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Abstract 

Only in recent times has the true potential of cellulose as a high-end functional and 

sustainable material been realised. As the world’s most abundant resource cellulose has 

been utilised by man throughout history for timber, paper and yarns. It is found in every 

plant as a hierarchical material and can be extracted and converted into fibres which are of 

great use, especially in the form of nanofibrous materials. This thesis has focused on the 

utilisation and ability of cellulose nanocrystals (CNCs) to generate structural colour in 

fabricated thin films. This has been achieved in two ways: Firstly, the natural morphology 

of CNCs and their ability to form a suspension have been applied to a layer-by-layer (LbL) 

regime to produce tunable Bragg reflecting thin films.  Secondly, a novel technique 

combining profilometry and spectroscopy has been developed to estimate the distribution 

of CNCs within EISA thin films and correlate this with the optical properties of the film.  

This thesis reports the successful fabrication of synthetic CNC LbL Bragg reflecting thin 

films. The film was compiled using an additive layer-by-layer technique which allowed the 

construction of a multi-layered thin film and control over individual layer thicknesses and 

refractive index.  

Also reported is the discovered reflection of both left and right handed circularly polarised 

light (CPL) from CNC EISA thin films. These reflections were found to correlate with 

CNC distribution within the thin films. The distribution of CNCs was estimated using a 

novel technique which combined spectroscopically measured film absorbance as a function 

of the volume of the film area under investigation. The specific volumes were calculated 

using profilometry measurements and the beam spot size used in the spectroscopy 

measurements.  
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Chapter 1 Introduction  

The human brain interprets the response of incident waves of visible light on the retina of 

the eye. These interpretations generate the perception in the human mind of the form, 

texture and colouration of objects from which light waves propagate. Understanding of 

what it is exactly that generates the idea of colour is still developing1, but what is known is 

the effective role it plays in influencing human behaviour2–5. This effect is not limited to 

humans, colour informs decision making across the animal kingdom and has the power to 

invoke emotional and physiological responses as animals and humans seek a mate6, warn 

off predators or decide what to eat7. The human response is especially strong when the 

colour observed is particularly striking as is the case with structurally coloured stimuli. 

Unlike the more common colouration of pigments and dyes, structural colour is generated 

by the interference of visible light with physical structures possessing nanoscale 

dimensions. Such structures give rise to iridescent colour and vary in complexity from 

simple thin films to intricate gyroid structures both of which are found in nature. Natural 

iridescent systems notable for their variety and brilliance have inspired scientists to mimic 

their structures and manipulate the resultant properties. The mechanisms that give rise to 

these colours are of interest to researchers representing a wide variety of primary fields8–10. 

Many examples of iridescent colour are found in Coleoptera beetles11–13, butterflies14,15 and 

bird feathers8,16. The optically brilliant appearance of many beetles is derived from 
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photonic structures found in the species integument13,17 which in some cases have also 

been found to show fluorescent behaviour18. The simplest form of photonic structure 

associated with the beetle exterior comprises very thin layers possessing an alternating 

contrasting refractive index (RI). Constructive interference of reflected light, or Bragg 

reflection, can be achieved by such systems when the optical thickness of each periodic 

layer times the RI is on the order of λ/4 and the viewing angle is close to 90°19,20. 

Successful, affordable fabrication of such structures could make structurally coloured 

systems useful for sensing21,22, the potential of which has been demonstrated by Deparis et 

al. (2014).23 Other potential applications are optical filters24,25 and the widespread 

replacement of pigment-based coatings26,27. Structurally coloured systems in beetles have 

been found to show variation in colour appearance when liquid is introduced18,28 

demonstrating their potential for sensing applications. The iridescent effect can only be 

generated by structural systems and is particularly conspicuous to the human eye which 

also lends them to industries where aesthetics are important. The complexity of these 

structures also makes them useful for security where marks of authentication are required. 

The development of the technique to apply layers of nanoscale thickness to given 

substrates, known as Layer by Layer assembly (LbL), has made fabricating Bragg 

reflecting systems cost efficient and has opened up the use of a broad range of 

materials24,29. Cellulose nanocrystals (CNCs) are one material shown to be effective for 

LbL films30 and one that has the potential to improve the process cost and efficiency. 

Cellulose is the main structural component in all plant life making it the most abundant 

material on the planet. The inherent mechanical properties of cellulose give plants their 

structural integrity and have long been exploited technologically in useful materials such as 

paper and fibre yarns. CNCs, extracted from plant cell walls by acid hydrolysis possess 
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excellent mechanical, thermal and electrical properties that are finding applications in 

many high end products31,32. In addition, cellulose nanocrystal suspensions are known to 

exhibit interesting optical properties33, self-assemble in confinement34 and even display 

colouration in flexible and shape memory films35,36. Such properties are derived from 

liquid crystalline phases of the rod-like cellulose nanocrystals which are believed to 

possess an intrinsic right handed twist37,38 and self-assemble in solution above specific 

concentrations. The structural ordering of self-assembling CNCs undergoes chiral twisting 

to form a chiral phase known as a cholesteric structure which, in the case of CNCs, possess 

a left handed twist39. Chiral structures possess optical properties that include circular 

dichroism, pseudo-Bragg reflections and strong rotatory power40. These properties are 

readily observed in solutions of CNCs from which the structures responsible for them can 

be frozen in upon evaporation of the solvent in a process called evaporation induced self-

assembly (EISA). The optical properties of chiral structures are much sought after in 

responsive photonic material technologies41 and CNC iridescent films offer a unique way 

of generating visible colour appearance using a material that is renewable and 

sustainable42. The problem in producing CNC thin films is achieving homogeneity 

throughout. Between the drying mechanics and the self-assembly process structural defects 

and anomalies are inevitable which impact on the optical efficiency of the film. Using the 

LbL method to produce Bragg reflectors is one way around this as it ensures homogenous 

layering, but at the sacrifice of some of the optical properties. The dichroic properties are 

based on the presence of cholesteric structures, formed during the self-assembly process, 

but heavily influenced by the drying mechanics. 

The aim of this thesis is twofold: Firstly, to investigate the use of CNCs in an LbL regime 

to fabricate tunable structurally coloured thin films. CNCs are a suitable material for LbL 



Introduction 

4 

 

assembly, but can their properties be utilised, using LbL to fabricate a Bragg reflecting 

film? Secondly, to understand how the drying mechanics of CNC droplets effects the 

distribution of CNC material within the EISA thin film and to explore relationships 

between this and the films optical properties. A variation in distribution may affect and 

help explain variations in optical properties across the film, particularly circular dichroism 

which is of particular interest to current researchers of CNC thin films37,38,43,44. The 

variation in CNC distribution may also be responsible for the development of defects in the 

layered structure which may be a contributing factor to variations in optical properties of 

the film. 

The following Chapters will outline the background and theory behind the principles of 

structural colour, the material cellulose and the LbL process used and the experimental 

results of this thesis. Chapters 2-4 are dedicated to the background and theory and Chapter 

5 will present the experimental methods used in this thesis. This will include the methods 

used to synthesise CNCs, the preparation of CNC EISA thin films, the structural and 

optical characterisation techniques used and the technique used to measure the CNC 

distribution in CNC EISA thin films. Chapters 6-7 show and discuss the results obtained 

from the experiments conducted and Chapter 8 presents conclusions drawn from the results 

along with suggestions of future work to address unanswered questions/findings.  
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Chapter 2 Theory of Structural Colour 

2.1 Structural Colour 

2.1.1 A familiar Phenomenon 

The light blue of a cloudless sky is a familiar colour and one that disappears at night, 

despite the presence of moon and starlight. It also changes hue with the position of the sun; 

a phenomenon not seen in pigment based materials like grass which maintains an even 

green from all viewing angles. The compounds responsible for the green colouration of 

grass can be extracted via chemical or mechanical processing, but no blue material has 

ever been extracted or precipitated from the sky. Neither does the passing of jet engines 

disturb or distort this colour. Such characteristics are derived from a system interacting 

with visible light or a part of it at a given time. This interaction is manifest due to the 

presence of optical heterogeneities in our earth’s atmosphere consisting of molecular and 

particulate bodies45. Whether molecules or particles (such as dust) are responsible has been 

strongly debated. In 1859 John Tyndall observed that blue wavelengths of light were 

polarised and scattered more strongly by clear suspensions46. 12 years later Lord Rayleigh 
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showed that the amount of light scattered is inversely proportional to the fourth power of 

wavelength (1/λ4) which means that shorter wavelengths are scattered more strongly than 

longer wavelengths47. Following these investigations Tyndall and Rayleigh believed that 

dust particles were responsible for the scattering of shorter wavelengths of light in the 

earth’s atmosphere.16 However, it was realised that if this was the case then greater 

variation in the sky colour appearance would be observable with changes in humidity and 

or haze conditions. Accepting the idea that molecules were responsible was hard as they 

were believed to be too small (~ 0.3 nm). Einstein in 1905 derived a detailed formula to 

explain the scattering of light from molecules. He concluded that molecules are able to 

scatter light because the electromagnetic field of the light waves induces electric dipole 

moments in the molecules48. The result in earth’s atmosphere is a scattering of almost 

linearly polarised blue light and the light is polarised more or less to a plane normal to that 

of the direction of the incident beam45, which is why the blue colour disappears when 

viewed in the direct path of the sun. Because the light is scattered in multiple directions, 

the sky appears blue on earth regardless of the viewing angle. When viewing a sunset, red 

and orange colours are observed because blue wavelengths are scattered away from the 

line of sight. Einstein’s work agreed with experiment but the explanation still begged the 

question ‘why isn’t the sky violet?’ as violet wavelengths are shorter than blue 

wavelengths and would therefore be more readily scattered. The answer to this is found in 

the way our eyes are setup to detect colour. The cells responsible have varying sensitivities 

to wavelengths of visible light. This will be explained in more depth in Section 2.4 where a 

standard for human colour perception is outlined. Better understood but less familiar are 

the systems found in nature that also produce unique colouration without the use of 
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pigments or dyes. Mason did much to explain the distinguishing features of structural 

colour and the various systems that exist in nature9,49.  

Natural systems displaying structural colour can be found in the integument of beetles,11,50–

52 the scaly wings of butterflies,14,53,54 the feathers of birds16,55–57 and in the scales of 

fish20,58–60. Structural colouration has also been observed in fossils61,62 of the above species. 

These systems consist of microscale structures possessing nanoscale periodicities that 

interfere with visible light. These periodic structures known as photonic crystals vary in 

complexity from a simple diffraction grating63 to 3-dimensional gyroids64,65. Such 

variations produce a range of colour appearances from matt whites to bright metallics 

known as specular reflectors. The dielectric materials available in nature possess negligible 

light absorption and are utilised to generate the periodicities mentioned. Typical materials 

are chitin (arthropod cuticle), keratin (bird feathers) and cellulose (plant structures) and are 

often in contrast with air cavities or layers of pigmented material such as melanin.  

2.1.2 Biological Photonic Crystals 

The simplest form of photonic crystal comprises alternating layers with different RIs. This 

basic 1-dimensional multilayer structure is the most common mechanism utilised by 

biological systems to achieve iridescence. It is particularly studied in beetles9,66,67 where 

scientists interested in structural colouration were particularly taken by the ‘living jewels’ 

– the name given to a species of the Buprestidae family of beetles boasting resplendent 

metallic and even specular colours (Figure 2-1). The study of the elytron of this beetle 

revealed layers of darkly contrasted material embedded at regular intervals of 60 nm in the 

otherwise pure chitin epicuticle. The increased density of these layers is attributed to 

melanin pigment deposits which are now known as the most commonly encountered 
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morphology utilised in nature to produce a periodicity in the RI. The simple multilayer 

structures observed in these beetles provides an efficient route towards developing 

artificial intense narrowband angle-dependent colour.  

 

 

Figure 2-1 Top: Photograph of the iridescent buprestid species Chrysochroa raja. 

Bottom: Typical TEM images showing cross sectional views of the epicuticular 

multilayer structure for the green region (left) and orange region (right). TEM 

images courtesy of P. Vukusic68. TEM scale is 500 nm. 

 

   

The 2-dimensional photonic crystal is less common in nature and typically consists of 

layers of rods stacked against one another, with several different packing geometries 

identified. Male peacocks conduct some of the most captivating visual displays witnessed 
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across the animal kingdom. The brilliant iridescent blue and green colours reflected from 

the feathers of these birds is generated by the ultrastructure of the feather barbules. For the 

genera Pavo and Afropavo species each feather barbule is a series of conjoined ‘saddle-

shaped’ segments containing a 2D quasi-square lattice of melanin rodlets inter-bonded by 

keratin with an air vacuole at the centre of each square within the lattice (Figure 2-2). 

Yoshioka and Kinoshita69 investigated these structures and using electron microscopy they 

observed melanin rods with lengths between 0.5 µm and 2 µm and diameters of 130 

arrayed periodically across 8-12 layers. Yellow feather barbules possess 3-6 layers of the 

same arrangement but with particle diameters of 140 nm.  

 

 

Figure 2-2 Images of (a) transverse and (b) longitudinal TEM cross-sections of a blue 

Peacock feather, with respect to the barbule axis. (Images courtesy of P. Vukusic). 

Scales bars: (a) 500 nm; (b) 1 µm. 
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When analysing the optical properties of such structures it is important to consider the 

directional dependence of the light reflected by the barbules. This is due to the ‘saddle’ 

shape which broadens the reflection over a large angular range69. Black-billed magpies 

have evolved a hexagonal lattice with air channels suspended in the keratin cortex of the 

barbules. This system exhibits complex optical properties as variation in colour cannot be 

straight forwardly reduced70. 

Biological structures with 3D ordered systems have been found to exist in greater 

abundance than 2D configurations. They are especially prevalent in the order Coleoptera 

where there appears to have been an evolutionary bias towards 3D photonic crystals. The 

scales of weevils (Figure 2-3top) have been of interest due to their striking colour palette 

which manifests through a wealth of elytral patterns. These are generated by a mosaic of 

differently coloured domains, each of which consist of a highly crystalline ultrastructure. 

SEM images of two of these types of scale are presented in Figure 2-3(a-d) where the 

photonic crystal takes on an FCC polycrystal structure exhibiting optical periodicity in 

three-dimensions. individual domains in the yellow scale (Figure 2-3a and c) are identified 

to be oriented differently. An array of these randomly oriented domains simultaneously 

exhibit both short range order and long-range disorder71–75. The blue scales (Figure 2-3b 

and d) show a quasi-ordered structure that is consistent across the scale. Such domaining is 

not exclusive to beetles, but has been described for crystalline structures found in the 

scales of several butterflies10,72,76–78. 

 



Theory of Structural Colour 

11 

 

 

Figure 2-3 Top: Photograph of the weevil Eupholus magnificus. Bottom: SEM images 

of (a) and (c) fractured yellow scales showing a highly periodic 3D photonic structure; 

(b) and (d) blue scales, showing contrasting quasi-ordered structure. Images 

reproduced from Pouya et al.73. Scale bars: Top: 4 mm; Bottom: (a) and (b) 10 µm; 

(c) and (d) 2 µm. 

 

Prum et al. have characterised many natural gyroid structures found in butterfly wings79 

and penguin feathers56 for example and used analysis of such structures to predict colour 

appearance of 3D amorphous biophotonic structures80.  
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2.1.3 Broadband reflectors 

The optical behaviour of 1D multilayer morphologies where the periodicity is assumed to 

be fixed across the crystal structure express coloured appearances for a narrow range of 

wavelengths. Colour appearances expressing a broad range of wavelengths also exist in 

nature. They are known as broadband or metallic reflectors and have crystal ultrastructures 

with variable periodicity. Three sub classifications of multilayer structure in biological 

reflectors have been identified as: (i) ‘chirped stacks, whereby the reflector exhibits a 

systematic variation in periodicity (Figure 2-4a); (ii) ‘multiple filter’ stacks, whereby two 

or more fixed-periodicity interference filters are arranged in sequence (Figure 2-4b), and 

(iii) chaotic or random stacks where disordered arrangements of layer thicknesses are 

featured (Figure 2-4c). 

 

Figure 2-4 The sub classifications of multilayer structure: (a) The ‘chirped stack’; (b) 

The ‘multiple-filter stack’; (c) The ‘chaotic’ or ‘random’ stack. Diagram courtesy of 

C. Pouya. 
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These structural configurations are responsible for broadband reflection in certain beetle 

species and give rise to specular gold colour appearances13. Some insects can alter the 

colour appearance by expelling/filling cavities with liquid which changes the refractive 

index and hence light interference. Control of colour appearance gives animals a distinct 

survival advantage, allowing for adaptation in a changing environment and the ability to 

evade and/or warn predators.    

2.1.4 Synthetic analogues 

Synthetic analogues that allow the same degree of control over colour appearance are 

useful across a range of industries and a variety of methods have been used in the 

fabrication of structurally coloured thin films. Kolle et al. designed elegant multifolding 

elastically-deformable Bragg reflecting membranes and fibres that are reversibly tunable 

across the full visible spectrum81,82. They used methods to apply alternating layers of 

refractive index contrasting rubbers stretched over a pinhole where pressure could be 

applied to achieve concave shaped deformations. One of the problems with using rubber in 

applications where light induces temperature variation is the control of failure due to creep. 

They also used a spin coating method to produce a multilayer which was then rolled into a 

fibre. Rapid sol-gel chemistry was used by Bartl et al. to produce Bragg reflectors on 

substrates with varying geometries29. The limitations of such a method are the need to heat 

at high temperatures (500˚C). Significant savings can be made where high heat processes 

can be avoided. The Layer by layer technique is a more cost-efficient method and is 

popular due to the scale up possibilities and low-cost options; these will be discussed 

further in Chapter 4.  
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Other approaches include the manipulation of polymeric compounds to form crystalline 

structures with photonic bandgaps. Block copolymers have been utilised to great effect. 

Combining well defined polymeric material via a supramolecular assembly process allows 

control of structure formation on small length scales (5-100 nm). This opens the possibility 

of mesoporous structures and metamaterials that are active at visible wavelengths. Block 

copolymer structures can be fabricated from a range of processing conditions that are 

compatible with solution processing techniques such as layer by layer assembly. Block 

copolymer assembly generates highly ordered nanostructures in the condensed matter state 

and yield a combination of uniform patterns with tunable symmetries. Resulting assemblies 

may be used directly or used as templates to produce complimenting inorganic 

nanostructures. An example of templating was carried out by Thomas et al. who fabricated 

nanoporous polymers with gyroid nanochannels from the self-assembly of degradable 

block copolymer, polystyrene-b-poly(L-lactide) (PS-PLLA)83. The process is illustrated in 

Figure 2-5 and is followed by the hydrolysis of PLLA blocks which then underwent a sol-

gel process to replace the PLLA with SiO2. The PS was removed leaving a SiO2 gyroid 

structure.  

 

 

Figure 2-5 Fabrication process of photonic gyroid structure using block copolymer 

template. Reproduced from Thomas et al., 2010. 
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The versatility, range of production routes and low cost of block copolymer assembly 

makes it an attractive platform to control and modulate the interaction of visible light with 

matter on the nanoscale. They have already been applied to 1D photonic crystals84–87, 

Bragg reflectors and antireflective coatings83,88–90 and offer a promising future for the 

development of light interference nanostructures. 

This thesis aims to exhibit control over colour appearance of a fabricated thin film 

structure like those discussed above. The objective is to do so using the most abundant and 

sustainable material on the planet. Cellulose is not suitable for block copolymer assembly 

but is suitable for layer by layer assembly, the benefits of which are discussed later in 

Chapter 4. One-dimensional multilayer structures lend themselves more to scalable 

operations and will be the starting point. The following sections will present the underlying 

theory of the interference of physical structures with visible light starting with thin films 

and then expanding to multilayer and chiral structures.  

 

2.2 Thin Film Interference 

Often the dynamic interference of visible light in thin transparent materials like soap 

bubbles and oil on water produce beautiful visual effects. This iridescence is associated 

with the interference between light and either single or multiple thin surface layers. From 

these thin films narrow band wavelengths of visible light are coherently reflected leading 

to a unique display of colour observable to the naked eye. Varying conditions in any given 

situation determine the observed interference pattern created, which is why the colours 
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observed in soap bubbles can change. For example, a film of oil on water is bound by 

parallel planes as illustrated in Figure 2-6.  

 

 

Figure 2-6 Schematic diagram showing the reflection of an incident wave (λ0) from a 

film of thickness d and refractive index n2. Reflected waves λ1 and λ2 emerge either 

constructively or destructively depending on the phase difference induced by the 

thickness of the film. 

 

The setup considers the use of a monochromatic light source and only considers the first 

two reflected waves λ1 and λ2 as reflected from the n1-n2 and n2-n3 interfaces, where n1-3 

denote the related refractive indices (RI). The path lengths that each wave follows is 

different but as λ1 and λ2 emerge, they do so in parallel and can be brought together at a 

point on a focal plane of an objective lens such as the retina of the eye. The path lengths of 

λ1 and λ2 are (AB⃗⃗⃗⃗  ⃗ + BC⃗⃗⃗⃗  ⃗) and (AD⃗⃗⃗⃗  ⃗) respectively. The equation for calculating the optical 

path difference (Λ) for the reflected waves is91  



Theory of Structural Colour 

17 

 

 Λ = 2𝑛2𝑑𝑐𝑜𝑠𝜃𝑡. (1) 

 

Where d is the film thickness and θt is the incident angle of the transmitted wave. Now we 

consider the associated phase difference of the emerging and recombining waves. The 

phase difference is the product of the free-space propagation number k0 (where k0 = 2π/λ) 

and the optical path difference (Λ). Factoring the relative phase shift of π radians (φ) 

experienced by the reflected beams we then have 

 𝛿 = 𝑘0Λ ± 𝜙 (2) 

 

where 𝜙 represents the additional relative phase shift of ±π. Equation 2 will now be 

assessed to establish whether the waves emerge constructively or destructively. 

Constructive interference will occur when δ is equal to 2π or integer multiples of this, 

hence 

 𝑚𝜆 ± 𝜙 = 2𝑛2𝑑𝑐𝑜𝑠𝜃𝑡, (3) 

 

where m is an integer. The waves will emerge destructively when out of phase by a factor 

of π equal to δ, hence 

 (𝑚 +
1

2
) 𝜆 ± 𝜙 = 2𝑛2𝑑𝑐𝑜𝑠𝜃𝑡. (4) 

 

Having expressions for the reflection of a wave from two interfaces and the either 

constructive or destructive recombining of these waves, we now move on to consider 

additional reflections that occur within the thin film. Figure 2-7 illustrates the continuous 
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reflection (r) in and transmission (t) through the film of an incident wave. Emerging waves 

may all contribute to the resulting reflection intensity.  

 

 

Figure 2-7 Schematic diagram showing the reflected and transmitted waves in a thin 

film with a RI of n2 an incident medium RI of n1 and exit medium RI of n3. 

 

From the behaviour highlighted in Figure 2-7 it is understood that there are an infinite 

number of reflections to consider. The expressions for calculating reflection can be 

reduced and subsequently, Stoke’s relations (which state that 𝑟𝑎𝑏 = −𝑟𝑏𝑎 and 𝑟𝑎𝑏
2 +

𝑡𝑎𝑏𝑡𝑏𝑎 = 1) can be applied to give an expression for reflection amplitude and 

corresponding reflection intensity from the film as follows 

 
𝑟 =

𝑟12 + 𝑟23𝑒
−𝑖(2𝛿)

1 + 𝑟23𝑟12𝑒−𝑖(2𝛿)
, (5) 

   

 
𝑅 = |𝑟|2 =

𝑟12
2 + 𝑟23

2 + 2𝑟12𝑟23𝑐𝑜𝑠(2𝛿)

1 + 𝑟23
2 𝑟12

2 + 2𝑟12𝑟23𝑐𝑜𝑠(2𝛿)
∙ (6) 
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These are Fresnel’s equations. Another method for calculating reflectance is the 

characteristic matrix of the investigated thin film91. This method can later be expanded to 

accommodate multilayered systems and forms the basis of the mathematical modelling 

used in this work. The characteristic matrix of a thin film considers the electric field (E) 

and the magnetic field (H) properties at the edge of the interface boundaries. The 

interfacial boundaries (denoted a and b) are split into tangential components of the E and 

H fields to give forward and backward propagating components which are linked by the 

tilted optical admittance (η) to give 

 
[
𝐵
𝐶
] = [

𝐸𝑎/𝐸𝑏

𝐻𝑎/𝐻𝑏
] = [

𝑐𝑜𝑠𝛿 (𝑖 𝑠𝑖𝑛𝛿)/𝜂2

𝜂2(𝑖 𝑠𝑖𝑛𝛿) 𝑐𝑜𝑠𝛿
] [

1
𝜂3

] (7) 

 

where [
𝐵
𝐶
] is the characteristic matrix of the thin film and Ea, Eb, Ha and Hb are the 

amplitudes of �⃗⃗�  and �⃗⃗⃗�  fields in materials a and b respectively.  The optical admittance (ηs) 

of the system is defined as: 

 
𝜂𝑠 =

𝐻𝑎

𝐸𝑎
=

𝐶

𝐵
=

𝜂3𝑐𝑜𝑠𝛿 + 𝜂2(𝑖 𝑠𝑖𝑛𝛿)

𝑐𝑜𝑠𝛿 + (𝑖 𝑠𝑖𝑛𝛿)𝜂3/𝜂2
∙ (8) 

 

The optical admittance relates to the incident medium in a relationship that defines the 

reflectance from the characteristic matrix as follows92: 

 𝑟 =
𝜂1 − 𝜂𝑠

𝜂1 − 𝜂𝑠
 (9) 

 

and 

 
𝑅 = (

𝜂1 − 𝜂𝑠

𝜂1 + 𝜂𝑠
) (

𝜂1 − 𝜂𝑠

𝜂1 + 𝜂𝑠
)
∗

. (10) 
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2.3 Multilayer Interference 

Here we consider periodic multilayered systems where thicknesses and RIs of layers repeat 

at regular intervals (Figure 2-8). The periodic structure consisting of layers with two 

different RIs.  

 

 

Figure 2-8 Schematic of an ‘ideal’ multilayer in which light reflected from every 

interface interferes constructively. This occurs when nada = nbdb = λ/4. 

 

 

To calculate reflection from a multi-layered thin film we use the characteristic matrix of a 

1-dimensional thin film, as described above, and adapt it to fit a system with q layers. Each 
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layer will require its own matrix and in the system an exit medium m. The following 

expression describes such a multilayer stack accounting for q layers;  

 

[
𝐵
𝐶
] = ∏{[

𝑐𝑜𝑠𝛿2 (𝑖 𝑠𝑖𝑛𝛿𝑗)/𝜂𝑗

𝜂𝑗+1(𝑖 𝑠𝑖𝑛𝛿𝑗) 𝑐𝑜𝑠𝛿𝑗

]} [
1
𝜂𝑚

] .

𝑞

𝑗=1

 (11) 

. 

This method is known as the Transfer Matrix Method. An expression for the reflected 

intensity is used to extract the optical properties of the multilayer stack and is given by 

 

 𝑅 = (
𝜂1𝐵−𝐶

𝜂1𝐵+𝐶
) (

𝜂1𝐵−𝐶

𝜂1𝐵+𝐶
)
∗

 . (12) 

   

For a full derivation for the above expressions please refer to Thin Film Optical Filters by 

H. A. Macleod92. 

 

2.3.1 Factors affecting reflectance from Multilayer systems 

Biological and natural multilayer systems can produce a diverse array of vivid colourful 

effects. The unique optical displays from such systems are determined by the interplay 

between contributing variables associated with the structure and its constituent materials. 

The contributing variables include the number of layers in the system, the angle-

dependence of reflection from the system and the disparity between the refractive indices 

of the na and nb layers.  

2.3.2 Effect of the number of layers 

The difference in layer number of a given multilayer system is only significant where 

relatively few layer numbers are concerned. A return in reflection diminishes once a 
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critical number of layers is reached where subsequent changes in reflectance become 

negligible. This effect is demonstrated in Figure 2-9(a) where reflectance from a 

theoretical ideal multilayer with a peak reflectance at 500 nm is shown for 3, 9 and 27 

layers. Reflectance from the 3-layer system exhibits broad band behaviour and would 

appear relatively dull to the eye.  

 

Figure 2-9 Data demonstrating the effects of key variables on peak reflectance in 

multilayer systems reproduced from Starkey et al.93. (a) Normal incidence reflectance 

of an ideal multilayer for 3, 9 and 27 layers. (b) A reflectance map showing the 

theoretical variation of normal incidence reflectance with increasing layer number, 

the colour-scale represents reflected intensity. Reflectance was calculated for a 

multilayer with λpeak =500 nm. (c) A reflectance map showing reflection intensity as a 

function of incidence angle from an ideal multilayer with λpeak =700 nm. (d) 

Reflectance map showing reflection intensity as a function of refractive index contrast  
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Reflectance from 9 layers exhibits more of the characteristic spectral features typically 

associated with multilayer reflectors. These include a maximum narrow band in reflectance 

at the peak wavelength and a series of maxima and minima side bands. The difference in 

peak reflectance between 3 and 9 layers is far greater than between 9 and 27 layers.  The 

peak reflectance for an ideal multilayer at normal incidence comprising alternating high RI 

(na) and low RI (nb) layers can be calculated using iterative methods94 where  

 

𝑅 =
(
𝑛𝑎

𝑛𝑏
)
2𝑠

𝑛𝑎
2 − 𝑛𝑖𝑛𝑐𝑛𝑜𝑢𝑡

(
𝑛𝑎

𝑛𝑏
)
2𝑠

𝑛𝑎
2 + 𝑛𝑖𝑛𝑐𝑛𝑜𝑢𝑡

 (13) 

 

and s denotes the number of high and low RI pairs in the system of 2s+1 layers. The RI of 

the incident and exit media is denoted by ninc (RI of the incident media) and nout (RI of the 

exit media), respectively. As the number of layers increases equation 13 reduces to 

 

 
𝑅 ≅ 1 − (

4𝑛𝑖𝑛𝑐𝑛𝑜𝑢𝑡

𝑛𝑎
2

) (
𝑛𝑏

𝑛𝑎
)
2𝑠

 (14) 
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And the peak reflectance rapidly approaches unity. The region of 100% reflectance is 

known as the photonic band gap (PBG). Figure 2-9(b) shows a reflectance map of 

reflectance intensity for the same system but with many more layer numbers. In this map it 

is clear to see the peak reflectance increasing until it approaches that of a multilayer of 

infinite layers. The spectral width of a multilayer’s PGB is governed by the constituent RIs 

of the layers95. 

 

2.2.3 The angle dependence of reflection 

The change in hue with viewing angle is a phenomenon known as iridescence and is 

notably produced by periodic structures. By varying the the incident angle, as illustrated in 

Figure 2-6 and as represented by θt in Equations 1 and 3, the optical path length through 

the periodic structure changes. An increased angle of incidence results in shorter 

wavelengths of light emerging constructively from the structure. This behaviour is 

presented graphically in Figure 2-9(c) where the reflectance maximum shifts towards 

shorter wavelengths (blue-shifts) with increasing angle of incidence. A strong blue-shift is 

shown in the map where peak reflectance at ~700 nm shifts to ~300 nm as incidence angle 

increases. Reflectance intensity however, is not constant and decreases to a minimum at 

the Brewster angle96. Beyond this point reflectance intensity rapidly increases.  

 

2.2.4 The effect of refractive index contrast 

The disparity between the refractive indices of the na and nb layers has a significant effect 

on reflectance. Figure 2-9(d) shows the dependence of normal incidence unpolarised 

reflection as a function of increasing RI contrast. As the contrast in RI increases the 
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intensity and band width of reflection also increases. Sheppard demonstrated this in 1995 

with the equation97  

 
𝑟 =

𝑛air𝑛H
2𝑚 − 𝑛S𝑛L

2𝑚

𝑛air𝑛H
2𝑚 + 𝑛3𝑛L

2𝑚 (15) 

 

where H represents the high RI, L the low RI, S is the substrate and m is the number of 

double layers. It can be seen from this equation that reflectance (r) increases as the 

difference between nH and nL increases. The extent to which biological multilayer systems 

can produce a complete PBG by RI disparity is limited by the materials available95. An 

advantage to the design of fabricated multilayer systems is the range of high-index 

materials available which may include metals and semiconductors. 

 

   

2.4 Cholesteric phases and chiral reflection 

The CNCs considered in this thesis undergo self-assembly to form a cholesteric liquid 

crystalline phase which may be preserved in a dry film following the evaporation of the 

solvent. To understand liquid crystalline phases, it is first useful to define the basic states 

of matter: gases, liquids and solids. In crystalline, amorphous and polymeric solids, atoms 

occupy fixed positions and occupy a definite volume, the bulk of which can withstand a 

shear stress. Movement of individual atoms is possible and only achieved with great 

difficulty due to reduced thermal motion. Gaseous states, in contrast, are characterised by 

the random, translational motion of molecules that experience little molecular interaction 
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and occupy no definite volume. Liquids are not as straight forward and possess a 

combination of some of the characteristics found in both solids and gases. The molecules 

in a liquid are free to move randomly and cannot withstand shear stress. Instead they only 

experience hydrostatic pressure or tension and is why the pressure in a liquid is the same in 

all directions. So, like a gas, liquids are fluid and part from gaseous behaviour where 

volume is concerned, because like a solid the molecules in a liquid occupy a definite 

volume. Another significant difference between a liquid and a gas is that liquids have 

structure and produce coherent diffraction patterns 98. A study of this structure lead Bernal 

et al.99 to develop the random packing model that helped them define liquids as 

‘homogeneous, coherent, and essentially irregular assemblages of molecules containing no 

crystalline regions’. A liquid crystal state is intermediate between the irregular 

assemblages of molecules in a liquid and a crystalline solid. Within liquid crystal states, 

molecules diffuse from one place to another while maintaining a degree of orientational 

order and sometimes a degree of positional order.  The ordered molecules in a liquid 

crystal generally have one molecular axis that tends to point along a preferred direction. 

This means liquid crystal phases are typically formed by amphiphilic molecules and certain 

organic molecules which have a high degree of anisotropy such as rod or disc-like 

molecules. There are many types of liquid crystal, all with a common attribute of 

anisotropy. It is the interactions between anisotropic molecules that promote orientational 

and positional order in a fluid medium. Typically, the long axis of such molecules will 

align to express a preferential direction with a certain degree of deviation. The deviation of 

the long axis of any given molecule by θ from this preferred direction can be measured. 
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Soap and phospholipids are commonly known rod-shaped molecules capable of forming 

liquid crystalline phases that take on the form of micelles and vesicles. Such molecules are 

referred to as mesogenic and form in one of two systems: either a thermotropic system or a 

lyotropic system100. A thermotropic system is temperature dependent and the liquid 

crystalline phase will only occur within a certain temperature that ranges between the 

crystalline melting point and the isotropic liquid temperature transition. The lyotropic 

system is of most relevance to this study and is where crystalline phases are formed at 

lower temperatures by the addition of a low molecular weight solvent. Lyotropic solutions 

have been shown to form liquid crystalline phases independent of temperature where 

instead, the formation is driven by the concentration of a suspension. The self-assembly 

process occurs spontaneously above a critical concentration of the polymer in solution. The 

above systems involve rigid-rod polymers such as cellulose nanocrystals. Mesogenic 

phases in liquid crystalline polymers (LCPs) naturally form particular structures known as 

smectic, nematic and cholesteric phases (Figure 2-10). These three phases were identified 

by Friedel in 1922 and are now known as the Friedelian classes100. It can be seen in Figure 

2-10(a) that the nematic liquid crystalline phase has long range orientational order but no 

short range positional order where the alignment of the crystals is imperfect but the centres 

of mass of the objects are distributed randomly. 
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Figure 2-10 Representations of rod shaped nanocrystal arrangements in the three 

Friedelian classes of liquid crystals: (a) Nematic; (b) Smectic; (c) Cholesteric. 

 

The smectic phase shown in Figure 2-10(b) adopts a more clearly defined layer structure 

and is a result of molecules that are naturally amphiphilic such as those found in detergents 

and soaps. The phospholipid bilayer of cell membranes is an example of a smectic order. 

Like the nematic phase, the alignment of a smectic phase is imperfect but has long range 

orientational order100. The cholesteric phase is similar to that of the nematic phase only it 

undergoes twisting about an axis perpendicular to the director (Figure 2-10c). The 

gradually twisting cholesteric has a progressively rotating direction of components made 

up of multi-laminate neighbouring planes101. The twist is a spontaneous arrangement and a 

result of an intrinsic chiral or asymmetric characteristic of the constituent molecules. The 

helix formed by the gradual rotation between planes of nematic molecules is temperature-

dependent100. At high temperature the molecules have greater thermal energy and this 

generally results in a larger angle of rotation which creates a tighter pitch. Cholesteric 

structures occur naturally and have been observed in crab and insect integument10,51,53. The 

optical properties of such systems are well understood. 
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2.4.0 Pseudo Bragg Reflections 

The arrangement of CNC layers described in Section 2.3.2 consists of optical elements 

piled so that principle axes of the successive elements are turned through a small angle α. 

This rotation presents periodic refractive index variations to a light beam with a given 

orientation and behaves like a multilayer reflector as described in Section 2.2. The light is 

then diffracted when the Bragg type condition: 

 𝜆 = 𝑛𝑃𝑠𝑖𝑛𝜃B (16) 

 

is satisfied, where n is the mean refractive index and θB is the Bragg angle. Figure 2-11 

highlights the Bragg parameters for reflection from a structure with a periodic variation in 

refractive index (n1 and n2). 

 

Figure 2-11 Typical transmission electron microscope image of a CNC thin film cross 

section with Bragg conditions overlaid on the image. 

 

The periodicity in the structure gives rise to a photonic bandgap where, for a given 

incidence angle of white light, a narrow band of light is constructively reflected. Where 
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variation also exists in the orientation of regions of a sample then multiple wavelengths of 

incident light will be selectively reflected producing multifarious coloured effects. 

 

2.4.1 Birefringence 

The optical anisotropy of uniaxial crystals gives rise to a difference in the electric field of 

the components of reflected and transmitted polarised light. This is due to the relative 

permittivity of uniaxial crystals being different for electric fields in different directions.  

Each polarisation experiences a difference in the refractive index; one of high (nH) and one 

of low (nL) refractive index. This phenomenon, known as birefringence (B) is a measure of 

the difference between these two refractive indices which is responsible for the optical 

retardation of light passing through or reflected from the medium, Β =  | 𝑛H  −  𝑛L |. In a 

nematic liquid crystal this means that light polarised parallel to the director propagates 

according to one index of refraction, and light polarised perpendicular to the director has 

another index of refraction. The retardation of polarised light passing through anisotropic 

crystals with a given thickness (t) is: Γ = Β × 𝑡. When observed between crossed polarisers 

birefringent effects give rise to interference colours which are indicative of how the optical 

axis of the uniaxial crystals is aligned with respect to the retardation wave plate. A typical 

colour interference pattern is shown in Figure 2-12 where the alignment of the optical axis 

of the uniaxial crystals with respect to the retardation wave plate determines the 

appearance of colour102. Crystals aligned with their optical axis parallel to the wave plate 

appear blue and those aligned at a 90° angle appear yellow. At a 45° angle to the wave 

plate the crystals appear “pinky-red”.  
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Polarised optical microscopy (POM) is a useful tool for quickly identifying the crystal 

alignment throughout a given sample. The image shown in Figure 2-12 shows a multiphase 

region of a thin film where the crystalline regions are 10-100 μm across and are distributed 

relatively evenly.   

 

 

Figure 2-12 Typical polarised optical microscope (POM) image of a birefringent CNC 

thin film (top) and a schematic showing colour appearance generated by alignment of 

the birefringent uniaxial crystal optical axis with the optical axis of the retardation 

plate. Image is unpublished data. 
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2.4.2 Circular Dichroism 

Circularly polarised light is generated by inducing a π/2 phase shift between the two 

orthogonal components of plane polarised light. The handedness of the circularly polarised 

(CP) light is either left (LCP) or right (RCP) and depends on which of the orthogonal 

planes of polarisation has undergone a phase shift. The chiral structures of cholesteric 

mesophases are optically active and selectively reflect like handedness or transmit opposite 

handedness as illustrated in Figure 2-13. 

 

 

Figure 2-13 Specific cholesteric optical effect where selective transmission and 

reflection of LCP and RCP light occurs when λ0 = nP. 
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The mathematics used to model the reflection from structures that induce elliptical changes 

to the polarisation of incident light will be presented here and is based on the work by R. 

C. Jones103.  Jones calculus is used to model the reflection of incident light along the 

helical axis of a cholesteric structure within a thin film. Jones’ method accounts for the 

optical rotation produced by many optical elements piled so that the principle axes of the 

successive elements is turned through a small angle α. Each optical element is an 

infinitesimally thin birefringent layer. The Jones vector 

 
𝐄 = [

𝐸𝑥(𝑡)

𝐸𝑦(𝑡)
] (17) 

 

 represents the electric state of a beam where 𝐸𝑥(𝑡) and 𝐸𝑦(𝑡) are the instantaneous scalar 

components of E. In order to preserve phase formation, 𝜑𝑥 and 𝜑𝑦 the appropriate phases 

are included and equation 18 becomes 

 
𝐄 = [

𝐸0𝑥𝑒
𝑖𝜑𝑥

𝐸0𝑦𝑒
𝑖𝜑𝑦

]. (18) 

 

The perpendicular (s) and parallel (p) polarisations are given by 

 
𝐄s = [𝐸0𝑥𝑒

𝑖𝜑𝑥

0
]  and 𝐄p = [

0
𝐸0𝑦𝑒

𝑖𝜑𝑦]. (19) 

 

E is then equal to the sum of the two components in equation 20 and after factoring is 

given by 

 𝐄 = 𝐸0𝑥𝑒
𝑖𝜑𝑥 [

1
1
] (20) 
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where the amplitudes are equal and the phase difference is zero. To gain simpler 

expressions the irradiance can be normalised to unity. Dividing each vector in equation 20 

by the same scalar quantity gives s and p states of 

 𝐄s = [
1
0
]    and   𝐄p = [

0
1
]. (21) 

 

The normalised Jones vectors for right and left circularly polarised light follow as  

 
𝐄RCP =

1

√2
[
1
−𝑖

]    and   𝐄LCP =
1

√2
[
1
𝑖
] (22) 

 

Now that the polarisation states have representative vectors (Ei), the changes induced by 

passing through a birefringent material can be considered. A monochromatic polarised 

incident wave, Ein, incident upon birefringent chiral layers will emerge altered possessing 

the new vector Eout. The alteration of the vector is explained mathematically using a 2x2 

matrix (J) (the elements of which are complex), expressed as  

 

 𝐄𝒐𝒖𝒕 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 𝐄𝑖𝑛. (23) 

 

   

where a represents the possible polarisation state induced by the medium on the incident 

light. This matrix calculus method determines the linear transformation of the Jones vector 

of a plane wave by reflection or transmission. As described above the incident wave will 

interact with piled optical elements which here will be represented by the matrices J1, 

J2,…, Jn-1, Jn, then  
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 𝐄𝑜𝑢𝑡 = (𝐉𝑛𝐉𝑛−1 … 𝐉2𝐉1)𝐄𝑖𝑛. (24) 

 

   

The matrices need to be applied in the correct order, as they do not commute, so a 

particular coordination system is used to specify the orientations of the incident and 

emergent light beams relating to each Jones matrix. The Jones matrix for a RCP optical 

element is 

 

 

 1

2
[
1 𝑖
−𝑖 1

] (25) 

 

   

and for an LCP optical element 

 1

2
[
1 −𝑖
𝑖 1

]. (26) 

 

This method allows the calculation of resulting polarisation states of light waves emerging 

from a given optical system. This is achieved by taking the product of the Jones vector and 

the Jones matrix as described above. 

 

 

 

2.4.3 Rotatory Power 

The supramolecular organisation of the cholesteric mespohase gives rise to high values of 

rotatory power (Ω) which can be estimated from the de Vries formula40: 
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Ω =

𝜋𝑃

4𝜆2
∙

Δ𝑛2

1 − (𝜆/𝜆0)2
 (27) 

 

where P is thickness, λ is the incident wavelength, λ0 is the mean wavelength of the 

reflection band and Δn the birefringence in a plane perpendicular to the optical path and to 

the helix axis. Plane polarised light transmitted through a typical optically active solution 

or crystal will undergo rotation of 1-2 radians per mm pathlength whereas plane polarised 

light transmitted through a cholesteric mesophase parallel to the helix axis can have its 

plane rotated by up to 100 radians per mm. 

 

2.5 Colourimetry using CIE values 

Quantitative links between visible wavelengths of light and the physiological perceived 

colours in human vision were defined in 1931 by the Commission Internationale de 

l’Eclairage (International Commission on Illumination; CIE). Electromagnetic radiation 

with wavelengths in the visible region of the spectrum is detected by two types of 

photoreceptor cell in the retina of the human eye called rods and cones. The cone cell 

photoreceptors differentiate wavelength and facilitate colour perception. They consist of 

three cone cell light detectors which are sensitive to either short wave lengths (S, 420-440 

nm), to medium (M, 530-540 nm) and long wavelengths (L, 560-580 nm) of light104. The 

spectral sensitivity of these S, M and L cells is presented in Figure 2-14(a). The 

mathematical relationships developed to define colour spaces that are used to quantify 

human vision are based on colour matching functions (CMFs). These functions describe 
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the amounts of red, green and blue light which, when mixed, match a monochromatic light 

of wavelength λ of constant radiant power. The amounts may be negative (Figure 2-14b) 

and have been standardised by the CIE. 

 

 

Figure 2-14 (a) Spectral sensitivity curves of the long, medium and short wavelength 

sensitive (L, M and S) cones. Reproduced from Foster (2010)104. (b) The CIE 1931 

RGB colour matching functions. (c) X, Y and Z spectral sensitivity curves. 

Reproduced from Wyman et al. (2013)105. (d) The CIE 1931 colour space chromaticity 

diagram. 

 

The sensitivities together represent an average human perception of colour and provide 

what is called a tristimulus specification of the objective colour of the visible spectrum. 
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The RGB colour space makes use of monochromatic primary colours of wavelengths 700 

nm (red), 546.1 nm (green) and 435.8 nm (blue)106. They are defined by the CIE RGB 

colour matching functions107 �̅�(λ), �̅�(λ), and �̅�(λ) (which are the spectral response curves 

for the S, M and L cones) from which the RGB tristimulus values are obtained 

 
𝑅 = ∫ 𝑆(λ)�̅�(λ)𝑑λ

∞

0

, (28) 

 

 
𝐺 = ∫ 𝑆(λ)�̅�(λ)𝑑λ

∞

0

, (29) 

 

 
𝐵 = ∫ 𝑆(λ)�̅�(λ)𝑑λ

∞

0

, (30) 

 

where S(λ) is the spectral power distribution of a given colour. These were later 

reformatted in to the mathematically equivalent CMFs �̅�(λ), �̅�(λ) and 𝑧̅(λ) (Figure 2-14c). 

The tristimulus values X, Y and Z (Figure 2-14c) define the CIE colour space that 

encompasses the colour sensations experienced by the average human. These are used to 

define an object’s perceived colour as follows 

 
𝑋 = 𝑘 ∫ �̅�(λ)𝑠(λ)𝑅(λ)dλ

780

380

 (31) 

 

 
𝑌 = 𝑘 ∫ �̅�(λ)𝑠(λ)𝑅(λ)dλ

780

380

 (32) 

 

 
𝑍 = 𝑘 ∫ 𝑧̅(λ)𝑠(λ)𝑅(λ)dλ

780

380

 (33) 
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where k is a normalisation constant given by  

 
𝑘 = 100/∫ �̅�(𝜆)𝑠(𝜆)d𝜆

780

380

 (34) 

 

and where s is the spectral energy distribution of the illuminant and R is the measured 

reflectance of an object. When the tristimulus values are normalised against one another 

we  have  

 
𝑥 =

𝑋

𝑋 + 𝑌 + 𝑍
, (35) 

 

 
𝑦 =

𝑌

𝑋 + 𝑌 + 𝑍
, (36) 

 

 
𝑧 =

𝑍

𝑋 + 𝑌 + 𝑍
. (37) 

 

Only two of the above parameters are required to define any hue of colour since 

x + y + z = 1. The parameters conventionally used are x and y (z = 1 – x – y), also known as 

the chromaticity coordinates which are subsequently plotted on the CIE colour triangle 

(Figure 2-14d).  
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My dear wife, Harry and Ezra, I love you. 
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Chapter 3 Cellulose  

3.1 Synthesis and structure 

The presence of structural material in plants was first observed by Nӓgeli in the mid-1800s 

who observed brick-like structures surrounding plant cells. He concluded that plant cell 

membranes were composed of sub-microscopic crystalline particles that he called 

micelles108. These were confirmed in the early 1900s by Meyer and Mark. The micelles 

were discovered to be made of polymer chains known as cellulose, the molecular formula 

of which (C6H12O6) had already been established by the French chemist Anselm Payen in 

1838. The structure of the C6H12O6 molecule is shown in Figure 3-1(a) and represents the 

long chain cellulose polymer. A single molecule, called glucose is the repeat unit and made 

up of a pyranose ring consisting of 5 carbon atoms and 1 oxygen atom. Attached to the 

carbon atoms are hydrogen atoms, hydroxyl groups and a hydroxymethyl group on the 5th 

carbon atom. The repeat units of the cellulose polymer are glucose monomers which form 

a 1, 4-β glucan chain with neighbouring monomers rotated by 180° with respect to each 

other (Figure 3-1a)109. Polymerisation of glucose monomers is catalysed in the plasma 
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membrane by cellulose synthase (CesA) proteins110. Each CesA unit (Figure 3-1b) 

produces one polymer chain and typically exist as a rosette subunit which has six-fold 

symmetry110. A rosette contains six rosette subunits which produce 36 chains 

simultaneously (Figure 3-1b). These chains spontaneously bundle together forming 

microfibrils (2-4 nm in diameter to several microns) in the cell wall and represent the 

micelles observed by Nӓgeli.  

 

 

Figure 3-1 (a) Two repeat units of cellulose. (b) The CesA protein responsible for the 

synthesis of polymeric cellulose chains and the protein clusters responsible for the 

formation of cellulose microfibrils. Image published by Doblin et al. 2002110. 
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The rotation of monomers produces a relatively flat polymer chain allowing adjacent 

chains to interact at proximity to each other. The polymer chains interact via hydrogen 

bonding, hydrophobic interactions between the flat pyranose rings and Van der Waals 

forces which all contribute to sustaining a highly crystalline structure111. Measurements of 

the size of these molecules or micelles was undertaken by Staudinger and Neale who 

identified the continuation of polymer chains into irregular amorphous networks and 

assumed cotton cellulose to be built up of almost continuous unit lengths 108.  It is now 

known that these continuous molecules form a primary and a secondary plant cell wall 

each consisting of 20-30% and 50% cellulose content respectively. The degree of 

polymerization (DP) varies for each plant, with the primary wall cellulose DPs to fall 

between either 250-500 or 2,500-4,000 and the DP in the secondary wall to fall between 

10,000 and 15,000.112 Cellulose is the main structural component in the cell wall but not 

the only component. The cell wall consists of cellulose fibrils and fibres interacting with 

matrix polysaccharides, called hemicelluloses. Lignin and pectin are two other matrix 

materials found in the cell wall, and they also interact with the cellulose fibrils to make up 

what is known as the cellulose-hemicellulose network.  

3.2 Cellulose Nanocrystal Synthesis and Characterisation 

In the mid-1900s the degradation of cellulose was of particular interest to scientists who 

employed scanning electron microscopy (SEM) to visualise the texture, on the colloidal 

scale, of cellulose fibres113,114. In the mid-1900s Ranby developed our understanding of the 

properties of colloidal cellulose and the chemistry of manipulating cellulose micelles114,115. 

Shortly after, in 1953 Mukherjee and Woods visualised what are now called cellulose 

nanocrystals (CNCs) by SEM analysis116. In 1959 Marchessault et al. included a 
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homogenising treatment to the hydrolysed cellulose crystallites which they observed 

produced a stable suspension and in gel form they observed liquid crystal textures117. Little 

more was published on the liquid crystal behaviour of colloidal cellulose until the 1990s 

when this unique behaviour was rediscovered by Gray et al.33, whose work will be 

discussed further in Section 3.4.  

Cellulose was degraded by acid hydrolysis to produce these CNCs, which is still the most 

common method used today19,118–120. The method takes cellulose in the form of wood, 

cotton or tunicates for example, which is then converted into a pulp via blending at high 

speed in water. Delignification takes place prior to this if necessary, which involves the 

removal of the matrix material lignin. A strong acid is then added to the pulp solution and 

stirred vigorously for a specified length of time. The acid protonates the ester bonds, 

breaking the cellulose chain bundles down into smaller crystals many of which will be 

nano-sized (Figure 3-2a). Further processing via filtration and centrifugation removes any 

larger aggregates reducing the size distribution of the crystals. Characterisation of the 

sulfate half-ester content on the surface ( as shown in Figure 3-2b) of the CNCs can be 

determined by conductometric titration121,122 and can be increased via TEMPO-mediated 

oxidation. TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl) compounds oxidise cellulose 

monomer hydroxide groups to carboxylic acids123,124 (Figure 3-2b) the presence of which 

increase the surface charge. This process results in the formation of double bonds between 

the 4, 5 carbon atoms in the ring. The electron used to form this bond is taken from the 1, 4 

glycosidic linkage which breaks the backbone of the polymer chains.  

Little is known about how the rod shape of CNCs is formed or hoe the acid interacts with 

the material to produce such morphology. Initial thoughts considered distinct regions of 

alternating amorphous and crystalline regions (Figure 3-2a).  
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Figure 3-2 (a) Schematic showing the conversion of cellulose microfibrils to cellulose 

nanocrystals via acid hydrolysis. (b) Schematic of the two routes for producing 

anionic CNCs, resulting in carboxylate (left) and sulfate half ester (right) surface 

groups. 

 

The acid would more readily break down the amorphous regions releasing the crystalline 

rods. This model contrasts with observations of cellulose where the presence of regularly 

repeating amorphous regions would be identifiable. The morphology of CNCs is well 

understood for various cellulose sources. Their morphologies range from rods to whiskers 

which possess a certain degree of surface roughness. In addition, how the cellulose chains 

emerge from plant cells to form highly crystalline bundles with 2-4 nm diameters125 is also 

known. The individual cellulose chains are highly crystalline and possess chirality, a 
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physical feature which is perpetuated throughout the individual fibre bundles126. The 

aggregation of these fibre bundles into microfibrils could form much like match sticks 

would if they were stuck together with their long axis aligned parallel but arranged with 

ends at varying heights in an irregular brick like fashion. The gaps between the imperfectly 

packed fibre bundles are most likely responsible for the surface roughness of CNCs and it 

would then follow that hydrolysis acts more readily between neighbouring fibres releasing 

them from the bundle. It should also be noted that the amorphous hemicellulose network 

intertwined with the cellulose microfibrils is more readily hydrolysed than the resistant 

crystalline structure of cellulose. Once hydrolysed the breakdown of the hemicellulose may 

weaken the interfibrillar bonding and leave pores accessible to the acid during hydrolysis.     

Once CNCs have been produced they can be kept as a suspension or undergo drying via 

lyophilisation127–129. Efforts to reduce the waste while maintaining high CNC yields have 

employed the use of milder acids which prevent the degradation of cellulose into soluble 

sugars which cannot be economically recovered. Instead the unwanted cellulosic solid 

residues are collected via centrifugation and converted to cellulose nanofibrils by 

mechanical nano-fibrillation130. Chemical treatment is necessary to produce CNCs but 

mechanical processes can be used to separate cellulose into the constituent cellulose 

nanofibrils (CNFs). High pressure homogenization, high-intensity ultrasonic treatments 

and cryocrushing are such techniques used to extract CNFs which may then undergo 

chemical treatment to form CNCs. Direct chemical treatment is preferential as it reduces 

energy consumption and yields CNCs with higher crystallinity131.   

Cellulose source materials vary, as do their properties131. The main sources of cellulose 

used to synthesise CNCs are plants, Algae, specific types of bacteria and tunicates. Plants 

provide an abundant source of cellulose the most commonly used are wood pulp and cotton 
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fibres. They produce highly crystalline, relatively low aspect ratio rod shaped crystals. 

Other plants of interest are jute, ramie, sisal flax and hemp. Highly crystalline cellulose is 

found in the cell wall of many types of algae. Some algae produce cellulose with degrees 

of crystallinity as high as 95%.132 Specific types of bacteria produce cellulose pellicles 

which yield CNCs that have a unique nanostructure, high purity, good dimensional 

stability and greater mechanical strength than other forms133. Tunicates are marine 

invertebrates capable of producing large amounts of cellulose which they use to build 

leathery skeletal structures within their integumentary tissues134. They use enzyme 

complexes to produce cellulose with properties that may vary depending on the species. 

Tunicates produce long rod shaped CNCs that have the highest aspect ratio of the cellulose 

source materials.   

  

Table 3.1 Overview of source dependent dimensions of CNCs. Reproduced from 

George et al.133. 

Source  

Preparation 

method 

Length (nm) Width (nm) 

Aspect ratio 

(L/D) 

Wood H2SO4 hydrolysis 100-300 3-5 20-100 

Cotton HCl hydrolysis 100-150 5-10 10-30 

Ramie H2SO4 hydrolysis 70-200 5-15 ~12 

Sisal H2SO4 hydrolysis 100-300 3-5 ~60 

Valonia H2SO4 hydrolysis 1000-2000 10-20 50-200 

Tunicates H2SO4 hydrolysis >1000 10-20 ~100 

Bacteria H2SO4 hydrolysis 100-1000 10-50 2-100 

Bacteria HCl hydrolysis 160-420 15-25 7-23 
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The various length and widths of the CNCs produced from different source material are 

listed in table 3.1 above. The range in CNC dimensions offers a selection when considering 

a CNC source for a specific application, particularly as a reinforcing material in 

composites. CNCs are highly crystalline and offer boast good mechanical properties. The 

first experimental determination of the crystal modulus of cellulose was conducted by 

Sakurada et al. By using x-ray diffraction combined with a series of weights to load fibre 

bundles in tension they arrived at a value of 138 GPa for cellulose-I135. Others later 

confirmed this via similar experiments on plant cellulose fibres136 and more recently the 

crystal modulus has been determined using sound velocities of X-rays in plant fibres. 

These experiments yielded higher values of 220 GPa137 which is claimed to be unlikely 

accurate31, particularly when theoretical derivations have given values in the range 100-

160 GPa138–140. What is said to be likely is that once the amorphous fraction of cellulose is 

removed by hydrolysis then the resultant CNCs should have a modulus close to that of the 

crystal.  To investigate this further, on what is a difficult scale to work with, Sturcova et 

al.141 used Raman spectroscopy to follow molecular deformation of the CNCs while 

deformed in a 4-point bending test and estimate the modulus. It was Hamad and Eichhorn 

in 1997 who first used this technique to show that molecular deformations could be 

followed by mapping the shift in the characteristic Raman peak (1095 cm-1) produced by 

cellulose142. For tunicate CNCs a value of 143 GPa was obtained and for other acid 

hydrolysed material values of 50-100 GPa143. More direct mechanical measurements have 

been made using an AFM bending stiffness technique where the deflection of the probe 

pressed onto an affine object is measured. The reported values were 145.2-150.7 GPa144 for 

unmodified and TEMPO modified tunicate CNCs.     
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3.3 Mechanics of drying droplets 

CNCs in solution will form chiral nematic crystalline phases above a critical 

concentration33,39,145. In addition to the spontaneous self-assembly of CNCs in solution are 

the factors that influence film formation in droplets. The substrate, the concentration and 

size of the suspended nanoparticles all effect the droplet behaviour146,147. These additional 

factors influence the self-assembly process and are important to consider because the liquid 

crystalline phases formed can be ‘frozen’ into a dry film19,148–153.   

  

 

Figure 3-3 (a) Schematic highlighting the receding drop profiles of free moving 

contact lines (dashed line) and pinned contact lines (solid line). (b) Low contact angle 

results in faster rate of evaporation at the edge of the droplet. Water is replenished 

from the centre of the drop which carries with it the suspended solute material. (c) 

Spheres in water during evaporation. Multiple exposures are superimposed to 

indicate the motion of the microspheres. Reproduced from Deegan et al.(d) The 

Droplet-normalised particle number density, ρ/N, plotted as a function of radial 

distance from the centre of the drop for ellipsoidal particles with various major-

minor axis aspect ratios (α). Reproduced from Yunker et al.154 
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The evaporation of solvent from a droplet is a non-equilibrium process, is complex and 

difficult to control. The resulting phenomenon is the coffee-ring effect and is produced by 

the interplay of factors like surface tension, fluid dynamics, evaporation and capillarity. As 

the solvent of a suspension evaporates its edges are pinned by the suspended particles 

which means the edges cannot recede towards the middle of the drop and a constant 

diameter is maintained (Figure 3-3a)155. This occurs despite the edges of the drop being 

thinner than the middle. Thus, to maintain a liquid region at the edge liquid must be 

replenished from the middle creating capillary flow towards the edges of the droplet156. 

The coffee-ring is produced as suspended particles are carried in the flow and deposited at 

the edge (Figure 3-3b)154. The morphology of the particles can influence the contact angle 

which will affect the rate of capillary flow157,158. In addition to the capillary flow, small 

temperature differences generate surface tension gradients between the top of the drop and 

the contact line which induce solvent movements called Maragoni flow159,160. The term 

coffee-ring comes from the stain often left behind by a coffee cup on the surface it was 

sitting on. The dried coffee ring is darkest around the edge and lightest towards the middle. 

The coffee-ring is also effective in systems with constituents ranging from large 

colloids159,161–163, to nanoparticles (such as CNCs)164 and to individual molecules165.  An 

example of a coffee ring is shown in Figure 3-3(c) where microspheres in water have 

accumulated toward the edge of the drying droplet. As the solvent is replenished solute 

material, in this case spheres, is deposited towards the droplet edge where, in the final dry 

film, it is found to be radially distributed with a concentration distribution which is 

significantly higher at the edge (Figure 3-3d). The plot in Figure 3-3 (d) shows how 

significantly high the density of microparticles can be towards the edge of the dried 
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droplet, where the density variation towards the centre is negligible. Droplets of CNC 

suspensions behave as described above. The droplets are pinned and the replenishing 

solution from the interior of the droplet deposits higher concentrations of CNC material 

around the edge of the drying film.  

Particle morphology has been found to affect particle deposition. One such difference is 

between smooth anisotropic ellipsoids and smooth isotropic spheres where anisotropic 

ellipsoids deform the air-water interface and smooth isotropic spheres do not166–168. The 

deformation of the air-water interface induces a strong interparticle capillary attraction 

between the ellipsoids causing them to form a loosely packed network. This network can 

cover the entire air-water interface leaving a uniform distribution of ellipsoids when 

evaporation has finished. Spheres on the other hand simply pack densely at the drop’s edge 

producing a coffee-ring. CNCs are rod shaped and Mashkour et al. showed that upon 

reaching the drying line the rod-shaped CNCs undergo up to a 90 degree rotation to align 

parallel to the edge of the film169. The schematic in Figure 3-4(a) shows a section of film 

and highlights how the long axis of the CNC rods is aligned parallel to the dry edge. CNCs 

reaching the edge in a perpendicular fashion rotate to align with parallel with the growing 

nematic arrangement. Figure 3-4(b) highlights this alignment in a dried CNC film viewed 

between crossed polarisers and Figure 3-4(c) highlights the difference in organisation of 

CNCs alighed towards the edge of a dry film and CNCs in the middle of the film. 

Mashkour et al. described the surface tension torque (STT) phenomenon which is 

responsible for the CNC rotation at the edge of the drying film. CNCs that are close to the 

dry boundary layer (shown in Figure 3-4a) are affected by a STT which results as a 

function of the surface tension force of the liquid and the contracting force between two 

immiscible materials. A very clear drying effect is seen on the formation of a CNC film 
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formed via EISA which is important to consider when developing homogenous optically 

active films. Peiss et al. also showed that the relationship between the rate of evaporation 

and the radius of drying drops is non-linear170.  

 

 

 

Figure 3-4 (a) A schematic showing the approach to and rotation of CNCs at the 

drying line. (b) Observation of a curved nanopatterned CNC-PVA film between 

crossed polarised films. (c) AFM micrographs from the surface of the CNC film in 

(b). The left image was taken toward the edge of the film and the right image was 

taken from the centre of the film. Reproduced from Mashkour et al.169.  
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The combined effects of these behaviours contribute to the inhomogeneous distribution of 

solid material within EISA films and may help to explain the variation in optical behaviour 

across such films148. CNC spheres have been formed using microfluidics to avoid the need 

for a substrate which means a more even evaporation rate from the spherical droplet34. The 

behaviour and formation of the CNCs at the droplet surface interface are the same and 

align parallel to the surface34. 

One of the difficulties in measuring the local particle density of anisotropic particles with 

large packing fractions is the surface saturation. Individual particles cannot be 

differentiated. The AFM images in (c) give a sense of directionality but no confidence 

could be had in a quantitative study of local particle density. An understanding of local 

particle density is important when trying to understand optical behaviour which is of 

interest to this study. The packing of and concentration of particles determines parameters 

such as refractive index and the pitch of the cholesteric structures formed which in turn 

effect optical behaviour. Defects may also be present where variations in local particle 

density are found against a constant final dry film height. Defects also affect optical 

properties. To overcome this problem, a novel technique was used to quantify particle 

distribution using a combination of profilometry and optical microscopy.       

 

3.4 CNC Thin Films 

CNC thin films can be prepared simply by casting a CNC suspension on a substrate and 

allowing the solvent to evaporate. As the solvent evaporates the CNC concentration 

increases and crystalline phases start to form in the shape of ellipsoidal tactoids171 (Figure 
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3-5a). The tactoids are crystalline phases of ordered CNCs in solution. Liquid crystalline 

phases in CNC suspensions were observed by Werbowyj et al.172 in 1976 and confirmed to 

form chiral nematic phases by Revol et al. in 199233.  The microdomain tactoids possess a 

lamella-like structure made up of nematic layers with a perpendicular chiral twist33,171. The 

illustrations in Figure 3-5 describe what happens as the evaporation of the solvent 

progresses. The tactoids coalesce to form layers that lie parallel to the substrate and film 

surfaces (Figure 3-5b-c). The chiral twist is maintained by a small degree of rotation 

between each layer. Mu and Gray explained the appearance of ring formation to be a 

product of the mass transfer effect on CNC concentration and thickness throughout the 

film148. The variation in concentration is responsible for the variation in the pitch of the 

frozen in chiral nematic structure 148. 

 

 

Figure 3-5 Models of the structure and transformation of tactoids reproduced from 

Wang et al. 2015171. (a-c) Schematic diagrams of the tactoids and their 

transformations as the solvent evaporates from the CNC suspension. A typical fusion 

mode which leads to the defects of folded layers is shown.   
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The layers produced in the final film still possess the helicity in the z-axis formed in 

solution (Figure 3-6a). The periodicity of the resulting chiral structure gives rise to an 

optical band gap and the films then interfere with visible light to express optical properties 

such as iridescence, an example of which is shown in Figure 3-6(b). The optical 

characteristics of chiral structures were explained in Section 2.3. Filters are required to 

distinguish between the various polarisations of light reflected from the film. The chirality 

in CNC thin films is reported to preferentially reflect Left Handed Circularly Polarized 

(LCP) light, indicating a left handed twist in the cholesteric structure39,173. The Bouligand 

curvature observed in SEM images also confirms that curvature is consistent in one 

direction only39,171,173.  

 

 

 

Figure 3-6 Images showing the utilization of CNC chiral nematic phases. (a) The 

chiral nematic liquid crystal phase and its coexistence with an isotropic phase in a 

CNC suspension, reproduced from Lagerwall et al.19 Below is a schematic and an 

SEM image, reproduced from Majoinen et al.39, of the helical arrangement of CNCs. 

(b) Images expressing the optical characteristics of CNC thin films, reproduced from 

Zhang et al.174. (c) Photograph of Silica films made by templating the CNC helical 

structure, reproduced from Shopsowitz et al.175 
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Cellulose fibrils have been observed to possess a right handed twist38,126 which would 

intuitively produce a left handed twist when stacked37. The angle dependence of the 

reflection of LCP light has also been shown to be consistent over a broad range of angles173 

which is only true for the still liquid state as the tactoid microdomain phases are randomly 

oriented and reflect at all angles. Once the film has formed and is dry, then angle 

dependence of reflected CPL decreases with increasing incident angle173. The reflection of 

both LCP and RCP sates has only been reported to reflect from engineered films176 and 

natural systems that include a quarter wave plate in a cholesteric structure which changes 

the polarisation state of the incident light13. 

Mechanical and magnetic interference during film formation can induce alignments to 

produce films with tuneable optical properties63. These manipulate the properties discussed 

and have not yet introduced new optical properties. The optical structures CNCs form can 

also be used as a template for introducing optical periodicity into materials with different 

refractive indices177–179 (Figure 3-6c) and to develop inverse glass structures that scatter 

light180. Iridescent colours and control of the chiral helix orientation in CNC thin films 

have been shown to correlate to the structural properties and homogeneity respectively of 

the films. These effects were induced by applying a shear flow to the drying 

suspensions181,182. Many have also demonstrated tunability by chemical treatment, such as 

introducing ions and other molecules to the CNC suspension/CNC surface44. The addition 

of glucose (1-10%) to CNC suspensions was shown to have this effect. Higher percentages 

of glucose inhibit mass transfer in the drying droplet and the formation of shorter pitched 

structures shifting the reflection band to longer wavelengths, oranges and reds148. Another 

chemical method by Azzam et al. involved grafting the thermoresponsive polymer 

polyetheramine on to the surface of TEMPO-oxidised CNCs183. This functionality 
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introduced variation in the viscoelastic properties of the final suspension as a function of 

temperature183. The result was a reversible temperature-triggered liquid to gel transition. 

Tunability may also be controlled by mechanical treatment. Chen et al. showed that large 

iridescent CNC films that are highly oriented can be made using a vacuum assisted self-

assembly method with a prolonged ultrasonic pretreatment184. 

Much has been done to influence and control the pitch of the photonic band gap and 

overall homogeneity of CNC thin films19. There are, however fundamental issues related to 

the sensitive balance between liquid crystal formation and gelation/glass formation and the 

possibility of controlling the alignment of CNCs in either helical or non-helical states that 

have yet to be fully understood. This thesis will show that the variation in film structure 

induced by the drying mechanics can produce optical behaviours not yet seen in CNC thin 

films. It will also demonstrate that a tunable, homogenous Bragg-reflecting film can be 

made by combining CNCs and other organic materials.   

 

  



Cellulose 

58 

 

Dear Bryony, Harry and Ezra, I love you 
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Chapter 4 Layer by Layer Assembly 

4.1 The development of Layer by Layer Assembly 

Early in the 20th Century the fundamental properties of liquids and solids were of particular 

interest to scientists such as Lord Rayleigh and Henri Devaux. Among them was Irving 

Langmuir, who with his contemporaries discussed and established the nature of chemical 

forces and their role in the cohesion of and interaction between a broad range of solids and 

liquids. Their experiments included observations of oil thin films on water and 

measurements of film thicknesses and surface tensions. They used small water troughs like 

the one shown in Figure 4-1a. Devaux was able to determine the areas covered by films 

from weighed amounts of oils and readily calculated the film thickness which he found 

corresponded to, what would be, the diameter of a single molecule. In the case of triolein, 

the thickness of the film created on water was calculated as 1.1 nm which corresponded to 

the theoretical value for the diameter of a molecule of triolein at 1.13 nm 185. Able to 

measure film thicknesses, Devaux could then correlate this to the physical properties of the 

liquids. Of his thin film work, Devaux concluded: 
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“This general conclusion: the characteristic mechanical properties corresponding 

to certain states of a body, the surface tension of a liquid or the rigidity of a solid, persist 

almost intact down to molecular thicknesses, disappearing abruptly the minute we go 

further.” 

Inspired by this Irving Langmuir went on to explain the cause of spreading of oils on water 

and in 1941 while working at General Electric he demonstrated that one layer of thorium 

ions is absorbed on a monomolecular layer of barium stearate on water. He then showed 

that when this thoria-covered surface is brought into contact with dilute solution of sodium 

silicate, a layer of silica is absorbed. He explained these interactions were due to the fact 

that the adsorption of ions on a surface is limited to a single layer 186. Out of these 

experiments and the new understanding they led to, grew ideas of being able to assemble 

thin films by depositing monomolecular layers on to substrates. Langmuir soon went on to 

develop these ideas and created techniques for depositing thin films from liquids to solid 

substrates. Working with Langmuir, Blodgett invented a vertical dipping lever 187 (Figure 

4-1a-b) to immerse a solid substrate, aligned perpendicular to the liquid surface, in an oil 

covered trough. A monolayer film was transferred from the liquid surface to the surface of 

the solid substrate. A short while later Schaefer designed a horizontal deposition technique 

(Figure 4-1c) that transferred the monolayer without the need for immersion. The 

illustrations in Figure 4-1 show how these techniques worked and include the published 

illustration of the original setup used by Blodgett (Figure 4-1a). 
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Figure 4-1 a. Illustration published by Blodgett of the layer by layer setup used to 

deposit monomolecular layers onto a substrate. The letters are as follows: T: trough, 

D: water bath, B: metal barrier coated with paraffin wax, K: pen made of detachable 

strips of glass, G: glass slide substrate, L: Lever, W: windlass, H: rod, J: clamp. b-c. 

Langmuir-Blodgett and Langmuir-Schaefer vertical and horizontal methods for 

depositing monomolecular layers from a liquid to a solid substrate.  

 

In the 1960s Iler went on to develop our understanding of the LbL technique and 

introduced an adaptation of this technique using aqueous solutions of colloidal particles to 

produce multi-layered thin films, some of which displayed interference colours 188. The 

method Iler used was simple, the process consisted of a substrate, in this case black plate 

glass and well-characterised inorganic solutions. The black plate glass was siliceous and 

anionic in nature, presenting a hydrophilic surface to the first 0.25% suspension of 

boehmite alumina (cationic in nature) it was wetted with. The excess solution was rinsed 

off the glass surface and the substrate was air-dried. The substrate was then wetted with an 



Layer by Layer Assembly 

62 

 

anionic solution of 2% colloidal silica adjusted to pH 3 and again followed by rinsing and 

drying. Iler identified two factors the formation of visible films depends on 188: 

1. When a single layer of colloidal particles is adsorbed from an aqueous solution onto a 

smooth, wettable solid surface of opposite ionic charge, no further adsorption occurs 

because the ionic charge on the surface is reversed and the remaining particles in 

solution are repelled and are subsequently washed off. By repeating the operation, 

films of any desired thickness can be built up. 

2. When the thickness of the adsorbed film is over about 50 nm and thus approaches the 

order of magnitude of the wavelength of visible light, the film becomes visible in 

reflected light, providing the refractive index of the film is between those of air and of 

the substrate.  

The formation of thin films is driven by the difference in electronegativity of oppositely 

charged particles which gives rise to the adsorption of monolayer thin films onto solid 

substrates. Monolayers are produced, because once the initial layer has bonded the charge 

is altered and any remaining particles are repulsed and subsequently washed away.  

 

4.2 Electrostatic Self-Assembly 

The underlying principle behind LbL is the electrostatic interaction between oppositely 

charged atoms within particles and molecules. This process is known as electrostatic self-

assembly (ESA). These interactions are responsible for the diffusion-driven kinetics of the 

assembly process and result in the bonding of neighbouring atoms with different 

electronegativties. The unpaired electrons of atoms in neighbouring molecules attract 

positively charged atoms. Such non-bond interactions occur between the oxygen atoms in 

water molecules and is responsible for the folding of long chain polymers. Amphiphilic 
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molecules possess both polar and apolar parts. An example of an amphiphilic molecule (or 

amphiphile) is a fatty acid. Electrostatic interactions cause these molecules to form bilayer 

membranes that make up endothelial cell walls. They also self-assemble in solution to form 

liposomes and micelles. Techniques to produce vesicles have applications in drug delivery. 

The natural charges present in polymeric and particulate materials are utilised to deposit 

thin layers and build multilayer stacks. An illustration of this is provided below in Figure 

4-2. 

  

Figure 4-2 Schematic of the layer deposition by electrostatic interaction to produce 

multilayer thin films.  

 

This stepwise growth process involves consecutive cycles of alternating adsorption of 

polyanions and polycations onto a charged surface. The material adsorbed is limited to the 

remaining charge on the current surface following neutralisation of adsorbed material. 

Resaturation leads to a reversal in charge on the substrate and any excess unbound material 

is either repelled or washed off before dipping into a subsequent solution189.  A cation or 

anion needs to have a sufficient charge density, bearing a minimal number of charged 

groups below which ESA will not work. Quantifying this is difficult due to the other 

Substrate 
Cationic 

polymer 

Anionic 

particles 

Multilayer 
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variables that affect the process such as the additional strong interactions of the starting 

materials which may reduce the minimum charge required190. With a limit on adsorption, 

the build-up of layers can be finely controlled. Such tuning is possible due to the manner 

in which precise control of thin film structure is possible through adjustment of 

solution concentration191,192, pH/ionic strength,193,194 temperature195,196, molecular 

weight197,198 and deposition time31,199 of the aqueous deposition mixtures.  

 

4.3 LbL: A Universal Technique 

Over the past two decades the demand for functional thin films for high end applications 

has increased. LbL is now a prevalent method used to produce thin films and various 

production techniques have been developed (Figure 4-3). These techniques are illustrated 

in Figure 4-3 and include spin and spray coating and the use of electromagnetism and 

fluidics to induce adsorption. The immersive technique (Figure 4-3A) is the technique 

described in Section 5.1 introduced by Iler and is the technique used in this study. 

Following Iler’s approach a substrate is simply immersed alternately into solutions of 

cationic and anionic polymers/particles where suspended material is adsorbed onto the 

surface to cover the substrate in a uniform layer with a given thickness. The spin coating 

method (Figure 4-3B) utilises the technology used to apply coatings via spinning of the 

substrate200. The spinning can either occur during material application or immediately after 

the material has been applied201,202. 
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Figure 4-3 Layer by Layer (LbL) assembly technologies. (A-E) Schematics of the five 

major technology categories for LbL assembly published by Richardson et al.203  
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The spinning method has the advantage of being quick (~30 s layer deposition) but is 

limited to small sample areas that must be flat, excluding complex shapes accessible to the 

immersive technique. Layer deposition can also be achieved by aerosolising polymer 

solutions and spraying them directly onto substrates (Figure 4-3C)204. This method can be 

applied to larger and more complex geometries and would require dynamic control of the 

spray nozzle to ensure an even distribution. For flat substrates, the spray assembly method 

also lends itself well to operating on a commercial scale. Figure 4-3E illustrates the 

electrodeposition method where an applied electric charge or magnetic field is used to 

effect the layering process205. Electrodeposition can be used to deposit ions, polymers and 

colloids onto the electrodes themselves or onto substrates placed between the electrodes206. 

The final method, fluidic assembly, makes use of a vacuum or pressure to move liquids 

through channels to coat the channel walls207. This method is more equipment intensive but 

has the advantage of being able to apply coatings to unusual materials such as 

nanocellulose aerogels and liquid crystals. This approach can also be used to deposit 

materials like reduced-graphene oxide in a uniform multilayer208,209.   

 

 

4.4 A Method for Fabricating Bragg Stacks 

Methods such as thermal evaporation, spin-coating, multi-layer extrusion and sol-gel 

chemistry are techniques that have been used to successfully fabricate 1D photonic 

crystals, but are limited in their range of materials and scale. Other methods used to 

deposit Bragg stacks include chemical vapor deposition (CVD)210,211 and physical 
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vapor deposition (PVD).212,213 These techniques are size-limited and have lots of 

process complexity. An additional approach is the use of sol-gel processing via spin 

coating, dip coating or casting. Despite its simplicity compared to vapor deposition, 

sol-gel techniques suffer from issues of poor uniformity and cracking (heat 

treatment is required to improve this) over larger areas.22 The LbL technique stands as 

a potential solution to all of these problems, offering versatility, use of a broad range of 

materials and scope for fine-tuning of both structure and properties. The multifunctionality 

of LbL assemblies enable its application in drug delivery214,215, gas 

barrier/separation216,217, biosensing218,219, wettability control220,221 and flame 

retardency222,223. Most importantly, this simple deposition process makes 

industrialization possible, with the potential for scaling up to a continuous dipping40 

or even a continuous spraying process.41 The versatility of the LbL technique means 

that cellulose nanocrystals can be introduced and more will be discussed on their suitability 

in Chapter 6. Successful, affordable fabrication of such structures could make Bragg 

reflectors useful for sensing21,22, optical filters24,25, and the widespread replacement of 

pigment-based coatings26,27. The iridescent effect can only be generated by structural 

systems and is particularly conspicuous to the human eye which also lends them to 

industries where aesthetics is important. The complexity of these structures also makes 

them useful for security, where marks of authentication are required.  

Demonstrated in this thesis is the suitability of CNCs for an LbL regime and the use of this 

regime to produce tunable iridescent thin films. The significance of this is found in the fact 

that cellulose is the most abundant resource on the planet, which when combined with the 

adaptability and scalability of the LbL process makes for a cost-effective method for 

producing a broad range of colour solutions for a host of potential applications. 
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Chapter 5 Experimental Methods 

 

 

CNCs were used to form photonic structures via an LbL deposition technique and EISA. 

The following sections will outline the materials and methods used to fabricate the thin 

films and characterise their structural and optical behaviour. Also presented here are the 

methods used to calculate CNC EISA thin film volumes and measure the distribution of 

CNCs across the diameter of the films.  

5.1 Synthesis of CNC photonic structures 

5.1.1 Synthesis of LbL Bragg stacks 

The method used to fabricate CNC Bragg stacks was based on the immersive LbL 

deposition method described in Section 4.3. The layer-by-layer deposition technique 

provided the control required building up layers with specific thicknesses. The technique 
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also accommodates the use of a broad range of materials which can be manipulated to 

obtain tailored refractive indices.   

 

5.1.1.1 Synthesis of cellulose nanocrystals  

CNCs were derived from cotton using sulphuric acid hydrolysis, adapted from the method 

published by Clift et al. 224. Following this method, 5.2 g of Whatman No.1 filter paper 

were shredded into a Waring blender with 250 ml of deionized water. The mixture was 

blended at high speed to form a pulp that was subsequently poured into a beaker and 

placed into an ice bath where the solution temperature was maintained below 20°C while 

140 ml of 98% sulphuric acid was slowly added. The solution was rigorously stirred 

throughout. Following the addition of acid, the solution was heated to 50°C and held for 

4.5 hours. The mixture was then cooled to room temperature and the CNC solution was 

repeatedly washed via centrifugation at 3400 rpm for 15 minutes. At the end of each 

centrifuge cycle the acidic supernatant was discarded and replenished with deionized 

water. This process was repeated until the suspension reached a pH of 4, after which the 

suspension was dialyzed for approximately 24 hours in a homemade dialysis unit until the 

pH was neutral. To remove larger aggregates the suspension was probe sonicated and 

centrifuged at 10,000 rpm for 5 minutes. The CNCs were retained as a suspension and 

visualised using transmission electron microscopy (TEM). TEM is described in Section 

5.2.3. The length and width of the synthesised CNCs were measured from TEM images 

using ImageJ software. The data was fit with a Gaussian curve.  

 



Experimental Methods 

71 

 

5.1.1.2 Conductometric titration 

The stable CNC suspension formed is one good reason why CNCs are suitable for an LbL 

regime. The attractive electrostatic forces between charged particles is the driving force 

behind particle assembly in the LbL process and means materials used in this method 

possessing a charge have an advantage over molecules/particles bonded by the weaker van 

der Waals forces. For effective transfer from a solution to a solid substrate, particularly as 

far as the immersion technique is concerned, the material also needs to form a stable and 

well dispersed suspension. These two conditions are sought after for materials used in an 

LbL process. In the case of CNCs the acid hydrolysis process results in the attachment of 

sulphate half ester groups to the sixth carbon branch of the CNCs (Figure 3-2b). The 

sulphate ester groups give the CNC surface an anionic charge which enables CNCs to form 

a stable suspension in water. This charge also contributes to the diffusion rate onto the 

immersed substrate. The charge density of CNC particles can be quantified by 

conductometric titration against a dilute sodium hydroxide (NaOH) solution225. The 

technique indirectly detects surface sulphate-ester groups through the consumption of 

protons which leads to the neutralisation of the solution and an eventual build-up of excess 

NaOH. This experiment was based on the method presented by Jorfi et al.226, where 50 mg 

of CNCs were suspended in 15 ml of aqueous 0.01 M HCl. After 5 minutes of stirring and 

30 seconds of probe sonication, the suspension was titrated with 0.01 M NaOH. An Oakton 

conductometric 2700 meter was used to measure the conductivity (μS) of the suspension. 

The titration curve produced was evaluated by considering the three regions generated. 

These regions are magnified in the curve plotted in Figure 5-1 and the data are fitted to 

separate linear regressions. The conductivity decreases as the protons associated with the 

acid sulphate esters are consumed and replaced by sodium cations. The conductivity then 

increases once the required amount of NaOH for neutralisation is exceeded. A control 
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experiment was run using a solution without the presence of CNCs to assess the accuracy 

of the titration volume, the value of which was subtracted from the volume determined for 

the titration containing CNCs.  

 

 

Figure 5-1 Typical titration curve showing conductivity as a function of NaOH 

volume of an aqueous suspension of CNCs. 

 

The concentration of the sulphate charge density was calculated using the equation  

 𝑚SO3
− (mmol)

𝑚𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 (kg)
=

𝐶NaOH × 𝑉NaOH

WCNC
× 106 (38) 
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where CNaOH is the concentration of the base (0.01 M), VNaOH is equal to V2 minus V1 and is 

the volume of NaOH used to titrate the weak acid, and WCNC is the mass (g) of sulphated 

CNCs employed for the measurement. 

 

5.1.1.3 Materials used in layer construction 

The LbL assembly process controls the thickness of the layers in the Bragg stack by 

varying the number of cation/anion bilayer deposition cycles within each layer. At the 

same time the refractive index of the alternating layers needs to be controlled to establish 

the multilayers and achieve Bragg reflection. The alternating high (A) and low (B) 

refractive index layers are controlled in two ways: Firstly, materials with varying refractive 

indices can be used and combined in appropriate proportions. Secondly, as has been done 

here, materials with varying morphologies can be used to produce either denser or very 

porous structures. Porous structures will have an average RI between the material used and 

that of air. The asymmetry of the CNC morphology is an additional advantage. The rod-

shaped particles have an aspect ratio of ~15 which can be utilised to produce highly porous 

assemblies when combined with spherical particles (colloidal silica spheres in this case). 

The porous structure created by a rod sphere combination will result in air pockets as a 

result of poor packing. The air pockets will lower the average refractive index of the 

overall layer thus further increasing the RI disparity between the high and low RI layers227. 

The effective refractive index (neff) can be found from the equation 

 

 𝑛eff = 𝑛CNC𝑓CNC + 𝑛SiO𝑓SiO + 𝑛air(1 − [𝑓CNC + 𝑓SiO]) (39) 

   

where nair and nCNC and nSiO are refractive indices of air, CNCs and silicon oxide and fCNC, 

fSiO are the volume fractions occupied by the respective materials. CNCs were combined 
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with cationic colloidal silica to create a porous structure that makeup the low RI layer 

(Layer B in Table 5.1). The high refractive index layers (layer A in Table 5.1) were created 

using materials commonly used in LbL assembly and with morphologies suitable for more 

effective packing to achieve the opposite effect desired for Layer B. The two materials 

used were polyethylenimine (PEI), a cationic polymer and anionic vermiculate (VMT) clay 

2D platelets. Electrostatic bonding between PEI and the flat face of VMT platelets 

encourages the high aspect ratio disks to align parallel to the substrate forming dense 

sheeted layers. The specific concentrations and pH of the solutions prepared are presented 

in Table 5.1. 

 

Table 5.1 A and B layer materials, solution concentration and pH. 

Layer Sublayer Materials Concentration (%) pH 

A 
PEI 0.1 10 

VMT 1 7 

B 
CNC 0.1 7 

SiO2 1 4 

 

 

Assembly of the materials was as follows; the cationic solutions were prepared by adding 

0.1 wt% of branched polyethylenimine (PEI) (Sigma Aldrich) (Mw ~ 25,000 g mol-1), or 

1 wt% of colloidal silica (SiO2) (particle size 12±2 nm) (Ludox CL) (Sigma Aldrich) into 

deionized water. The pH of PEI and SiO2 solutions were adjusted to 10 and 4, respectively, 

by adding 1.0 M hydrochloric acid (HCl). Anionic solutions were prepared using deionized 

water to make up a 1 wt% vermiculite (VMT) concentration (aspect ratio ~1100) (trade 

name Microlites 963++) (Specialty Vermiculite Corp.) solution and a 0.1 wt% CNC 
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solution. The CNC solution was adjusted to pH 7 using 0.1 M NaOH, and the VMT 

solution was set for 24 hours before use; the top supernatant part was used at its natural pH 

(~7.5). Single-side-polished (100) silicon wafers (University Wafer, South Boston, MA) 

were used as substrates for ellipsometry and scanning electron microscopy (SEM). Fused 

quartz slides (Structure Probe Inc., West Chester, PA) were used to measure the optical 

reflection from the films. Both silicon wafers and quartz slides were rinsed with deionized 

water and methanol before use, then plasma-treated with an ATT0 Plasma Cleaner 

(Thierry Corp., Royal Oak, MI). Plasma treatment improves adhesion of the first 

polyelectrolyte layer by oxidizing the substrate surface24. The substrate was first dipped 

into the PEI solution for 5 minutes, followed by rinsing with deionised water for 30 

seconds and drying with a stream of filtered air. After the first positively-charged layer was 

adsorbed, the substrate was dipped into VMT solution for another 5 minutes, followed by 

another rinsing and drying cycle. Starting from the second bilayer deposition, the 

remaining layers were deposited using one-minute dip times. This process was undertaken 

using home-built robotic systems at Texas A&M University. After depositing the required 

number of PEI/VMT bilayers, the solutions were replaced with SiO2 and CNCs and 

dipping continued until the required number of bilayers had been deposited. Two Bragg 

stacks with alternating A and B layers were prepared, one to reflect in the green region of 

the visible spectrum and another to reflect in the orange region of the visible spectrum. For 

simplification, the Bragg stack films will be referred to as either the green reflecting Bragg 

stack or the orange reflecting Bragg stack. The LbL setup is shown in Figure 5-2(a) and 

follows the method Iler et al.188 described in Chapter 4, where a solid substrate is 

alternately dipped into well characterised organic solutions.  
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Figure 5-2 Illustrations of the LbL setup (a) wherein bilayers are applied by alternate 

dipping until the desired thickness for either A or B is reached and bilayer profiles 

(b) of A and B layers which together form the final Bragg stack (c).  
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Schematics of the A and B layer cross sections in Figure 5-2(b) show the bilayer 

configuration brought about by alternate dipping. Once a given thickness is reached for 

layer A, dipping will then proceed in the two solutions used to build up the B layer creating 

a stack of A and B layers as shown in Figure 5-2(c). The number of bilayers used in each A 

and B layer will determine the overall thickness. The number of A and B layers, which in 

the Figure is denoted (AB)2A (Figure 5-2c), will determine the thickness of the overall 

stack which will begin and end with an A layer. The growth profile data was used to 

model systems that would give narrow band reflection of visible light. The 

calculations were performed using transfer matrices, where various thicknesses and 

RI values taken from the growth profiles revealed combinations for stacks that 

would lead to bright reflectance in the visible region. Two systems were chosen to 

generate stacks that would reflect green and orange light and also mimic those 

displayed by the C. rajah beetle.  

 

 

5.1.2 EISA thin films 

5.1.2.1 Casting 

A 6 wt.% aqueous solution of CNCs was obtained from FP Innovations. The CNCs have a 

sulphur content of 0.7-0.8% of the CNC mass and NaOH counter ions were used in their 

synthesis. Aqueous CNC droplets, 10 µl in volume, were deposited on to glass slides and 

immediately weighed. The droplets were left to dry at ambient temperature and pressure. 

The mass of the films was calculated as 6% of the droplet weight. The mass value was 

used to calculate the theoretical volume of a given film. The drop volume of 10 μl 

produced thin films of a suitable size (between 4-6 mm) so as to be practical to 
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characterise, particularly where profilometry was concerned as larger drops introduce 

greater measurement errors. TEM samples of film cross-sections were prepared using the 

common solvent exchange method which was successfully applied to CNC thin films by 

Giasson228. 

 

5.2.3 Calculating CNC Mass Distribution 

The distribution of CNC mass was calculated as a relative concentration value using 

spectroscopic measurements of reflection and transmission (Figure 5-3) to calculate 

absorption. These measurements were taken using the MSP setup described in Section 

5.3.2 where the micrometer stage was used to position neighbouring points across a given 

film diameter. Calculations of the nanocrystal distribution required knowledge of the 

volume of the section of film under investigation and the mass of solid material within the 

section.  

 

 

Figure 5-3 Schematic of a cross sectional profile (in height Z) of a CNC film along 

which reflection and transmission data are recorded using MSP from neighbouring 

points along x.  
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While it was not possible to measure mass directly, it was calculated using measured film 

volumes, the mass of the droplet and the assumption that within a given volume fraction 

(Vf) there will be a proportional mass fraction (mf). This assumption is based on an equal 

rate of evaporation of solvent from around the hemispherical edge of the cast droplet 

resulting in an even radial distribution of the CNC solute material, hence 𝑉f ∝ 𝑚f. Once the 

mass was known, for a given volume of the film, the distribution of that mass with that 

section of film could be determined spectroscopically. MSP was used to record 

transmission and reflection spectra from which absorbance (A) could be calculated using 

the equation  

 1 − (𝑅 + 𝑇) = 𝐴  (40) 

 

where R and T are the fractions of reflected and transmitted light respectively. Spectra 

were taken from neighbouring points along the diameter of the film where profilometry 

data had been previously recorded. This was done so that an average height could be used 

to calculate the volume from which spectra were recorded, the total volume fraction being 

proportional to the mass fraction. From these calculations and experimental data, the 

distribution of CNCs across the diameter of a film can be determined and then used to 

identify relationships between CNC distribution and the reflection of circularly polarised 

and unpolarised light. 
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5.2 Structural Characterisation 

5.2.1 Profilometry 

Profilometry was used to map 2D cross-sectional profiles of EISA thin films, which were 

then used to calculate film volumes. Profilometers move a stylus across the surface of a 

sample and quantitatively measures the change in step height of the stylus as it follows the 

sample’s profile (Figure 5-4a). The changing position of the stylus deflects the laser into a 

photodiode detector. The deflections are translated into a 2D topographical profiles (Figure 

5-4b). Scan lengths can be up to 30 mm and stylus step heights are ~1.2 mm.  

 

 

Figure 5-4 Schematics of the profilometer (a) and the compiled 2D film profiles 

generated by the profilometer (b). 

 

 

The volume of the film was calculated by first measuring the cross-sectional profiles of 

solid films using a D100 Alpha step profiler. Profiles were recorded using the stylus arc 

movement in ‘step up’ mode with a low stylus force to avoid damaging the samples. The 

stylus has a 2 μm radius tip. Profilometry measurements were used to obtain multiple 
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cross-sectional profiles for a given film. The area beneath each cross-sectional profile was 

calculated using the trapezoidal integration method. Figure 5-3(b) illustrates the how the 

profiles were compiled. The equation  

 
𝑉f = ∑

𝐴𝑖

2
(

𝜃

360
𝜋𝑟)

𝑖

 (41) 

 

was used to calculate the volume (Vf) of the film, where r is the radius of the drop profile 

section, A is the area of the profile cross section and θ which is the angle between 

neighbouring profile sections. For a comparison the volume was calculated again, but this 

time using a single averaged area according to the equation  

 𝑉 = 𝐴av.𝜋𝑟. (42) 

 

To determine the accuracy of film measurements, theoretical volume calculations were 

performed. These calculations were based on the mass of CNCs being 6% of the weight of 

the cast droplet and the individual CNC dimensions. These values made it possible to 

calculate the volume (VCNC) and mass (mCNC) of a single nanocrystal which were then used 

to calculate the number (N) of CNCs in the final film (using a density of 1.5 g cm-3 for 

cellulose). The volume of an individual nanocrystal was then multiplied by the total 

number (N) of CNCs. The theoretical volume values were expected to be smaller than the 

measured values as the calculation assumes close packing, only accounting for the volume 

of each individual nanocrystal and not the space between neighbouring CNCs. 
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5.2.2 Scanning electron microscopy 

The ability to resolve distances beyond the capability of the human eye depends on the 

wavelength of the medium used and the quality of the lenses guiding the medium. Once the 

wavelengths of light in an optical microscope become the limiting factor (~ 200 nm) a new 

medium is required to improve resolution. The de Brogile wavelengths of electrons are 

smaller than the wavelengths of light and enable a finer resolution of the finer elements in 

a given sample. Scanning electron microscopy (SEM) utilises the resolving power of 

electrons by accelerating and focusing them into a beam directed at a sample. The beam 

scans the surface of a sample and electron-sample interactions produce secondary electrons 

and back scattering of incident electrons. The interactions are detected and used to 

visualise the surface features of the sample. The typical resolution of a SEM is ~1-20 nm.  

Fabricated Bragg stacks and EISA thin films were prepared for SEM investigation by 

simply scoring the underside of the substrate and then snapping the substrate and sample in 

two. This snapping method avoids the use of cutting implements which would damage the 

sample during the cutting process and impair the surfaces to be viewed. The broken 

fragments were mounted on SEM stubs coated with sticky carbon tape. Because cellulose 

is a dielectric material and cannot ground accumulated charge, the samples were coated 

with 5-10 nm of electrically conducting palladium. This coating minimises the build-up of 

charge on the surface of the sample. The SEM images presented in this thesis were taken 

using an FEI Nova 600 dual-beam (FIB-SEM) system. The SEM was typically setup to use 

a low voltage of 5 kV with a 98pA current ta working distance of ~5 mm.    
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5.2.3 Transmission electron Microscopy 

Transmission electron Microscopy (TEM) is an analytical technique used for investigating 

the variation in constituent materials and ultrastructural properties of samples. The 

technique requires samples to be prepared in 50-100 nm thin sections which are 

subsequently placed in the path of an electron beam under vacuum. The interactions of 

electrons transmitted through a given sample are detected and are translated to changes in 

image contrast. TEM was used to visualise the synthesised and the CNCs obtained from FP 

Innovations and the ultrastructure of Bragg stack and EISA thin film cross sections.  

CNC suspensions were used to prepare the TEM samples. The suspensions were diluted to 

form a 0.2 wt% solution. Two drops of the 0.2 wt% aqueous CNC suspensions were placed 

onto holey carbon film coated TEM copper grids. The filter paper beneath the copper grid 

drew the droplets away pulling the droplet containing CNCs down onto the grid surface. 

The grids were allowed to dry and then a drop of 2% uranyl acetate was placed on the grid 

and left for 20 seconds. The drop was then then wicked away with filter paper. The uranyl 

acetate provides a negative contrast necessary to distinguish CNCs in the TEM. The 

prepared grids were then placed into a JM-2100 LaB6 200 kV Transmission Electron 

Microscope fitted with an AMT XR80 digital camera (3926 × 2472 pixels). An 

accelerating voltage of 100 kV was used to avoid damaging the CNCs. Measurements of 

CNC dimensions (length and width) were taken from the TEM images using ImageJ 

software. 

TEM cross sections of the fabricated Bragg stacks were prepared by embedding a fragment 

of the film prepared on a polyethylene substrate in resin. The resin block was then polished 

to prepare a face aligned parallel to and that would expose the Bragg stack film face so that 

when aligned with the microtome, film cross sections could be cut.  
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Preparation of the CNC film cross sections required a different approach because in water 

the cross sections would lose structural integrity as they began to dissolve. For 

ultrastructural analysis of EISA CNC thin films small fragments of the film were initially 

embedded in 2% agarose (in dH2O) gel blocks prior to dehydration in an ethanol gradient 

(30% to 100% ethanol in 10 min steps). The blocks were then gradually embedded in Spurr 

resin overnight and the resin polymerized at 60 °C. 70 nm ultrathin sections were collected 

on pioloform-coated 100 mesh copper grids (Agar Scientific, Stansted, Essex, UK) and 

were imaged using a JEOL JEM 1400 transmission electron microscope operated at 120 

kV and a digital camera (Gatan ES1000W, Abingdon, Oxon, UK).  

 

5.2.4 Polarised Optical Microscopy 

The phase composition of the dry films was analysed using POM on a Nikon Optiphot2-

pol polarised optical microscope fitted with a 530 nm full retardation plate and a Sony 

DXC-950P colour camera. Camera footage of a drying droplet was also recorded through 

the microscope using a Veho discovery VMS-004 USB microscope. 

 

5.3 Optical characterisation 

5.3.1 Angle resolved spectrophotometry 

Angle resolved spectrophotometry (ARS) was used to measure the iridescence of the 

Bragg stacks and the angle dependence of the reflection of CPL from the EISA thin films. 

The goniometer setup, shown in Figure 5-5 shows two arms to which various filter 

configurations can be arranged. The arms move in a 2θ configuration around a point where 
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the sample under investigation is mounted. Optical fibres are used to illuminate the sample 

by delivering light from an Ocean Optics HPX 2000 high powered Xenon light source. The 

second optical fibre collects reflected light and delivers it to an Ocean Optics USB2000+ 

spectrometer detector.  

 

 

Figure 5-5 Schematic of the goniometer setup. 

 

Iridescent behaviour of the Bragg stack films was analysed using the goniometer setup in 

Figure 5-5 where spectra was recorded through angles 5–70°. The Bragg stack films were 

illuminated with non-polarised light. To measure the angle dependence of the reflection of 

CPL from the EISA thin films the goniometer was fitted with Thor Labs superachromatic 

quarter-wave plates which were configured to illuminate and analyse the sample with CPL. 
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5.3.2 Microspectrophotometry 

The reflection of unpolarised light and CPL from dried films was recorded using 

microspectrophotometry (MSP). MSP facilitates the characterisation of smaller regions of 

a given sample by combining optical fibres and spectrometers with the resolution of an 

optical microscope. This method allows investigators to isolate individual regions of colour 

for measurements, that from an otherwise larger region may express a mixture of colours. 

A GE QuartzlineTM projection lamp (Source 1/2 in Figure 5-6) illuminates the film and the 

lens/filter configuration direct reflected and transmitted light to an optical fibre positioned 

in the eye piece of the microscope. The optical fibre is connected to an Ocean optics 

USB2000+ spectrometer. Spectra are visualised in graphical format on a PC. The MSP 

setup allows circular polarising filters to be positioned in the microscope so that samples 

may be illuminated and analysed with CPL.  

Calculating the CNC distribution in EISA thin films involved the need to collect reflection 

and transmission data from neighbouring points along the diameter of the film. This was 

achieved by mounting the samples onto a micrometer stage which was then fixed to the 

optical microscope stage. The film could then be moved in the x-y plane to within 2µm of a 

desired position.  

Two optical characterisation techniques were employed to analyse the properties of the 

Bragg stack films. Optical data were obtained using angle resolved spectrophotometry 

(ARS) and microspectrophotometry (MSP). ARS is a goniometer arrangement where 

spectra are taken via a 2-θ setup.  
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Figure 5-6 Schematic of the optical microscopy and MSP configuration. Light from 

Source one is reflected by the beam splitter BS1 down to the objective lens (OL; with 

magnifications between 5× and 100×) where it is focused on to the sample. Reflected 

light is passed back through the OL to another bean splitting mirror (BS2) where it is 

either directed to a camera connected to a personal computer (PC) or to the eye piece 

(EP) via a focusing lens (L1, L2). The EP can be connected to an optical fibre (OF) 

linked to a USB spectrometer (SP, PC). Light source 2 allows for a sample to be 

observed in transmission mode. Polarisers (Pol) can be inserted to illuminate/analyse 

samples with CPL in either reflection of transmission mode. M is a mirror. 
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5.3.3 Ellipsometry 

Tuning the Bragg stack films to reflect a desired colour requires foreknowledge of 

layer thicknesses and RIs. Once these have been obtained the reflection of visible 

light from Bragg stacks with varying layer thicknesses can be modelled. 

Ellipsometry was used to measure both the bilayer thicknesses and the RI of varying 

numbers of bilayer stacks. Ellipsometry measures the phase shift in the polarisation 

of the reflected light from the sample under investigation. The measured values are 

expressed as Ψ and Δ which relate to the ratio of Fresnel reflection coefficients Rp 

and Rs for p- and s- polarised light, respectively 

 

 
𝜌 =

𝑅p

𝑅s
= tan(𝜓) 𝑒𝑖𝛥. (43) 

 

The experimental setup is presented in Figure 5-7 and the instrument used was a J. 

A. Woollam WVASE ellipsometer. The ellipsometry layer thickness and RI results 

were used to generate growth profiles which assists the visualisation of the 

evolution of film thickness and refractive index as a function of the number of 

bilayers deposited in each bilayer stack.  
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Figure 5-7. Schematic of the ellipsometer setup used to evaluate the bilayer 

thicknesses and refractive indices. 

 

 

5.4 Theoretical modelling 

5.4.1 Modelling the reflection of linear and circularly polarised light 

Modelling the reflection of linear and circularly polarised light from the multilayered and 

chiral structures considered in this thesis can be achieved by one-dimensional matrix 

method calculations. The 3D multilayer and cholesteric structures have a RI variation in 

only one dimension and so can be simplified to a 1D problem for the purposes of 

modelling. The structural parameters, layer and pitch lengths, were measured from SEM 

and TEM images. These values were used in the computer programme to define the 

physical dimensions of the multilayer Bragg stack and the cholesteric structure. The other 

required parameter is the refractive index values which were obtained from the literature 

and ellipsometry data. Models of multilayer reflection of non-polarised light were solved 

using the transfer matrix method (TMM).229 The models of reflection for CPL were solved 
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by applying Jones calculus to a CNC medium.230 Pitch lengths (average of 308 nm with a 

standard deviation of 17.3 nm, Figure 7-10a), measured from TEM images in ImageJ231, 

were discretised into thin sections and then piled so that the principle axes of the 

successive layers is turned through a small angle. Refractive indices (n) used for the 

birefringent CNCs were those of 1.595 and 1.534.232 The coding was generated in house by 

I. Hooper and is based on the theory of reflection from multi-layered and chiral structures 

as described in Sections 2.2 and 2.3.2.  

 

BHE, I love you 
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Chapter 6 Layer by Layer Bragg Stacks 

The growth profile and modelling data inform the layer construction necessary to produce 

narrow band thin film Bragg reflectors. The following Chapter will outline the green and 

orange reflecting Bragg stacks made, the visual appearance of the films, their structure, 

morphology and iridescent behaviour. The films were made during a 3 week visit to the 

Polymer and Nanocomposites Lab at A&M University in Texas, USA. This Chapter will 

also include a comparison with a natural reflector found in the C. rajah beetle integument.  

6.1 CNC morphology and layer growth profiles 

The CNCs retained as a suspension were visualised using TEM. Images of the CNCs are 

shown in Figure 6-1(a,b) where their rod shaped morphology can be seen. The surface of 

the CNCs is not smooth but has fine ridges running along the long axis of the rod. The 

ends are also multi-faceted and shard like. The lengths and widths of the CNCs were 

measured and the results are presented in the histograms in Figure 6-1(c,d). The average 
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length and width of the CNCs was 178 nm × 12 nm with standard deviations of 79.3 nm 

and 4.6 nm respectively.  

 

 

Figure 6-1 Typical transmission electron micrographs of CNCs. The lower 

magnification image (a) provides a wider field of view of CNC distribution on the 

copper grid and the higher magnification image (b) provides detail of CNC 

morphology. Size distribution plots of the length (c) and width (d) measurements, 

each with a Gaussian fit, taken using ImageJ software from TEM images. The 

average length and width dimensions were 178 nm × 12 nm. 

 

The CNCs were observed to aggregate, rarely were individual CNCs observed. This is due 

to van de Waals forces and the high surface to volume ratio which results in particles of 
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this size possessing high surface energy. This made defining ends, for length 

measurements particularly, very difficult. The larger CNCs observed may be in fact be two 

smaller CNCs aligned parallel to each other. The close proximity of CNCs means that it 

becomes harder to distinguish between them.  

The charge density was measured by conductometric titration and the CNCs have a 

sulphate-ester charge density of 37 ± 2.6 mmol/kg. This value sits at the higher end of 

values from literature that range from 24-38 mmol/kg226,233,234. 

The films, outlined in Table 6.1, were assembled using the LbL dipping method via a 

robotic system using a 1-minute dipping time.  The very first solution dipped into, which 

was the PEI solution, was held for 5 minutes followed by 1-minute immersion times. 

Before the A and B layers were combined, A and B bilayers were assembled and their 

layer thicknesses and refractive indices were measured using ellipsometry. The 

ellipsometry results subsequently informed the assembly of the complete Bragg stack with 

AB layering.  

Measurements taken using ellipsometry were used to generate growth profiles of the high 

(A) and low (B) refractive index layers. The growth profiles are shown in Figure 6-2. This 

information is given for both PEI/VMT and SiO2/CNCs, Figure 6-2(a and b) respectively. 

Both systems exhibit linear growth, which is typical for bilayers containing 

nanoparticles24,29,197. The relationship between the number of bilayers and RI was not 

linear and evolves differently in each case. The RI of the PEI/VMT bilayers shows greater 

consistency after the build-up of 10 bilayers, after which the RI ranges from 1.65-1.66. 

SiO2/CNCs show a gradual decrease in RI with increasing bilayer number before levelling 

out from 20 to 60 bilayers. Values of RI range from 1.4-1.42. It is in these bilayer ranges 
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(above 10 bilayers for PEI/VMT and above 20 bilayers for SiO2/CNCs) where consistent 

Bragg stripes can be deposited.    

 

Figure 6-2. Thickness and refractive index as a function of bilayer number for 

PEI/VMT (a) and SiO2/CNC (b) layers. 

 

 

6.2 Modelled optical behaviour 

The required parameters for the A and B layers of the green stack and the orange 

stack are shown in Table 6.1. The modelled reflectance generated using TTM for the 

green film occurs in a narrow band which peaks at 559 nm at normal incidence as 

shown in Figure 6-3(a). The peak reflectance blue-shifts (to ~410 nm) with 

increasing incident angle which is a common hallmark of iridescence and is where 

the hue is observed to change with varying viewing angle. Figure 6-3(b) highlights 

this characteristic iridescent reflectance of unpolarised light for the green reflecting 

Bragg stack. 
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Table 6.1 A and B layer parameters for a green and an orange reflecting multilayer 

Colour Layer 
Refractive 

index 
Thickness (nm) 

Number of 

bilayers 

Green 
A 1.65 115 16 

B 1.41 230 32 

Orange 
A 1.65 105 15 

B 1.38 110 15 

 

 

A blue-shifting peak initially located at 559 nm is clearly seen with increasing 

incident angle. The reflectance from the theoretical AB layer thicknesses and RIs for 

1, 2, 5 and 24 layers is presented in Figure 6-3(c) and for many more layers in Figure 

6-3(d). A rapid increase in reflectance intensity is observed with increasing layer 

number. The rate varies significantly between the first few bilayers and nearly 

doubles from 1 to 5 bilayers. The rate of the increasing peak intensity (Rmax) reduces 

sharply once the number of bilayers is greater than 6. With the increasing 

reflectance intensity is a gradually decreasing bandwidth. There is also a 0-20% 

oscillation of reflectance in the background. This is due to the RI interlayer 

differences being much smaller than the difference of the RIs between air and the 

material which give rise to a thin film interference effect235.  
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Figure 6-3 Numerical calculations of the optical behaviour of the green reflecting 

multilayer described in table 6.1 (a) Unpolarised reflectance for incident angles of 0-

70 degrees. (b) Reflectance map showing the angle-dependence of unpolarised 

reflectance. (c) Normal incidence reflectance for 1, 2, 5 and 24 bilayers. (d) 

Reflectance map showing the numerical variation of normal incidence reflectance as 

a function of increasing bilayer number. 

  

Beyond the 6th layer the addition of further material makes minimal difference to 

Rmax until the 24th bilayer is added and the reflectance becomes completely 

saturated. It is at this point the structure is reflecting 100% of certain wavelengths 

(assuming no absorption) so no further increase in Rmax will be observed. These 

reflected wavelengths that cannot propagate through the structure are a feature 

known as a photonic band gap. Another common feature of multilayers having small 
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RIs is that the bandwidth is inversely proportional to the number of layers; hence 

many layers are needed to produce a narrow bandwidth235. 

This modelling approach informed the fabrication process, providing a window of 

bilayer numbers which could produce significant reflectance. The theoretical 

reflectance results for the orange reflecting film are shown in Figure 6-4.  

 

 

 

Figure 6-4 Numerical calculations of the optical behaviour of the orange reflecting 

multilayer described in Table 6.1 (a) Unpolarised reflectance for incident angles of 0-

70°. (b) Reflectance map showing the angle-dependence of unpolarised reflectance. (c) 

Normal incidence reflectance for 1, 2, 4, 6 and 20 bilayers. (d) Reflectance map 

showing the theoretical variation of normal incidence reflectance as a function of 

increasing bilayer number. 
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Peak reflectance occurs at a wavelength of 652 nm (Figure 6-4a), across a broader 

band than that of the modelled green system, and exhibits similar iridescent 

behaviour (Figure 6-4a-b) which is again seen as a characteristic blue-shift with 

increasing incident angle. A similar increase in reflectance to the green reflecting 

film is observed with an increasing bilayer number which proceeds to saturation 

beyond 20 bilayers (Figure 6-4c-d). An additional tool was developed to compile 

reflectance results for varying AB thicknesses and their respective RIs. The chart 

produced presents the colour as it would appear to the naked eye for specific layer 

thickness/RI combinations (Figure 6-5).  

  

 
Figure 6-5 Colour map showing RGB values for varying AB thicknesses and 

respective RIs. 
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This was achieved by first calculating the reflectance for each thickness/RI 

combination and then calculating their respective RGB values (as explained in 

Section 2.4). The corresponding RGB colour is then plotted as a function of the A 

and B thicknesses. The colour map in Figure 6-5 highlights the ability of specific 

thickness combinations to generate coherent reflection in the visible range. The clear 

colour bands in the bottom left hand corner represent those reflected from layer thickness 

combinations that produce systems with reflectance corresponding to saturated colour. The 

regions where the thickness would need to be above either 220 nm for the A layer or 200 

nm for the B layer represent systems with reflectance corresponding to less saturated 

colour. Films with thickness combinations in the region where colour is more saturated are 

more susceptible to defects which would cause the reflection of multiple colours and result 

in broad band reflection corresponding to a less saturated colour. A plot like Figure 6-5 can 

be generated to inform the synthesis of new Bragg stacks as it identifies which Bragg sack 

systems are less susceptible to defects if colour saturation is not an issue. Where colour 

saturation is important the plot can be used to identify a system that would produce good 

colour saturation. Care would have to be taken to ensure defects are kept to a minimum. 

 

6.3 Bragg Stack Appearance and Morphology 

The Bragg stacks were prepared with varying (AB)nA combinations and images of the 

films are presented in Figure 6-6 (a,b). Each stack combination is separated by a tide mark 

that runs horizontally across the film. The tide marks are apparent on both films and are 

created by the small differences in height between solutions into which they have been 



Layer by Layer Bragg Stacks 

100 

 

dipped during the assembly process. Lower colour reflectance around the edges of the film 

is a result of water run off during the washing and drying process. Air blown onto the film 

pushes the water outwards and downwards, thereby increasing the area of lower colour 

reflectance down the film. The LbL-assembled film is flat, so iridescence is not discernible 

until it is tilted. On a macroscopic scale the green and orange colours appear homogenous, 

a result of the flat substrate and the even layer deposition of the LbL process. If the layer 

thicknesses varied during fabrication, a broader reflection band would result and appear 

less optically saturated30. The orange film appears less saturated than expect. The layer 

thickness combination of this film would place reflectance from the bottom left hand 

corner of the colour map in Figure 6-5. The reasons for this become apparent upon 

magnification of the film surface. With increasing magnification, a separation of colour 

was observed and is a result of variation in film height. This was true for both films but 

more so in the orange film which was less saturated. The microscope images in Figure 6-6 

show each film surface imaged under increasing magnification. The green film (Figure 

6-6a) displays greater homogeneity at a lower magnification. The separation of colours 

becomes visible at a higher magnification where green and blue patches appear due to 

varying film thickness. The colour separation has little effect on the position of the peak 

shown in the reflection curves presented below the images in Figure 6-6. Magnification of 

the orange film surface revealed clear colour separation interspersed with evenly spaced 

streaks 150-200 µm long and 10-20 µm across. At low magnification the streaks appear 

yellow with the overall film producing broad band reflection with a broad peak at 

approximately 640 nm. Increasing the magnification revealed a broader spectrum of colour 

across the streaks which blue-shift towards the centre. 
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Figure 6-6 Images of the green (a) and the orange (b) reflecting film with microscope 

images showing the variations in the surface morphology and colouration as a 

function of scale (with magnification increasing from left to right) and corresponding 

MSP spectra. Each magnified image corresponds to the MSP spectra below it. The 

MSP spectra show reflectance from each surface shown in the images. In (b) multiple 

reflectance curves are presented as they correspond to the different coloured regions 

seen in the image. The black arrows highlight the tide marks. 
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Corresponding peaks in the reflection curves were obtained and together are responsible 

for the broad band reflection on the macro scale. These features are most likely a result of 

particles (inclusions) interfering with the flow of water during the rinsing and drying steps. 

Particles/defects can be seen at the top of each streak which then taper toward the bottom 

and align with the direction of the water and air used in the washing phase. 

In addition to the variability observed in the orange film is the variability observed in films 

made during initial tests. The variability was caused by the process itself, whereby water 

running down the substrate damaged the film. The damage occurred towards the edge of 

the film, perhaps where most of the water was pushed during the washing and drying 

stages. This effect is seen in the photograph in Figure 6-7(left). The colouration on left 

hand side towards the bottom of the film has diminished and appears dull. Reflection data 

was recorded using MSP from 5 points across each of the films. The points are highlighted 

by the yellow spots in the photograph. The respective reflection curves are presented 

graphically on the right and a trend of increasing variability can be seen down the 

substrate. The (AB)3A film shows some variation but this could also be due to the tide 

marks above and below the narrow strip of film. Only a slight dip in reflection is seen at 

the very left-hand edge of the (AB)4A. Larger variations in reflection are seen in films 

(AB)5A and (AB)6A. In the (AB)5A film peak shifts and decreases in reflection are seen in 

data points 4 and 5. Data point 5 for the (AB)6A film shows a significant reduction in 

reflection and a broadening of the reflectance band altogether. The reason for the film 

damage on one side of the substrate could be due to the alignment of the substrate to the 

water and air blowers which results in more water being moved to that particular side of 

the substrate before running off. This can be accommodated for by having larger substrates 

or resolved by adjusting the alignment of the substrate with the washing hoses.  
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Figure 6-7 Photograph of a test sample showing varying numbers of bilayered films 

(left).  Five data points are highlighted where reflection spectra were taken. The 

respective curves are presented in the graphs (right). 
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6.4 SEM and TEM Analysis 

The structures of the stacks were characterised using SEM and TEM. Figure 6-8(a) shows 

an SEM image of a cross-section of the green film and confirms the desired dense laminar 

structure of the A layers where the VMT 2D platelets have formed stacked sheets held 

together by the electrostatic forces between the platelets and the PEI polymer. In contrast, 

the colloidal silica and CNC combination has formed an isotropic porous structure. These 

porous layers are seen in Figure 6-8(a) in between the denser PEI/VMT sheeted layers. 

This was one of the intentions of the fabrication process because such porosity generates a 

low effective RI for the B layers as explained in Section 5.1.1. 

The TEM images presented in Figure 6-8(b) also show that the fabricated films 

comprise alternating light contrasted and dark contrasted layers. The darker layers 

represent the high RI A layers and the lighter layers the low RI B layers. Upon 

closer inspection of the A layer (Figure 6-8c), a distinguishable laminar arrangement 

of VMT (the darker lines) and PEI can be discerned. The curvature in the layers is 

understood to be a result of the microtoming process where sample sectioning and 

exposure to water may compromise the structural integrity of the film.  
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Figure 6-8 (a) SEM image of the green film cross-section. (b) TEM images of the 

orange film cross sections. (c) Magnified section of (b) highlighting the bilayer 

structure in the A layer. Scale bars are 100 nm.  

 

 

 

6.5 Optical Characterisation 

Reflectance of unpolarised light was collected from both the green and orange films using 

the ARS setup described in Section 5.3.1 and illustrated in Figure 5-5. The results for the 

green reflecting film at normal incidence show narrow band reflection with a peak 
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reflection at 558 nm (Figure 6-9a) which are in good agreement with the 559 nm peak 

reflection and side bands calculated numerically (Figure 6-9b). Side bands are also seen in 

the reflectance curves and are indicative of the homogeneity of the film. The peak 

reflectance blue-shifts with increasing incidence angle, this iridescent behaviour is more 

clearly shown in Figure 6-9(c) and is a close match to the numerically calculated 

reflectance for increasing incidence angle (Figure 6-9d). The overall match between the 

experimental and numerically calculated results is very good. The most obvious difference 

is that the reflection from the green film corresponds to a less saturated colour. This could 

be due to the small variations in layer thickness across the film. Evidence of this is seen in 

the SEM images in Figure 6-8a, and in the colour variation in the high magnification image 

shown in Figure 6-6a which is derived from variation in layer thicknesses. 

The optical reflectance results from the orange film (Figure 6-9e,g) are in relatively good 

agreement with the numerically calculated reflectance (Figure 6-9f,h). The orange film, 

like the green film, has less saturated colour reflectance. The peak reflectance at normal 

incidence for the orange film and the numerically calculated system is also different, at 699 

nm and 652 nm respectively. The system still expresses iridescent behaviour characteristic 

of multilayer Bragg stacks (Figure 6-9g) and a strong match is seen in the reflectance 

curves shown for varying incident angles.  
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Figure 6-9 (a-d) Experimental and theoretical reflectance spectra from the green film 

and corresponding reflectance colour maps showing the angle-dependence of 

unpolarised reflectance. (e-h) Experimental and theoretical reflectance spectra from 

the orange film and corresponding reflectance colour maps showing the angle-

dependence of unpolarised reflectance. 
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Evident in the experimental data are anomalies that are not as easily explained. These 

anomalies are seen in the spectral data taken from the fabricated films. An early double 

peak is seen in light reflected at 50˚ incidence. At 40˚ and 60˚ incidence the reflected 

spectral profiles show a shoulder on the right and left respectively of the main peaks. High 

saturation levels are seen in the reflection profiles of the green film. These anomalies are 

not seen in the modelled data.  

 

6.6 Modelling the anomalies 

Attempts were made to model variations in layer construction to intentionally produce such 

anomalies and understand what is causing them. Changes in reflection are most likely to 

occur due to variations in layer thicknesses and this is expected, to a certain degree, within 

fabricated films. Evidence of this variation is seen in the microscopy work presented in 

Figure 6-6 and Figure 6-8. The modelled anomalies therefore are based on variations in 

layer thicknesses which were selected from the colour-map presented in Figure 6-5. The 

results presented in Figure 6-10 highlight the changes in reflection profiles that maintain an 

intensity equivalent to those obtained in Figure 6-9(a and e). Other variations introduced to 

layer thicknesses produced reflection curves with significantly less intensity which would 

not contribute to the anomalies observed in the experimental data. 

Initially small changes were introduced to simulate defects in layer consistencies. Variation 

was observed when small changes were made to one or two of the bilayers. By changing 

the A and B layers by up to 10 nm in two of the bilayers the peak reflectance bands could 

be shifted either to the left or to the right depending on whether the layer thicknesses were 
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increased or decreased (Figure 6-10a). Layer decreases shifted the peak to the left and 

increases shifted the peak to the right. Significant changes in the spectral profile were seen 

when broad variations were introduced to all either the B layers or the A layers (Figure 

6-10b). This was done to simulate a chirped structure which is known to give broad band 

reflection and multiple peak maxima.  

 

 

Figure 6-10 Modelled spectral reflection profiles for variations introduced to the 

orange film bilayers. (a) 10 nm increases and decreases in A and B layers in 2 of the 6 

bilayers. (b) Variations made to every A and B layer in the stack ranging from 75-125 

nm and 50-110 nm respectively in 10 nm intervals. (c) Significant increase to 325 nm 

to 2 and 3 of the A layers. (d) 2 and 3 of the B layers at 260 nm increase. The dashed 

line shows the modelled reflection at normal incidence from the original stack for 

reference.  
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By varying the thicknesses of the B layers, a shoulder was introduced to the right of the 

peak reflectance band. Increases were seen in the side bands when either the A or B layers 

were varied. Varying the A layers produced more significant changes with a broadening of 

the peak reflectance band and a shoulder to the right of this band close to becoming a 

second peak. When significant changes were introduced to 2 and 3 of the A layers in the 

stack (Figure 6-10c), the peak intensity was maintained and shifted to the right. A narrower 

peak reflectance band was produced with the addition of relatively high intensity side 

bands which simply became more pronounced as more layers were changed to the 

increased thickness. One variation that did result in a double peak reflectance band was the 

increase in thickness of B layers to 260 nm. This change in just 2 of the layers resulted in a 

spectral profile with two peaks as shown in Figure 6-10(d). Other changes in reflectance 

include peak broadening and higher intensity side bands. The double peaks are further 

developed with 3 altered layers with further peak broadening and increasing side band 

intensities. It is plausible that a combination of varying A and thicknesses responsible for 

the peak broadening and shoulders observed in the experimental data. It is however 

unlikely that significant increases in layer thicknesses are responsible for the early onset of 

the double peak as the evidence seen in the microscopy images shows only small variation 

in layer thicknesses.  

The effect of incidence angle on the reflection profiles exhibiting the greatest change due 

to layer variations is presented in Figure 6-11.  The reflection spectra are given for angles 

from 0-70˚ for the regime of varying A layer thicknesses (Figure 6-11a) and for the 

significant increase in 3 B layer thicknesses (Figure 6-11b). In each case a blue-shift is 

seen with increasing incidence angle and little is lost in the peak intensity.  
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Figure 6-11 Effect of incidence angle on (a) variations made to A layers in the stack, 

ranging from 50-110 nm in 10 nm intervals and (b) significant increase to 260 nm of 3 

B layers.     
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Both also undergo band broadening with increasing incidence angle. The loss of intensity 

in the experimental data occurs more slowly with increasing incidence angle like the loss 

seen here because of layer thickness variations. This also suggests that the periodicity is 

aligned parallel to the substrate as any crystalline periodicities aligned at an angle to the 

substrate will scatter light away from the detector and result in a more rapid loss in 

intensity with increasing incidence angle.   

 

6.7 Natural Comparison 

The appearance and structure of the stacks were characterised using TEM and compared to 

the layered system in the integument of a C. rajah beetle. Figure 6-12(a-c) shows 

photograph images of the C. rajah elytron and LbL-assembled green and orange Bragg 

stacks. The green and orangey-yellow colouration of the beetle elytron influenced the 

colouration aimed for in the assembled Bragg stacks. As shown in the image (Figure 

6-12c) and the spectra previously presented (Figure 6-9e), the Bragg stack shows a more 

red-shifted peak than the stripe seen from the beetle elytron (Figure 6-12a). The aim was to 

mimic the system to display a desired colour, which in this case was orange. Figure 

6-12(d) shows a typical TEM image cross-section through the structurally coloured elytra 

of the C. rajah beetle.  

The periodicity visible in Figure 6-12(d) is derived from the alternating light contrasted 

and dark contrasted layers aligned parallel to the elytral surface. This differential contrast 

is associated with differential uptake of the staining chemicals in the elytron during TEM 

sample preparation. In the beetle itself, the high RI is understood to arise from regions rich 
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in melanin compared to the regions low in melanin content that are associated with low 

RI17. The layers have thicknesses of 70-120 nm which is of the order of visible light. A 

typical TEM image of a cross-section of the fabricated film is shown in Figure 6-12e and 

similarly comprises alternating light contrasted and dark contrasted layers of thicknesses 

between 100-210 nm. These thicknesses are not comparable to the modelled thicknesses 

due to changes that may have occurred during TEM preparation. Like those of the beetle, 

these layers have thicknesses of the order of visible light wavelengths. 

 

 

Figure 6-12 Photographs of the C. rajah beetle elytron (a), LbL-assembled green (b) 

and orange (c) Bragg stacks, and TEM cross section images of the C. rajah (d) and 

LbL-assembled green Bragg stack (e). Scale bars in both images represent 100 nm. 
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The images clearly show that each Bragg stack system is comprised of multilayers. The 

materials in each system are however different which results in inevitable differences in 

reflection behaviour. These differences in optical reflection are shown in Figure 6-13 

where the chromaticity values (Figure 6-13a) highlight the difference in appearance of the 

C. rajah cuticle and the fabricated Bragg stacks. These differences are further enhanced by 

the reflection curves in Figure 6-13(b) which show a significant difference in a peak 

reflection at 700 nm from the orange Bragg stack and a peak reflection at 581 nm from the 

yellow stripe of the C. rajah beetle. 

 

 

 

Figure 6-13 (a) CIE diagram with the chromaticity coordinates highlighted for the 

fabricated Bragg stacks and the C. rajah beetle. (b) Reflection curves for the C. rajah 

green and yellow regions and the two fabricated Bragg stacks.  

 

 

The greens of the Bragg stack and the C. rajah possess similar peak reflections of 547 nm 

and 542 nm respectively. The idea of mimicking was not to develop an exact copy of the 



Layer by Layer Bragg Stacks 

115 

 

C. rajah system but to display iridescent colour by synthetically constructing a system 

based on the C. rajah structure and optical behaviour.  

The fabricated Bragg stacks possess a periodic structure derived from the selected 

materials that give rise to alternating high and low RI layers. The optical behaviour of this 

system can be calculated numerically and produce experimental results in good agreement 

with predictions. The iridescent fabricated Bragg stacks were made using an affordable, 

renewable material and were assembled using the LbL technique which can be altered to 

operate on an industrial scale. The LbL process also accommodates a wide range of 

constituent materials and substrates of varying size, stiffness and geometry.       

 

6.8 Summary 

CNCs have been applied to an LbL regime for fabricating thin multi-layered structurally 

coloured films. These films incorporated polyelectrolyte/clay and colloidal silica/cellulose 

nanocrystals that were applied by LbL deposition. The system was tuned by understanding 

the correlation between the number of bilayers and the resulting thickness and refractive 

index; information that was then used to model colour appearance for given bilayer 

combinations. The fabricated films exhibited similar morphology and optical properties to 

the integument of the bright green iridescent South East Asian C. rajah beetle. The 

structure within the films is a multi-layered system comprising layers of contrasting 

refractive index with thicknesses on the order of the wavelength of visible light. The 

fabricated films appear green and orange to the naked eye with peak reflections at 547 nm 

and 699 nm wavelengths respectively which blue-shift with increasing incidence/viewing 

angle. The green film possesses a narrow reflectance band matching both the numerical 
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model and the C. rajah beetle. The fabricated orange film possesses a reflectance band like 

the C. rajah. This band was broader due to the striations carved into the surface. It is 

assumed the film damage occurred during the washing process and possibly because 

inclusions were present in one of the solutions used for this film as no other damage was 

observed in the other films. The advantage of fabricating films in this way is that the LbL 

technique is simple, can be applied to complex geometries, is open to a range of materials 

and can be expanded to a cost effective continuous process.  
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Chapter 7 Circular Dichroism in CNC Thin Films 

The optical properties of EISA CNC thin films are derived from the cholesteric structures 

formed during the liquid crystal phase as the concentration of the solution increases. The 

varying conditions during the drying process result in compositional changes which affects 

the optical behaviour across the film. Presented in this Chapter is evidence, obtained from 

a range of optical techniques, of the varying optical behaviours across EISA CNC films. 

More significantly, evidence is presented showing consistent reflection of RCP light from 

distinct regions of EISA CNC thin films which before were believed to only reflect LCP 

light. Alongside this, evidence of a correlation between CNC distribution and the reflection 

of RCP light is also presented. This work has recently been published by the author236. 

This Section also includes evidence of a correlation between phase composition, obtained 

from POM, and CPL reflection which compliments the work previously reported.   
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7.1 Optical analysis 

As outlined in Section 5.1.2, sessile droplets from the 6 wt% CNC suspension were cast 

onto glass slide (GS) substrates. The cast droplets took approximately 15 minutes to dry 

and were pinned in every case, so that the resulting lateral dimensions of the films were 

equal to those of the cast droplet. The droplet shrank in the vertical plane as evaporation 

progressed. Once the droplet ceiling reached the height of the dry film forming around the 

edge, shrinkage occurred laterally. This lateral shrinkage created a drying line between the 

droplet and the dry film forming around the edge. The attractive van der Waal’s forces at 

droplet-substrate interface induced contact angles of 29.7° (with a SD of 2.3°) which meant 

the droplet was pulled towards the substrate and formed a relatively flat, wide dome. Flow 

of replenishing solution towards the edge where pinning occurred was observed. Under 

these conditions the evaporation rate at the thin edge was rapid, increasing the net 

migration of water and suspended CNCs to the edge which has resulted in a clear coffee 

ring effect. The CNCs appeared to undergo rotation due to surface tension torque, 

described in Section 3.3, aligning parallel with the edge of the droplet having approached 

the edge in a perpendicular fashion. This process was visualised by viewing CNC droplets 

between crossed polarisers in a microscope setup (Figure 7-1). The blue and yellow 

interference colours in the images in Figure 7-1 are derived from the CNC long axis 

alignment with the slow optical axis of the quarter wave plate as described in Section 2.3.1. 

The compass in Figure 7-1(a) indicates the alignment of the long axis for each colour 

region. CNCs in the blue region are aligned with their long axis parallel to the film edge 

(the film edge is parallel to the dashed white line and in the direction of the white arrow). 

inwards. This growth was visible and occurred as yellow regions approached the edge and 

were then rapidly converted to blue regions.   
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Figure 7-1 (a) A still image taken from video footage of a drying droplet. The white 

arrow points towards the film edge and the broken line runs parallel to the film edge. 

The compass in the top right corner indicates the orientation of the CNCs long axis to 

the slow optical axis of the wave plate. (b) The same area of the film 14 seconds later 

where the black dashed lines and arrow indicate the growth of the blue phase. Scale 

bar is 100 µm. Images are unpublished data. 

 

 

The CNCs approaching the edge have their long axis aligned perpendicular to the film 

edge and appear yellow. In Figure 7-1(a) the blue region slowly grew from the edge. With 

progressive drying the blue region increased (indicated by the black lines) and the 

approaching yellow region disappears (Figure 7-1b). This change is due to the rotation of 

the CNCs at the dry edge. The change in orientation results in a change in the interference 
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colour observed which in this case is from yellow to blue. Where there is insufficient room 

for CNCs to rotate they remain in the orientation as when they approached the edge, hence 

the yellow island in Figure 7-1(b). 

 In the dry film, this is evidenced by a band of colour which is seen around the edge of the 

film (Figure 7-2a). This is indicative of the coffee ring effect (as described in Section 3.3) 

and is a result of the liquid crystalline ordering induced by the forces carrying and aligning 

CNCs at the edge of the film. At higher magnifications (Figure 7-2b and Figure 7-4a) the 

coloured ring is discretised into a broader spectrum of colour where narrow bands of red 

and yellow are seen at the very edge and broader bands of blue and indigo are seen inside 

the narrower bands. Also, visible in this region is a surface roughness texture which is 

further highlighted in the dark field image in Figure 7-2(c) where light readily scatters 

from the more textured regions. These regions consist of surface roughness and defects in 

the otherwise homogenous liquid crystalline structure which appears dark except for where 

it is obscured by the scattered light from the surface roughness. POM images highlight the 

effect of the drying mechanics which has resulted in a relatively homogenous film as 

shown in Figure 7-2(d). The colours are indicative of the alignment of the slow optical axis 

of the CNCs to the retardation plate as explained in Section 2.3.1 and illustrated in Figure 

3-4(b). The CNC nematic phase aligns parallel to the film edge and follows the curvature 

of the film. As the nematic phase follows the curvature of the film through 360˚, CNCs are 

aligned at varying angles with respect to the polarising filters. This gives rise to the 

Maltese cross seen in Figure 7-2(d).  



Circular Dichroism in CNC Thin Films 

121 

 

 

Figure 7-2 A photograph of a CNC thin film on a glass substrate (a). Bright field 

image of reflection of non-polarised light from a CNC thin film highlighting the 

iridescent ring, present due to the coffee ring effect (b). Dark field image of a CNC 

thin film highlighting isotropic regions from which light is scattered (c). POM image 

highlighting CNC phase distribution across the film (d). Reflection of LCP and RCP 

from the same CNC thin film (e-f). 
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In the prepared films, the CNCs were forced to align parallel to the edge of the film and so 

possess a preferential optical direction. This was consistent around the whole film and is 

why blue and yellow complimentary quadrants separated by the Maltese cross are seen in 

Figure 7-2(d). The most interesting feature observed was when the films were illuminated 

with CPL. The expected reflection of LCP light was observed in a strip around the very 

edge of the film (Figure 7-2e). However, inside of and adjacent to the LCP reflecting strip 

was a region reflecting RCP light. This region forming a ring around the film is shown in 

Figure 7-2(f). The significant and consistent reflection from this region suggested the 

possibility of a phase change, possibly even a change in chirality, which has not been 

observed in LC or dried films of CNCs before. Further investigation of the relationship 

between phase composition and CPL reflection was carried out by obtaining higher 

magnification images of the birefringent effects observed in POM (Figure 7-2d). A series 

of higher magnification images were compiled to show a strip of film from the edge 

towards the centre which was compared to scaled images showing the reflection of RCP 

and LCP light (Figure 7-3centre). A correlation was found between the change in reflection 

of CPL and the phase composition of the film. The edge of the film is at the top of each 

image and the area above the top dashed white line is where the reflection of LCP is 

dominant and the phase composition is relatively homogenous. In the area between the 

dashed lines, the reflection of RCP is more dominant and is where multiple phases begin to 

appear. The phase composition in this region of film is less homogenous. Moving past the 

second dashed line to the bottom of the centre image, another change in phase is seen. The 

colours of the multiple phases in this region appear more saturated. It should be noted that 

the centre image represents transmitted light and the increase in colour saturation may 

correspond to a significant decrease in film density. 
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Figure 7-3 Centre: Three images of the same section of film showing RCP reflection 

(left), birefringence (centre) and LCP reflection (right) from a narrow section of an 

EISA CNC thin film. The edge of the film is at the top of the images. Dashed lines 

highlight phase changes correlating to variations in CPL reflection. Left: Peak 

intensity of LH and RH CP reflection as a function of distance from the edge of the 

film. The reflection profiles are shown against the film height profile. Right: TEM 

images showing film morphology at various intervals from the edge. TEM scale bars 

are 2 µm. 
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A decrease in film density would also explain and correspond to the decrease in reflection 

observed in the CPL images on both sides. Peak reflection profiles of LHCP and RHCP are 

shown in Figure 7-3 left. These are presented with the film height profile and show little 

correlation between film height and peak intensity. The peak reflection of LHCP and 

RHCP light are clearly shown to occur in separate regions of the film. These peak 

reflections correlate with a change in phase composition in the film. TEM investigation of 

the film revealed little about the distinguishable features observed in the light microscope. 

TEM images are presented in Figure 7-3 right. These findings are discussed in greater 

detail below.   

 

7.2 MSP Analysis 

The CNC film presented in Figure 7-4(a) and Figure 7-3(centre) was characterised using 

MSP fitted with CPs. Areas from each of the LCP and RCP reflecting regions were 

investigated in both reflection and transmission. The close-up image in Figure 7-4(a) 

shows reflection of LCP light in a narrow strip around the edge of the film. Within this 

reflection strip are bands of colour which are orange at the very edge of the film and which 

blue-shift across the strip to appear more violet. The colour reflection diminishes in 

intensity approximately 200 µm from the edge of the film. The corresponding colour map 

in Figure 7-4 (b) highlights the reflection of wavelengths from ~550 nm at the very edge 

which then blue-shift to ~400 nm across the reflecting strip towards the centre of the film. 

The reflection of RCP light is seen in a similarly narrow strip adjacent to and inside the 

LCP region (Figure 7-4c). This strip is similar in width but presents a narrower band of 



Circular Dichroism in CNC Thin Films 

125 

 

colour as can be seen in the colour map which shows a complete blue-shift from ~520 nm 

to ~450 nm (Figure 7-4d).  

 

Figure 7-4 (a) Typical microscope image showing LCP reflection from the edge of a 

CNC film and the corresponding MSP spectra, presented as a colour map showing 

reflection of LCP light as a function of distance (b). Typical microscope image 

showing RCP reflection from the same CNC thin film shown in (a) and the 

corresponding colour map (c-d) respectively. Scale bars are 100 μm. 

 

  

The bands are separate and distinct; this is confirmed by the MSP data taken from the same 

section of film using LCP and RCP filters Figure 7-4(b,d). Reflection and transmission 

spectra were further obtained from specific areas within each LCP and RCP reflecting 

regions (Figure 7-5 and Figure 7-6) and show complimentary colour transmission of RCP 

and LCP light. The region where LCP light is reflected consistently transmits RCP light. 

The strip reflecting RCP light also showed complimentary transmission of LCP light. The 
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image in Figure 7-5(a) shows the area where reflection and transmission of LCP and RCP 

spectra were taken from in the LCP reflecting region. The relative intensities of the images  

 

 

Figure 7-5 Optical microscope images of the same area of the film observed through 

LCP and RCP filters in reflection and transmission (a). The area of the film was 

within the region reflecting LCP light. The circle marks the location of the beam spot. 

(b) LCP and RCP light reflection (left) and transmission (right) spectra taken from 

the area marked in (a). Scale bars are 20 μm.  
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indicate the dominance of LCP reflection and the complimentary RCP transmission. The 

corresponding spectra are presented in Figure 7-5(b) where clear dominant reflection 

intensity is seen for LCP light and a complimentary intensity of transmitted RCP light. It 

can also be seen that reflected RCP and transmitted LCP are not completely cancelled out.  

Likewise, the images and spectra for the RCP reflecting region show complimentary 

reflection and transmission of RCP and LCP light (Figure 7-6a). The complimentary 

reflection and transmission data (Figure 7-6b) suggests the possible presence of a right 

handed chiral structure and that the film changes from a left handed chiral structure at the 

edge to a right handed chiral structure further in. Although complimentary 

reflection/transmission was measured at specific points within each region, the data 

recorded from each reflecting region was not always consistent. Some areas in both regions 

showed nearly equal intensities of reflected LCP and RCP light. In one area investigated of 

the RCP reflecting region LCP light was observed to reflect with a greater intensity than 

the reflection of RCP. The corresponding transmission curves for these areas were not 

complimentary and show that the regions, though consistent on a broad scale have many 

inconsistencies on a microscale (Figure .1 and A.2 of the appendix). The reflection of LCP 

light was consistently present in the RCP reflecting region while the reflection of RCP 

from the LCP reflecting region was not always present (Figure A.1). The inconsistency in 

the RCP reflecting region indicates the presence of a left-handed structure and that RCP 

light could be reflected from structural defects which may be a result of the reduction in 

the amount of CNCs being carried to the edge as the drying line progresses toward the 

centre of the film. TEM analysis was performed to shed light on this issue 
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Figure 7-6 (a) Optical microscope images of the same area of the film observed 

through LCP and RCP filters in reflection and transmission. The area of the film was 

within the region reflecting RCP light. (b) LCP and RCP light reflection (left) and 

transmission (right) spectra taken from the area marked in (a). Scale bars are 20 μm. 
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7.3 TEM Analysis 

The ultrastructure of cross sections of EISA CNC thin films were analysed using TEM, the 

preparation of which is explained in Section 5.2.3. A TEM image of a section through a 

complete edge of a CNC thin film is shown in Figure 7-7(a). From the very edge of the 

film a multilayer structure is clearly seen with layers aligned parallel to the film surface 

and what would have been the substrate surface the film was cast upon. What was 

surprising was how uniform the multilayer structure is throughout the film. Figure 7-7(b) 

shows a continuation of this structure from the edge and Figure 7-7(c) a section from the 

centre of the film where the only obvious disruption to the film is the damage caused 

during TEM sample preparation. The multilayer structure is consistent throughout the film. 

The dark patches in Figure 7-7(a) and (b) are where there is an excess of the uranyl acetate 

used to stain the samples. It was, however discovered that staining was not necessary and 

that sufficient contrast was obtained in the film structure to differentiate specific features.  

The light and dark lines that make up the overall multilayer structure observed in Figure 

7-7 are produced by the twisting of the nematic phase along the helical axis which gives 

rise to a periodic variation in RI. The higher RI regions offer greater resistance to passing 

electrons and so appear darker than the lower RI regions that offer less resistance. The 

curvature responsible for the layering observed was visualised at higher magnification. 

TEM images of oblique cut cross sections of the CNC thin film are shown in Figure 

7-8(a,b). 
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Figure 7-7 TEM images of a CNC film cross-section. The edge of the CNC film (a) 

with a visible multilayer structure. The lamella structure is consistent throught the 

film as shown in (b) which is an image of a part of the film adjacent to (a) and one 

taken from the centre of the film (c) where the lameller structure is also seen. The 

dark ribbon in (a) is where the film has folded during sample preparation. 
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The curvature seen in these images is indicative of a chiral structure, the arches of which 

are called Bouligand curves. Particular areas at the edge of the films were investigated to 

assess the direction of the curvature. The Bouligand curves in the EISA CNC thin films 

investigated were all found to ‘arc’ in the same direction and though it is not possible to 

identify handedness of the chiral structure it was assumed that the presence of opposite 

curvature direction would suggest a change in handedness from one region to another. This 

search was by no means exhaustive; it was impractical to look at every region of every film 

on such a small scale with such a small field of view. The uniform multilayer and chiral 

structures throughout the film are in agreement with SEM investigations of Park et al.182 

and Majoinen et al.39. It was thought that a change in structure would be observed in the 

images in regions where RCP light is reflected, for example, the presence of a 

unidirectional layer within helicoidal regions has been observed in certain beetle 

integument52,237. The unidirectional layer exhibits half-wave retarding properties which 

changes the handedness of incident CPL so that both hands of CPL can be reflected when 

only one polarisation is incident. No such layer was seen in the TEM images. Defects can 

be another cause in the change of polarisation state of incident light. Some examples of 

defects observed are shown in Figure 7-9. The defects found in the layered structure are 

consistent with the observations of Wang et al.171 which are described in Section 3.4. The 

main defect observed was identified to occur periodically in every film and was that of a 

phase boundary, examples of which can be seen in Figure 7-9(a,b,c). These defects are 

created after the formation of tactoids during the initial self-assembly process which then 

fuse to form the overall film. 
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Figure 7-8 (a). A typical TEM image of a CNC film cross-section showing the 

ultrastructure between each layer. The pitch length is indicated by P. (b) Higher 

magnification TEM image where the Bouligand curvature is visible (highlighted by 

the yellow dashed lines).  

 

In Figure 7-9(a) three phases can be seen at the top middle and bottom of the image. They 

formed from separate tactoids and developed until sedimentation which occurred before 



Circular Dichroism in CNC Thin Films 

133 

 

the phases could completely align thus forming the phase boundaries. The chevrons 

formed in Figure 7-9(b) are thought to occur from one tactoid pushing its way into the 

continuous structure of another causing it to open up.  The phases either side are left 

oriented at an angle to each other. The defect in Figure 7-9(c) is a disruption in the 

continuous layers of a single phase. The other defect found is shown in Figure 7-9(d). It 

consists of multiple ellipsoidal regions that are between 4-25 μm in length and 1.2-4 μm 

thick. They align parallel to the layers in the film structure and are distributed randomly in 

a given section of film from top to bottom. Due to film damage on this particular sample 

the specific region of the film could not be identified and linked to an RCP reflecting 

region. The defects appear to be isotropic as no regular structure is discernible. As far as 

the capacity of the defects goes to affect change in the polarisation state of incident light 

there is little to suggest any of them are responsible. The fusion defects are small and occur 

just as much in both reflecting regions of the film. There is no obvious difference between 

the reflecting regions of the film outlined in Figure 7-3. There is also no evidence that a 

relatively discrete phase boundary can either change the polarisation state of incident light 

or reflect the opposite hand. It has been shown that replacing a thin layer of a given liquid 

crystal with an isotropic material as a defect that defect modes are induced for both 

polarisation sates of incident light238,239. It would be unlikely that the isotropic ellipsoidal 

defects were responsible for RCP reflection as they were only observed in one of the films 

analysed. With no obvious change in structure between the LCP and RCP reflecting 

regions the spectroscospic method for measuring the CNC distribution was used to 

establish a relationship between the change in polarisation and the structure (Section 7.4.). 
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Figure 7-9 TEM images showing film defects. (a-c) Tactoid fusion defects. (d) 

localised isotropic defects.  
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The TEM analysis did provide information on pitch lengths which informed the 

simulations performed to calculate reflection of LCP light and pseudo Bragg reflections. 

Measurements of the pitch length were averaged from 5 sections of a film where images of 

the full top to bottom cross section could be obtained. Small variations in pitch length were 

observed from measurements taken along the z-axis and are expressed in the averaged 

values in Figure 7-10(a). The two largest error bars are a result of phase boundary defects 

and not due to large differences in the continuous layers. The pitch lengths were observed 

to vary along the film normal, tending to be shorter at the bottom (~270 nm) of the film 

and longer at the top (~310 nm). The pitch lengths were used to simulate reflection from 

the cholesteric structure as described in Section 5.4.1. The blue curve in Figure 7-10(b) 

represents the simulated narrow band reflection of LCP light which has peak reflectance at 

432 nm.  The experimental reflection curve (green) is in good agreement with a peak 

reflection of 420 nm and high saturation. Similarly the pseudo Bragg reflection curves in 

Figure 7-10(c) are also in good agreement. The curve representing the experimental 

measurements (green) is broader and less saturated than the curve representing the 

modelled reflection (blue). The peak reflection of the modelled curve is 391 nm and 394 

nm for the experimental curve. Spectroscopic measurements using the goniometer 

reflection measurement setup explained in Section 5.3.1 were performed to explore the 

angle dependence of the reflection of LCP and RCP light. The data presented in Figure 

7-10(d) shows that for incident angles ranging from 10 to 60° optical behaviour for LCP 

and RCP light follow a similar monotonic decrease with an increasing incident angle. This 

decrease in reflection with increasing incident angle is associated with the shift in the peak 

intensity and is typical behaviour of the continuous structure examined here.  
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Figure 7-10 (a) Pitch profile along the z axis for a given section of film. (b) Modelled 

and experimental reflection measurements of LCP light based on the pitch 

measurements in (a). (c) Modelled and experimental reflection measurements of non-

polarised light from the multilayer stack. (d) LCP and RCP reflection at 380 nm as a 

function of the incidence angle, of which both follow a similar trend.  

 

 

The reflection measurements outlined match theoretical simulations of reflectance of both 

LCP and non-polarised light from the films (Figure 7-10 b and c) and no significant 

difference was seen in the angle-dependence of reflected CPL. The reflection of RCP light 

remains unexplained as no evidence could be discerned in the TEM cross-sections for a 

structure that would produce such an effect.    
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7.4 Film volume and CNC mass distribution 

As the reflection of RCP could not be explained by the more conventional methods the 

spectroscopic approach outlined in Section 5.1.2 was developed to assess CNC 

distribution. This approach involved combining film dimensions with spectroscopic 

techniques to obtain information about the distribution of CNCs along a given line 

spanning a diameter of a CNC film. Average nanocrystal dimensions (length and width) 

were measured from transmission electron micrographs, an image of which is shown in 

Figure 7-11. The TEM image is shown alongside distributions of CNC length and width 

measurements. 

 

 

 

Figure 7-11 A typical TEM micrograph of CNCs and the histograms of length and 

width measurements superimposed by a Gaussian fit (solid line). 

 

The average length and width of an individual CNC was 108 nm × 6 nm (with respective 

standard deviations of 34.5 nm and 1.9 nm). From these averaged values the volume and 
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mass (based on a density of 1.5 g cm-3) of a single CNC (VCNC and mCNC) were calculated 

at 388.8×10-20 cm3 and 5.8×10-18 g respectively. With a known mass of a single CNC the 

total number (N) of CNCs in a film was calculated using the equation,  

 𝑁 = 𝑚/𝑚CNC (44) 

 

where m is the mass of the film which is 6 wt.% of the cast droplet. The volume of the film 

(V) is then obtained by multiplying N by the volume of individual nanocrystals. So, 

 𝑁𝑉CNC = 𝑉. (45) 

 

The mass of the solid content and the theoretical volume were calculated for film number 1 

to be 0.654 mg and 436×106 µm3 respectively. The volumes of 8 films were calculated 

using an average area and individual areas (as explained in Section 5.2.1) are presented in 

Table 7.1. A very good match can be seen between the volumes calculated from one 

averaged area and from individual areas with the better values possessing a difference 

between 0.2×106 µm3 and 6.2×106 µm3. Films 2 and 3, though still very similar differed 

significantly more than the other films with differences of 68×106 µm3 and 46.8×106 µm3 

respectively. These larger differences are the result of additional peaks that appear in the 

profile data for specific cross sections recorded. The peaks are most likely the profiles of 

contaminants on the surface of the film during profilometry. When calculating the volume 

from the individual profiles the additional peaks are perpetuated, which explains the higher 

values of 515.9×106 µm3 and 492×106 µm3 respectively.  
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Table 7.1 The mass of CNCs in each film and the theoretical and calculated volumes 

of the dry films. 

Film 

number 

Mass of CNCs 

(mg) 

Theoretical 

Volume  

(×106 µm3) 

Volume based on 

average area 

(×106 µm3) 

Volume from 

individual areas 

(×106 µm3) 

1 0.654 436 483.1 ±0.0077 483.3 ±0.0077 

2 0.534 356 447.9 ±0.0076 515.9 ±0.0083 

3 0.540 360 445.2 ±0.0067 492.0 ±0.0079 

4 0.594 396 504.2 ±0.0061 504.3 ±0.0061 

5 0.618 412 548.5 ±0.006 548.6
 
±0.006 

6 0.564 376 528.7
 
±0.0063 528.7

 
±0.0063 

7 0.612 408 475.7 ±0.0067 478.3 ±0.0067 

8 0.540 360 529.6
 
±0.0074 535.8 ±0.0075 

 

 

 The reason the values (447.9×106 µm3 and 445.2×106 µm3) of the volume calculated from 

one averaged area are smaller is because the additional peaks are minimised when 

averaged with profiles without additional peaks. A good match is seen overall between the 

theoretical volumes calculated and the volumes calculated from profilometry 

measurements. The theoretical volume values are smaller, this expected result was 

discussed in Section 5.1.2, with respective differences to the higher measured volumes of 

10%, 21%, 20%, 22%, 25%, 29%, 14% and 32%. These values, as far as packing fractions 

are concerned are very low and would indicate a very efficient packing of CNCs within the 

films240,241. 
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Non-polarised light was used to take reflection and transmission spectra across the 

diameter of the film as shown in Figure 5-3(a). Absorbance was then calculated for a 

number of points and used to correlate that distribution of the known mass within the 

volume of the film from which spectra had been taken from. A distribution profile showing 

mass distribution at the edge of the film is presented in Figure 7-12(a) along with the film 

cross section profile. A complete film distribution is shown in Figure A.3 where the only 

significant variation occurs at the very edge of the film. It is at the very edge that 

differences in optical behaviour are observed and is why only the highlighted section is 

presented here. It can be seen from Figure 7-12(a) that CNC concentrations are 

significantly higher at the edge of the film where a CNC concentration of 27.7 g cm-3 

rapidly decreases to 2.4 g cm-3 and then undergoes an incremental decrease to ~0.7 g cm-3. 

It is along this gradient that that the wavelength of light reflected and the reflection of CPL 

also changes. The vertical dashed lines in Figure 7-12(a) highlight the colour transitions 

from the edge of the film inwards. Colours at the red end of the visible spectrum are 

observed in the first band (up to the first dashed line). This then transitions to yellow and 

green colours in the middle band. In the broadest section, between the last two dashed 

lines, blue and purple colours are observed up to the final dashed line after which no more 

colour is observed or reflection is diminished. Along with the change in reflected 

wavelength between the dashed lines is a change in the concentration of CNCs. The 

increasing concentration of CNC material correlates with a red shift in the reflected 

wavelengths of light. This change fits with the understanding that higher CNC 

concentrations result in a tighter pitch which correlates to a red shift in reflected 

light19,182,242.  
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Figure 7-12 (a) Log plot of CNC concentration shown with film profile as a function 

of distance. Dashed lines indicate a colour transition. (b) Highlighted section of the 

CNC concentration shown with the peak reflection of LCP and RCP light along the 

film profile shown in (a).  

 

 

Plotting the CNC concentration against the peak reflection of both LCP and RCP light 

(Figure 7-12b) reveals a clear difference between the CNC concentrations in the regions 

reflecting LCP light and those reflecting RCP light. LCP light is strongly reflected from 

regions of higher CNC concentration and RCP light from regions of comparatively lower 

CNC concentration. This observation compliments the data presented in Figure 7-3 and 

Figure 7-4, where a consistency is seen in variation between the regions of film reflecting 

CPL. The rapid decrease in concentration occurs in the region where LCP light is reflected. 

RCP light is reflected from regions where the CNC concentration is below 2g cm-3. 

Reflection of both LCP and RCP light diminish when the CNC concentration falls below 

~0.7g cm-3. Assuming there is no right handed chiral structure, the data suggests that a 

CNC concentration threshold exists, whereby below a specific CNC concentration changes 

may occur in the physical structure that are sufficient enough to alter the optical behaviour. 
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Further analysis of the CNC mass distribution data is presented in Figure 7-13. Absorbance 

(normalised to the film height) is shown to monotonically increase with increasing CNC 

concentration (Figure 7-13a).  

 

 

 

Figure 7-13 (a) Log plot of absorbance normalised to the film height as a function of 

CNC concentration. (b) Peak reflectance (Rmax) as a function of film height. (c) Peak 

reflectance as a function of CNC concentration. The dashed lines highlight the 

narrow concentration band where Rmax is high. (d) Plot of wavelength of reflected 

light as a function of CNC concentration. The dashed line highlights the red-shift in 

reflected wavelength with increasing concentration. 
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The peak intensity (Rmax) reflection values of non-polarised light were not observed from 

the thickest film regions; reflection appeared to decrease with increasing film height until 

Rmax was normalised to film height and it was seen, as shown in Figure 7-13(b), that no 

correlation was had between Rmax and film height. The majority of the reflected light, 

however seems to occur at a film height of ~25 µm, approximately half the maximum film 

height. The highest intensity reflections also occur at this film height. A pronounced 

column of data is observed in Figure 7-13(c) where peak reflections occur within a narrow 

CNC concentration band (highlighted by the vertical dashed lines).  

Figure 7-13(d) shows the reflected wavelengths, for the same films, as a function of CNC 

concentration. Two bands are seen, a narrow band at ~580 nm and a slightly broader band 

located at ~400 nm. As the CNC concentration increases the band located at ~400 nm red 

shifts and the narrow band at ~580 nm disappears. Both these transitions are directly 

correlated with a change in the concentration of CNCs, thereby providing a link between 

optical and structural features.  

Consistencies in the reflection behaviour observed were found in films prepared on 

different substrates. Films were prepared on glass, quartz and graphene substrates where 

immediately a difference was observed in the contact angle between the substrate and the 

droplet. The increased contact angle of the films prepared on quartz and graphene resulted 

in films with smaller diameters and greater film heights. This change in volume/surface 

area ratio resulted in different drying conditions which produced a multiphase composition 

throughout the film. Figure 7-14(a) shows the relatively homogenous reflection band 

parallel to the film edge which contrasts with the variation seen in the reflection bands of 

films prepared on quartz and graphene, Figure 7-14(b and c) respectively.  
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Figure 7-14 Light microscope images of the edge of CNC thin films prepared on glass 

(a) quartz (b) and graphene (c). Light microscope images showing the reflection of 

RHCP from films prepared on glass (d) and quartz (e). The inserts are respective 

POM images showing the phase composition of each film. The red and yellow scales 

highlight the correlation between reflection and change in phase composition. 

 

 

The difference in phase composition between the film preapred on glass and the films 

prepared on quartz and graphene is seen more clearly in the POM images shown as inserts 

in Figure 7-14(d and e). The film prepared on quartz represents the graphene film which 

was excluded due to its poor reflection of CPL. The trend observed in the films prepared 

on glass where the reflection of RHCP correlates with a phase change is also seen in the 

film prepared on quartz and is highlighted in Figure 7-14(d and e) by the red and yellow 

sclae bars. The films prepared om glass showed no correlation betrween reflection and film 
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height. This was also the case for films prepared on quartz and graphene, evidence of 

which is presented in Figure 7-15. The peak reflections do not occur at peak film heights. 

Instead they appear to occur at specific CNC comcemtration/film height combinations. 

Spectroscopic techniques and polarised microscopy have confirmed that CPL is reflected 

by the film and that distinct and separate regions of the film reflect opposite hands of CPL. 

Associated with each region is a difference in phase composition, as conformed by POM 

analysis, and CNC concentration which has been confirmed by the spectroscopic technique 

developed by the author. 

 

 

Figure 7-15 Top: Colour maps showing reflection as a function of distance from the 

edge of the films prepared on glass (GS), quartz (QS) and graphene (Gr). Bottom: 

The relative densities and profiles of each film below their respective colour map.   
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These investigations into CNC distribution have shown that progressing from the edge of 

the film towards the centre, the CNC concentration decreases and the film height increases. 

The increasing film height does not correlate with increasing reflection. Changes in optical 

behaviour have been observed, particularly a correlation between phase composition and 

the reflection of CPL. No visual confirmation of the structures responsible for the change 

in optical behaviour could be obtained but, one possibility is that defects are being 

introduced. The decreasing concentration of CNCs combined with the increasing film 

height could mean that defects are introduced to compensate. Defects are responsible for 

many of the useful properties found in everyday materials and are most likely responsible 

for the interesting phenomenon seen here. 

 

7.5 Summary 

To understand variation in optical behaviour of CNC EISA thin films a combination of 

techniques was employed to assess the radial distribution of CNCs within the film. This 

measurement required a known volume of the CNC EISA thin films which was achieved 

both theoretically and by experiment using profilometry. The volume was then used in 

conjunction with optical measurements to evaluate the distribution of CNCs along the 

diameter of the corresponding film. Differences in the nanocrystal concentration were 

found in regions expressing a significant difference in reflection of either LCP or RCP 

light. RCP light is shown to occur in a region of the film of low nanocrystal concentration 

and greater film height. The data also suggests that a concentration threshold may exist in 

EISA thin films, below which a CNC structure will tend toward inhomogeneity. POM 

analysis showed a clear difference in phase composition between the two reflecting 
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regions. The regions reflecting LCP light were homogenous whereas the RCP reflecting 

regions were inhomogeneous consisting of multiple phases. TEM analysis revealed the 

composition of the films which consisted of multilayers parallel to the film surface and 

base. The layered structure is homogenous and consistent throughout the film. Two types 

of defect were observed, phase boundaries which are believed to be produced because of 

tactoid coalescence during the EISA process. Discoid shaped regions that appear isotropic 

were also observed in one of the films. Structures responsible for the reflection of one 

handedness of CPL could be identified, but no variation in this structure that could have 

been responsible for the reflection of RCP was observed. Even though the results confirm 

reflection of both left and right CPL no other confirmation could be obtained on whether 

the structures possessed a right or a left handed chiral structure. It is assumed that a left 

structure reflects LCP light. A correlation of modelled and experimental data for the 

reflection of polarised and non-polarised light was presented and is well matched. Though 

an explanation of the structures responsible for the optical behaviour could not be 

presented here, the optical behaviour was correlated to variations in CNC distribution. LCP 

light was reflected from regions with a high concentration of CNCs and RCP is reflected 

from regions with low CNC concentrations.  
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Chapter 8 Conclusions 

   

8.1 Main conclusions 

The aim of this thesis was to develop structurally coloured films using CNCs. The 

approach considered was twofold, investigating the use of CNCs in an LbL regime to 

fabricate tunable structurally coloured thin films. The second aim explored the intrinsic 

ability of CNCs to self-assemble into chiral crystalline phases out of solution. The aim here 

was to understand how the drying mechanics of CNC droplets effects the distribution of 

CNC material within EISA thin films and identify any correlations between this and the 

films optical properties, looking specifically at the CPL response. Though the optical 

properties of cholesterics are well understood, the variation in the optical properties in 

CNC EISA thin films is not fully understood and this work contributes to understanding 

the obstacles faced in developing and achieving homogeneity in such films. Structurally 

coloured films have great potential as a sustainable and cost-effective alternative to 
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traditional forms of colouration and introduces a vivid iridescent colour palette to 

industries where aesthetics are important. The angle dependence of incident light and 

change in λ with pitch length means Bragg reflectors also have great potential for use in 

sensing and as optical filters. The specific optical profile of fabricated Bragg stacks will be 

difficult to mimic by other means, making them applicable to the security industry where 

they could be used as marks of authentication. Cellulose is also the most abundant and 

renewable material on earth which makes it an obvious choice where its properties can 

meet desired outcomes. 

Investigations into the use of CNCs in an LbL regime saw the successful fabrication of thin 

multi-layered structurally coloured films. These films incorporated polyelectrolyte/clay 

and colloidal silica/cellulose nanocrystals that were applied by LbL deposition and the 

system was tuned to exhibit similar optical properties to the integument of the bright green 

iridescent South East Asian C. rajah beetle. The techniques used to tune the films have 

resulted in film outcomes matching the predicted behaviour. The films were fabricated by 

combining materials and controlling the deposition of layers to tune the RI and layer 

thicknesses. The structure within the films is a multi-layered system comprising layers of 

contrasting refractive index with thicknesses on the order of the wavelength of visible 

light. The fabricated films appear green and orange to the naked eye with peak reflections 

at 547 nm and 699 nm wavelengths respectively. The films are iridescent as the reflected 

wavelengths blue-shift with increasing incidence/viewing angle. The green film possesses 

a narrow reflectance band matching both the numerical model and the C. rajah beetle. The 

fabricated orange film possesses a reflectance band similar to the C. rajah. This band was 

broader due to the striations carved into the surface. It is assumed the film damage 

occurred during the washing process and possibly because inclusions were present in one 
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of the solutions used for this particular film as no other damage was observed in the other 

films. The advantage of fabricating films in this way is that the LbL technique is simple, 

can be applied to complex geometries, is open to a range of materials and can be expanded 

to a cost effective continuous process.  

 

In order to understand CNC distribution in EISA thin films a novel technique was 

developed. For the first time, the distribution of CNCs across the diameter of EISA thin 

films was measured using this technique which involved spectroscopic analysis along film 

diameters. This measurement required a known volume of the CNC EISA thin films which 

was achieved both theoretically and by experiment using profilometry. The results of both 

the theoretical and experimental measurements are in good agreement with each other. The 

volume was then used in conjunction with optical measurements to evaluate the 

distribution of CNCs along the diameter of the corresponding film. The limitation of this 

method is that it only gives a relative concentration value. A reference would be needed to 

provide exact CNC concentration values.  

A difference in the nanocrystal concentration has been shown to exist between regions 

expressing a significant difference in reflection of either LCP or RCP light. RCP light is 

shown to occur in a region of the film of low nanocrystal concentration and greater film 

height. The data also suggests that a concentration threshold may exist in EISA thin films, 

below which a CNC structure will tend toward inhomogeneity. Optical measurements 

showing significant reflection of both LCP and RCP light from separate regions within the 

same CNC thin films have been presented. This comes in contrast to the belief that only 

one polarisation of CPL can be reflected from a material that only forms a left handed 

chiral structure. POM analysis showed a clear difference in phase composition between the 
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two reflecting regions. The regions reflecting LCP light were homogenous whereas the 

RCP reflecting regions were inhomogeneous consisting of multiple phases. TEM analysis 

has revealed that the films are composed of multilayers parallel to the film surface and 

base. The layered structure is homogenous and consistent throughout the film. Two types 

of defect were observed, phase boundaries which are believed to be produced as a result of 

tactoid coalescence during the EISA process. Discoid shaped regions that appear isotropic 

were also observed in one of the films. Structures responsible for the reflection of one 

handedness of CPL could be identified, but no variation in this structure that could have 

been responsible for the reflection of RCP was observed. Even though the results confirm 

reflection of both left and right CPL no other confirmation could be obtained on whether 

the structures possessed a right or a left handed chiral structure. It is assumed that a left 

structure reflects LCP light. A correlation of modelled and experimental data for the 

reflection of polarised and non-polarised light was presented and is well matched. Though 

an explanation of the structures responsible for the optical behaviour could not be 

presented here, the optical behaviour was correlated to variations in CNC distribution. LCP 

light was reflected from regions with a high concentration of CNCs and RCP is reflected 

from regions with low CNC concentrations.  

CNCs have shown great potential for producing structurally coloured films. The LbL 

process enables the fabrication of reproducible homogenous films and is open to 

modification which would be needed to facilitate the covering of larger substrates. One of 

the limitations of the technique is the need to wash between each dipping; the constant 

stream of water can erode certain areas where water build up is significant which on a 

larger substrate will become more significant. A spray up LbL process would be a good 

solution to this. The rapid nature of absorption onto the substrate limits the scope for 
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introducing structures that would give the films additional optical behaviours, an advantage 

of the EISA thin film. The slow assembly process that forms the chiral structures means a 

range of optical behaviours can be utilised. The difficulty however is controlling 

homogeneity over a specified area.  

The relationship between CNC distribution and the CP response presented in this thesis, 

along with the use of CNCs in fabricating iridescent thin films contribute to the 

development of homogenous structurally coloured thin films. This work highlights the 

potential there is to design tailored optical thin films that are viable on an industrial scale 

using an abundant renewable material.   

 

8.2 Future Work 

This work presents a unique use for CNCs in structurally coloured thin films. It has also 

introduced a novel technique for investigating the distribution of CNCs in CNC EISA thin 

films. There are avenues future investigations could take to further develop, understand 

and explain these films and their potential.  

The introduction of additional materials, such as melanin to mimic more closely the 

makeup of the beetle integument would serve to increase the RI disparity between the A 

and B layers. This increase in disparity could lead to an increase in the intensity of 

reflected light, but would need to be balanced with the increase in absorption the melanin 

would affect. Another area to explore is the functionalisation of CNCs with various 

functional groups to introduce beneficial properties. Functional groups such as coumarin 

and benzophenone may be grafted onto the surface of the CNCs; such molecules are 
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photoreactive and undergo radical-mediated reactions upon UV exposure243,244. These 

nanocomposites may increase the mechanical properties and reduce swelling of the films. 

The reduced swelling would be of particular advantage as VMT is a hygroscopic material.  

Additional work may also include a thorough TEM investigation to measure pitch lengths 

at various intervals across the CNC EISA thin films. These would then be used to model 

reflection from a given section of film and then plotted with corresponding experimental 

reflection data to achieve a more complete characterisation of film reflectance.  Further 

investigation into where exactly RCP is coming from within the CNC film would reveal 

specific regions that may be observable in TEM images of the corresponding cross 

sections. The use of a micrometre, adjustable in the vertical plane, will allow 

measurements of distance along the height of the film where RCP light reflection is best 

resolved and along the same z-axis where LCP is best resolved. Such a study will allow a 

more accurate identification of specific regions of the film where RCP is reflected from.  

This work will also be applied to films prepared on substrates which induce varying 

contact angles and affect the drying mechanics and CNC alignment across the film. 

Another branch of work would include the modelling of defects in the twist of the chiral 

structure. Such defects are not easily identified using TEM analysis but have been shown 

to effect the polarisation state incident light245,246. As well as the twist defect, numerical 

modelling can assess whether an isotropic region in the continuous structure is responsible 

for a change in polarisation238. Understanding of such defects and their causes could pave a 

way for fabricated films with a broad range of tailored optical properties. 
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Appendix 

 

 

Figure A.1. High magnification MSP reflection of CPL from LCP (a,b) and RCP (c,d) 

reflecting regions. LCP reflection from an LCP reflecting region is clearly seen in (a) 

and no reflection is seen when illuminated with RCP (b). Reflection of LCP is seen 

from an RCP reflecting region (c), but is obscured by a stronger reflection of RCP 

(d).  

 

  



Appendix 

158 

 

 

 

Figure A.2 Reflection and transmission spectra of LCP and RCP light from regions of 

the film where the reflection of LCP (top) and RCP (bottom) are dominant. The 

spectra recorded from the LCP reflecting region (top left) present data showing an 

almost equal intensity of reflected LCP and RCP light. The corresponding 

complimentary transmission is not seen. Instead LCP is more readily transmitted 

than RCP light (top right). Likewise from the RCP reflecting region, a dominant LCP 

light is reflected at greater intensity (bottom left) and very little difference is seen 

between the transmitted LCP and RCP light (bottom right). 
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Figure A.3 A complete CNC distribution plot shown against the film profile the data 

is representing.  
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