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ORIGINAL ARTICLE

Do you see what I see? Mobile eye-tracker contextual analysis
and inter-rater reliability
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Abstract Mobile eye-trackers are currently used during real-
world tasks (e.g. gait) to monitor visual and cognitive process-
es, particularly in ageing and Parkinson’s disease (PD).
However, contextual analysis involving fixation locations dur-
ing such tasks is rarely performed due to its complexity. This
study adapted a validated algorithm and developed a classifi-
cation method to semi-automate contextual analysis of mobile
eye-tracking data. We further assessed inter-rater reliability of
the proposed classification method. A mobile eye-tracker re-
corded eye-movements during walking in five healthy older
adult controls (HC) and five people with PD. Fixations were
identified using a previously validated algorithm, which was
adapted to provide still images of fixation locations (n = 116).
The fixation location was manually identified by two raters
(DH, JN), who classified the locations. Cohen’s kappa corre-
lation coefficients determined the inter-rater reliability. The
algorithm successfully provided still images for each fixation,
allowing manual contextual analysis to be performed. The

inter-rater reliability for classifying the fixation location was
high for both PD (kappa = 0.80, 95% agreement) and HC
groups (kappa = 0.80, 91% agreement), which indicated a
reliable classification method. This study developed a reliable
semi-automated contextual analysis method for gait studies in
HC and PD. Future studies could adapt this methodology for
various gait-related eye-tracking studies.

Keywords Eye-tracking . Contextual . Older adults .

Parkinson’s disease . Algorithm . Inter-rater

1 Introduction

Eye-tracking during real-world tasks is increasingly popular
within various fields of research, including neurology [1],
psychiatry [2] and human movement science [3]. Eye-
movements can be broken into two classifications: saccadic
fast eye-movements which shift foveation between different
areas of interest within the environment, and fixation eye-
movements (including smooth pursuits) where the eye pauses
on areas of interest [4]. Increased popularity in recording eye-
movements (particularly saccades) is due to their known rela-
tionships with cognitive and visual processes [5], allowing
inferences regarding impairment of these underlying func-
tions. Describing eye-movements during real-world tasks
(i.e. walking, driving, obstacle crossing) is important to un-
derstand visuo-cognitive impairment and develop effective
interventions in ageing and neurodegenerative disorders such
as Parkinson’s disease (PD).

Eye-tracking technology has progressed from static devices
with high resolutions (>200 Hz), to mobile systems which
sacrifice resolution (50–60 Hz) in exchange for mobility [3].
Mobile infrared or video-based eye-trackers provide compre-
hensive recording of temporal and spatial features of eye-
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movements during real-world tasks. Mobile eye-tracking de-
vices have been used in older adult and PD research [6]; how-
ever, a recent review highlighted a number of limitations [3].

For example, currently, little focus has been placed on contex-
tual outcomes (i.e. what participants are looking at or areas of
interest) during real-word tasks in older adults and people with
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PD, whichmay provide clinically relevant information such as
whether individuals look at task-relevant or hazardous areas.

Eye-tracker manufacturers have attempted to automate
contextual analysis within their software (such as iMotions
Inc., Boston, MA and D-Lab, Ergoneers GmbH, Germany)
using heat maps (i.e. displaying contextual data by a colour
scale) or pre-defined object targeting using environmental
markers or pixel-based analysis [7–11]. Current systems are
used during static testing (e.g. reading [12] or image viewing
[13, 14] or video viewing [15]) and require manual input of
information about the visual scene [13, 16] or about specific
objects within the scene (e.g. facial detection [17, 18] or shop-
ping products [19]). The restricted nature of such automatic
analysis means that they have limited application for assess-
ment of dynamic real-world activities (e.g. walking). Further,
such techniques have not been validated and present method-
ological issues. For example, environmental markers may dis-
tract gaze and impact results. Similarly, heat maps may be
impacted by eye-tracker accuracy or resolution [5] and often
require an initial still frame to overlay the heat map onto,
which may not represent a full mobile trial when walking.
Thus, accuracy of current automated contextual analysis is
questionable, particularly during real-world tasks.

Existing contextual analysis has been limited to manual
frame-by-frame video processing, which has been con-
ducted in healthy adults [20–22] and PD [23–25] during
various activities (i.e. walking, visual cues, within a flight
simulator). Such studies have reported limited contextual
data, such as whether individuals are looking at the floor,

a doorway or side walls [24]. Limited information on
analysis has also been provided (e.g. fixation classifica-
tion), but no previous study has assessed their manual
contextual analysis method. Manual analysis can be en-
tirely subjective, time consuming and not feasible for
studies involving large cohorts (i.e. studies often perform
analysis on a sub-group). Contextual analysis has poten-
tial to provide an increased level of detail regarding task
performance, therefore development and examination of
contextual methodologies is paramount.

This study aimed to assess inter-rater reliability of semi-
automated mobile eye-tracker contextual analysis of data ob-
tained during various walking tasks in older adults and people
with PD. A validated mobile eye-tracker algorithm [26] pro-
vided fixation data (e.g. timing) and was adapted to extract
still images of fixation locations. A classification method was
provided to two raters to define fixation locations within the
visual scene, which was then evaluated.

2 Methods

2.1 Participants

Eye-tracking data from five healthy control older adults (HC)
and five people with PD were randomly selected from two
larger studies at the Clinical Ageing Research Unit,
Newcastle University, which were approved by the local
NHS ethics committee (research ethics committee (REC) ref

Table 1 Classification of fixation
locations Fixation location Code Definition

Wall straight 1 The wall in front of the participant within the width of the task area

Side wall 2 The walls to either side of the task area

Near floor ahead 3 The floor within 2 m of the participant, approximated to 3 paces

Far floor ahead 4 The floor beyond 2 m of the participant, approximated to 3 paces

Side floor 5 The floor area to either side of the task area

Ceiling 6 The ceiling

Obstacle 7 The obstaclea

Near cue 8 The cued area within 2 m from the participant, approximated to 3 pacesa

Far cue 9 The cued area beyond 2 m from the participant, approximated to 3 pacesa

a Condition-specific areas of interest that did not apply to the unobstructed gait trials

Fig. 2 Examples of fixations
made during a straight walking, b
visual cueing and c obstacle
crossing tasks
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13/NE/0128, REC ref 12/NE/0249). The first study was
‘Vision and gait in Parkinson’s disease: impact of cognition
and response to visual cues’ that investigated eye-movements
during walking (with doorways, turns, visual cues, dual tasks
etc.) in older adults and people with Parkinson’s disease. The
second study was a site-specific sub-study from ‘V-TIME: A
treadmill training program augmented by virtual reality to
decrease fall risk in older adults’, which investigated eye-
movements during obstacle crossing in Parkinson’s disease
and older adult fallers. Written informed consent was obtained
from each participant.

2.2 Protocol

A Dikablis mobile eye-tracker (Ergoneers GmbH, Germany)
was used to record eye-movements during gait at a sampling
rate of 50 Hz, with an accuracy of ~1.2° [27]. The Dikablis
utilised two cameras: a monocular infrared camera that record-
ed participant gaze co-ordinates and a central, forward facing
fish-eye camera captured the participant visual field. The man-
ufacturer’s four-point calibration procedure was used to cali-
brate the view of the two cameras, which were overlaid and
showed a crosshair representing pupil location within the vi-
sual field of view.

The participants were asked to walk in a straight line
through an uncluttered gait laboratory over a distance of 7 m
under three task conditions: straight walk, straight walk with a
visual cue and straight walk with an obstacle (over a
GAITRite mat) [28]. The visual cue consisted of five black
taped cues beginning 150 cm from the starting location and
spaced by 50 cm, and the obstacle was a yellow
15 × 2 × 60 cm board. Both were of high contrast to the floor.
The individuals were instructed to step over the visual cues or
obstacle when completing the walks and each participant per-
formed three walks per condition.

2.3 Data processing and analysis

2.3.1 Data processing and algorithm analysis

The first trial from the three different walking conditions
(straight, visual cue and obstacle) was processed for each par-
ticipant (five older adults and five PD per condition; 30 videos
in total).

First, raw data was processed using the manufacturer’s
software (Dikablis Analysis 2.5, Ergoneers GmbH,
Germany). This involved manual interpolation (frame-by-
frame) of the eye-tracker video footage to locate the centre

Table 2 Inter-rater reliability for
PD participants Participant

PD 1 PD 2 PD 3 PD 4 PD 5

Fixation location R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Wall (straight ahead): n 5 5 4 4 5 5 3 3 4 4

Wall (side): n 2 2 0 0 0 0 0 0 1 1

Floor (near, straight ahead): n 2 2 0 0 1 1 0 0 1 1

Floor (far, straight ahead): n 3 3 1 1 1 1 1 1 4 4

Floor (side): n 4 3 0 0 0 0 0 0 0 0

Obstacle: n 0 0 0 0 2 2 0 0 0 0

Visual cue (near): n 1 2 0 0 2 1 2 2 4 5

Visual cue (far): n 0 0 0 0 0 1 1 1 1 0

Agreed locations: n (%) 16 (94%) 5 (100%) 10 (91%) 7 (100%) 14 (93%)

Not agreed location: n (%) 1 (6%) 0 (0%) 1 (9%) 0 (0%) 1 (7%)

PD Parkinson’s disease, R1 rater one, R2 rater two

Fig. 3 Example frame of fixation
location classification in a straight
walking, b visual cueing and c
obstacle tasks. Fixation locations
as defined by Table 1 are
identified by their coded number
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of the pupil in any frame which the software had failed to
locate it. Inaccurate pupil location detections were manually
corrected. Second, video footage was manually cropped to the
length of the walking trial and exported for temporal and spa-
tial analysis, and final contextual analysis. Third, a previously
validated mobile eye-tracker algorithm [26] was used to per-
form the temporal and spatial analysis of the eye-tracker data
(stages 1–4, Fig. 1), providing eye-movement and fixation
outcomes (stage 4, Fig. 1). Importantly this automated step
provided the starting frame of each eye-movement and fixa-
tion. Finally, contextual analysis involved initially converting
eye-tracker overlaid eye and scene camera video collected
during the walking tasks into individual photographic images
for each frame of the video. This was done using the
VideoReader function in MATLAB®. Once the video data
had been analysed, still images (.jpg format) of the start of
each fixation were exported (depicted in Fig. 2).

2.3.2 Manual fixation location analysis and inter-rater
reliability

The fixation frames for each participant were analysed by two
separate raters (DH, JN), who used a pre-defined classification
method to categorise participant fixation location for the 116
total fixations identified (Table 1). Each rater viewed the im-
ages of fixations for each participant (n = 10) provided by the
algorithm and used the classification method to code the area
within which they judged that each fixation had been made.
The number of fixations made in the various locations by the
participants during each of the tasks was then compared be-
tween that of the raters.

The definitions of the areas of fixation location are present-
ed in Table 1.Within the classificationmethod, ‘task area’was
defined as the pathway between the participant and the wall at

the end of the laboratory with a width approximated to that of
the cues and obstacle (Fig. 3). The ‘cued area’ was defined as
the black taped cues, the area of the floor between each of
them and a 50-cm area beyond the final cue. Figure 3 displays
an example frame for each task condition and the boundaries
which demarcate the locations presented in Table 1.

2.4 Statistical analysis

Statistical analysis was performed using SPSS v.21.0 (IBM
Corp., Armonk, NY). Data were assessed for normality using
Kolmogorov-Smirnov tests. Between-group comparisons
were not performed as identifying pathology-associated dif-
ferences was not the focus of this study. Inter-rater agreement
was analysed using descriptive data (i.e. agreement between
the raters on the number and percentage of fixation locations)
and Cohen’s kappa coefficient (Cohen, 1960). Kappa agree-
ment was interpreted as follows: poor <0.20, fair 0.20 to 0.40,
moderate, 0.40 to 0.60, good 0.60 to 0.80 and excellent 0.80 to
1.00 (Field, 2013).

3 Results

The adapted mobile eye-tracker algorithm produced 116 still
images of fixation locations from data obtained when walking
in HC and PD participants. Inter-rater reliability results for
fixation location identification are displayed in Tables 2 and
3. The inter-rater reliability of identifying fixation location had
excellent comparability between the two groups (PD n = 5,
kappa = 0.80, HC n = 5, kappa = 0.80). On average, the raters
agreed upon 95% of fixation locations in the PD group and
91% in HC group. The total number of fixation locations not
agreed upon was relatively low, 9 frames of 116 inspected.

Table 3 Inter-rater reliability for
HC participants Participant

HC 1 HC 2 HC 3 HC 4 HC 5

Fixation location R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Wall (straight ahead): n 9 9 5 5 8 8 4 4 4 4

Wall (side): n 2 2 0 0 0 0 0 0 0 0

Floor (near, straight ahead): n 1 4 1 0 1 1 0 0 3 3

Floor (far, straight ahead): n 6 3 0 0 4 4 1 1 5 5

Floor (side): n 0 0 0 0 0 0 0 0 0 0

Obstacle: n 1 1 0 0 0 0 1 1 0 0

Visual cue (near): n 0 0 3 4 2 2 1 1 1 3

Visual cue (far): n 0 0 0 0 0 0 1 1 2 0

Agreed locations: n (%) 16 (84%) 8 (89%) 15 (100%) 8 (100%) 13 (87%)

Not agreed location: n (%) 3 (16%) 1 (11%) 0 (0%) 0 (0%) 2 (13%)

HC healthy control, R1 rater one, R2 rater two
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The differences were primarily seen within visual cue and
floor fixations (n = 9 in total).

4 Discussion

This study aimed to develop and implement a methodology to
semi-automate the contextual analysis of mobile eye-tracking
data collected during gait in HC and PD participants, and
examine the reliability of this process. We adapted our previ-
ous mobile eye-tracker algorithm [26] to provide still fixation
images for further analysis, and developed a classification
method to objectively quantify the contextual information of
fixation locations (areas of interest). This study provides a
simple, reliable methodology applicable to mobile eye-
tracker data obtained during real-world tasks, such as walking.

4.1 Development and inter-reliability of a classification
method

Our previous algorithm [26] was successfully adapted to pro-
vide still images of fixation locations which could then be
used for manual contextual analysis. The addition of this step
(step 5, Fig. 1) to the automated algorithm saves time in the
processing of fixation location data and reduces some of the
subjectivity in the process, as a quantitative algorithm is used
to locate the start of fixations. The agreement between the two
independent raters alleviates any concerns regarding rater bi-
as. This development would allow for large datasets to be
processed and analysed in shorter periods of time than has
been possible prior to this study, therefore more in-depth anal-
ysis of fixation locations during walking in older adults and
people with PD (and other populations) may be performed.

A pre-defined fixation location classification method
(Table 1) provided standardised criteria to identify fixations
when walking under various conditions. The classification
method split the visual field into nine areas of interest (Fig.
3), providing greater detail (i.e. more areas) than previous
studies [24] (e.g. door, floor and ahead). Eye-tracking was
examined during a dynamic task, therefore a large volume
was used for each area to account for eye-tracker limitations
and apparent changes in object (obstacle or visual cue) sizes
when viewed from the scene camera during walking (i.e. the
larger, the closer a participant gets to the object). Separating
the contextual data into smaller areas (such as individual vi-
sual cue lines) would likely have introduced more variability
in fixation location [5]. Although previous research has report-
ed more specific outcomes (such as participants looking two
steps ahead) [25], limited information on accuracy and reli-
ability of eye-tracking devices raises questions regarding

interpretation of contextual data. For example, an eye-tracker
with poor accuracy may incorrectly show that the pupil loca-
tion crosshair is in an area that the individual is not looking at.

In the present study, the participants completed the same
walking tasks in a laboratory environment and data were
analysed using the same algorithm and classification method,
and fixation location comparisons were recorded by two in-
dependent raters. Under these conditions, the classification
method was found to be highly reliable, determined by the
kappa correlation coefficient, which was 0.80 in PD and
0.80 in HC participants. Although reliability was excellent,
there were a small number of inter-rater fixation location dis-
agreements (n = 9). With the exception of one pair of differing
results (near cue/side floor), the disputed fixation locations
were from areas close to the margins of the defined classified
areas (i.e. near or far, within or outside of the cueing area
boundary), and as such were susceptible to subjective inter-
pretation. However, given the reliability shown across the
three walking conditions, we suggest that this classification
method would be suitable for use with these tasks or other
similar tasks where the classification method could be adapted
and employed. Our algorithm used the first still frame of a
fixation location and large classification areas to account for
long fixations while walking that may move through areas.
Future studies that wish to examine smaller areas or locations
may require further still images from the fixation data to clas-
sify locations.

5 Conclusions

We successfully adapted a validated mobile eye-tracker algo-
rithm and created a simple but reliable classificationmethod to
semi-automate contextual data analysis (i.e. fixation locations)
of data obtained during various walking tasks in HC and PD.
Our methodology may be useful for other studies interested in
analysing contextual information from mobile eye-tracking
data obtained during walking.
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