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Abstract 

Gait is emerging as a powerful tool to detect early disease and monitor progression across a number of pathologies. Typically 

quantitative gait assessment has been limited to specialised laboratory facilities. However, measuring gait in home and 

community settings may provide a more accurate reflection of gait performance because: (1) it will not be confounded by 

attention which may be heightened during formal testing; and (2) it allows performance to be captured over time. This work 

addresses the feasibility and challenges of measuring gait characteristics with a single accelerometer based wearable device 

during free-living activity. Moreover, it describes the current methodological and statistical processes required to quantify 

those sensitive surrogate markers for ageing and pathology. A unified framework for large scale analysis is proposed. We 

present data and workflows from healthy older adults and those with Parkinson’s disease (PD) while presenting current 

algorithms and scope within modern pervasive healthcare. Our findings suggested that free-living conditions heighten 

between group differences showing greater sensitivity to PD, and provided encouraging results to support the use of the 

suggested framework for large clinical application. 
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1. Introduction 

Human gait (locomotion) is a surrogate biomarker of overall health [1], falls status [2] and longevity [3]. Therefore, accurate 

and reliable measurement of gait characteristics is becoming increasingly important as a robust method to determine many 

facets of health [4]. Typically, gait analysis is performed using expensive and large laboratory systems such as pressure-sensor 

walkways, force platforms, 2D photogrammetry, or 3D motion capture [5]. While such systems are essential for complex 

kinematics and kinetics analysis, their cost and size renders them unfeasible for quantifying gait outside laboratory settings 

[6]. This has driven the demand for inexpensive and portable, yet accurate,  tools and methods that can be more readily 

deployed such as in large lifestyle based intervention studies [4] allowing cost effective and more pragmatic assessment of 

gait in a wide variety of environments [7]. As a result, the interest in wearable technologies (wearables) to accurately capture 

gait has steadily risen in recent years [8].  

Wearable devices can provide continuous and objective data with numerous hardware configurations. They facilitate a 

range of possible deployment scenarios: short term monitoring utilising a wireless device with 9° of freedom (tri-axial 

accelerometers, gyroscopes and magnetometers with an integrated Bluetooth transmitter); or longitudinal 7 day monitoring 

(single tri-axial accelerometer with integrated memory). Currently, the latter configuration is of paramount interest within the 

field of gait research [9].  

This study examines the use of a single tri-axial accelerometer within modern gait analysis and it’s utility to shape 

pragmatic patient assessment in clinical free-living environments. We present our validated conceptual model of gait and 

apply it to a large cohort data to support its use in modern healthcare. We also define our planned framework for routine gait 

assessment. 
 

2. Related work 

Gait is characterised by a sequence of upright events conducted in a rhythmical fashion and more commonly represented by 

the gait cycle with some basic parameters, Fig. 1. 
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Due to the complexity of gait there is the potential to derive a plethora of parameters from an accelerometer-based wearable 

device [6]. To date numerous gait outcomes have been proposed. However, clinically relevant spatio-temporal characteristics 

grounded within a theoretical framework are key to understanding gait for current treatment or rehabilitation strategies. 

Frequency-based [10] or other more novel outcomes [11] have utility in describing gait in ageing and pathological cohorts 

(e.g. Parkinson’s disease, PD). Their true value however has yet to be realised or integrated into current clinical guidelines or 

pathways. 
 

2.1. A conceptual model of gait 

To aid the understanding of gait within modern healthcare a conceptual model of gait has been conceived, defining 16 (micro) 

gait characteristics within 5 domains (Fig. 2). These characteristics preferentially select for motor, cognitive, and behavioural 

attributes. The model is hypothesis-driven to explain underlying gait mechanisms, identify contributory features to gait 

disturbance, and examine the effect of intervention [1].  
 

 
 

Capturing  such micro gait characteristics with a single accelerometer is possible due to the peak to peak fluctuations within 

an acceleration signal [12]. Yet, the novelty of the referenced work expands the measurement of gait to the macro and the 

broad characteristics of the same acceleration signal, e.g. total time spent walking, number of occasions (bout) walked or the 

distribution of bouts. Thus, it is plausible to consider gait as a (higher-order) 2-dimensional component when quantifying with 

a single accelerometer, worn on the lower back which form the focus of this work. In addition, gait has been quantified with 

accelerometer and/or gyroscope devices (from various anatomical locations) [13]. However, fixation of a single accelerometer 

on the body is the most cost efficient and less complex configuration for a device. Moreover, attachment of the accelerometer 

at the lower back facilitates a holistic approach to patient assessment [14]. 
 

2.2. Micro and macro gait characteristics 

Generic outcomes of macro gait characteristics (volume outcomes e.g. total walking time, number of bouts) have been used 

for many years yet more novel alternatives were recently presented. These include the (i) shape of the power-law distribution 

(alpha, α) based on a logarithmic scale from their density and length, or the distribution of bouts based on Lorenz and 

quantified by the outcomes (parameters) Gini (G), and (ii) the within bout variability (S2) estimated using a maximum 

likelihood technique [15, 16]. These alternative outcomes have begun to be used with ageing and pathological studies, 

providing more statistically sensitive methods of analysis to examine differences between groups [17-20]. 

 
Fig 1: a snap shot of the gait cycle 

 
Fig 2: Conceptual gait model for domain and characteristic 

selection (*not quantifiable with an accelerometer on L5) 
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Micro gait characteristics derived from the within bout accelerations afford the added dimensionality of laboratory based 

outcomes from any environment. With a single accelerometer 14/16 characteristics (Fig. 2) have been validated within 

younger adults, older adults and those with PD [21, 22]. In brief, the accelerometer algorithms used for micro characteristics 

rely on the recognition of initial contact (IC) and final contact (FC) events within the gait cycle, Fig. 1. These are estimated 

from the filtered vertical accelerations by a Gaussian continuous wavelet transform (CWT) [23] which allow for temporal 

estimations, Fig 2. Spatial outcomes are estimated via IC/FC events along with an inverted pendulum model [24], (Fig. 3), 

and the change in centre of mass (CoM) height (h: double integration of av) and device height from ground (l), Eq. 1. 
 

 
 

2
 - 2 2 Length  Step hlh             (1) 

Variations on characteristics such as deriving the variability and asymmetry facilitate a detailed investigation of the step to 

step fluctuations and limb co-ordination, respectively. This is useful for quantifying subtle differences in an asymmetrical 

disease, e.g. PD. Calculating variability may be estimated from the standard deviation between all steps or via the variance 

from left and right steps separately and then combined (Eq. 2). This method avoids confounding step-to-step variability with 

variation originating from asymmetry between left and right steps [25]. Asymmetry (Eq. 3) can be determined as the absolute 

difference between left and right steps (alternating if evaluated with an accelerometer or exactly with the addition of a 

gyroscope [23]). 

2
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      (2) 

rightleftrightleft averageaverage&Asymmetry         (3) 

 

3. Current Gait deployment 

3.1. Accelerometer devices 

There are a number of commercially available accelerometer devices for use on the lower back. However, most are reliant on 

proprietary software that may or may not quantify clinically relevant characteristics. Additionally, the amalgamation of 

 
Fig. 3: (a) Gait cycle with stride, step, stance and swing times 

from IC/FC events. (b) The raw vertical signal (av), integrated 

and differentiated (S1, S2) by CWT with IC/FC events. (c) 

step length found using Eq. 1. 
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bespoke design and software could incur high cost. Alternatively, low cost accelerometer-based movement devices stemming 

from an open source model may provide transparent and affordable alternatives. One example of these devices is Axivity 

AX3 (Axivity, York, UK; dimensions: 23.0mm x 32.5mm x 7.6mm, 100Hz, ±8g, weight: 9grams). However, only raw data is 

provided leaving the aforementioned algorithms to be implemented. The device is attached the fifth lumbar vertebrae (L5) on 

the lower back, by means of a suitable double-sided adhesive and covered with an additional adhesive for added 

support/security. 
 

3.2 Protocol - clinical 

Gait testing protocols will be informed by the study specific research hypothesis. However, recommendations for supervised 

clinic-based assessments participants should perform a 2 minute continuous walk over a straight, or alternatively, looped path 

to record a sufficient number of gait cycles during steady state walking [25, 26]. If a testing environment does not permit a 

continuous walk, then repeated intermittent walks and pooling of all data may be a suitable alternative. However, current 

research aims to assess the patient in habitual environments thereby negating any observer (Hawthorne) effect and artificial 

improvement in performance due to clinical testing [27]. Moreover, longitudinal free-living monitoring facilitates 

micro/macro approach to gait assessment, yet currently involves a time consuming approach. 

 

 3.3 Protocol - free-living gait assessment (7 days) 

Free-living recording requires participant instructions for device re-attachment (removed if not instructed to wear for 24/day 

due to showering, exercise and/or general hygiene to refresh adhesives). The device is returned to the research via pre-paid 

envelopes which can take days due to compliance and added dependency on a third party (postal service). Additionally, 

adopting the aforementioned signal processing algorithms requires a research analysis platform (typically MATLAB
®
) for 

analysing clinical and free-living data, where further delays in data uploading, segmenting (if needed) and analysis can also 

prove inefficient, especially with large files (e.g. 250MB raw binary data or 200MB MATLAB
®
 format) analysed on a single 

computer. Extracting and analysing a single tri-axial accelerometer 7 day file for macro and micro outcomes can result in 

approximately 20min of computation time. One key component of that delay is the formal recognition of gait events within 

free-living which is heavily reliant on a standard deviation and mean moving windows [28] to identify the start/stop of a bout, 

Fig. 4. 
 

 
 

Yet, current limitations of data collected in clinical (intermittent walking trials) vs. free-living settings are out weighted by 

preliminary data suggesting that free-living micro gait assessment may be more sensitive for patient discrimination, Fig. 5 

(same characteristics as Fig. 2) [29]. Within clinical testing shows 2/14 compared to free-living 4/14 characteristics being 

more sensitive between those with PD (n=47) and healthy aged matched controls (n=50) (Fig. 5). For details on inclusion 

criteria, study protocol, demographics and statistical analysis please refer to [29]. 
 

3. Future Gait deployment 

Accelerometer-based gait assessment has been shown to be valid and reliable [14, 21, 22, 30]. Our preliminary results 

indicate that free-living assessment offers potential to better discriminate pathology compared to clinical testing. 

 

3.2 Multi-centre clinical trials 

The relative low cost of open source-based technology and the passive form-factor of miniaturised accelerometer devices has 

potential within modern multi-centre clinical trials. Devices can be acquired in large numbers and worn continuously on a 

range of different demographical cohorts (e.g. limited/reduced physical functioning, cognitive difficulties, age or those in 

remote geographical locations). 

However, limitations alluded to in current gait deployment need to be overcome to enable its widespread use. Currently, 

multi-centre trials utilise a range of different web-based resources (within group or commercial, e.g. Dropbox) to transfer data 

post collection from the patient (postal or manual return during a clinical follow-up). This best facilitates data pooling and 

generally helps project workflow. Yet, data transfer remains inefficient: only raw data is transferred while algorithm 

processing remains limited to the end user, i.e. researcher on a standalone computer. There is a need to harmonise data 

transfer and end user algorithms for gait analysis, cloud based scientific data management.  
 

 
Fig 4: Example of standard deviation of the tri-axial accelerations with identified start (green) and stop (red) of bouts for gait analysis 
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3.3 Cloud-based gait management 

One approach for implementing such a framework is e-Science Central [31], a cloud based Science Platform that allows the 

storage, analysis and sharing of data in the cloud. Utilising this methodology, multi-centre studies could transfer and 

implement open source algorithms to process raw data to a central (or cloud) repository. The overall process relies on 

workflows based on html5 to arrange and link a number of programmable packages/applications. This approach has the 

advantage of widening the community access to such a platform (scalability), reducing the computational cost of the project 

workflow, multi user access, provenance, adherence to protocols [32].  

However, implementing current algorithms on such a platform remains limited and complex. Algorithms are typically 

developed within MATLAB
®
 due to the extensive toolbox options readily available. In contrast similar scripting languages like 

Octave and Python
™

 despite having the advantage of being open source software with obvious benefits in terms of low costs 

and widespread use, currently provide limited functionality due to their open source development. Thus, certain signal 

processing features utilised in MATLAB
®
 for gait may not be readily available and directly translatable within Octave or 

Python
™

 (or another). Therefore variations in implementation methods in the code, language coding, architecture and cross 

platform licencing issues impedes current use but remains possible. 

To demonstrate the current state of transferability between languages and feasibility of a cloud workflow we processed one 

participant data via validated manual MATLAB
®
 methods, translated the same code to Octave and deployed an executable of 

the same MATLAB
®
 scripts via the e-Science platform (e-MATLAB

®
) thereby generating a closed standalone analysis package, 

Table 1. Mean values between languages differ slightly (but not tested for statistical significance) due to the different 

functionalities of the MATLAB
®
 CWT function (signal processing toolbox) and Octave (best replicated) equivalent within the 

‘ltfat’ library. Importantly, the e-MATLAB
®
 was replicated exactly in this example, but remains a ‘fixed’ executable.  

 
Fig. 5: Sensitivity between PD and Controls (CL) for (a) 

clinical characteristics (2/14) and (b) free-living 

characteristics (4/14), plots show ±z-scores from CL data 

(normal data at 0) 
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Table 1: MEAN MICRO GAIT CHARACTERISTICS ACROSS PLATFORMS 
 MATLAB Octave e-MATLAB 

Step time (s) 0.539 0.542 0.539 

Stance time (s) 0.681 0.703 0.681 

Swing time (s) 0.394 0.371 0.394 

Step length (m) 0.570 0.570 0.570 

Step velocity (m/s) 1.184 1.197 1.184 

Step time var (s) 0.184 0.191 0.184 

Stance time var (s) 0.198 0.232 0.198 

Swing time var (s) 0.158 0.135 0.158 

Step length var (m) 0.159 0.161 0.159 

Step velocity var (m/s) 0.432 0.430 0.432 

Step time asy (s) 0.099 0.107 0.099 

Stance time asy (s) 0.094 0.100 0.094 

Swing time asy (s) 0.099 0.077 0.099 

Step length asy (m) 0.099 0.101 0.099 

 

4. Discussion & Conclusion 

Accelerometer-based gait assessment has utility as a low cost tool in the collection surrogate biomarkers in ageing, cognitive 

and health outcomes. The methodologies presented here demonstrate a conceptual model reliant on a macro/micro approach 

to gait to quantify behavioural and spatio-temporal performances, the latter suggesting greater sensitivity between patient 

groups during free-living monitoring. Rapid and integrated deployment of gait as a pragmatic tool in health or pathology 

studies is currently limited by a lack of integration between platforms and algorithm transferability due to lack of functionality  

between development software. Current work is aiming to overcome these limitations, cross-validating data, thereby upscaling 

and increasing gait data capture and transferability between platforms. 
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