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1
Abbreviations 

  

                                                           
1
 ABCs, Activities-specific Balance Confidence scale; ANCOVA, analysis of covariance; AP, anteroposterior; 

BMI, Body Mass Index; CL, Controls; f95%, CoP, centre of pressure; frequency below which is 95% of power 

of the acceleration power spectrum; GDS, Geriatric Depression Scale; Hz, Hertz; LEDD, Levodopa Equivalent 

Daily Dose; MDS-UPDRS, Movement Disorder Society version of the Unified Parkinson’s Disease Rating 

Scale; m, slope; mins, minutes; ML, mediolateral; MMSE, Mini Mental State Exam; MoCA, Montreal 

Cognitive Assessment; n, number; ppm, parts per million; PC, Postural Control; PD, Parkinson’s disease; PIGD, 

Postural Instability and Gait Disorder; RMS, Root Mean Square; s, seconds; SD, standard deviation. 



Abstract 

Impaired postural control (PC) is an important feature of Parkinson's disease (PD) but optimal testing 

protocols are yet to be established. Accelerometer-based monitors provide objective measures of PC. 

We characterised time-dependent changes in PC in people with PD and controls during standing, and 

identified outcomes most sensitive to pathology. Thirty-one controls and 26 PD patients were 

recruited: PC was measured with an accelerometer on the lower back for 2 minutes (mins). 

Preliminary analysis (autocorrelation) showed 2 seconds (s) was the shortest duration sensitive to 

changes in the signal; time series analysis of a range of PC outcomes was undertaken using 

consecutive 2s windows over the test. Piecewise linear regression was used to fit the time series data 

during the first 30s and the subsequent 90s of the trial.  

PC outcomes changed over the 2mins, with the greatest change observed during the first 30s after 

which PC stabilised. Changes in PC were reduced in PD compared to controls, and Jerk was found to 

be discriminative of pathology. 

Previous studies focusing on average performance over the duration of a test may miss time-

dependent differences. Evaluation of time-dependent change may provide useful insights into PC in 

PD and effectiveness of intervention. 

Keywords: Postural control; time series; accelerometer; Jerk; Parkinson’s.  



1.0 Introduction 

Postural control (PC) during quiet standing is an important component of clinical evaluation in 

Parkinson's disease (PD), and a cardinal sign of disease staging [9]. Recognising and evaluating 

balance dysfunction is of fundamental importance for managing PD because of the profound impact 

PC has on gait, mobility and falls [36]. The mechanisms underlying balance instability in PD are 

complex, and involve peripheral and central neural structures [36]. Previous research suggests that 

participants with PD even in the early stages exhibit abnormalities in PC measures during quiet 

standing (increased Jerk and root mean square values, decreased frequency) [16,17], and that the 

positive effect of dopaminergic replacement therapy on gait (particularly step hypokinesia and gait 

speed) may not be paralleled for PC where Levodopa has been shown to worsen some outcomes 

[11,31]. Understanding the features of PC especially in the early stage of the disease is therefore 

relevant to the management of PD. 

However, interpretation and clinical inference of PC findings is challenging because testing protocols 

are not standardised.  For example, PC during quiet standing has been routinely used for many years 

[25,20,33,34,36], with variations including: standing with bare feet [25]; with shoes on [8,4,29]; with 

eyes open or closed [25,24]; and with legs spaced a fixed distance and arms crossed on chest [17]. PC 

during quiet stance has also been evaluated over different trial durations ranging from 30 - 120 

seconds [33]. 

More recently body worn accelerometer-based monitors have been used and recommended to 

accurately quantify PC in older adults and people with PD [16,17,19,27,30]. The outcomes 

determined with accelerometers have been shown to be reliable and consistent with those quantified 

from centre of pressure (CoP) data using traditional methods (i.e. force plates) [41], and have the 

additional advantage of yielding rate of change of acceleration (Jerk) which would otherwise require 

multiple derivations of CoP displacement. These monitors also have advantages over traditional 

clinical tests because data are collected continuously over the duration of the test allowing time-

dependent changes in PC to be evaluated. To date PC outcomes are typically summarised over the test 

duration and change over time has not been considered.  This is a methodological issue that needs to 



be addressed because time-dependent fluctuation may provide a more subtle reflection of PC 

adaptations in addition to averaged values.  

The aim of this study was to characterise time-dependent changes in a broad range of PC outcomes 

derived from an accelerometer over 2 minutes of quiet standing using a novel method of analysis. We 

compared the time dependence difference in early PD and older adults and aimed to identify the 

outcomes of PC most sensitive to pathology. We hypothesised that: 1) PC would change over the 

duration of a 2 minute test; 2) the greatest change would be observed in the early stage of the test in 

order to stabilise PC; and finally 3) stabilisation of PC (determined by time-dependent change) would 

be less efficient in PD compared to age matched controls. 

  

2.0 Experimental procedures 

PD participants and healthy age-matched controls (CL) were recruited from the larger Incidence of 

Cognitive Impairment in Cohorts with Longitudinal Evaluation – Parkinson’s Disease Gait study 

(ICICLE-PD GAIT) [13], which aimed to recruit all new cases of parkinsonism from secondary care 

services in Newcastle upon Tyne and Gateshead from June 1, 2009, to December 31, 2011. 

 

2.1 Participants 

Participants were assessed during their visit to the Clinical Ageing Research Unit, Newcastle 

University. Participants were excluded if they had any neurological (other than PD), orthopaedic or 

cardiothoracic conditions that may have markedly affected their walking or safety during the testing 

sessions. In addition, PD participants had to be diagnosed with idiopathic PD according to the UK 

Parkinson’s Disease Brain Bank criteria and were excluded if they presented with significant memory 

impairment (Mini Mental State Exam (MMSE) < 24 [6]), dementia with Lewy bodies, drug induced 

parkinsonism, ‘vascular’ parkinsonism, progressive supranuclear palsy, multiple system atrophy, 

corticobasal degeneration or poor command of English. 

This study was conducted according to the declaration of Helsinki and had ethical approval from the 

Newcastle and North Tyneside research ethics committee. All participants signed an informed consent 

form prior to testing. 



 

2.2. Demographic and clinical measures 

Age, sex and body mass index (BMI) were recorded for each participant. Cognition was assessed with 

the MMSE and the Montreal Cognitive Assessment (MoCA) [26]. Depression was evaluated with the 

Geriatric Depression Scale (GDS) [37]; physical fatigue was assessed using the Multidimensional 

Fatigue Inventory (MFI) [38]; and balance self-efficacy was measured using the self-rated Activities-

specific Balance Confidence scale (ABCs) [28]. The severity of PD motor symptoms in the PD 

participants was measured using the Hoehn and Yahr scale [9], which ranges from 0 (no symptoms) to 

5 (wheelchair bound or bedridden if unaided) and section III of the modified Movement Disorder 

Society version of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS [7]), which ranges 

from 0 (no motor symptoms) to 132 (severe motor symptoms). The Postural Instability and Gait 

Disorder (PIGD) and Tremor phenotype subscales were also calculated from the MDS-UPDRS [39]. 

Levodopa equivalent daily dose (LEDD) scores were calculated according to established methods 

[40]. 

 

2.3. Standing balance test 

Participants were instructed to start from a standing position, with their feet positioned within the 

boundaries of a predefined area (400 mm wide × 600 mm long),  to place the hands by their sides 

[29], and to maintain an upright standing position for 2 minutes while looking straight ahead. Similar 

to previous studies, participants wore their shoes during the test with no restriction with regard to foot 

placement [24]. The recording of data started 3 seconds after participant acknowledged they 

understood what was required of them. Each subject performed one test, in line with previous 

recommendations [41], and to avoid familiarisation to the assessment and fatigue [22,3]. PD 

participants who were on medication were tested approximately 1 hour after medication intake. 

 

2.4 Equipment 



PC was measured with a single tri-axial accelerometer-based monitor
2
 (resolution 0.976mg, clock 

accuracy: ±20parts per million (ppm)) located on the lower back (5
th
 lumbar vertebra, L5, Figure 1). 

The device is small (6.0 × 21.5 × 31.5mm) and lightweight (9.0g) with no external wiring which has 

been validated for its suitability in capturing high-resolution data akin to human movement [14]. Data 

were sampled at a rate of 50 Hertz (Hz) in order to have consistency with previous literature [17] and 

downloaded to a computer once recording was complete. The accelerometer was attached directly to 

the skin with the aid of a hydrogel adhesive
3
 and covered with a Hypafix

4
 bandage for extra support.  

 

Figure 1. 

Experimental set up: the site of attachment and orientation of the tri-axial accelerometer device on the lower 

back (L5). In dark grey x (vertical) axis, in black y (mediolateral) axis, and in light grey z (anteroposterior) axis.  

 

2.5 Data processing and analysis 

Once data were downloaded to a computer they were analysed by a bespoke MATLAB
®
 (R2012a) 

program. Of particular interest were the accelerations in the mediolateral and anteroposterior planes as 

quiet standing balance is reflected in these directions [17]. Data were filtered using a 4
th
 order zero 

phase, low pass Butterworth filter with a cut-off frequency of 3.5Hz [17]. In accordance with previous 

work [17], data were transformed to a horizontal-vertical coordinate system [21] before extracting the 

following outcomes for the mediolateral (ML), anteroposterior (AP) and combined directions, which 

have been shown to be valid, reliable, and sensitive to early PD [17,16,19]: 

                                                           
2
 Axivity AX3, York, UK 

3
 PAL Technologies, Glasgow, UK 

4
 BSN Medical Limited, Hull, UK 



1. Jerk: the rate of change of acceleration, a measure of the smoothness of PC [17]; 

2. Root mean square (RMS): magnitude of the acceleration traces [23,17]; 

3. Frequency: the frequency below which is 95% of power of the acceleration power spectrum 

(f95%) [17] was evaluated using both the fft and the cumsum MATLAB functions (Figure 2); 

4. Ellipsis: the area including the 95% of the ML and AP acceleration trajectories [27] was 

evaluated using the eig and prod MATLAB functions (Figure 2). 

 
 

Figure 2. 

(a): example frequency evaluation along mediolateral direction (f95%ML), in grey the power spectrum, in black 

dotted line the obtained result. 

(b): example of ellipsis evaluation: in grey accelerometer signal on the y – z (mediolateral (ML)-anteroposterior 

(AP)) axis plane, in black the ellipsis graphical representation corresponding to the area including the 95% of 

the acceleration trajectories along ML and AP directions. 

 



2.6 Data considerations  

To examine time-dependent changes in PC, it was first important to identify the shortest duration of 

time within the 2 minutes test that was sensitive to changes in acceleration signal. To do this we used 

autocorrelations of squared values of the acceleration traces and squared first-derivative of the 

acceleration traces (the precursors of RMS and Jerk values, respectively). Averaged autocorrelation 

values showed that a 2 second bout was optimal with correlation values dropping to zero after no 

more than a lag of 100 samples (2 seconds), this choice took also into account the frequency 

components of the signal [2]. Therefore outcomes for PC strategies were calculated during 

consecutive non-overlapping 2 second windows (i.e. 0-2 seconds, 2-4 seconds, …, 118-120 seconds). 

Figure 3 ((a)-(d)) describes the process used to extract data showing accelerometer raw data, 

autocorrelation and examples of clinical outcomes. All variables except for the f95% were normalised 

by duration of the bout length (2 seconds). 

 

2.7 Statistical analysis 

The process of data analysis corresponded with our hypotheses, as outlined below: 

Hypothesis 1: Between group differences for each PC outcome were evaluated over the 60 

consecutive 2 second bouts using repeat-measures analysis of covariance (ANCOVA). Group (CL vs. 

PD) was entered as a between-person factor and time (consecutive 2 second windows) as a within-

person factor. Age and sex were included as covariates. ANCOVA revealed no significant group 

differences; however significant main effects of time for RMS indicated PC outcomes were non-

stationary and justified examining how PC changed over time. 

Hypothesis 2: Inspection of data and preliminary analysis based on consecutive bouts of 30 seconds 

(0-30s, 30s-60s, 60s-90s, 90-120s) revealed that time-dependent changes in PC occurred mostly in the 

first 30 seconds for both CL and PD, and no significant changes were found between PD and CL data 

for the last 3 bouts (30-60s, 60-90s, 90-120s). To formally test whether most change would occur 

during the first 30 seconds of the standing test, piecewise linear regression was fitted to data from the 

first 30 seconds (0-30 seconds) and subsequent 90 seconds (30-120 seconds) of the standing test. 



Hypothesis 3: Differences in the slopes (m) of the regression lines between the 0-30 second and the 

30-120 second sections were then tested using ANCOVA with group (PD, CL) as between-person 

factor, time section (0-30 seconds, 30-120 seconds) as a within-person factor, and age and sex as 

covariates. Data analysis was carried out using SPSS v19 (IBM). 

 

Figure 3. 

(a): an example of corrected and filtered data extracted from a subject with Parkinson’s disease during a two 

minutes quiet standing test. In black y axis (mediolateral) data, and in grey z axis (anteroposterior) data. (b): 

example of autocorrelation signal. (c): example of Jerk time series extracted from the accelerometer signal using 

a 2 second window. (d): example of RMS time series extracted from the accelerometer signal using a 2 second 

window. 



3.0 Results 

Participant demographic, clinical and cognitive descriptors are shown in Table 1. Compared to CL, 

participants with PD were aged matched; included proportionally less women (CL: 45%, PD: 23%); 

presented with lower balance confidence; poorer cognition; and increased fatigue and depression 

(although the depression scores remained within the normal range). Participants with PD were in the 

early stages of the disease with mild motor symptoms. PC was shown to vary over time (time and 

time × group effects were found, see Table 3) with changes occurring in the first 30 seconds of the 

test in CL, but not PD. A summary of the piecewise linear regressions are shown in Figures 2-4 and 

data relating to the slopes for the first 30 seconds and the subsequent 90 seconds are shown in Table 

2. 

Table 1. 

Clinical and demographic characteristics for control participants (CL), and people with Parkinson’s disease 

(PD). 

Characteristic 
CL (n = 31) 

Mean (SD) 

PD (n = 26) 

Mean (SD) 
p 

Male/female (n) 17/14 20/6 .080 

Age (years) 67.6 (7.5) 67.2 (11.1) .859 

MMSE (0 – 30) 29.3 (1.0) 28.5 (1.0) .024 

MoCA (0 – 30) 27.7 (1.8) 24.5 (3.1) <.001 

GDS (0 – 15)  1.2 (1.7) 2.4 (1.8) .016 

MFI Physical fatigue (0 – 20) 8.5 (3.8) 10.3 (3.0) .055 

ABCs (0 – 100%) 91.7 (12.1) 83.5 (17.7) .052 

Hoehn & Yahr stage: HYI, HYII (n) - 9, 17 - 

MDS-UPDRS III (0 – 132) - 
26.1 (10.3) 

- 

Motor Phenotype (n) - 

PIGD 9 

ID 2 

TD 15 
- 

Levodopa Equivalent Daily Dose (mg/day) - 169.42 (141.9) - 

Group means have been adjusted for age and sex differences between groups; MMSE: Mini Mental State Exam; MoCA: 

Montreal Cognitive Assessment; GDS: Geriatric Depression Scale; MFI – Multidimensional Fatigue Inventory; ABCs: 

Activities specific balance confidence scale; UPDRS: Unified Parkinson’s Disease Rating Scale; PIGD: Postural instability 

and gait disorder phenotype; ID: indeterminate phenotype; TD: Tremor dominant phenotype. p difference between CL and 

people with PD. In bold significant p-values (p <0.05).  



3.1 Differences in PC in PD and controls averaged over 2 minutes. 

Between group differences (PD vs. CL) for each of the four PC measures evaluated using the average 

value of the time series from 2 second bout windows showed no difference between PD and CL for 

Jerk values (combined, ML or AP) (Figure 4 (a)-(c)). For PD participants, combined RMS was 

significantly greater than controls (p = 0.049), while RMS AP was marginally higher (p = 0.057), and 

RMS ML comparable (p = 0.444) (Figure 4 (d)-(f)). Ellipsis and f95% AP and ML values were 

comparable for PD and CL participants (Figure 4 (g)-(i)). 

 

3.2 Time-dependent changes in PC in PD and CL. 

The values of the slopes of the regression lines used to fit the data during the first 30 seconds (0-30 

seconds) and the subsequent 90 seconds (30-120 seconds) of the standing test are shown in Figure 3 

(panel (c) and (d)).  ANCOVA analysis revealed a significant main effect of time for all outcomes 

apart from Jerk ML and f95% AP.  There was also a time × group interaction for both Jerk and Jerk 

ML (Table 3) whereby CL decreased their total Jerk and Jerk ML more than PD participants during 

the first 30 seconds. In contrast Jerk remained stable in both groups over the last 90 seconds (Figure 4 

(a)-(c)). 

 

  



Table 2. 

Values of the slopes (m) for each accelerometers outcome. Values are shown as Mean (SD). Significant (p 

<0.05) Time Effect (between sections, ǂ) and Time × Group Effect (٭) of the ANCOVA analysis for the linear 

regression slopes results (m) are shown for each variable. 

 

 

Table 3. 

Results of the ANCOVA analysis for the linear regression slopes (m) results using a 30 seconds cut-off: p values 

of Time Effect (between sections, ǂ) and Time × Group Effect (CL vs. PD,٭) are reported for each variable, in 

bold are shown the significant p values (p <0.05). 

 

Variable ǂ Time Effect 
 Time × Group٭

Effect 

Jerk m ǂ0.013 0.021 ٭ 

Jerk AP m ǂ 0.006 0.560 

Jerk ML m 0.020 0.108 ٭ 

RMS m ǂ 0.001 0.092 

RMS AP m ǂ 0.008 0.103 

RMS ML m ǂ 0.001 0.238 

f95%AP m 0.132 0.137 

f95%ML m ǂ 0.004 0.982 

Ellipsis m ǂ 0.015 0.074 

Variable 

Section 1: 0-30 seconds Section 2: 30-120 seconds 

CL 

n = 31 

PD 

n = 26 

CL 

n = 31 

PD 

n = 26 

Jerk m (deg·10
-2

) ǂ(0.100) 0.0246- (100.) 0.0005- (0.003) 0.0176- (0.600) 0.3193- ٭ 

Jerk AP m (deg·10
-2

) ǂ -0.1575 (0.200) -0.0565 (0.002) -0.0006 (0.030) -0.0131 (0.030) 

Jerk ML  m (deg·10
-2

 (0.100) 0.0115- (0.040) 0.0005 (0.003) 0.0390 (0.500) 0.1618- ٭ (

RMS  m (deg·10
-2

) ǂ -0.2736 (0.400) -0.0997 (0.003) 0.0158 (0.100) 0.01985 (0.100) 

RMS AP m (deg·10
-2

) ǂ -0.2552 (0.400) -0.0724 (0.003) 0.0132 (0.100) 0.0201 (0.100) 

RMS ML m (deg·10
-2

) ǂ -0.0684 (0.100) -0.0403 (0.001) 0.0007 (0.020) 0.0002 (0.020) 

f95% AP m (deg·10
-2

) 2.5346 (8.100) -0.8517 (8.989) -0.4956 (2.100) -0.7702 (1.800) 

f95% ML m (deg·10
-2

) ǂ 2.8111 (8.300) 3.4203 (7.725) -0.5034 (1.200) -0.5181 (2.600) 

Ellipsis m (deg·10
-2

) ǂ -0.0484 (0.100) -0.000153 (0.001) 0.0004 (0.010) -0.0003 (0.001) 
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Figure 4. 

Mean time series data using a 2 second (s) window for Jerk (a), Jerk along anteroposterior direction (AP) (b), Jerk along mediolateral direction (ML) (c), RMS (d), RMS 

along anteroposterior direction (AP) (e), RMS along mediolateral direction (ML) (f), Ellipsis (g), f95% along anteroposterior direction (AP) (h), and f95% along mediolateral 

direction (ML) (i),  considering effect of pathology (Control participants (CL) vs. people with Parkinson’s disease (PD)). Results from linear regression using a 30 second 

cut-off are overlapped.  
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4.0 Discussion 

The specific aim of this study was to characterise time-dependent change in PC in participants with 

early PD compared to age-matched CL and identify the outcomes most sensitive to pathology. To date 

this is the largest study examining PC in PD and healthy older controls (n = 57) with an instrumented 

balance test (previous studies ranged on average from n = 19 to n = 40 [2,16-19,27]). The novel 

findings of this study were that PC changes during the first 30 seconds of a test in healthy controls 

after which it is maintained, in contrast to PD who did not show early time-dependent change in PC. 

These findings were in contrast to values averaged over the duration of the test. The findings support 

our hypotheses and suggest that time-dependent changes in PC may identify subtle changes in PC 

missed when reporting average performance and should also be considered.  

 

4.1 Time-dependent changes in PC and effect of pathology. 

We hypothesised that PC would show time-dependent change over the duration of a 2 minute test and 

would be greatest in the early stage of the test as PC is stabilised. Furthermore, time-dependent 

change would be reduced in PD compared to age-matched controls.  Our results confirm these 

hypotheses.  PC changed over the course of 2 minutes quiet standing with the greatest change 

observed in the first 30 seconds and was different in PD and CL. Controls showed a reduction in PC 

outcomes during the first 30 seconds of the PC test in contrast to PD participants who did not 

demonstrate change over time (as evident by Jerk, RMS and ellipsis), which suggests less adaptive PC 

strategies overall. 

When average values were compared over the 2 minute test, although participants with PD showed 

higher values with respect to CL, no significant difference was found between the groups except for 

RMS. These findings are in contrast to previous studies [17,16] however this may be explained by 

differences in the characteristics of the PD participants and subtle differences in methodology 

(constrained versus non-constrained stance).  

When time dependant changes were examined (slopes of the linear regression of the first 30 seconds 

vs. those of the last 90 seconds) PD and CL participants showed differences in PC outcomes during a 

static PC test  [16,17], which is not surprising given the effect of PD pathology on motor control 
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[36,12]. Differences were more evident in the ML than AP direction, which concurs with findings 

from two previous studies [31,27].   

Our results therefore show the need to inspect time-dependent change over the first 30 seconds in 

order to depict between-group difference rather than examine values for each discrete 2 second bout 

windows as the analysis from the 2 minutes standing test revealed that pooled data were not sensitive 

to pathology (RMS only was found to differentiate between CL and participants with PD). 

 

4.2 Sensitivity of outcome measures of PC. 

With respect to the measurement of PC, we found that Jerk was the most sensitive outcome which for 

combined directions discriminates between CL and participants with PD. In contrast with Mancini et 

al. 2011[17] we did not find differences in relation to RMS, f95%, ellipsis and Jerk in the AP 

direction. This again may be due to differences in methodology adopted and clinical characteristics of 

the participants (who were untreated in contrast to our study). We also found that PC characteristics in 

the ML direction were more sensitive than in the AP direction. This may reflect a decrease in postural 

tone at the trunk and hip levels, which would decouple the trunk from lower limb sway [31], whereas 

a reduced sway in AP direction might reflect the increase stooped position mainly consisting in 

flexion of the hips and knees which is often observed in more advanced PD [31,36]. These results 

concur with the view that adaptation takes place over time through motor learning but this is less 

effective for people with PD.  

 

4.3 Substrates of PC underlying time-dependent change. 

Time-dependent changes in PC for all groups in our study occurred in the first 30 seconds of the test, 

suggesting early stabilisation before reaching a plateau. This is supported by literature which suggests 

motor learning underpins fast and effective adjustment of postural responses to change in position, 

which is then followed by a period of stabilisation [12,35]. Differences in PC strategies in PD may be 

due to both abnormal spatiotemporal coordination of muscles’ postural responses which are often 

hypometric (small) in people with PD and a decreased ability to generate and sustain PC as a result of 

biomechanical [12] and impaired sensory-motor integration as shown by previous studies [1,15,5]. 
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Moreover and in agreement with published literature [36], the difficulty to choose and maintain a 

postural strategy may reflect an important role of the voluntary motor control mediated by the basal 

ganglia which is impaired in PD. This concurs with the view that adaptation takes place over time 

through motor learning but this is less effective for participants with PD and further inhibited by 

medication even in the early stage of the disease [31,27]. 

 

4.4 Implications for clinical testing. 

The time-dependent changes in PC observed in this study has implications for test protocols. The 

early stage of the test appears to be critical to examine postural adaptation and a 30 second trial is 

likely to be sufficient to capture this.  Data collected after this time period reflects a stable state of PC. 

Most protocols use average values masking these early changes which could provide additional 

important information with respect to the influence of disease severity and intervention [16,19,17,31].  

Furthermore, the ability to stabilise PC rather than maintain a static state most likely reflects 

requirement for real world postural stability. 

The consequence of impaired PC includes restricted functional mobility, reduction in levels of daily 

physical activity, and the onset of falls [10].  Tentative implications for the management of early PD 

therefore arise from this study. If PC is refractory to dopaminergic replacement therapy even in the 

early stages of disease onset when response to medication is optimal [11,18], early efforts need to be 

directed towards ameliorating PC deficit. Furthermore, rehabilitation strategies that focus on 

improved directional control (mediolateral) and aim to enhance more rapid stabilisation may be 

important to improve stabilisation and enhance PC in early PD. Early intervention is also warranted 

before secondary, compensatory change becomes more evident [32]. Therefore we propose that our 

novel methodology has the potential to be adopted as a “tool” to understand the effect of pathology, 

efficacy of new pharmacological, surgical and physical interventions and provide insight into time 

dependant PC mechanisms which may have not been examined so far. 

 

4.5 Limitations. 
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These results are preliminary and further examination in a larger cohort is needed to determine 

whether these results can be confirmed, in addition examination of other pathologies will allow us to 

determine whether these time-dependant changes are specific to PD. Future work will examine PC 

strategies, effect of test protocol (shoes/no shoes, eyes open/closed), and effect of disease severity due 

to follow up time points in the larger incident PD cohort compared to age matched controls (ICICLE-

PD GAIT).  

 

5.0 Conclusions 

Time-dependent adjustments in PC occur in the first 30 seconds of quiet standing and are less 

efficient in PD suggesting poorer adaptive PC.  Testing conditions for examining time-dependent 

changes in PC therefore require a minimum of 30 seconds to reflect postural adaptation. Time-

dependent differences in stability also appear to be greater in the mediolateral direction with Jerk the 

most sensitive outcome to discriminate between groups.  Rehabilitation strategies that focus on 

mediolateral control may be optimal for improving balance in people with PD and should be started 

early. In future our methodology could be applied to various pathologies which affect balance, 

providing insight into PC strategies with respect to pathology and response to intervention. 
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