C for 15 min to obtain serum samples. These were used to determine 230 insulin concentrations using a commercially available kit (human insulin ELISA kit, DX-EIA-2935, 231 Oxford Biosystems Ltd, Milton Park, UK). Glucose and insulin concentrations were used to calculate 232 the HOMA-IR (Matthews et al., 1985) and Matsuda (Matsuda & DeFronzo, 1999) indices.

233

234 Skeletal muscle biopsy collection and analysis

Muscle biopsies were taken in the morning prior to the pre- and post-OGTTs, in the overnight-fasted state. Percutaneous muscle biopsy samples were collected from *m. vastus lateralis*, ~15 cm above the patella with the Bergstrom technique (Bergstrom, 1975). The collected muscle was freed from any visible non-muscle tissue, snap-frozen in liquid nitrogen, and stored at -80°C until further analysis.

239 Muscle glycogen content was determined spectrophotometrically, as described elsewhere (Harris *et al.*,
240 1974).

Skeletal muscle mRNA expression of 48 metabolic genes was analysed as published previously 241 (Tsintzas et al., 2013). In brief, total RNA was extracted from ~15-20 mg frozen muscle tissue 242 (Chomczynski & Sacchi, 1987), and quantification and reverse transcription of RNA was carried out 243 (Tsintzas et al., 2006). Taqman low-density custom array cards (ABI Applied Biosystems, Foster City, 244 245 CA, USA) were used for the relative quantification of expression of genes involved in muscle mass regulation and metabolic health. Each card allowed for eight samples to be run in parallel against 48 246 Taqman gene expression assay targets that were pre-loaded into each of the wells on the card 247 248 (Supplemental Table 1). In short, 50 µL Taqman Universal PCR master mix (2x; ABI Applied 249 Biosystems) was added to 200 ng of RNA equivalent of cDNA into an RNAse free Eppendorf tube, and 250 RNAse free water was added to make the total reaction volume up to 100 µL. The reaction mixture was mixed, centrifuged and loaded into one of the fill reservoir of the Micro Fluidic card, after which the 251 cards were centrifuged (MULTIFUGE 3 S-R; Heraeus) and ran on a 7900HT Fast Real-Time PCR 252 253 System (ABI Applied Biosystems). Relative quantification of the genes of interest was performed using the comparative Ct method. Data was normalised to the geometric mean of ACTA1 (Stephens et al., 254 2010), GAPDH (Mahoney et al., 2004), and HMBS (Wall et al., 2012) to minimize variation in the 255 256 expression of individual housekeeping genes. Muscle biopsies from n=7 subjects in this study (age 257 25±4, height 1.76±0.06, BMI 25.1±2.4) were compared to biopsies from n=7 age-, height-, and BMI-258 matched subjects (age 23 ± 2 , height 1.82 ± 0.08 , BMI 23.6 ± 2.8 , all P>0.05 when compared to the current 259 study) who underwent seven days of strict bed rest in our previous study (Dirks et al., 2016), to assess 260 the early (BR-B) vs late (7 DAYS; i.e. serving as a positive control) effects of bed rest on muscle mRNA 261 expression. Samples from both studies were extracted and analysed at the same time, using the same 262 reagents.

263

264 Statistical analysis

265 All data are expressed as means±SD. Paired samples t-tests were used to examine differences in planned 266 versus observed minutes of sitting, standing and walking during the control day. Data was analysed using a Repeated Measures ANOVA with condition (CON vs BR-B vs BR-M) and, when appropriate, 267 time (pre vs post) and feeding status (fasted vs fed), all as within-subjects factors. To assess the effect 268 269 of bed rest duration on muscle gene expression (BR-B vs 7 DAYS), an independent samples t-test was 270 used. For all ANOVA's when a significant interaction was detected, paired sample t tests were applied to test the effect within the different conditions. Statistical significance was set at P<0.05. All P-values 271 are reported as <0.05 or >0.05; however, P-values between 0.05 and 0.10 are considered trends and 272 273 depicted as an exact number. All calculations were performed by using SPSS version 23.0 (IBM Corp, 274 Armonk, NY, USA).

- 275 Results
- 276

277 Standardised physical activity and muscle strength

The minutes of lying/sitting (551±114 min·d⁻¹), standing (312±103 min·d⁻¹), and walking (145±41 min·d⁻¹) during the CON visit were not different to the habitual activity measured during pre-testing (**Figure 2**; all *P*>0.05). All regular volitional exercise was successfully replicated during the CON days in terms of intensity/workload and duration. Maximal leg strength did not change following the CON (from 83.7±17.7 to 83.3±18.6 kg), BR-B (84.0±17.7 to 80.3±19.1 kg), or BR-M (84.0±17.7 to 79.9±19.2 kg) visits (interaction and time effect: both *P*>0.05).

284

285 Whole-body substrate utilisation

During both pre and post OGTTs, carbohydrate ingestion led to an increase in the relative contribution of carbohydrate oxidation to energy expenditure (**Figure 3**; P<0.01). This was accompanied by a resultant increase in respiratory exchange ratio (RER) and energy expenditure (both P<0.01).

Following all three 24 h visits, RER was higher in the fasting state and following carbohydrate ingestion when compared to pre-measurements (P<0.01), which was due to an increase in the relative contribution of carbohydrate oxidation to energy expenditure (P<0.05). A trend for a time*feeding interaction was found for the contribution of carbohydrate oxidation to energy expenditure (P=0.066), suggesting an impaired capacity to switch from fat to carbohydrate oxidation after carbohydrate ingestion following all three visits.

295

296 Insulin sensitivity and glycaemic control

Fasting blood glucose concentrations prior to and following the 24 h experimental periods were not different between the CON (from 4.59 ± 0.30 to 4.56 ± 0.27 mmol·L⁻¹), BR-B (from 4.52 ± 0.35 to 4.56 ± 0.33 mmol·L⁻¹), and BR-M (from 4.49 ± 0.31 to 4.62 ± 0.25 mmol·L⁻¹) visits, although a trend for a condition*time interaction (*P*=0.065) was observed. None of the interventions affected fasting serum insulin concentrations. As a result, HOMA-IR (Matthews *et al.*, 1985) (**Figure 4A**) showed a trend for a condition*time interaction (*P*=0.096), due to a trend for an increase in BR-M only (*P*=0.061). 303 Peripheral insulin sensitivity, as indicated by the Matsuda index (Matsuda & DeFronzo, 1999) (Figure 304 **4B**, *P*>0.05), was not affected by time or intervention. Mean 24 h interstitial glucose concentrations during the 24 h experimental periods were 5.7 ± 0.4 , 6.0 ± 0.4 , and 5.7 ± 0.4 mmol·L⁻¹ in the CON, BR-B, 305 and BR-M conditions, respectively (data from n=7). Analyses of the 24 h glucose traces, depicted in 306 307 Figure 4C, showed no difference in 24 h glucose area under the curve (AUC; inset in Figure 4C, P>0.05). There was no difference in glycaemic variability, expressed as standard deviation (SD), 308 309 CONGA1, or CONGA2 (McDonnell et al., 2005), between the three conditions (all P>0.05). Muscle 310 glycogen content also did not change as a result of the interventions (Figure 5; P>0.05).

311

312 Skeletal muscle gene expression

313 Relative expression of genes involved in insulin signalling and glucose metabolism is depicted in 314 **Figure 6**. PRKCQ expression (PKC θ ; **6A**) showed a tendency for an effect (*P*=0.088) due to a threefold 315 increase following both 24 h bed rest visits. This effect was no longer visible after seven days of bed 316 rest, when mRNA expression was ~twofold lower than during one day of energy-balanced bed rest 317 (P < 0.01). GLUT4 (6C) expression was not different following the three 24 h visits (P=0.229), but was 318 approximately 60% lower following seven days of bed rest (P < 0.01). PDP1 (**6F**) showed a twofold 319 lower expression following seven days of bed rest (P < 0.05), while a similar, although not significant 320 (P=0.065), effect was observed for PDK2 (6G). No changes in mRNA expression of PI3K (6B), SNAP23 (6D), HK2 (6E), and PDK4 (6H) were observed. 321

322 Skeletal muscle mRNA expression of genes involved in lipid storage and oxidation is presented in Figure 7. No difference in expression of these genes was found between the three 24 h experimental 323 visits. However, seven days of bed rest led to a lower expression of ACADM (7J; ~30% lower than 324 BR-B; P<0.05), ACAT1 (7L; ~55% lower than BR-B; P<0.01), and PPARA (7M; ~45% lower than 325 BR-B; P<0.05). A tendency for lower mRNA expression following seven days of bed rest was observed 326 for PLIN5 (7B; ~55% lower than BR-B, P=0.065) and HADBH (7K; ~30% lower than BR-B, 327 P=0.085). No differences in expression of PLIN2 (7A), PNPLA2 (ATGL; 7C), DGAT1 (7D), DGAT2 328 (7E), LPIN1 (7F), ACACB (7G), CPT1 (7H), CPT2 (7I), DGKD (7N), FASN (7O), SCD (7P), 329 330 SPTLC1 (7Q), GPAM (7R), UCP3 (7S), and TFAM (7T) were observed.

- 331 Skeletal muscle mRNA expression of genes involved in the regulation of muscle mass is displayed in 332 Figure 8. None of the genes involved in muscle protein synthesis (panel A-G) were different between 333 three 24 h visits or between one and seven days of bed rest. Of the genes involved in muscle protein 334 breakdown (panel H-O), TRIM63 (MURF-1; 8K) was twofold lower following seven days energy-335 balanced bed rest than following one day (P < 0.05). Moreover, tendencies for a 40% lower expression of FOXO3 (8I; P=0.053) and 30% lower expression of BECN1 (8O; P=0.083) were observed. 336 Expression of FOXO1 (8H), FBO32 (MAFBx, 8J), MSTN (8L), GDF11 (8M), and ULK1 (8N) was 337 not different between the three conditions or following seven days of bed rest. SLC7A5 (LAT1) and 338
- 339 LIPE (HSL) were undetectable, and are therefore not presented.

340 Discussion

We have previously demonstrated that short periods (5-7 days) of muscle disuse lead to substantial 341 muscle atrophy, which is accompanied by impaired muscle protein synthesis rates and the development 342 of insulin resistance. In the present study we report that seven days of bed rest leads to transcriptional 343 344 responses associated with impairments in insulin signalling, the regulation of lipid storage/oxidation, and muscle protein breakdown. However, these molecular changes are not yet pronounced after a single 345 346 day of bed rest, nor is any striking insulin resistance or disturbance in blood glucose homeostasis evident 347 at this early stage. Moreover, none of these factors were modulated by energy balance during a single day of bed rest. 348

349 It is established that periods of physical inactivity lead to rapid loss of skeletal muscle mass (Deitrick, 350 1948; Gibson et al., 1987; Wall & van Loon, 2013) and the development of insulin resistance of glucose 351 metabolism (Stuart et al., 1988; Mikines et al., 1991; Dirks et al., 2016), although the mechanisms 352 underlying this skeletal muscle deconditioning are currently unclear. Here, we investigated the effect 353 of a single day of bed rest on muscle transcriptional responses when compared to seven days of bed 354 rest, as well as glucose homeostasis and markers of insulin sensitivity. To study if the effect of bed rest 355 was due to physical inactivity per se or associated changes in energy balance, we also examined the 356 impact of positive energy balance (33% calorie excess, **Table 2**) on our outcome measures. Previous 357 work from Biensø and colleagues reported that seven days of bed rest leads to a 22% decline in insulin sensitivity, measured as leg glucose uptake during a hyperinsulinaemic-euglycaemic clamp, which was 358 359 due to a direct effect on intracellular insulin signalling pathways (Bienso et al., 2012). Specifically, they 360 reported reduced muscle GLUT4, hexokinase, and Akt protein levels, and a concomitant blunted ability of insulin to phosphorylate Akt and activate glycogen synthase (Bienso et al., 2012). However, 361 associated (and preceding) muscle transcriptional responses, taking into account nutritional status, have 362 not been reported. To develop this understanding, we applied custom-designed, low density qRT-PCR 363 array cards to assess how the expression of various genes encoding proteins involved in insulin 364 signalling and glucose metabolism were affected by a single day, when compared to seven days (serving 365 366 as a positive control insofar as we know this duration leads to the development of insulin resistance 367 (Dirks et al., 2016)), of bed rest (Figure 6). We observed that protein kinase C theta (PRKCQ/PKC0)

368 gene expression was lower after seven days of bed rest, whereas it had increased following both 24 h bed rest visits (6A). Increased PKC0 activation has been associated with insulin resistance, especially 369 under conditions of lipid oversupply (Griffin et al., 1999). PKC is activated via diacylglycerol (DAG; 370 (Szendroedi et al., 2014)) and our previous work showed an increase in several DAG species following 371 372 one week of bed rest (Dirks *et al.*, 2016), implying that an early upregulation of PKC θ gene expression may be implicated in the development of bed rest-induced insulin resistance irrespective of energy 373 374 balance. Worthy of note, PKC acts via the inhibition of IRS1 (Li et al., 2004) and subsequent 375 impairment of PI3K and Akt activity, and no effect on the expression of these genes was observed. 376 Although this may seem contradictory, this can likely be explained by the fact that their activity is regulated via (de)phosphorylation. Upstream of PKC0, GLUT4 gene expression showed a similar 377 378 pattern by showing a non-significant increase with 24 h of bed rest and subsequent downregulation after 379 one week of bed rest (6C). Although GLUT4 mRNA expression does not necessarily represent GLUT4 380 protein content (or translocation to the plasma membrane), here we show a ~60% decrease in GLUT4 381 mRNA (6C) expression following seven days, but not a single day, of bed rest, which is in line with a 382 decrease in GLUT4 protein expression (Bienso et al., 2012) and muscle glucose uptake (Bienso et al., 383 2012; Dirks et al., 2016). As we have previously shown that an increase in insulin sensitivity and muscle 384 glycogen synthesis is accompanied by an increase in GLUT4 expression (Stephens et al., 2010), it is 385 expected that the decrease in GLUT4 expression following seven days of bed rest is preceded by the 386 onset of insulin resistance and a reduction in muscle glucose flux.

387 The pyruvate dehydrogenase complex (PDC) plays a key role in determining muscle fuel selection as 388 the rate limiting step of glucose oxidation (van Loon et al., 2001), and is covalently regulated by a 389 phosphatase (PDP) and a kinase (PDK). We have previously shown that inhibition of PDC activation 390 results in a diversion of disposed glucose from oxidation to storage (Stephens et al., 2006; Chokkalingam et al., 2007), which was associated with a selective upregulation of PDK4, but not 391 392 PDK2, mRNA expression (Chokkalingam et al., 2007). Here we show that the expression of PDP1 (6F) and PDK2 (6G) was downregulated following seven days of bed rest, whereas previous work has 393 394 reported unaltered fasting PDC activation following such periods of muscle disuse in young volunteers 395 (Wall et al., 2015; Vigelso et al., 2016). Surprisingly, both studies report an increased fasting PDC

396 activation in older volunteers (Wall et al., 2015; Vigelso et al., 2016), possibly caused by a more pronounced and/or rapid shift from fat to carbohydrate oxidation in response to disuse. In contrast, in 397 the present work, 24 h of bed rest and alterations in energy balance did not change the expression of 398 genes encoding proteins that control the activation status of PDC (**6F-H**), despite an increased reliance 399 400 on carbohydrate oxidation and therefore muscle glucose flux (Figure 3). However, since only basal 401 gene expression was assessed in this study, it cannot be ruled out that bed rest and alterations in energy 402 balance had a more profound impact on insulin-stimulated gene expression. Overall, our data suggest 403 that disuse-induced alterations in fuel metabolism precede related transcriptional responses, which seem 404 to be a molecular compensatory reaction rather than a causative metabolic mechanism. With the 405 exception of an early increase in PKC θ expression, such transcriptional changes do not yet manifest 406 following a single day of bed rest, suggesting that the absence of muscle contraction and associated 407 changes in metabolism must persist for longer than 24 h before transcriptional changes occur.

408 Excess lipid storage and impaired/incomplete lipid oxidation are associated with the development of 409 insulin resistance during muscle disuse (Cree et al., 2010; Bergouignan et al., 2011). Here, various 410 genes involved in lipid storage and lipolysis (i.e. PLIN2, PNPLA2 (ATGL), DGAT-1, DGAT-2, 411 LPIN1; Figure 7) were not affected by 24 h or seven days of bed rest. However, perilipin 5 (PLIN5), 412 present on the coating of lipid droplets and involved in regulating fatty acid utilization (Wolins et al., 413 2006), was lower following seven days of bed rest. This extends on previous animal research, showing 414 overexpression of PLIN5 protects against both high-fat diet-induced (Bosma et al., 2013) and fasting-415 induced (Gemmink et al., 2016) insulin resistance, and supporting PLIN5 as a responsible candidate for 416 mediating a disuse-induced decrease in insulin sensitivity after seven days. Similarly, we demonstrate that various genes involved in fatty acid oxidation (i.e. CPT1, CPT2, ACADM, HADBH, ACAT-1, 417 PPARa) consistently show a downregulation following seven days. This downregulation, which 418 occurred in parallel with a decrease in fasting fat oxidation (Dirks et al., 2016), may be, at least in part, 419 420 the cause for muscle lipid accumulation that occurs following more prolonged disuse (i.e. > 1 week). We have previously shown that muscle disuse leads to considerable skeletal muscle atrophy within a 421 422 few days (Wall et al., 2014). Although altered muscle protein synthesis rates have been reported as a

423 feature of muscle disuse atrophy (Gibson *et al.*, 1987; Wall *et al.*, 2016), the post-translational control

424 of muscle protein synthesis makes it unsurprising that we did not observe any bed rest related alterations in gene expression of components of the mTOR/P70S6K/4E-BP1/GSK/eIF pathway (Figure 8A-G). 425 As such, measures of protein expression and phosphorylation status would likely increase insight in 426 mechanisms underlying the loss of muscle mass and quality. Muscle protein breakdown rates are 427 428 technically challenging to measure in humans and therefore seldom reported (Symons et al., 2009), so gene expression of one or more components of proteolytic pathways are often used as a proxy. 429 430 Quantitatively, the main proteolytic systems in skeletal muscle is the ubiquitin proteasome pathway 431 (UPP; (Bodine *et al.*, 2001)). The autophagy-lysosome pathway also contributes to mass breakdown 432 (Mizushima & Klionsky, 2007), and also facilitates UPP breakdown via 'pre-processing' myofibrillar 433 proteins. Here we show that seven days of bed rest leads to a decrease in gene expression of key 434 components of the UPP, FOXO3 (8I) and MuRF1 (8K), presumably reflecting a lower net protein 435 turnover of muscle at this time point. In line, a key target of autophagy-signalling, Beclin 1 (Sanchez et 436 al., 2012), followed a similar pattern with a tendency to decrease following one week of bed rest (80). 437 In contrast, a single day of bed rest did not alter key genes in the regulation of muscle protein 438 breakdown, nor did energy balance influence this (Figure 8H-O). Collectively, our data suggest that 439 the early and transient rise in muscle protein breakdown, which has been thought to occur in the first 440 days following the onset of muscle disuse and contribute to muscle atrophy (Urso et al., 2006; Tesch et 441 al., 2008; Abadi et al., 2009), is not yet visible following a single day of bed rest, or is not best reflected by transcriptional responses. 442

443 Given the previously observed potent effect of bed rest on insulin resistance (Stuart et al., 1988; Mikines 444 et al., 1991; Dirks et al., 2016), we assessed the impact of a single day of bed rest on insulin sensitivity and glycaemic control. Here we demonstrate that a single day of bed rest does not significantly affect 445 whole body insulin sensitivity, irrespective of energy balance (Figure 3A and B). However, a trend for 446 impaired insulin sensitivity as determined by HOMA-IR was observed (P=0.096), with a tendency 447 448 present to suggest maintaining habitual energy intake exacerbated this effect. Our data are in line with previous work demonstrating an increase in HOMA-IR following a similar 1-day overfeeding protocol 449 450 (Magkos et al., 2014), and is in agreement with previous observations during more prolonged bed rest 451 protocols showing that surplus energy intake exacerbates the negative effect of bed rest on liver insulin

452 sensitivity (Kiilerich et al., 2011; Dirks et al., 2016), possibly via an impaired suppression of nocturnal 453 hepatic glucose production (Magkos et al., 2014). The lack of a statistically significant effect of bed rest on the Matsuda index, a proxy of peripheral insulin sensitivity (Matsuda & DeFronzo, 1999), is in 454 contrast to the general consensus that prolonged bed rest-induced insulin resistance is predominantly 455 456 present peripherally (Stuart et al., 1988; Mikines et al., 1991; Cree et al., 2010; Dirks et al., 2016). Although a visual decline in Matsuda index was seen in both bed rest conditions, it seems that any effect 457 458 of a single day of bed rest on peripheral insulin sensitivity is modest. A methodological consideration 459 here was the collection of venous (rather than arterial or arterialised venous) blood to calculate glucose 460 tolerance and insulin sensitivity. Recent data demonstrate that the quantification of insulin sensitivity 461 during an OGTT when muscle contraction level is manipulated can vary depending on whether venous 462 or arterialised venous blood is used (Edinburgh et al., 2017). However, within the present study, insulin 463 sensitivity was calculated and compared consistently from venous blood, and we anticipate that any 464 differences if arterialised blood had been obtained would be minimal and not alter the direction of our 465 findings. Rather than simply insulin resistance per se, numerous epidemiological studies have 466 demonstrated a clear and independent link between post-prandial hyperglycaemia and cardiovascular 467 co-morbidities (de Vegt et al., 1999; Cavalot et al., 2006), and more specifically the prevalence of 468 hyperglycaemia and glycaemic excursions across an entire day. To this end, we applied continuous 469 interstitial glucose monitoring methodology and observed similar glycaemic variability throughout all 470 three visits and a close to identical 24 h, and nocturnal, average interstitial glucose concentration and 471 interstitial glucose area under the curve (inset in Figure 3C). These data are in line with our insulin 472 sensitivity indices implying that the impaired glucose homeostasis, to be expected with prolonged muscle disuse, does not yet manifest within 24 h. Similarly, a 24 h time period did not lead to changes 473 in muscle glycogen content (Figure 4), which likely takes longer to occur (Kiilerich et al., 2011; Bienso 474 et al., 2012). As such, at least in healthy humans, there appears to be a brief (albeit short lived) window 475 476 for resisting the deleterious metabolic effects of physical inactivity.

477 A final consideration of the present work is our novel approach towards designing a representative
478 control condition. The severity and invasiveness of an experimental bed rest intervention has often
479 required researchers to rely on a pre/post comparison only (i.e. no true control condition, e.g. (Mikines)

480 et al., 1991; Cree et al., 2010; Dirks et al., 2016)), or utilise a non-laboratory based control condition 481 (e.g. (LeBlanc et al., 1992)). We attempted to address this by proposing a novel quantitative method, employing precise objective measures to individually assess each participant's habitual physical 482 activity, taking into account their time spent sitting, standing, and walking, as well as the type, volume, 483 484 and intensity of any exercise they typically perform. In this way, each subject was able to undertake an individualised control day, mimicking their habitual physical activity behaviours as closely as possible, 485 486 under laboratory and nutritionally controlled conditions identical to the interventions (Figure 2). This obviated any potential order effects, washout periods, or lack of full control of physical activity, and 487 488 provided us with a 'true' control condition allowing the detection of small, but physiologically relevant, changes in metabolic parameters. For instance, this additional control allowed us to accurately 489 490 discriminate changes in the expression of certain genes as a direct result of disuse and/or diet from those 491 which are seemingly an artefact of repeated biopsies/test days (Van Thienen et al., 2014). Due to the nature and complexity of *in vivo* human studies, such approaches as included herein result in largely 492 493 descriptive data rather than isolating definitive mechanisms such as are more regularly described using 494 animal and/or pharmacological approaches which can allow reductionism to the level of a metabolic 495 process or even individual molecule. However, we view the novel habitual physical activity control 496 condition and the dietary approach in the present study as a steps forward in our approach to identifying 497 subtle, in vivo mechanisms of disuse induced deconditioning in human volunteer studies.

In conclusion, we demonstrate that a single day of bed rest does not substantially change the skeletal muscle expression of genes involved in the regulation of muscle mass, insulin sensitivity, and/or fuel oxidation. Although prolonged bed rest leads to overt decreases in insulin sensitivity and glycaemic control, such effects only modestly manifest following a single day of bed rest. Importantly, the muscle transcriptional responses that did occur were irrespective of whether volunteers were in energy balance or maintaining their habitual diet (i.e. modest overfeeding), and can therefore be attributed directly to the withdrawal of muscle contraction.

Competing interests

None of the authors disclose any conflicts of interest.

Author contributions

FBS and BTW designed the study. SRJ, JGG, DM, and BTW organized and carried out the clinical experiments. FBS, SRJ, and BTW performed the laboratory analyses. MLD performed the (statistical) analyses. MLD, FBS, and BTW interpreted the primary data. RMP analysed the accelerometer data and designed the habitual activity laboratory days. MLD drafted, and FBS and BTW edited and revised the manuscript. All authors approved the final version.

Funding

BTW received internal funding from the College of Life and Environmental Sciences, University of Exeter, to support this project. None of the other authors received funding from any funding agency in the public, commercial or not-for-profit sectors to conduct this research.

Acknowledgements

The authors would like to thank Dr Emma J. Cockcroft for her assistance in the experimental physiology testing and serum insulin analyses.

References

- Abadi A, Glover EI, Isfort RJ, Raha S, Safdar A, Yasuda N, Kaczor JJ, Melov S, Hubbard A, Qu X, Phillips SM & Tarnopolsky M (2009). Limb immobilization induces a coordinate downregulation of mitochondrial and other metabolic pathways in men and women. *PLoS One 4*, e6518. <u>https://doi.org/10.1371/journal.pone.0006518</u>
- Backx EM, Tieland M, Borgonjen-van den Berg KJ, Claessen PR, van Loon LJ & de Groot LC (2016). Protein intake and lean body mass preservation during energy intake restriction in overweight older adults. *Int J Obes (Lond)* 40, 299-304. <u>https://doi.org/10.1038/ijo.2015.182</u>
- Bergouignan A, Rudwill F, Simon C & Blanc S (2011). Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol (1985) 111, 1201-1210. https://doi.org/10.1152/japplphysiol.00698.2011
- Bergstrom J (1975). Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. *Scand J Clin Lab Invest 35*, 609-616.
- Bienso RS, Ringholm S, Kiilerich K, Aachmann-Andersen NJ, Krogh-Madsen R, Guerra B, Plomgaard P, van Hall G, Treebak JT, Saltin B, Lundby C, Calbet JA, Pilegaard H & Wojtaszewski JF (2012). GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance. *Diabetes 61*, 1090-1099. <u>https://doi.org/10.2337/db11-0884</u>
- Biolo G, Agostini F, Simunic B, Sturma M, Torelli L, Preiser J, Deby-Dupont G, Magni P, Strollo F, di Prampero P, Guarnieri G, Mekjavic I, Pisot R & Narici M (2008). Positive energy balance is associated with accelerated muscle atrophy and increased erythrocyte glutathione turnover during 5 wk of bed rest. *Am J Clin Nutr.* 88, 950-958.
- Biolo G, Ciocchi B, Stulle M, Bosutti A, Barazzoni R, Zanetti M, Antonione R, Lebenstedt M, Platen P, Heer M & Guarnieri G (2007). Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest. Am J Clin Nutr 86, 366-372.
- Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD & Glass DJ (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. *Science 294*, 1704-1708. <u>https://doi.org/10.1126/science.1065874</u>
- Bosma M, Sparks LM, Hooiveld GJ, Jorgensen JA, Houten SM, Schrauwen P, Kersten S & Hesselink MK (2013). Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. *Biochim Biophys Acta 1831*, 844-852. <u>https://doi.org/10.1016/j.bbalip.2013.01.007</u>
- Cavalot F, Petrelli A, Traversa M, Bonomo K, Fiora E, Conti M, Anfossi G, Costa G & Trovati M (2006). Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. *J Clin Endocrinol Metab 91*, 813-819. https://doi.org/10.1210/jc.2005-1005

- Chokkalingam K, Jewell K, Norton L, Littlewood J, van Loon LJ, Mansell P, Macdonald IA & Tsintzas K (2007). High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans: An important role for skeletal muscle pyruvate dehydrogenase kinase 4. *J Clin Endocrinol Metab 92*, 284-292. httsp://doi.org/10.1210/jc.2006-1592
- Chomczynski P & Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal Biochem 162*, 156-159. httsp://doi.org/10.1006/abio.1987.9999
- Cree MG, Paddon-Jones D, Newcomer BR, Ronsen O, Aarsland A, Wolfe RR & Ferrando A (2010). Twenty-eight-day bed rest with hypercortisolemia induces peripheral insulin resistance and increases intramuscular triglycerides. *Metabolism 59*, 703-710. httsp://doi.org/10.1016/j.metabol.2009.09.014
- de Vegt F, Dekker J, Ruhé H, Stehouwer C, Nijpels G, Bouter L & Heine R (1999). Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. *Diabetologia* 42, 926-931. <u>https://doi.org/10.1007/s001250051249</u>
- Deitrick JE (1948). The effect of immobilization on metabolic and physiological functions of normal men. *Bull N Y Acad Med 24*, 364-375.
- Dirks ML, Wall BT, van de Valk B, Holloway TM, Holloway GP, Chabowski A, Goossens GH & van Loon LJ (2016). One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. *Diabetes 65*, 2862-2875. <u>https://doi.org/10.2337/db15-1661</u>
- Edinburgh RM, Hengist A, Smith HA, Betts JA, Thompson D, Walhin JP & Gonzalez JT (2017). Prior exercise alters the difference between arterialised and venous glycaemia: implications for blood sampling procedures. *Br J Nutr 117*, 1414-1421. https://doi.org/10.1017/S0007114517001362
- Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P & Eston RG (2011). Validation of the GENEA Accelerometer. *Med Sci Sports Exerc* 43, 1085-1093. https://doi.org/10.1249/MSS.0b013e31820513be
- Frayn KN (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 55, 628-634. <u>https://doi.org/10.1152/jappl.1983.55.2.628</u>
- Gemmink A, Bosma M, Kuijpers HJ, Hoeks J, Schaart G, van Zandvoort MA, Schrauwen P & Hesselink MK (2016). Decoration of intramyocellular lipid droplets with PLIN5 modulates fasting-induced insulin resistance and lipotoxicity in humans. *Diabetologia 59*, 1040-1048. https://doi.org/10.1007/s00125-016-3865-z

- Gibson JN, Halliday D, Morrison WL, Stoward PJ, Hornsby GA, Watt PW, Murdoch G & Rennie MJ (1987). Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. *Clin Sci (Lond)* 72, 503-509.
- Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF & Shulman GI (1999). Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. *Diabetes* 48, 1270-1274.
- Harris RC, Hultman E & Nordesjo LO (1974). Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. *Scand J Clin Lab Invest 33*, 109-120.
- Haruna Y, Suzuki Y, Kawakubo K, Yanagibori R & Gunji A (1994). Decremental reset in basal metabolism during 20-days bed rest. *Acta Physiol Scand Suppl 616*, 43-49.
- Hulston C, Churnside A & Venables M (2015). Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects. *Br J Nutr 113*, 596-602. https://doi.org/10.1017/S0007114514004097
- Keenan D, Mastrototaro J, Zisser H, Cooper K, Raghavendhar G, Lee S, Yusi J, Bailey T, Brazg R & Shah R (2012). Accuracy of the Enlite 6-day glucose sensor with guardian and Veo calibration algorithms. *Diabetes Technol Ther 14*, 225-231. <u>https://doi.org/10.1089/dia.2011.0199</u>
- Kelley DE & Mandarino LJ (2000). Fuel selection in human skeletal muscle in insulin resistance: a reexamination. *Diabetes* 49, 677-683.
- Kiilerich K, Ringholm S, Bienso RS, Fisher JP, Iversen N, van Hall G, Wojtaszewski JF, Saltin B, Lundby C, Calbet JA & Pilegaard H (2011). Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest. J Appl Physiol (1985) 111, 751-757. https://doi.org/10.1152/japplphysiol.00063.2011
- Kraemer W & Fry A (1995). *Strength testing: Development and evaluation of methodology.*, vol. P. Maud and C. Foster (Eds.) Leeds: Human Kinetics.
- LeBlanc AD, Schneider VS, Evans HJ, Pientok C, Rowe R & Spector E (1992). Regional changes in muscle mass following 17 weeks of bed rest. J Appl Physiol (1985) 73, 2172-2178. <u>https://doi.org/10.1152/jappl.1992.73.5.2172</u>
- Li Y, Soos TJ, Li X, Wu J, Degennaro M, Sun X, Littman DR, Birnbaum MJ & Polakiewicz RD (2004). Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). *J Biol Chem* 279, 45304-45307. <u>https://doi.org/10.1074/jbc.C400186200</u>

- Magkos F, Smith GI, Reeds DN, Okunade A, Patterson BW & Mittendorfer B (2014). One day of overfeeding impairs nocturnal glucose but not fatty acid homeostasis in overweight men. *Obesity (Silver Spring)* 22, 435-440. <u>https://doi.org/10.1002/oby.20562</u>
- Mahoney DJ, Carey K, Fu MH, Snow R, Cameron-Smith D, Parise G & Tarnopolsky MA (2004). Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. *Physiol Genomics* 18, 226-231. 10.1152/physiolgenomics.00067.2004
- Matsuda M & DeFronzo RA (1999). Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. *Diabetes Care* 22, 1462-1470.
- Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF & Turner RC (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia* 28, 412-419.
- Mayhew JL, Prinster JL, Ware JS, Zimmer DL, Arabas JR & Bemben MG (1995). Muscular endurance repetitions to predict bench press strength in men of different training levels. J Sports Med Phys Fitness 35, 108-113.
- McDonnell CM, Donath SM, Vidmar SI, Werther GA & Cameron FJ (2005). A novel approach to continuous glucose analysis utilizing glycemic variation. *Diabetes Technol Ther* 7, 253-263. https://doi.org/10.1089/dia.2005.7.253
- Mikines KJ, Richter EA, Dela F & Galbo H (1991). Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body. *J Appl Physiol (1985) 70*, 1245-1254. https://doi.org/10.1152/jappl.1991.70.3.1245
- Mizushima N & Klionsky DJ (2007). Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27, 19-40. <u>https://doi.org/10.1146/annurev.nutr.27.061406.093749</u>
- Peterson CM, Zhang B, Johannsen DL & Ravussin E (2017). Eight weeks of overfeeding alters substrate partitioning without affecting metabolic flexibility in men. *Int J Obes (Lond) 41*, 887-893. <u>https://doi.org/10.1038/ijo.2017.58</u>
- Reidy PT, Lindsay CC, McKenzie AI, Fry CS, Supiano MA, Marcus RL, LaStayo PC & Drummond MJ (2017). Aging-related effects of bed rest followed by eccentric exercise rehabilitation on skeletal muscle macrophages and insulin sensitivity. *Exp Gerontol.* <u>https://doi.org/10.1016/j.exger.2017.07.001</u>
- Sanchez AM, Csibi A, Raibon A, Cornille K, Gay S, Bernardi H & Candau R (2012). AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. *J Cell Biochem 113*, 695-710. <u>https://doi.org/10.1002/jcb.23399</u>
- Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ & Greenhaff PL (2006). An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab 91, 5013-5018. <u>https://doi.org/10.1210/jc.2006-1584</u>

- Stephens FB, Norton L, Jewell K, Chokkalingam K, Parr T & Tsintzas K (2010). Basal and insulinstimulated pyruvate dehydrogenase complex activation, glycogen synthesis and metabolic gene expression in human skeletal muscle the day after a single bout of exercise. *Exp Physiol* 95, 808-818. <u>https://doi.org/10.1113/expphysiol.2009.051367</u>
- Stuart CA, Shangraw RE, Prince MJ, Peters EJ & Wolfe RR (1988). Bed-rest-induced insulin resistance occurs primarily in muscle. *Metabolism 37*, 802-806.
- Symons TB, Sheffield-Moore M, Chinkes DL, Ferrando AA & Paddon-Jones D (2009). Artificial gravity maintains skeletal muscle protein synthesis during 21 days of simulated microgravity. *J Appl Physiol (1985) 107*, 34-38. <u>https://doi.org/10.1152/japplphysiol.91137.2008</u>
- Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D, Jelenik T, Muller J, Herder C, Nowotny P, Shulman GI & Roden M (2014). Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. *Proc Natl Acad Sci U S A* 111, 9597-9602. <u>https://doi.org/10.1073/pnas.1409229111</u>
- Tesch PA, von Walden F, Gustafsson T, Linnehan RM & Trappe TA (2008). Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol (1985) 105, 902-906. <u>https://doi.org/10.1152/japplphysiol.90558.2008</u>
- Tsintzas K, Jewell K, Kamran M, Laithwaite D, Boonsong T, Littlewood J, Macdonald I & Bennett A (2006). Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans. *J Physiol* 575, 291-303. <u>https://doi.org/10.1113/jphysiol.2006.109892</u>
- Tsintzas K, Norton L, Chokkalingam K, Nizamani N, Cooper S, Stephens F, Billeter R & Bennett A (2013). Independent and combined effects of acute physiological hyperglycaemia and hyperinsulinaemia on metabolic gene expression in human skeletal muscle. *Clin Sci (Lond)* 124, 675-684. <u>https://doi.org/10.1042/CS20120481</u>
- Urso ML, Scrimgeour AG, Chen YW, Thompson PD & Clarkson PM (2006). Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components. *J Appl Physiol (1985) 101*, 1136-1148. https://doi.org/10.1152/japplphysiol.00180.2006
- van Dijk J & van Loon L (2015). Exercise strategies to optimize glycemic control in type 2 diabetes: a continuing glucose monitoring perspective. *Diabetes Spectr* 28, 24-31. <u>https://doi.org/10.2337/diaspect.28.1.24</u>
- van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH & Wagenmakers AJ (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. *J Physiol 536*, 295-304.
- Van Thienen R, D'Hulst G, Deldicque L & Hespel P (2014). Biochemical artifacts in experiments involving repeated biopsies in the same muscle. *Physiol Rep 2*, e00286. <u>https://doi.org/10.14814/phy2.286</u>

- Vigelso A, Gram M, Dybboe R, Kuhlman AB, Prats C, Greenhaff PL, Constantin-Teodosiu D, Birk JB, Wojtaszewski JF, Dela F & Helge JW (2016). The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate-intensity exercise in human skeletal muscle. *J Physiol 594*, 2339-2358. <u>https://doi.org/10.1113/JP271712</u>
- Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J & van Loon LJ (2014). Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol (Oxf) 210, 600-611. <u>https://doi.org/10.1111/apha.12190</u>
- Wall BT, Dirks ML, Snijders T, Stephens FB, Senden JM, Verscheijden ML & van Loon LJ (2015). Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males. *Exp Gerontol* 61, 76-83. <u>https://doi.org/10.1016/j.exger.2014.11.019</u>
- Wall BT, Dirks ML, Snijders T, van Dijk JW, Fritsch M, Verdijk LB & van Loon LJ (2016). Shortterm muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion. Am J Physiol Endocrinol Metab 310, E137-147. <u>https://doi.org/10.1152/ajpendo.00227.2015</u>
- Wall BT, Dirks ML & van Loon LJ (2013). Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 12, 898-906. <u>https://doi.org/10.1016/j.arr.2013.07.003</u>
- Wall BT, Dirks ML, Verdijk LB, Snijders T, Hansen D, Vranckx P, Burd NA, Dendale P & van Loon LJ (2012). Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am J Physiol Endocrinol Metab 303, E614-623. 10.1152/ajpendo.00138.2012
- Wall BT & van Loon LJ (2013). Nutritional strategies to attenuate muscle disuse atrophy. *Nutr Rev* 71, 195-208. <u>https://doi.org/10.1111/nure.12019</u>
- Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA, Gropler MC, Varma V, Yao-Borengasser A, Rasouli N, Kern PA, Finck BN & Bickel PE (2006). OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. *Diabetes 55*, 3418-3428. <u>https://doi.org/10.2337/db06-0399</u>
- Yanagibori R, Suzuki Y, Kawakubo K, Makita Y & Gunji A (1994). Carbohydrate and lipid metabolism after 20 days of bed rest. *Acta Physiol Scand Suppl 616*, 51-57.

Tables

Table 1: Subjects' characteristics

Age (y)	25 ± 3	
Body mass (kg)	79.0 ± 7.4	
Height (m)	1.77 ± 0.06	
BMI (kg·m ⁻²)	25.3 ± 2.5	
Body fat (%)	13.6 ± 5.0	
$\mathbf{RMR} (\mathbf{MJ} \cdot \mathbf{d}^{-1})$	8.9 ± 1.0	
Habitual physical activity		
Light activity (min·d ⁻¹)	114 ± 41	
Moderate activity (min·d ⁻¹)	122 ± 42	
Vigorous activity (min·d ⁻¹)	18 ± 15	
MVPA (min·d ⁻¹)	139 ± 48	
Total physical activity (min·d ⁻¹)	252 ± 88	

Values are presented as mean±SD. MVPA, moderate-to-vigorous physical activity; RMR, resting metabolic rate

	CON and BR-M	BR-B
Energy (kcal·d ⁻¹)	3409 ± 377	2558 ± 282 *
Protein (g·kg body weight ⁻¹ ·d ⁻¹)	1.30 ± 0.15	0.98 ± 0.11 *
Protein (g·d ⁻¹)	103 ± 12	77 ± 9 *
Carbohydrates (g·d ⁻¹)	479 ± 55	359 ± 41 *
Fat (g·d·1)	122 ± 14	91 ± 10 *
Protein (en%)	12 ± 0	12 ± 0
Carbohydrate (en%)	56 ± 0	56 ± 0
Fat (en%)	32 ± 0	32 ± 0

Table 2: Dietary intake during the control (CON), bed rest-matched (BR-M) and bed rest-balanced (BR-B) visit.

Values represent means±SD. * Significantly different from CON/BR-M (P<0.001)

Gene name (human skeletal muscle)	Symbol
Acyl-CoA dehydrogenase medium chain	ACADM
Acetyl-CoA carboxylase (beta)	ACACB
Acetyl-CoA acetyltransferase 1	ACAT1
Actin, alpha 1, skeletal muscle	ACTA1
AKT serine/threonine kinase 1	AKT1
Beclin 1	BECN1
Carnitine palmitoyl transferase 1	CPT1
Carnitine palmitoyl transferase 2	CPT2
DNA damage inducible transcript 4	DDIT4 (REDD-1)
Diacylglycerol O-acyltransferase 1	DGAT1
Diacylglycerol O-acyltransferase 2	DGAT2
Diacylglycerol kinase (delta)	DGKD
Eukaryotic translation initiation factor 4E binding protein 1	EIF4EBP1 (4E-BP1)
Fatty acid synthase	FASN
F-box protein 32	FBXO32 (MAFBx)
Forkhead box protein 1	FOXO1
Forkhead box protein 3	FOXO3
Glyceraldehyde 3-phosphate dehydrogenase	GAPDH
Growth differentiation factor 11	GDF11
Solute carrier family 2 member 4	GLUT4
Glycerol-3-phosphate acyltransferase 1	GPAM
Glycogen synthase kinase 3 beta	GSK3B
Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex	HADHB
Hexokinase 2	HK2
Hydroxymethylbilane synthase	HMBS
Lipase E, hormone sensitive	LIPE (HSL)
Lipin 1	LPIN1
Myostatin	MSTN
Mechanistic target of rapamycin kinase	MTOR
Pyruvate dehydrogenase kinase 2	PDK2
Pyruvate dehydrogenase kinase 4	PDK4
Pyruvate dehydrogenase phosphatase catalytic subunit 1	PDP1
Phosphatidylinoditol 3-kinase	PI3K
Perilipin 2	PLIN2
Perilipin 5	PLIN5
Patatin like phospholipase domain containing 2	PNPLA2 (ATGL)
Peroxisome proliferator activated receptor alpha	PPARA
Protein kinase C theta	PRKCQ (PKC0)
Ribosomal protein S6 kinase B1	RPS6KB1 (P70S6K)
Stearoyl-CoA desaturase	SCD
Solute carrier family 7 member 5	SLC7A5 (LAT1)
Solute carrier family 36 member 1	SLC36A1 (PAT1)
Synaptosome associated protein 23	SNAP23
Serine palmitoyltransferase long chain base subunit 1	SPTLC1
Transcription factor A, mitochondrial	TFAM
Tripartite motif containing 63	TRIM63 (MURF-1)
Uncoupling protein 3	UCP3
Unc-51 like autophagy activating kinase 1	ULK1

 Table 3: Names and symbols of gene expression assay targets that were pre-loaded on to the microfluidic cards

Symbols between brackets represent gene synonyms.

Figure legends

Figure 1: Experimental overview of the study. BR-B, bed rest-balanced; BR-M, bed rest-matched; CON, controlled habitual physical activity.

Figure 2: Example of habitual lying/sitting, standing, and walking (measured across five consecutive free-living days) and this activity recreated during the control day for a representative subject. Data for lying/sitting, standing, and walking are presented for the whole day, as well as proportions of each time period.

Figure 3: Relative contribution of carbohydrate (CHO) and fat oxidation to energy expenditure in the overnight fasted state and during a 2 h oral glucose tolerance test (OGTT; 75 g carbohydrate ingestion) before (pre) and after (post) three experimental conditions (n=10): 24 h of laboratory controlled habitual physical activity with a diet designed to maintain energy balance (CON), 24 h bed rest with a diet designed to maintain energy balance (CON), 24 h bed rest with a diet designed to maintain energy balance (i.e. reduced energy intake compared with CON; BR-B), and 24 h bed rest with a diet matched to CON (i.e. positive energy balance; BR-M). A three-way Repeated Measures ANOVA demonstrated that the relative contribution of carbohydrate oxidation to energy expenditure increased with carbohydrate ingestion (P<0.01) and following all experimental visits (P<0.05), while a trend for a time*feeding interaction (P=0.066) suggests an impairment to switch from fat to carbohydrate oxidation following all three experimental visits.

Figure 4: Insulin sensitivity before and after, and glycaemic control during three 24 h experimental laboratory visits involving controlled habitual physical activity with a diet designed to maintain energy balance (CON), bed rest with a diet designed to maintain energy balance (i.e. reduced energy intake compared with CON; BR-B), and bed rest with a diet matched to CON (i.e. positive energy balance; BR-M). Panel **A-C** and **D-F** display the plasma glucose and insulin concentrations during the Oral Glucose Tolerance Test (OGTT), respectively. The insets in these graphs represent the corresponding area under the curve (AUC). The experimental visits had no significant effect on the Homeostatic Model

Assessment of Insulin Resistance (HOMA-IR, G) or Matsuda (H) indices (both P>0.05), calculated from the OGTT. Panel I displays glucose traces from a representative subject, measured every 5 min during the 24 h experimental visits using a continuous glucose monitoring system (CGMS). The inset in panel I represents the 24 h AUC for the total cohort (n=7). Dashed vertical lines represent the beginning and end of the night.

Figure 5: Muscle glycogen before (pre) and after (post) a 24 h experimental visit involving standardised physical activity with a diet to maintain energy balance (CON), a day of bed rest with a diet designed to maintain energy balance (i.e. reduced energy intake compared with CON; BR-B), and a day of bed rest with a diet matched to CON (i.e. positive energy balance; BR-M) in n=10 healthy, young males. Dm, dry matter.

Figure 6: Skeletal muscle mRNA expression of genes involved in insulin signalling and glucose metabolism in healthy, young men (n=7) who underwent three 24 h interventions in a crossover manner: standardised physical activity combined with a diet to maintain energy balance (CON), bed rest with a diet designed to maintain energy balance (i.e. reduced energy intake compared with CON; BR-B), and bed rest with a diet matched to that in the CON visit (i.e. positive energy balance; BR-M). Data were compared to n=7 healthy men who have undergone seven days of strict bed rest in a previous study (7 DAYS, (Dirks *et al.*, 2016)). Data were analysed using a Repeated Measures ANOVA including CON vs BR-B vs BR-M, and an independent samples t-test including BR-B vs 7 DAYS. * Significantly different from BR-B (P<0.05). # Trend for a significant difference (P<0.10).

Figure 7: Skeletal muscle mRNA expression of genes involved in lipid metabolism and fat oxidation in n=7 healthy males undergoing controlled physical activity and an energy-balanced diet (CON), bed rest with a diet designed to maintain energy balance (i.e. reduced energy intake compared with CON; BR-B), and bed rest with a diet matched to that in the CON visit (i.e. positive energy balance; BR-M) in a crossover manner. Data were compared to group of healthy males (n=7) who underwent seven days of strict bed rest in energy balanced conditions (Dirks *et al.*, 2016). Data were analysed using a Repeated Measures ANOVA including CON vs BR-B vs BR-M, and an independent samples t-test including BR-B vs 7 DAYS. * Significantly different from BR-B (P<0.05). # Trend for a difference versus BR-B (P<0.10).

Figure 8: Skeletal muscle mRNA expression of genes involved in muscle mass regulation (**A-G**: muscle protein synthesis; **H-O**: muscle protein breakdown) in n=7 healthy males undergoing controlled physical activity under energy-balanced conditions (CON), bed rest with a diet designed to maintain energy balance (i.e. reduced energy intake compared with CON; BR-B), and bed rest with a diet matched to that in the CON visit (i.e. positive energy balance; BR-M) in a crossover manner. Data were compared to n=7 healthy males who underwent seven days of strict bed rest in energy balanced conditions (Dirks *et al.*, 2016). Data were analysed using a Repeated Measures ANOVA including CON vs BR-B vs BR-M, and an independent samples t-test including BR-B vs 7 DAYS. * Significantly different from BR-B (P<0.05). # Trend for a significant difference versus BR-B (P<0.10).