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Structure-from-motion with multi-view stereo (SfM-MVS) methods hold the potential for monitoring and quan-
tifying cliff erosion to levels of accuracy and precision which rival terrestrial laser scanning (TLS) and at a fraction
of the cost. We benchmark repeat SfM-MVS against TLS for quantifying rock fall frequency, volume, and cliff face
erosion rates for a ~1 km section of coastal cliffs where cliff top infrastructure is threatened by erosion. First, we
address a major unknown in these techniques, the number and configuration of control points. Surveys demon-
strate that a sparse configuration along the cliff base and top, at spacing equivalent to the cliff height, provides
suitable accuracy at acceptable logistic time and expense. Second, we show that SfM-MVS models match
equivalent TLS data to within 0.04m, and that the correlation between intersecting TLS- and SfM-derived rock fall
volumes improves markedly above a detection threshold of 0.07m3. Rock falls below this size threshold account
for ~77.7% of detected rock falls but only 1.9% of the calculated annual eroded volume. Annual erosion rates for
the 1 km cliff face as calculated by repeat TLS and SfM differencing are 0.6� 10�2 m a�1 and 0.7� 10�2 m a�1,
respectively. Kilometre-scale patterns of cliff erosion are dominated by localised zones of high-magnitude,
episodic failure that are over an order of magnitude greater than background rates. The ability of non-
specialist engineers, geologists, geomorphologists and managers to rapidly capture high quality, accurate
erosion data in a cost-effective manner through repeat SfM-MVS has significant potential to inform coastal
managers and decision makers. To further empower coastal authorities and communities, policy frameworks must
be developed to incorporate and interpret these data.
1. Introduction

Significant investment is made into mitigating the risks posed by
coastal erosion to buildings, infrastructure, utilities and ecosystems in the
coastal zone. For example, an estimated GBP >50 million is invested
annually by the UK government to delay coastal erosion in England and
Wales (Penning-Rowsell and Pardoe, 2015) whilst annual EU public
expenditure on coastline protection during the period 1990 to 2020 from
risks posed by coastal flooding and erosion is expected to exceed EUR 5.4
billion (European Commission, 2006). Fundamental to the development
of effective coastal management options is a well-developed under-
standing of rates of coastal erosion, their temporal and spatial distribu-
tion, and how these may change under future scenarios of climatic
change (Dawson et al., 2009). The challenges of optimising the distri-
bution of funding to combat coastal erosion are further enhanced by
widespread policy shifts from holding the existing coastline to a range of
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managed retreat scenarios (Dickson et al., 2007).
Rates of coastal erosion are used alongside future sea-level rise sce-

narios as key inputs into predictive models for assessing the coastal
erosion risk, often at the regional to national scale (e.g. (Bray and Hooke,
1997; Davidson-Arnott, 2005; Environment Agency, 2009; Hall et al.,
2003; Mulder et al., 2011; Nicholls et al., 2013; Pethick, 2001)). Esti-
mated or observed rates of coastal retreat are an internationally recog-
nised severity measure for coastal erosion and are typically used to
inform coastal development and management (Roebeling et al., 2013;
Pranzini et al., 2015; Lazarus et al., 2016; Thieler and Danforth, 1994a).
Specifically, these data form the basis for forecasting future coastal
recession, where historic retreat rates are extrapolated in conjunction
with models of future sea-level rise, typically using the ‘Bruun rule’
(Bruun, 1962; Cooper and Pilkey, 2004), to identify areas that are
exposed to the greatest erosion risk and inform decisions about future
management.
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Table 1
Summary of survey methods used to quantify coastal erosion.

Data source or method Pros Cons Example references

Cartographic mapping Often cover large spatial scales (>10 km). Typically freely
available or at low cost.

Subject to mapping inaccuracies which hinder accurate
delineation of shoreline or coastline in regions of complex
topography.
Generally no systematic map production interval. Map resolution
often not sufficient for detailed erosion monitoring, i.e. where
erosion rates are low.

(Brooks and Spencer, 2010; Dornbusch et al., 2008; Genz et al.,
2007; Oyedotun, 2014; Sear et al., 2011; Thieler and Danforth,
1994b)

Aerial photography and
photogrammetry

Production of detailed, fine-resolution (�decimetre)
orthoimagery.

Expensive to acquire.
Survey interval dictated largely by cost.
Requires skill in photogrammetric processing to generate
accurate datasets.

(Baily and Nowell, 1996; Costa et al., 2004; Dewez, 2004;
Moore, 2000; Moore and Griggs, 2002; Pierre, 2006)

Satellite imagery (optical) Some products freely available.
Can cover large, typically regional, spatial scales.

Freely available imagery is often of coarse resolution
(>decimetre).
Fine resolution (<decimetre) imagery costly for most coastal
monitoring and management projects.
Usable imagery hindered by cloud cover.

(Loos and Niemann, 2002; Maiti and Bhattacharya, 2009;
Pardo-Pascual et al., 2012; White and El Asmar, 1999)

GPS/GNSS Permits roving capture of cliff-top or cliff-base topography.
Relatively affordable and accurate (typically centimetre -
decimetre)

Topographic occlusion can affect signal quality, and thus survey
accuracy.
Difficult to implement around hazardous cliff environments.
Time-consuming to acquire data at spatial density which
accurately reflects complex topography.

(Baptista et al., 2011; Feagin et al., 2014; Mills et al., 2005;
Montreuil et al., 2013)

Airborne LiDAR Permits direct topographic reconstruction of extensive coastal
stretches (>10 km in a single flight).
Some data freely available (e.g. UK Environment Agency), but
generally not repeat datasets.

Often prohibitively costly to commission.
Monitoring interval primarily determined by cost, also weather
conditions.
Difficult to resolve near-vertical topography (e.g. cliff faces) in
sufficient detail due to sensor viewshed.

(Earlie et al., 2015; Obu et al., 2016; Palaseanu-Lovejoy et al.,
2016; Pye and Blott, 2016; Young et al., 2011)

Terrestrial LiDAR Can generate fine-resolution, precise and spatially continuous
topographic data.
Permits process-scale erosion analysis.

High purchase and maintenance costs.
High power requirements and difficult portability.
Survey viewshed limited by system line-of-sight.
Some advanced knowledge of topographic differencing
methods required to produce spatially distributed erosion
maps.

(Feagin et al., 2014; Kuhn and Prüfer, 2014; Lim et al., 2005;
Montreuil et al., 2013; Rosser et al., 2005; Rosser et al., 2013)

Structure-from-motion (with multi-
view stereo)

Low-cost, requires consumer-grade camera and software purchase.
Produces fine resolution and spatially continuous
3D topographic data.
Minimal deployment time, suitable for rapid and responsive
surveying.
Accessible, minimal training required to generate fine-resolution
3D models.
UAV-mounted camera can be used to monitor in hazardous areas,
and extend areal coverage.

Survey control points necessary for georeferencing and
accuracy assessment. Must be manually deployed and
surveyed.
Some advanced knowledge of topographic differencing
methods required to generate spatially distributed erosion
maps.

(Brunier et al., 2016; Gibbs et al., 2015; Gienko and Terry, 2014;
James and Robson, 2012; Mancini et al., 2013; Lim et al., 2015;
Turner et al., 2016; Warrick et al., 2017; Westoby et al., 2012)
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Broadly speaking, coastal practitioners are faced with compromising
between survey methods for quantifying coastal erosion that either: i)
achieve large spatial coverage but that are of coarse resolution or of low
quality, or ii) acquire high quality, yet expensive data that are typically
highly spatially or temporally constrained. Therefore, a need exists to
evaluate emerging survey methods which reconcile cost, accuracy and
flexible monitoring frequencies, and that can be implemented at spatial
scales which are relevant for informing coastal management. A wide
range of methods have been used to monitor coastal erosion processes,
and these are summarised in Table 1 along with their key advantages and
shortcomings with reference to coastal surveying and erosion moni-
toring. Briefly, these include: historic cartographic mapping, aerial
photography and photogrammetry, satellite imagery, global navigation
satellite systems (GNSS), electronic distance meters or total station,
airborne and terrestrial laser scanning (ALS, TLS) and, most recently,
emergent structure-from-motion with multi-view stereo methods (SfM-
MVS). These methods can be subdivided into those which produce 2D
planimetric data describing cliff planform and therefore represent a 2D
simplification of complex 3D erosion processes (Lim et al., 2010), and
those from which spatial variation in the vertical distribution of cliff face
erosion can be quantified (e.g. (Rosser et al., 2013; Vann Jones et al.,
2015)). Rates of cliff line retreat are commonly spatially and temporally
averaged, resulting in crude and potentially inaccurate indications of
erosion processes that restrict both management decisions and policy
development at the local scale (Moore, 2000).

The last decade or so has seen the increasing deployment of fine-
resolution TLS for coastal erosion monitoring (e.g. (Dewez et al., 2013;
Gulyaev and Buckeridge, 2004; Lim et al., 2005; Rosser et al., 2005;
Fig. 1. Study area: a) Site map. Red dashes indicate extent of monitored coastline. Ye
Blue box shows extent of Fig. 6. Red arrow shows camera position and direction for
~25m in height. Photo: M Westoby. Background to (a) ©DigitalGlobe, extracted fr
legend, the reader is referred to the Web version of this article.)
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Rosser et al., 2013; Lague et al., 2013)). TLS can generate accurate,
fine-resolution and spatially continuous maps of surface change on high,
inaccessible cliff faces. Such datasets have led to significant advances in
understanding of cliff erosion processes, including the relative impor-
tance of small-scale, progressive failures and low-frequency, high--
magnitude changes for controlling cliff face evolution (Collins and Sitar,
2008; Letortu et al., 2015; Lim et al., 2010; Rosser et al., 2007). However,
TLS requires skilled operation and processing that typically limits its use
for responsive cliff surveys. The costs involved with data collection and
processing often result in monitoring programmes of limited periods,
frequencies and spatial extents. Surveys are generally concentrated on
specific areas of concern (e.g. (Lim et al., 2005; Rosser et al., 2013))
producing detailed, yet localised datasets that may be of limited use for
informing wider-scale coastal strategies. To inform management de-
cisions, and to make significant impacts on policy formation, the
collection of such high-quality cliff face data needs to be more widely
accessible and financially viable.

SfM-MVS photogrammetry uses overlapping image sequences from
consumer-grade cameras to generate fine-resolution 3D reconstructions
of topography (e.g. (Carrivick et al., 2016; Smith et al., 2015; James and
Robson, 2012; Westoby et al., 2012)) and holds significant potential for
quantifying spatial and temporal cliff response to environmental forcing.
SfM-MVS photosets are increasingly captured using relatively low-cost
(<£10,000) and lightweight (<20 kg) unmanned aerial vehicle (UAV
or ‘drone’) systems (e.g. (Casella et al., 2016; Dewez et al., 2016;
Drummond et al., 2015; Gonçalves and Henriques, 2015; Harwin and
Lucieer, 2012; Mancini et al., 2013; Turner et al., 2016)). Previous
studies have benchmarked the performance of terrestrial SfM-MVS
llow triangles show TLS station positions. Yellow box shows extent of Figs. 2–4.
panel b. b) Site photograph, showing hard rock cliff geomorphology. Cliffs are
om Google Earth. (For interpretation of the references to colour in this figure
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methods against TLS in coastal environments (James and Robson, 2012;
Westoby et al., 2012) and have found them capable of generating dense
and accurate DEM products that rival those generated from TLS both in
terms of data density and accuracy. However, the routine deployment of
UAVs typically requires a skilled operator and spotter as a minimum, can
be hindered by windy weather conditions typical of rock cliff environ-
ments, and is not appropriate at sites where the public may be within the
survey area, such as crowded beaches. These restrictions currently reduce
the capacity for UAV SfM-MVS surveys to be widely, frequently and
responsively implemented for cliff surveys.

The aim of this paper is to evaluate the performance of low-cost,
ground-based SfM-MVS photogrammetry for quantifying erosion of a
1.2 km-long section of hard rock coastal cliffs at Marsden Bay, in north-
east England. Quantitative comparisons with benchmark TLS data are
used to assess and optimise the accuracy and quality of terrestrial SfM-
MVS approaches for monitoring cliff face change, primarily through an
assessment of the placement of survey control points. The approach has
been applied to derive and compare rock fall characteristics (volume,
distribution) and cliff face erosion statistics, with a view to presenting
terrestrial SfM-MVS as an accessible new tool for non-expert coastal
practitioners.

2. Study site

Marsden Bay extends for ~1.6 km along the coastline of north-east
England (Fig. 1a). Its north-east orientation exposes it to one of the
largest fetch distances on the east coast, exceeding 1900 km. The area is
segmented into a series of smaller embayments separated by bedrock
promontories. Sporadic, deep-cut caves and discontinuous sections of
wave-cut platform occur along the cliff base. The platform areas typically
comprise boulder (>1m3) fields and pockets of dry pebble and sand
beach to the south, with pronounced seepage points exposed at low tide.
The cliff face is approximately 25m in height along its length and is
predominantly composed of Permian Magnesian Limestone (Fig. 1b).
Structural control, dissolution weathering, and karstic collapse have
resulted in layers comprising a variety of geotechnical competencies
(ranging from hard to very soft limestone and intact through jointed to
brecciated material) becoming exposed within the intertidal zone. This
heterogeneity also leads to seepage zones where sporadic ground water
flows are concentrated. The tidal range is ~6m and mean high and low
water elevation for the period 21st February 2015 to 26th February 2016
were 2.96m and �2.25m above Ordnance Datum Newlyn (mODN),
measured at North Shields, 5 km to the north of the study site.

The A183 is an essential road transportation link that joins coastal
areas from South Shields to Sunderland (Fig. 1a). In places, the road
passes within 15m of the present cliff edge, resulting in three ‘pinch
point’ areas of concern for the medium term (25 year) viability of the
road. Here we focus on a ~1 km section of the wider bay frontage
(Fig. 1a). The cliffs are thought to have remained stable over the last 100
years from historic cliff line analysis, despite a predicted future retreat
rate of 0.2 m yr�1 (Environment Agency, 2009). To aid key decisions
regarding the management of the road, new quantitative data are
required to better discern the rates and nature of coastal cliff retreat at
the pinch points.

3. Ground-based SfM-MVS for erosion monitoring

This study compares ground-based photographs processed with SfM-
MVS against repeat TLS at Marsden Bay. The following sections describe
data acquisition, post-processing and filtering, and the extraction of rock
fall and erosion rate statistics.

3.1. Field data collection

Coincident TLS and SfM cliff face surveys were conducted on 21
February 2015 and 26 February 2016. TLS surveys were acquired using a
155
Riegl LMS-Z620 time-of-flight terrestrial laser scanner, set to acquire
~11,000 points per second at a 3D point spacing of 0.05m at 100m
distance. TLS data acquisition settings were consistent for both surveys.
For each survey date, we acquired scans of the cliff face from ten posi-
tions with overlapping viewsheds (Fig. 1). TLS field data collection took
~5 h to complete, including station setup, scanning, and transport to
successive station positions. TLS scans were manually edited in Riegl
RiSCAN PRO software (v. 1.5.9) to remove erroneous 3D point outliers
(e.g. seabirds in flight, solar glare) and any visible areas of the foreshore,
which were not the focus of our investigation. Overlapping scans ac-
quired on the same survey date were aligned using an iterative closest
point (ICP) algorithm in RiSCAN PRO to produce a single 3D point cloud
that was scaled and oriented correctly in 3D space. Total station data
acquired in 2015were used to assign real-world elevations (metres above
Ordnance Datum Newlyn) to the surface models.

For the SfM-MVS component of the field data collection original
resolution (3456� 2592 px) photographs of cliffs at the site were ac-
quired from the shoreline using a 14.7MP Canon PowerShot G10 digital
camera (sensor size 7.44� 5.58mm), with automatic exposure and
focusing settings enabled. A total of 405 and 432 photographs of the cliff
face were acquired in 2015 and 2016, respectively. The distance between
the camera and the base of the cliff was simply set to maximise the cliff
face within the viewfinder; this distance ranged from ~25 to 30m. The
optical axis of the camera was perpendicular to the cliff plane, and
camera-camera baselines, or the distance between successive photo-
graphs, were approximately 2m. Photoset acquisition for the study area
took 2.5 h and 2.0 h for the 2015 and 2016 surveys, respectively, by a
non-expert operator with general instruction on the principles of SfM-
MVS photograph collection, namely that each successive photo should
look very similar but slightly offset from the previous taken. The hori-
zontal overlap between successive photographs was approximately 90%
for both SfM-MVS surveys.

Existing studies (James and Robson, 2014) advocate the acquisition
of SfM-MVS photographs oriented both obliquely and normally to the
target surface to counter against the introduction of model surface de-
formations, often manifested as a ‘doming’ effect. Here, we deliberately
adopt the simplest form of photograph acquisition to reduce both the
time taken to acquire input photographs in the field and also the
computational burden associated with increasing the size of the input
photoset. We note that the use of a well-distributed network of ground
control points (GCP) has been demonstrated to reduce the degree of
systematic model deformation where oblique imagery is unavailable
(James and Robson, 2014), although residual errors may remain.

3.2. SfM-MVS model generation

The photograph sequences were input into Agisoft PhotoScan Pro-
fessional Edition (v. 1.2.3) software (Agisoft, 2016) for SfM-MVS
reconstruction. PhotoScan employs a proprietary SfM-MVS workflow to
reconstruct 3D scene geometry, which includes the identification and
matching of unique image tie-points across input photographs followed
by an iterative bundle adjustment to solve for internal and external
camera orientation parameters. The software enables the user to specify a
camera lens distortion model if one is available, however, for simplicity,
we permitted the software to undertake self-calibrating bundle adjust-
ment to estimate the camera lens distortion model. Following camera
alignment and sparse point cloud reconstruction, only points that were
matched in 3 or more photographs and had a reprojection error <0.5
pixels were retained. GCP data were extracted from the coincidentally
acquired TLS scan data and were used to optimise the camera alignment
and scale and transform the point-cloud, although these data could be
substituted with xyz GCP positions acquired using a total station. To
account for spatial discrepancies between the position of known features
in the TLS data, which appear as 3D points, and their equivalent
appearance and manual identification in the SfM-MVS photographs, we
assigned a spatial ‘marker accuracy’ (more correctly a measure of marker
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placement precision) of 0.05m during the PhotoScan referencing pro-
cess. This spacing is approximately double the 3D point spacing of the
TLS data, and, following visual inspection, was deemed an appropriate
tolerance within which to allow the software to scale and orient the
models. Further information on GCP placement and model alignment are
described in the following section.
3.3. SfM-MVS model optimisation for cliff erosion monitoring

Previous research has highlighted the sensitivity of SfM-MVS model
accuracy to the number and distribution of GCPs (e.g. (James and Rob-
son, 2012; James et al., 2017a)). However, uncertainty and a lack of
guidance surround the number and spatial distribution of GCPs required
to adequately refine the estimated camera positions and parameters for
coastal cliff environments (Ru�zi�c et al., 2014). PhotoScan permits
software-guided placement of GCP marker positions based on an un-
derlying mesh, although the necessary manual checking and refinement
of GCP positions remains a time-consuming process. Depending on the
number of GCPs requiring placement and refinement, this can be the
longest stage in the SfM-MVS workflow and require the most user
Fig. 2. Comparison between TLS- and SfM-derived surfaces from the February
2015 survey. Each panel is a difference map produced by subtracting the SfM-
derived surface from a TLS-derived surface, which is identical in each case.
Black dots indicate GCP locations and are scaled according to the magnitude of
xyz RMS alignment error. Vertical scale is metres above Ordnance Datum
Newlyn (mODN). Black arrow indicates highest astronomical tide (including
surges, but excluding wave setup) during the monitoring period from North
Shields, 5 km north of the study site. x and σ are mean surface difference (m)
and standard deviation (m), respectively.

Table 2
Summary registration error and change detection statistics for different GCP configu

RMS error (m) Mean surface difference (m)

TLS – TLS 0.015 �0.019� 0.154
GCPsp – GCPsp 0.029 0.016� 0.330
GCPmod – GCPmod 0.029 �0.038� 0.036
GCPden – GCPden 0.026 �0.050� 0.321
GCPex – GCPex 0.025 �0.033� 0.334
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interaction. Here we evaluate the evolution of model accuracy resulting
from varying the number and distribution of GCPs across the face of an
eroding sea cliff, with a view to identifying an optimum arrangement that
balances model accuracy improvements whilst minimising the required
labour invested.

The influence of four GCP placement scenarios on cliff surface form
and annual cliff change detection capabilities have been evaluated
against coincident TLS surveys for a 150m-long sub-section of the study
area (Fig. 2). These range from a sparse GCP distribution, where GCPs are
alternately placed along the cliff top and cliff base (GCPsp), through
progressive increases in control for moderate (GCPmod) and dense
(GCPden) scenarios, to an extremely dense configuration including sys-
tematic placement along the cliff top and base, with additional GCPs in
the centre of the cliff (GCPex).

Following GCP placement and initial 3D transformation in PhotoScan
(described in section 3.2) the SfM-MVS point clouds were imported into
RiSCAN Pro software, where the alignment between the 2015 and 2016
SfM-MVS point clouds for each GCP configuration was improved using
ICP adjustment in the same manner as described previously for the TLS
data. Residual alignment errors between successive TLS and SfM-MVS
point clouds are shown in Table 2. For methodological consistency, we
apply this same final alignment step to the dense point clouds produced
using both methods. The aligned TLS and SfM-MVS point cloud data were
surfaced in Quick Terrain Modeller software (v.8.0.3.4) to produce a
0.10m-resolution digital surface model (DSM) for each survey date. Cliff
face DSMs were imported into ESRI® ArcMap™ (v. 10) to extract surface
change. DSMs from successive surveys were differenced to generate a
digital elevation model of difference (DoD), which is an established
geomorphological technique for quantifying surface change in a range of
environments (e.g. (Abell�an et al., 2014; Williams et al., 2012)).

Inspection of the positional errors for individual GCPs within the SfM-
MVS reconstructions show these to be generally sub-decimetre (Fig. 2), in
line with the findings of previous studies in rocky coastal environments
(Ru�zi�c et al., 2014). Notably higher residuals are found at the southern
end of GCPmod and GCPden DoDs (between 0 and 10m). An initial com-
parison between TLS- and SfM-derived surface models for a 150m-long
representative section of the February 2015 survey reveals that the
alignment and surface deviation between the two surface gradually im-
proves as the number of GCPs used for SfM model alignment increases;
the mean distance and standard deviation decreases from
0.070� 0.115m for GCPsp to 0.061m� 0.100 for GCPex. Areas with the
highest residual errors are found toward the south of the sub-section and
corresponds with the location of a rock buttress. In all cases, >80% of
TLS-SfM surface deviations are within �0.10m, increasing from 82% for
GCPsp to 86% for GCPex. Similarly, deviations�0.05m cover a minimum
of 52% to a maximum of 58% of the surface and increase with GCP
densification.

Comparisons between SfM and TLS DoDs are shown in Figs. 3 and 4.
Background surface deviations in the TLS DoD appear to be relatively
uniform, in contrast with the apparent systematic under- or over-
estimations derived from the SfM-MVS data (James and Robson,
2014). For instance, we observe a mean surface difference of ~0.15m
between 100m and 125m distance in the GCPsp DoD in an area which,
based on the TLS DoD, we expect to record no surface change. Similarly,
we observe negative surface differences of a similar magnitude between
95m and 105m in GCPden, which are reduced in GCPmod to 0.10m. Such
rations.

Eroded vol. (m3) No. changes detected % intersect TLS-TLS

36.47 442
37.28 306 63.1
39.38 761 77.7
42.03 707 81.9
52.46 719 78.9



Fig. 3. GCP number and placement: effects on change detection. Panels show
raw differencing results for TLS differencing and four GCP placement scenarios.
Vertical scaling shows height above sea level (mODN). Black arrow indicates
highest astronomical tide (including surges, but excluding wave setup) during
the monitoring period from North Shields, 5 km north of the study site. The total
erosion volume and number of failure events are shown to the bottom-right of
each panel. Profiles A and B relate to Fig. 4 and 5, respectively.
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oscillating surface deformations in SfM-MVS-derived models of coastal
cliffs are consistent with the findings of James and Robson (2014), who
advocate the coincident collection of convergent imagery, or adjustment
of the radial distortion parameter, K1, to mitigate against the introduc-
tion of systematic model errors, which we do not explore here.

The standard deviation of surface differences between equivalent TLS
and SfM models provides an initial indication as to the magnitude of the
variability in form between the two static surfaces. Our analysis reveals a
decrease from �0.191m (GCPsp) to �0.163m (GCPmod) with initial GCP
densification. Thereafter, the addition of further GCPs does not reduce
this metric significantly; �0.165m and �0.159m for GCPden and GCPex,
respectively. Fig. 3 illustrates improvements in SfM-MVS DoD quality
gained through initial GCP densification; most notably a reduction in the
amplitude of DoD convergence error (base level of difference, assumes
that the majority of the surface has not changed significantly between
surveys). The standard deviation of surface difference across the sub-
section decreases between GCPsp to GCPmod from �0.330m to
�0.036m (Table 2). The addition of further GCPs does not reduce the
DoD standard deviation significantly; �0.321m and �0.334m for
GCPden and GCPex, respectively, although qualitatively it appears that the
magnitude of negative and positive surface deformations decrease with
GCP network densification (Figs. 3 and 4). Vertical cliff face profiles
highlight a marked improvement in relative SfM-MVS and TLS DoD
agreement when GCPs are added to the top and base of the cliff (GCPmod)
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(Fig. 5). These results appear to imply that improvements in model ac-
curacy can be gained using increasingly dense GCP distributions, but that
gains can be marginal beyond a moderate configuration that comprises
GCPs placed at the top and base of the cliff and at a spacing which ap-
proximates the cliff height. This finding is consistent with existing studies
(e.g. James et al., 2017a) which identify a general insensitivity to model
quality when the number of GCPs is increased beyond a given threshold.

3.4. Topographic differencing for quantifying cliff face erosion

A more applied assessment of DoD performance for the application of
erosion monitoring is the extraction and comparison of individual
erosion scars and their associated volumes (Fig. 6). The following pro-
cessing steps were applied to both SfM-MVS and TLS DoDs to develop a
final dataset of spatially distributed cliff face erosion: i) removal of in-
stances of surface loss with depths<0.10m, in line with change detection
thresholds used in similar coastal erosion studies (Rosser et al., 2005); ii)
multiplication of the mean depth of retained failures (m) by their surface
area (m2) to calculate eroded volume (m3); iii) manual removal of errors
associated with topographic occlusion; iv) application of a slope filter to
remove detected losses intersecting abrupt breaks of slope, where
alignment errors can be magnified; v) removal of losses associated with
vegetation dieback and seabird nesting activity (identified using corre-
sponding SfM orthoimages); and vi) removal of changes where the failure
depth exceeded failure width, in accordance with the geometric prop-
erties of observed rock fall scars at the site. Minimum detected failure
volumes were 1.0� 10�3 m3. Erosion data have been clipped to a com-
mon spatial extent to account for slight variations in TLS viewshed be-
tween successive surveys.

The comparison of annual volumetric loss across the cliff face sub-
section reveals a general agreement between the TLS DoD (36.47m3)
and those corresponding to GCPsp and GCPmod (Fig. 7a); 37.29m3 and
39.38m3, equating to a volumetric difference of 2.2% and 7.8%
respectively (Fig. 6a). Total eroded volumes established using GCPden
and GCPex are higher, and represent percentage increases in volumetric
loss of 14.1% and 38.0%, respectively. We find complex variation in key
percentiles for rockfall volume distributions between GCP scenarios
(Fig. 7b); median rockfall volumes are 0.004m3, 0.002m3, 0.003m3 and
0.003m3 for GCPsp – GCPex, respectively, whilst respective 95th per-
centiles are 0.091m3, 0.018m3, 0.044m3 and 0.025m3. Further, despite
the substantial relative overestimation of total eroded volume, we find
that the percentage contribution of different rockfall size fractions using
GCPex most closely mirrors that of the TLS-derived rockfall inventory,
followed by GCPmod (Table 3). The largest difference in percentage
contributions are attributable to GCPsp and GCPden, particularly for
rockfalls >1m3. There were no significant differences between the rock
fall magnitude-frequency relationships derived from TLS differencing
and each GCP placement scenario; the power law exponent was found to
vary<0.1 (Fig. 7c). The similarity exhibited by the magnitude-frequency
relationships despite notable differences in total eroded volume implies
that additional rock falls are detected across the full size-distribution as
the GCP network increases in density, although the contribution of these
fractions relative to the TLS data vary (Table 3).

In our workflow, the total time required for georegistration of a
coastal cliff increases approximately linearly with the number of GCPs (or
‘markers’ in PhotoScan). For instance, in the GCPsp test case, six GCPs
were projected (and required reviewing) a total of 348 times across 181
photographs. Assuming a user-guided positional refinement time of 10s
per marker, this equates to a total time of 0.97 h. In contrast, GCPex
required the placement and review of 26 markers, which were projected
a total of 1190 times across the same 181 photographs. This equates to a
total marker refinement time of 3.31 h for the same 150m-long section of
coast. Applying this difference of ~2.3 h per 150m to the full 1.6 km
length of Marsden Bay creates an additional 14.6 h of user input (total
10.7 h and 25.3 h for refinement of 6 and 26 marker configurations,
respectively). Our results imply that this additional time investment may



Fig. 5. Vertical profile through cliff face surface models created using TLS and
SfM-MVS data acquired in February 2016. SfM-MVS data represent four GCP
distributions applied to an identical photoset. These GCP distributions are
shown in Fig. 2. See Fig. 3 for profile location.

Fig. 4. Comparison of SfM- and TLS-derived cliff surface profiles. a) Cross-shore topographic profile of the cliff face, extracted from the TLS data, where the y-axis
shows landward distance. b) Surface difference along a 150m-long profile through the centre of the cliff face. These data reflect profiles extracted from the TLS-TLS
and four SfM-SfM DoDs. Isolated large (~0.5m) surface differences are the product of model misalignment on breaks of slope, manifested as amplified surface change.
See Fig. 3 for profile location.
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not produce an appreciable improvement in reconstruction accuracy.
Altering additional processing settings in PhotoScan, such as the ‘quality’
of camera alignment, and dense point cloud generation, will additionally
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increase or decrease the total SfM-MVS processing time, but are not
considered here. Considering these findings, the GCP distribution used in
construction of the GCPmod model was considered optimal for balancing
acceptable DoD accuracies and total volumetric losses relative to the TLS
differencing results, along with an effective and efficient overall pro-
cessing burden. This GCP configuration was applied for SfM-MVS model
generation across the wider study area.
3.5. Analysis and refinement of SfM-derived erosion volumes

The overall eroded volume across the wider study area is 164.77m3

and 199.29m3 for TLS and SfM-MVS differencing, respectively. TLS
differencing produces a higher relative contribution of rock falls
<0.02m3 relative to the SfM differencing data, whilst the frequency of
rock falls >0.02m3 is typically higher for the results of SfM differencing
(Fig. 8a). Mean and median volumes for intersecting TLS- and SfM-
derived rock falls show a close agreement (Fig. 8b), whilst comparison
of the spatially averaged erosion rate of the cliff face shows a deviation of
0.001m a�1, which is negligible over the monitoring interval. Analysis of
the relationship between individual intersecting TLS and the filtered
SfM-MVS derived rock fall volumes (Fig. 9) reveals considerable
mismatch for smaller (<0.07m3) rock falls, whilst above this size
threshold the variance with TLS reduces. Notable outliers exist above this
size threshold where SfM-derived rock falls possess larger volumes than
their TLS-derived counterparts. Following further visual inspection of the
differencing data, these outliers are attributed to the incomplete recon-
struction of these rock falls in the TLS data, primarily due to topographic
occlusion. However, it remains unclear whether the increased frequency
of the smallest rock fall size fractions reflect genuine change, which is
undetected by TLS, or is artificial, and must therefore be removed to
arrive at a robust estimate of genuine surface loss.

In contrast, the SfM data are less prone to this effect at larger rock fall
volumes due to the roving nature of input photograph collection, and
hence tend to produce more spatially complete topographic models and
accurately capture pre- and post-rock fall cliff geometries. Whilst inter-
secting rock falls>0.07m3 account for 25.9% and 22.3% of the total rock



Fig. 6. Example of filtered cliff face erosion data from SfM-SfM differencing. Notable erosion scars and their key descriptors are highlighted for reference. See Fig. 1
for location. Background image is a semi-transparent, SfM-derived orthophoto.
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fall count for the SfM and TLS datasets, respectively, they account for
97.5% and 98.1% of total surface erosion. This observation explains why
we observe a larger overall eroded volume from SfM-MVS differencing
relative to the results of TLS differencing. Removing rock falls <0.07m3,
which corresponds to material dimensions of 0.41m� 0.41� 0.41m,
reduces total eroded volume but results in a strong correlation (Pearson
correlation¼ 0.98) between the two datasets. Total eroded volumes for
intersecting rock falls >0.07m3 were 117.63m3 and 125.71m3 for TLS
and SfM datasets, respectively. Based on these results, only rock falls
�0.07m3 have been retained for wider spatial analysis of cliff face
erosion rates (Fig. 10).
3.6. Kilometre-scale patterns of cliff erosion

Volumetrically thresholded rock fall data have been amalgamated
into 5m-wide cliffline distance bins and divided by the equivalent cliff
face area to derive a spatially distributed model of annual cliff face
erosion, which are presentable in a format which is straightforward to
interpret by coastal managers (Fig. 10). Spatial analyses of TLS- and SfM-
MVS-derived patterns of face retreat reveal a general agreement between
the two datasets. The mean rate of cliff face recession along the study
area is 0.6� 10�2 m a�1 for TLS differencing, and 0.7� 10�2 m a�1 for
SfM-MVS differencing. However, we note that this rate is based on a
single year's worth of monitoring data, and may not in fact be repre-
sentative of medium- and long-term erosion rate trends, which would
become better constrained through the acquisition and differencing of
multi-year topographic datasets. Both datasets identify areas of locally
enhanced retreat, which are attributable to large individual rock falls or
progressive failures. Notable examples include measured face retreat of
~0.2m a�1 at 0.85 km distance, corresponding to a ~16.7m3 erosion
scar, as well as a zone of particularly high erosion (~0.6m a�1) at
~1.0 km distance resulting from surface loss that exceeds 50m3 in both
datasets (Fig. 6). Both examples exceed the site-wide mean by over an
order of magnitude. Patterns of rock fall activity imply failure attribut-
able to direct wave action, such as the occurrence of sizeable (3–4m3)
erosion scars at the base of the cliff (e.g. Fig. 3). The presence of erosion
scars at locations close to, or adjacent to the cliff top boundary, where
groundwater seepage and surface runoff has been observed in the field,
provide some insight into the potential role of precipitation as a driver of
cliff face instability.
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4. Discussion

4.1. A comparative analysis of terrestrial SfM-MVS with TLS for cliff
erosion monitoring

Here we demonstrate that terrestrial photography processed with
SfM-MVS methods is appropriate for the 3D reconstruction of hard rock
coastal cliff topography. The placement of GCPmarkers along the top and
base of a ~25m-high cliff at a horizontal spacing which approximately
correlates with the cliff height is sufficient and effective for producing
high quality SfM-MVS models. Our results suggest that ensuring a quasi-
uniform spacing of GCPs along the periphery of the survey area provides
adequate control with which to improve model accuracy, which is in line
with best practice from the existing literature (e.g. (Carrivick et al., 2016;
James et al., 2017b; Smith et al., 2015)). In contrast, adopting a sparse
GCP configuration that alternates along the top and base of the cliff in a
‘zig-zag’ pattern (GCPsp) degrades model quality and enhances surface
noise. When aligned and differenced from subsequent models of the same
area, cliff face change can be detected (Figs. 3 and 6). This approach
appears to generate the potential for more changes to be detected relative
to those established with TLS surveys, the current industry standard for
erosion monitoring. Therefore, we employ volumetric filtering to remove
change above a detection threshold to produce erosion statistics that
closely mirror those attainable using TLS differencing (Figs. 9 and 10).
Future developments in the field of direct georeferencing, which largely
negate the requirement for GCP networks, are anticipated to produce
significant gains in the SfM-MVS workflow, although they currently
remain in their infancy (e.g. (Carbonneau and Dietrich, 2016; James
et al., 2017b)).

Additional rock falls detected in GCPden and GCPex were mostly
concentrated on cliff faces oblique to the TLS during data acquisition. In
such areas, we might expect the quality of TLS laser returns to degrade
and the point density to decrease, which in turn would decrease the ac-
curacy of surface reconstruction and potentially lead to genuine rock falls
being missed. This would lend support to the theory that the additional
eroded volume produced by using a denser SfM-MVS GCP network is
genuine, since camera network geometry largely mirrors the cliff plan-
form, producing a more uniformly distributed point cloud geometry on
oblique faces (and those which appear oblique in the TLS data). A similar
effect was noted by James and Robson (2012), who observed that



Fig. 7. a) The evolution of volumetric loss and cliff face erosion rate as
extracted from differencing of repeat TLS and repeat SfM-MVS models for a
150m-long sub-section of the study site. The SfM-MVS data comprise models
incorporating an increasing density of ground control points (GCPsp – GCPex). b)
percentile contribution of rockfall volumes for different GCP configurations. c)
magnitude-frequency relationships for rock falls extracted from TLS-TLS dif-
ferencing and the four SfM-MVS GCP configurations.

Table 3
Percentage contribution of rockfall size fractions to overall eroded volume for
TLS- and SfM-based change detection.

Rockfall volume (m3) % contribution to total rockfall volume

TLS GCPsp GCPmod GCPden GCPex

0.001–0.01 3.75 2.05 3.62 4.19 3.29
0.01–0.1 6.96 6.00 9.11 9.59 8.69
0.1–1 11.64 4.75 7.86 9.04 12.11
1–10 42.45 28.66 34.64 24.06 33.38
>10 35.21 58.55 44.76 53.12 42.54
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differences in TLS and SfM data density and spatial coverage, particularly
in partly occluded areas, can produce differences in the position of the
reconstructed surface. Data quality issues associated with TLS viewshed
could be overcome by occupying more station positions along the fore-
shore to improve coverage and provide additional data overlap between
successive stations. However, in our case, and many others, site-specific
constraints such as foreshore complexity, the inaccessibility of optimal
scanning positions, and tidal activity hinders this approach.
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The differencing of repeat SfM-MVS datasets has yielded data
describing patterns and rates of coastal erosion that are comparable with
those retrieved via repeat TLS. Our initial analysis revealed that high
magnitude but low frequency rock falls account for a disproportionately
large fraction of the total eroded volume. Specifically, failures <0.07m3

account for<3% of the total eroded volume for both SfM and TLS results,
implying that smaller volume failures are a less important constituent of
cliff face recession in this setting. In contrast, larger episodic failures can
produce locally elevated rates of cliff line retreat (e.g. >0.5m per event),
which can exceed the mean by over an order of magnitude, and are likely
to be of more concern to coastal managers.

In light of the volumetric inconsistencies between intersecting SfM-
and TLS-detected rock falls (Fig. 9), we find it is necessary to implement
an additional size threshold filter to remove rock falls <0.07m3. In this
way, we adapt the approach of filtering raw surface change using a
standard level of detection, which generally reflects the combined survey
error and which is employed in the first instance as the primary method
for removing artificial change resulting from model-to-model alignment
error (e.g. (Lim et al., 2005; Rosser et al., 2013; Vann Jones et al., 2015)).
Our volumetric filtering removes >74% of instances of surface change
but has a negligible effect on spatially averaged rates of cliff face retreat.
However, we emphasis the caveat that, whilst this volumetric threshold
appears to be suitable for our study site, it should be applied to other sites
with caution.

We assume throughout that the results of TLS differencing are an
accurate and reliable benchmark against which to compare the number
and volume of detected rock falls. If this is indeed the case, it follows that
the additional rock falls which are detected as the result of GCP network
densification may not be genuine, and might be the product of the
propagation of 3D surface deformations, which, when differenced, are
manifested as cliff surface erosion. Conversely, if we assume that the SfM-
derived rockfall inventories provide a more accurate representation of
reality, it follows that overall total eroded volumes (and erosion rates)
could be up to 38% higher than those derived from TLS differencing
(Fig. 7a).

However, two unresolved questions remain, namely the attribution of
volumetric inconsistencies between SfM- and TLS-derived rock falls
<0.07m3 (Fig. 9) and to what extent these inconsistencies are the result
of data errors associated with either technology. Our emphasis has been
on establishing a level of detection whereby TLS- and SfM-derived rock
fall volumes are comparable and which could be applied in other coastal
cliff environments. For the smallest rock falls, it becomes difficult to
qualitatively, or quantitatively, establish whether individual rock falls
are genuine in either dataset, or are data errors. As such, we are confident
that above >0.07m3 both the TLS and SfM rockfall inventories are an
accurate reflection of reality, whilst our confidence in the accuracy of
smaller rockfalls is lower. Since we identify numerous small rockfalls that
intersect their counterparts in each dataset, we are convinced that these
are indeed genuine events, but more work is required to establish which
differencing dataset generates the most realistic volumes. Specifically,
further work should attempt to isolate the reason(s) for this clearly
identifiable volumetric threshold, thereby making it more straightfor-
ward to establish and apply a similar method at other sites where a
control dataset does not exist. As such, the application of our specific
threshold to rock fall inventories from other sites should be considered
with caution. Future work might explore might include the use high-
resolution SfM input photography or orthophotography as a means
with which to verify or discard rock fall events based on a comparison of
pre- and post-event cliff visual texture or appearance. Elsewhere, full 3D
‘cloud-to-cloud’ differencing techniques have been shown to perform
favourably for reliably reducing threshold levels of change detection
across complex cliff terrain using repeat TLS surveys (e.g. (Lague et al.,
2013; Williams et al., 2017)). Further work is required to explore
whether these improvements in the level of detection are equally appli-
cable to SfM-derived surface models, and, crucially, whether such
methods are accessible to practitioners.



Fig. 8. Refinement of rock fall volumetric statistics. a) Refinement of rock fall frequency data for incremental 0.01m3 bins following post-processing. b) Cumulative
frequency data for intersecting rock falls. Solid black¼ SfM rock falls, dashes¼ TLS rock falls. Summary statistics also shown for intersecting data, including median
(~x) and mean (x) rock fall volume, and calculated erosion rate over the wider study area(Δ). c) visualisation of SfM-detected rock falls following initial thresholding
and filtering (red), and SfM-detected rock falls that intersect the equivalent TLS-derived rock falls (black). Filtered (non-intersecting) TLS-derived rock falls are shown
in blue. See Fig. 1 for location. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. Relationship between discrete intersecting TLS-TLS and SfM-SfM eroded
volumes (GCPmod). Vertical dashed line indicates the 0.07m3 SfM-SfM cutoff
which was implemented to refine overall eroded volume and erosion rate. White
data points identify rock falls >0.07m3 which are not completely reconstructed
by the TLS data due to topographic occlusion. R2 value applies to data >0.07m3.
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Following volumetric thresholding, the mean rate of retreat andmean
rock fall volume across the site, as established using both technologies, is
in line with the results from existing high-resolution erosion monitoring
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studies along the UK North Sea coast (e.g. (Lim et al., 2005; Lim et al.,
2010; Rosser et al., 2013)). Mean rates of cliff face retreat differ by
0.001m a�1 across the ~1 km study area, which we deem negligible for
operational implementation. For example, over a 100-year forecasting
period, mean retreat rates generated from TLS or SfM-MVS differencing
would diverge by up to 0.1 m (SfM-MVS erosion monitoring would
produce a 0.7m landward recession, while TLS would produce a loss of
0.6 m). Of more practical relevance is the ability of SfM-MVS derived face
differencing to accurately reconstruct large failures, which are also
detected by TLS differencing.
4.2. Terrestrial SfM-MVS: an effective, accessible and responsive tool for
coastal practitioners

The increasing availability, consistency and capability of TLS systems
have made them the industry standard for quantifying the erosion of
coastal cliffs at high spatial resolution and accuracy. This specialised
approach requires skilled operation, processing and interpretation and is
not logistically suited to covering extensive (>1 km-long) cliff sections,
although the increasing range (>1 km), affordability and portability of
TLS systems have begun to address this limitation. TLS application to
erosion monitoring remains constrained by purchase cost and a
requirement to deploy the system, often at multiple station positions, in
front of the cliff face for the duration of data collection (usually in the
order of 30min or more at each station). The finance, skilled personnel
and sufficiently large low tide conditions required to collect TLS data on
the cliff surface mean that surveys are often infrequent and are



Fig. 10. Cliff face retreat at Marsden Bay. a) context map. b) annual face retreat calculated from TLS (solid grey) and SfM (hollow red) differencing and displayed as
total retreat within 5m cliff length bins. Inset panel shows rescaled data from 0 to 0.5 km. Red dashes show start and end point of the monitored area. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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particularly limited with respect to responsive surveys following failure
events. Therefore, key data on the nature and extent of the failure and the
likelihood of progressive slope instability are rarely available to man-
agers and decision makers.

Here we have demonstrated the potential of terrestrial SfM-MVS
methods for efficiently generating kilometre-scale, spatially distributed
erosion metrics for a section of hard rock coastal cliffs. Terrestrial SfM-
MVS methods represent a demonstrable improvement on existing ap-
proaches through quantifiable gains in field deployment time whilst
reducing purchase and logistical costs. Critically, such data can be easily
acquired using a consumer-grade, compact digital camera, or even a
smartphone (Micheletti et al., 2014), and are relatively straightforward
to acquire by a coastal manager or engineer who is familiar with the
approach. At certain sites which experience significant public footfall,
this idea could be further developed to incorporate opportunistic
‘crowdsourcing’ of SfM-MVS input photographs to extend datasets and
effect participatory involvement frommembers of the public (e.g. (Frahm
et al., 2013; Snavely et al., 2008; Sofia et al., 2016)). Whilst 3D model
generation and analysis require specialist software knowledge and
experience in 3D data manipulation and presentation, responsive and
wide-scale primary data capture is accessible to coastal practitioners for
the first time.

Our findings have implications for aspects of coastal monitoring,
planning and civil engineering. Our results closely mirror those retrieved
using TLS, and support the use of terrestrial SfM-MVSmethods as a viable
alternative to existing methods of coastal erosion monitoring. Planners or
civil engineers operating in the coastal zone have the option of under-
taking or commissioning bespoke and financially viable terrestrial SfM-
guided erosion monitoring programmes to augment coastal manage-
ment or engineering projects at the development, implementation or
construction, and project evaluation stages. For example, such methods
would be appropriate for quantifying baseline erosion rates of a coastal
cliff prior to the design of a wave defence structure at the cliff toe, or the
implementation of cliff stabilisation works. Repeat SfM surveys could
then be used to benchmark pre-construction 3D cliff face change and
erosion rates against those observed post-construction, ideally as part of a
longer-term erosion monitoring programme.

The analysis of 3D change detection data for coastal cliffs can provide
valuable insights into the spatial and temporal distribution of coastal
response to environmental or anthropogenic forcing and thereby
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facilitate targeted management. Currently, coastal management de-
cisions can be based on a single rate of cliff retreat that is deemed to be
representative of extensive (tens of kilometres) and often complex sec-
tions of coastline where local erosion rates may in fact vary by an order of
magnitude or more (e.g. (Lim et al., 2005; Moore and Griggs, 2002)).
Such simplifications, whilst necessary to date, are insufficient for accu-
rately characterising the variable erosion response of coastal cliffs, and
responding to these accordingly. For example, repeat terrestrial SfM-MVS
methods are highly suited for rapid anticipatory deployment to identify
pre-cursory behaviour prior to a large failure event (e.g. (Rosser et al.,
2007)) and can be deployed in a responsive manner to quantify the
response and adjustment of sections of coastline following storm activity
(e.g. (Turner et al., 2016)).

5. Conclusions

Emergent SfM-MVS methods represent a low-cost and accurate
method for reconstructing coastal topography at spatial and temporal
resolutions that permit the identification of individual rock falls and the
extraction of erosion rates comparable to those derived from TLS. Such
approaches represent a viable monitoring solution for coastal practi-
tioners, who can collect input data rapidly and responsively without
significant specialist training and at low cost. This study has demon-
strated the capability of repeat terrestrial SfM-MVS for quantifying
erosion of a ~1 km section of rock cliff face along the north-east coast of
the UK. Our main findings and recommendations are summarised as
follows:

� SfM-MVS input photosets of coastal cliff faces can be acquired by non-
specialists using a consumer-grade digital cameras.

� Locating survey control points along the cliff top and base at a hori-
zontal spacing which approximates the cliff height balances user
interaction and model refinement with acceptable accuracies relative
to equivalent TLS data.

� Correspondence between intersecting TLS- and SfM-detected rock fall
volumes improves beyond a 0.07m3 volumetric threshold. This
threshold is used to refine SfM-MVS erosion data.

� At the kilometre scale, TLS and SfM derived erosion rates are com-
parable (0.6� 10�2 m a�1 and 0.7� 10�2 m a�1) and are in line with
regional observations, yet are lower than existing local predictions of
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coastal retreat, which are ~0.2m a�1. Patterns of retreat are spatially
variable, and can locally exceed the background erosion rate by over
an order of magnitude.

� To fully realise the value of high spatial and temporal resolution
erosion data to coastal engineers and managers, consideration should
be given as to how this information could be effectively incorporated
into existing monitoring and management frameworks.
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