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ABSTRACT 

The paper dissects the intricacies of Automated Decision Making 

(ADM) and urges for refining the current legal definition of AI 

when pinpointing the role of algorithms in the advent of ubiquitous 

computing, data analytics and deep learning. ADM relies upon a 

plethora of algorithmic approaches and has already found a wide 

range of applications in marketing automation, social networks, 

computational neuroscience, robotics, and other fields. Our main 

aim here is to explain how a thorough understanding of the layers 

of ADM could be a first good step towards this direction: AI 

operates on a formula based on several degrees of automation 

employed in the interaction between the programmer, the user, and 

the algorithm; this can take various shapes and thus yield different 

answers to key issues regarding agency. The paper offers a fresh 

look at the concept of “Machine Intelligence”, which exposes 

certain vulnerabilities in its current legal interpretation. Most 

importantly, it further helps us to explore whether the argument for 

“artificial personhood” holds any water. To highlight this 

argument, analysis proceeds in two parts: Part 1 strives to provide 

a taxonomy of the various levels of automation that reflects distinct 

degrees of Human – Machine interaction and can thus serve as a 

point of reference for outlining distinct rights and obligations of the 

programmer and the consumer: driverless cars are used as a case 

study to explore the several layers of human and machine 

interaction. These different degrees of automation reflect various 

levels of complexities in the underlying algorithms, and pose very 

interesting questions in terms of agency and dynamic tasks carried 

out by software agents. Part 2 further discusses the intricate nature 

of the underlying algorithms and artificial neural networks (ANN) 

that implement them and considers how one can interpret and 

utilize observed patterns in acquired data. Is “artificial personhood” 

a sufficient legal response to highly sophisticated machine learning 

techniques employed in decision making that successfully emulate 

or even enhance human cognitive abilities? 
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1 INTRODUCTION 

The great advances that have occurred in machine learning 

research in the past four decades have led to a rapid 

commercialization of AI assisted systems, whose applications are 

nowadays indispensable parts of one’s everyday life: Virtual 

Personal Assistants like Apple’s Siri or Microsoft’s Cortana, 

driverless cars and smart thermostats are only a few examples to a 

rapidly expanding list. An important component of these 

applications is Automated Decision Making (ADM), that is, the 

ability of algorithms to provide solutions in tasks with ambiguous 

outcomes and determine the optimal among a set of possible 

answers. In light of these developments, this paper attempts to 

provide an overview of the various layers of algorithmic 

determinism in automated and semi-automated tasks. Our hope is 

that this analysis could serve as a useful point of reference for 

assessing the frequently suggested arguments towards a potential 

legal personification of software agents.  

 In 2016, Microsoft released an artificial application into the 

online social sphere: a ChatBot called Tay.ai, which was designed 
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to interact with Twitter users and learn from these interactions. 

Within 24 hours, Microsoft had to deactivate Tay’s Twitter 

account, due to a large amount of retweets of racism comments on 

Tay’s feed, often including further offensive commentary by the 

ChatBot (Perez 2016). Although such racial commentary is not 

unusual online (Williams et al, 2016), the case of Tay is of 

particular interest given that it provides empirical evidence of 

advanced forms of AI that is able to mimic human behavior. This 

interaction between the machine and the human is an intricate 

process that includes various degrees of automation, which in turn 

result from mixing together the user feedback with the algorithm’s 

behavior.   

This of course opens the door to a plethora of ethical and safety 

considerations with regards to using AI technologies without 

abusing the power these might yield over human agents. When the 

AI research firm DeepMind was acquired by Google in 2014, one 

of the prerequisites was to set up an ethics board dealing with these 

issues. After all, the recent win of the company’s system AlphaGo 

over a high level human player proves the need for a code of ethics. 

Lately however, further concerns have also been voiced as to the 

legal and ethical treatment of advanced AI applications that 

effectively require limited supervision or are even able to operate 

without the need for “the human in the loop”.  Indicative of the 

latter is the EU Legal Affairs Committee’s vote for a resolution in 

January 2017, which calls for a detailed legislative framework 

regarding smart autonomous systems. Among other points, the 

proposal urges for a wider definition of AI, including smart systems 

either comprised a physical support or connected to a software 

program without being embedded in a physical support. Largely 

based at a draft report prepared by MEP Mady Delvaux in 2016, it 

is expected to further discuss the prospect of considering rendering 

a “specific legal status” for robots. As noted in the report, "At least 

the most sophisticated autonomous robots could be established as 

having the status of electronic persons with specific rights and 

obligations, including that of making good any damage they may 

cause". Thus, an electronic personality could also be applied "to 

cases where robots make smart autonomous decisions or otherwise 

interact with third parties independently". The purpose of this paper 

is to discuss this proposition in further detail and assess its validity: 

are we ready to introduce “hybrid” personhood rights?  

The question of how real and simulated intelligence measure up 

in AI is hardly a new one (for a good overview see Haugeland 

1985). Note for example Chomsky’s reading of the Alan Turing test 

(Turing 1950) as an approach that separates the cognitive from the 

biological elements in order to provide an answer as to whether 

machines can be perceived by humans as able to think, not different 

to fooling someone into believing the “submarines can swim” 

(Chomsky, 1996). This, Chomsky concludes, is a “question of 

decision, not a question of fact”, not different to fooling someone 

into believing the “submarines can swim”.   

This interpretation of “intelligence” lies at the heart of the 

argument put forth here: to legally assess Automated Decision 

Making, one needs to go beyond the realm of biological and 

cognitive abilities and consider the essence of the concept of 

“personhood”: what defines a person and when is a person 

autonomous? In other words, the level of autonomy displayed by 

the agent or the machine will also determine the level of liability, 

which is currently a puzzling notion for legal scholars addressing 

AI. To highlight this point, the paper uses driverless cars as a case 

study and explains how fully automated systems bestow upon us 

the task to develop our theorizing in order to accommodate artificial 

agents within legal doctrines. As it will be shown in the remainder 

of the paper, the matter of “intelligence” in AI is not merely of 

philosophical nature but its definition is much needed to provide 

solid grounding for emergent legal issues, such as tortious liability 

(Chopra & White, 2011). The latter is of course a legal convention, 

which provides us with a safe tool to address challenging issues in 

automated systems (i.e. liability in driverless cars) but is not on its 

own enough to account for the reconfiguration of key concepts, 

such as causation and responsibility.   

Moving away from Chomsky’s narrow interpretation of the 

Turing test, Russell and Norvig (2003) draw an interesting 

distinction between an artefact’s behavior and an artefacts 

pedigree: "we can conclude that in some cases, the behavior of an 

artefact is important, while in others it is the artefact’s pedigree that 

matters. Which one is important in which case seems to be a matter 

of convention. But for artificial minds, there is no convention". This 

explains the focal point of this paper, which revolves around the 

personhood of artificial agents. As such, our aim here is to go 

beyond the mere confinements of torts and contracts and to canvass 

a rights-based framework for highly sophisticated machine learning 

algorithms employed in ADM. As it will be shown next, although 

to a certain extent we do not lack the legal tools to address issues 

of liability in automated systems, deep learning has added two extra 

parameters to the equation that have complicated matters:  

  

(i) The pedigree of the artefact is the result of an opaque 

computational procedure to resemble human cognitive behavior 

that is dynamic and evolving. Of course, automated systems as such 

are hardly a novelty: take for example the UAV (unmanned aerial 

vehicles), which have been in use since 1900s in military training. 

The novelty here is that –unlike UAVs- the human involvement is 

now from within the “black box”: a driverless vehicle does not lack 

a driver but it is rather the driver that is not required to be fully 

alerted or to participate at all times.  

  

(ii) The behavior of the artefact is the result of a combination of 

several layers of interaction between the human and the artificial 

agent. Again, the intricate part here is not the interaction with the 

machine as such; for more than fifty years now, Brain Computer 

Interface (BCI) research has been considering the applications of 

such a symbiotic relationship in areas, such as neuro-prosthetics. 

But what is striking here, is that the technological advancements in 

Machine Learning have uncovered various degrees of interaction 

between the man and the machine, which at times can be hard to 

identify and rationalize.    

 

To elucidate such intricacies, the following section provides an 

overview of ADM and its mechanics, namely some related machine 

learning algorithms and the current trend towards deep learning. 
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2 A CONTEXTUAL ANALYSIS OF 

EMERGENT NORMATIVE AND LEGAL 

ASPECTS IN AUTOMATED SYSTEMS: THE 

INTRICACIES OF MACHINE LEARNING 

ALGORITHMS 

 

The aim of this section is to first establish an understanding of 

the technical context, within which ADM occurs. This will not only 

allow us to explain better how a definition of “intelligence” in AI 

(pedigree) is somewhat elusive but it will also provide a solid 

methodological grounding, given that the approach taken here is a 

techno-legal overview of automated systems. Recent advances in 

machine learning and computational complexity theory have been 

further boosted by the ability to collect, manipulate and store vast 

amounts of data. ADM is a natural product of these exciting 

developments and has found a wide range of applications in 

seemingly unrelated fields like marketing automation, social 

networks, computational neuroscience, robotics, banking, 

transportation and others. 

      Machine learning algorithms often employ artificial neural 

networks (ANNs). This means that the computational units these 

algorithms use to perform intelligent functions resemble biological 

networks and neurons. ANNs take advantage of powerful 

algorithms that are trained using large datasets available in many 

industries (image databases, security or healthcare records, traffic 

or consumer behavior data, online platform analytics, etc.) so that 

they can correctly decide upon suitable actions when new data are 

presented to them in a similar way to what a human agent would 

do; for example to recognize faces or operate driverless cars. The 

purpose of ADM is to be able to act without the need of human 

intervention. They are be able to deal with novel conditions, that is 

take the right decision even when the dataset presented to them is 

different from the one they have been trained on, e.g. a driverless 

car should be able to navigate in a road it has not had access before. 

How do ANN algorithms learn to perform complicated tasks 

efficiently? Put simply, the answer lies in exploiting both increased 

computational power and vast amounts of data already collected. 

This data is used by the programmer to train the algorithm. 

Technically, training is often done in one of the following three 

ways: supervised, unsupervised or reinforcement learning, see e.g. 

(Mohri et al., 2012). These are technical terms that relate to  the 

details of the training process and  are distinct from potential 

interactions with the user after the algorithm is passed on to her in 

e.g. human-in-the-loop and similar applications.  

Supervised learning (SL) occurs when during training the 

algorithm is fed with both an input and the correct decision 

(output). For example, when the algorithm has to distinguish 

between faces and objects in a scene, the input would be an image 

and the output a class index, e.g. 1 for faces and 2 for objects. The 

algorithm is then given pairs of images and class indices that are 

used to fine tune its parameters. The algorithm has to find the 

correct class index when – after learning- it is presented with a new 

image that may or may not contain a face (Nakajima et al, 2000).  

Unsupervised learning (UL) is quite similar conceptually. Using 

the above simple example, the difference is that the algorithm 

would have to guess whether the image contains a face or not 

without being explicitly given the corresponding indices during the 

training process (Kumar et al., 2010). Of course, when designed, 

the algorithm is fed with some information about the task, e.g. it 

would know it should decide between two possible alternatives, 

however it is not given which images contain faces and which do 

not, it has to discover these differences based on certain features 

that the images might contain, e.g. eyes, nose and mouth at close 

proximity in all images that contain faces. In a more difficult 

scenario, the algorithm might even have to decide how many 

classes or categories there might be in the data, something that 

might lead to it over- or under-estimating this number. In such 

clustering or classification tasks the algorithm puts together points 

that are related in some conceptual space. Of course, the 

dimensions of this space (which features should be selected) are 

crucial for making the algorithm efficient and are chosen by the 

programmer in the design stage. This is important as it might 

introduce a bias in the output of the decision process: depending on 

what features the programmer chooses to be important, the 

algorithm might take different decisions. We call this the “bias” 

introduced by the programmer to the ADM algorithm. The reader 

should keep this term in mind as we will come back to it in section 

4.2 below. Bias is not only an issue in unsupervised learning but 

also in other machine learning approaches like Reinforcement 

Learning to which we now turn:  

Reinforcement learning (RL) is slightly more complicated: it 

decouples actions from rewards and the algorithm aims not at 

taking the “right” action (decision), but maximizing the reward it 

receives (Sutton and Barto, 1998). This is merely a technical 

distinction that renders the description of the relevant algorithms 

slightly more complicated – for example, the algorithm might have 

to take several actions one after the other to maximize an end goal 

(reward). Interestingly, this decoupling speaks to the ability of the 

algorithm to take sequential decisions that are related to each other 

and think ahead in time; for example, the DeepMind algorithm that 

plays the Atari game Breakout should find a balance between the 

time it spends at each location firing and the speed it moves if it 

wants to accumulate sufficient reward (high score) and successfully 

proceed to the next level (Mnih et al., 2015). Furthermore, this 

balance might change in time or as the level of the game advances. 

Contrary to the other two approaches, the emphasis in RL is in 

combining several decisions (or actions) to get the most benefit out 

of them. In other words, reward is a complicated function of two or 

more decisions that might be unknown even to the programmer, let 

alone the user herself.  

RL is today considered to be a promising avenue for building 

intelligent algorithms that can adapt to different environments and 

even tasks; an important limitation in older machine learning 

approaches was the lack of flexibility: e.g. an algorithm might learn 

to play chess at master level but would be unable to play checkers, 

which for most human players that know the rules chess would be 

easy to pick up. This is why algorithms are often trained to perform 

within a limited set of conditions and cannot succeed when rules 
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changes, even slightly. In a paper published last year, DeepMind 

researchers showed that the same algorithm could perform well in 

several Atari games without being trained in each one individually 

(Minh et al., 2015) Essentially, the algorithm learns different 

mappings between actions and rewards online and is able to 

flexibly maximize the benefit it receives when the environment 

(game) changes.  

All three learning approaches have a long history in machine 

learning, however recent successes like the DeepMind algorithm 

for playing Atari games discussed above followed technical 

advances sometimes referred to collectively as Deep Learning 

(DL). For example, the DeepMind work uses Deep-Q Learning 

which is a combination of RL and DL (Van Hasselt et al., 2015). 

Roughly speaking, the term “Deep” here refers to increasing the 

power (and complexity) of an algorithm by taking its basic 

constituent parts and using them recursively, that is feeding the 

output of one part to the other. Crucially, each part uses a similar 

learning process, however only after combining all parts together is 

the system (building a deep architecture) able to perform well. If 

the architecture of the algorithm is changed, e.g. a smaller number 

of constituent parts are used, then the algorithm might not be able 

to take the right decision of find the action that maximize its reward.  

Architectural details like e.g. the exact number of parts (layers) 

in the system or how “big” each part should be in terms of how 

many computational units should be used are often found by 

experience. This is in contrast with older approaches and rule-based 

simulations where the algorithms were implemented in much 

smaller computer infrastructures and the role of different 

computational elements involved was more transparent. 

Interestingly, it might not be a principled explanation as to why 

certain deep (extended) architectures work and others don’t 

something often referred to as the deep algorithms being somehow 

“opaque”. This idea has its roots in neuroscience where a 

succession of brain areas – e.g. the ventral system- plays a similar 

role to a deep network architecture. In this setting, certain brain 

areas situated away from sensory regions light up and respond to 

different stimuli e.g. some areas respond to faces and others to 

objects. This means that these areas are sensitive to the category of 

the visual stimuli and can distinguish between categories. 

Crucially, earlier (visual) areas would respond to anything placed 

in the visual field regardless of its category. However, only higher 

areas that receive input from several upstream regions are able to 

distinguish between different categories of visual stimuli. In brief, 

the brain decides about the category of the stimulus by combining 

signals from several areas that interact in a large network. 

Similarly, it is only after the programmer endows its algorithm with 

several parts and builds a “deep” hierarchical architecture that the 

algorithm can distinguish between classes of visual stimuli. 

 So what have we lost by making the algorithm deep? Maybe 

we have found a way to replace humans with intelligent agents that 

can perform well and take the right decisions; however, we cannot 

claim that the algorithm really understands or interprets its input 

the way a human would do. This poses an interesting challenge for 

law, and in particular regarding the concept of “agency”, as deep 

algorithms have the ability to act upon their input, e. g. take a 

decision. In this case, the definition of “act” is stretched beyond the 

narrow confinements of conventional legal formalism; algorithms 

do not serve as mere tools but are able to take well informed 

decisions under little or no supervision at all.   

Most importantly, there exists an additional dimension that 

further muddles the waters for legally assessing ADM: what is the 

scope for the user’s involvement in the decision process? Given the 

complexity in the process of decision making, a clear understanding 

of the interactions between the machine and the human agent is 

necessary not only for attributing responsibility for the outcome of 

the decision met but further to explore the causality, intent and risk 

assessment. Take for example the law of negligence, a tort 

introduced partly in response to the problems of agency: direct 

liability would only apply in supervised systems, whereas indirect 

liability under the doctrine of respondeat superior would require a 

certain level of foreseeability, namely “normalized expectations for 

the technical capacities of computer action” (Teubner, 2007).   

In applications that require a human-in-the-loop like Brain 

Computer Interface (BCI), assisted Decision Making and Health 

Informatics the user already plays an active role in this process. In 

such cases, the user acts supplementary to the algorithm and 

interacts with it. This leads to increased performance and efficiency 

of the algorithm and good performance even in situations of high 

uncertainty or increased risk. What makes human-in-the-loop 

algorithms different to autonomous systems is not the way training 

is carried out but the possibility of human intervention at 

intermediate stages of the training process. The human intervenes 

to enhance the algorithm’s performance by bringing in knowledge 

the algorithm has no access to. Intermediate training follows the 

general procedures we have described above  but the user has a 

decisive role in selecting new training datasets that have been 

preprocessed by her, e.g. throw irrelevant parts  away or intervene 

at intermediate stages to  assess the quality of results produced  and 

guide  the algorithm accordingly. For example, in (Awasthi et 

al.,2015) an algorithm used limited supervision to cluster data in a 

certain number of groups with the help of the user who  at each 

stage told the algorithm whether it should split or merge some of it.  

Thus far we have discussed the technical details underlying 

machine learning algorithms used in ADM. These summarize what 

we earlier called the artefact’s pedigree.  In the following section, 

we focus on the artefact’s behavior and use driverless cars as a case 

study to explore the various levels of automation: this allows us to 

gain a better understanding of various degrees of human-machine 

interaction, which will serve as a reference point for the remainder 

of the paper and shall aid us in our quest to understand the balance 

between the algorithm’s inner workings – that are often opaque – 

and human intervention. 

 3 A TAXONOMY OF AUTOMATION 

LAYERS: DRIVERLESS CARS AS A CASE 

STUDY 

 

The prospect of fully autonomous vehicles “designed to be 

capable of safely competing journeys without the need for a driver” 

(Department for Transport Code of Practice) has certainly gained 
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momentum in the past few years: Google Chauffeur software 

currently tested in autonomous vehicles in California, Rio Tinto’s 

autonomous haulage systems operating since 2008 in Australia or 

Volvo’s pioneering program “Drive me” expected to release 

autonomous vehicles to customers in Gothenburg by 2017 are a few 

indicative cases of the great potential automated systems have 

shown in the transport industry (Atkins 2015). This however is far 

from removing drivers completely “off the loop”, although many 

manufacturers have already introduced semi-automated vehicles 

with driving assistance features, such as controlling the brake, 

throttle and steering, supporting active lane-keeping or using 

sensors to deliver full speed adaptive cruise control (KPMG 2013).   

It is thus apparent that automated systems, such as autonomous 

vehicles, operate on several different degrees of automation, 

according to how much control is yielded to the driver. In other 

words, the novel element here is not automation per se but the 

variety of degrees of interaction between the man and the machine. 

Take for example the case study of driverless cars explored here:  

automated driving is not really a striking fact nowadays; the auto-

mobile started replacing the horse-drawn carriages in the turn of the 

20th century. The initial skepticism towards the new risks posed by 

the technological advances was followed by gradual adoption of the 

new means of transport, mainly due to the codification of 

automated driving in law (Moris, 2007). Transport related legal 

issues, mainly liability, have been dealt with a dynamic body of 

regulations at a national and international level, which have taken 

an anthropocentric view: assumption of risk, bad judgement, and 

reasonable foreseeability, are a few grounds upon which causality 

can be established. At the same time, they all have one common 

point of departure: human error as a sine qua non of the decision 

making process.   

 The elimination of human error is however also one of the key 

elements behind the rapid evolution of the self-driving car industry. 

A 2008 NHTSA report attributes 40% of collisions to “recognition 

errors”, caused by distractions, and 35% to “decision errors”, such 

as speeding. It is thus expected that removing the human element 

from driving will enhance road safety (NHTSA, 2008). Recent 

progress in computer vision like the use of massively parallel 

graphic processing units and deep learning algorithms have led to 

a revolution in the field of driverless cars. The quest for self-driving 

vehicles was initiated with DARPA’s Grand Challenges: this was a 

competition among such vehicles where external operators were 

allowed to intervene in the vehicles’ route to minimize risk and 

ensure safety (e.g. by stopping and restarting the vehicles). Since 

then, several milestones have been reached and fully autonomous 

driving has become a reality (Urmson et al., 2008; Levinson et al., 

2011; 2014; Wei et al., 2013). Of course, due to the complexity and 

breadth of possible driving conditions, achieving fully autonomous 

cars that  have sufficient training so that they are able to perform 

well in any situation is far from solved (despite using huge training 

datasets, that include millions of highway and road images etc.). 

However, extending basic computer vision algorithms to the level 

of replacing human agents is now considered viable and several 

reports of self-driving cars have appeared in the media, e.g. (Rosen, 

R.,2012; Hull, L., 2013).  

Thus, it is not the technology or the externalities it unavoidably 

creates that hinder our legal understanding of automated decision 

making. What is challenging for legal minds, is an unprecedented 

variety of interfaces and levels of interaction between the human 

and a machine learning algorithm. To put it differently, to fully 

assess  these algorithms one will have to perceive to what extent 

the human element (directly by human-in the-loop interventions or 

indirectly at the design stage) is present in the “intelligence” 

demonstrated by the algorithm. As noted in section 2 above, it is 

imperative that a basic taxonomy for ADM is adopted prior to any 

legal evaluation to enhance our understanding of how each 

“automated” task involves constant shifts of roles from executing 

to merely supervising (Sheridan 1970).   

The study of these interactions has given rise to many theories 

discussing ontological and deontological approaches regarding 

automated functions and the degree of human involvement (Fitts 

1951). As a result, many taxonomies of various degrees of 

automation have been suggested in a quest to localize informational 

control in the human or automaton domain: Sheridan and 

Verplank’s ten degrees of automation (1978) are probably the most 

widely adopted theory that describes variations of control from 

human to collaborative and to fully automated, Endsley and 

Kaber’s theory (1999) emphasizes on supported, blended or 

automated decision making, whereas Riley’s taxonomy (1989) uses 

a mixed assessment based on various levels of autonomy that 

intersect with different degrees of intelligence. These theories have 

provided the ground for authorities such as the NHTSA or the 

Society of Automobile Engineers to identify 5 levels of automation 

in computer assisted driving:    

  

(i) No-Automation (Level 0), i.e. the system automatically 

assists the driver to regain lost control of the vehicle.  

(ii)  Function-specific Automation (Level 1), i.e. the system 

controls one function.   

(iii) Combined Function Automation (Level 2), i.e. the system 

controls at least two functions.  

(iv) Limited Self-Driving Automation (Level 3), i.e. the driver 

cedes full control under specific conditions,   

(v) Full Self-Driving Automation (Level 4), i.e. the driver is 

not expected to become involved throughout the duration 

of the trip.  

 

Further to this, the NHTSA Federal Automated Vehicles Policy 

published in September 2016 by the US Department of 

Transportation, outlines in more detail the term “highly automated 

vehicle” (HAV), which represents SAE Levels 3-5 vehicles with 

automated systems that are responsible for monitoring the driving 

environment. This variety of human – machine interaction 

introduces a new complexity: “the vehicle must be capable of 

accurately conveying information to the human driver regarding 

intentions and vehicle performance”, as well as to its environment, 

namely “other external actors with whom the HAV may have 

interactions (other vehicles, pedestrians, etc.)”. To put this 

differently, it does matter whether the average observer can tell 

whether a vehicle is autonomous or not, as this changes the degree 
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of reliance towards the ability of a driver to maneuver and shapes 

reasonable expectations accordingly. This is particularly interesting 

when one considers Level 3 SAE systems, which are expected to 

be monitored by the driver, although human capacity to stay alert 

when disengaged from the driving task may be limited.   

Driverless cars are a recent example where automated systems 

have made great progress and reached a level, where the operator 

can be completely ignored. Earlier examples include aviation 

(Spizer, 1987) and medicine (Thompson, 1994), leading up to the 

emergence of the DoNotPay Bot in 2016, the world’s first “robot 

lawyer”, offering free legal advice to the homeless. We have chosen 

to discuss driverless cars in the paper, as the various degrees of 

automation discussed above, capture perfectly this interplay 

between the operator and the agent. As Sheridan notes “Automation 

has moved from open-loop mechanization of industrial revolution, 

then to simple closed loop linear control, then to non-linear and 

adaptive control and recently to a mic of crisp and fuzzy rule-based 

decision, neural nets and generic algorithms that truly recognize 

patterns and learn” (Sheridan 2000). This in turn has also marked a 

shift from automated ML (aML) to interactive ML (iML) 

(Holzinger, 2016), namely an almost seamless interaction between 

the machine and the operator. The more sophisticated the system 

is, the more it changes the nature of human performance, 

challenging thereby our understanding of who the operator of a 

given task is, and to what extent she needs to apply own cognitive 

capacities (Parasuraman, 1997). From a legal standpoint, this is 

highly problematic as such interactions lend anthropomorphic traits 

to otherwise automatically executed tasks. In a similar vein, Calo 

(2015) outlines three distinctive features in robotics that blend the 

boundaries between the human and the machine: embodiment of 

the algorithm (e.g. the car in our case study), emergence (the 

“coupling of complexity and usefulness”) and social valence, 

namely the public reliance on automated systems. Ultimately, he 

concludes that new juridical insights will be required to fully 

perceive this emerging field from a legal viewpoint and accurately 

evaluate to what extend automated systems can be treated as social 

actors, able to “think” for us  after having benefited from our social 

experiences. This echoes Teubner (2007), who having reviewed 

Luhmann and Latour, explains how most legal actors are created 

by social attribution, without the need to possess any ontological 

human properties, such as reflexive capacities or empathy. That 

said, artificial agents are still beyond the narrow confinements of 

our current anthropocentric view of legal actors.    

Can autonomous cars drive us, in the same sense that 

submarines can swim? So far we have focused on how advances in 

machine learning have led to highly sophisticated automated 

systems that can potentially throw the operator out-of-the-loop. To 

understand this better, let us take the Google driverless car as an 

example and focus on how it can operate with minimal supervision. 

The Google algorithm for driverless cars performs the following   

operations:  

(i) self-localization using 3D map technologies  

(ii) determination of static and moving obstacles  

(iii) classification of information/objects by using machine vision  

(iv) generation of road condition predictions  

(v) evaluation of these predictions against real circumstances  

(vi) automated actions like steering, braking or accelerating, if 

required (Titiriga, 2016).  

These are the same operations a human driver would have to 

undertake; however the sense of agency is in this case different: 

what do notions like “average reasonable person”, “free will”, 

“mens rea” and degrees of culpability mean in the case of driverless 

cars? Such questions present us with an “indirect agency”, a status 

which is not easy to assess legally using frequently evoked criteria.  

Let us then consider each of the above steps independently: in 

operations (ii) and (iii) the algorithm has to perform image and 

object recognition, segmentation and classification. Given the 

limited degree of automation in the decision making process, it can 

be argued that these steps correspond to levels 0-2, in the SAE 

taxonomy mentioned above. In other words, the algorithm has to 

first understand how many objects exist in its view and then classify 

them into pedestrians, cars, traffic lights etc. This means that the 

algorithm has to boost interesting parts of the image over not so 

interesting ones; for example, be able to distinguish between a 

pedestrian standing next to a still or obscure background, e.g. a 

traffic light at a crossing or in a pavement with low lighting. 

Segmentation is then carried out using some sensors (cameras, 

lasers etc.) that should be able to learn new environments in an 

unsupervised way (Levinson, J., & Thrun, S., 2014).  In this 

context, recognition and classification of human and objects in the 

car’s proximity might go beyond simple processing of visual input 

through the car’s camera and applying labels to objects using a 

database stored in the car: they might require autonomous 

interactions with electronic systems and databases outside the 

vehicle like GPS-based guidance systems and information from the 

Department of Transportation (DOT) that would allow the 

algorithm to localize the vehicle and its neighboring objects and 

surroundings (Zhu,J., et al., 2014). Furthermore, information about 

the car’s location and other parameters (speed, direction etc.) 

should be passed on to a central (global) guidance system and 

database at a remote location, e.g. DOT so that other (neighboring) 

vehicles might be informed about the car’s trajectory and 

parameters.  

Operations (iv)-(vi) above are more complicated and as such, 

correspond to SAE levels 3 – 5 (see Figure 1 above): on top of 

image processing and computer vision tasks, the algorithm of the 

driverless car has to solve an inherently dynamic problem where on 

top of image processing the algorithm has also to predict 

trajectories in time, both its own and neighboring cars e.g. predict 

the future location of the car in the front given its speed to avoid 

collision in case it breaks unexpectedly. It also has to generate 

appropriate steering commands, breaking, acceleration and  be able 

to associate past and future driving conditions, e.g. if the ground 

map includes information about a congested road coming up the 

algorithm could look for alternative routes or try to slow down even 

though obstacles might not be directly visible. All these operations 

endow the algorithm with a novel sense of agency as it effectively 

acts in lieu of a driver and behaves like one. What are the criteria 

for legally assessing this new sort of agency?   
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This question does not suggest that automated vehicles operate 

on a legal vacuum. On the contrary, the issue of liability has been 

debated many times at a national, federal and international level 

and although incoherent, most solutions suggested in the regulatory 

domain move towards strict liability. Given however the different 

types of driverless cars (reflecting various shades of automation), 

there is no size that fits all:  Volvo, for instance has declared that 

the company will pay for any damages caused by its fully 

autonomous IntelliSafe Autopilot system. With regards to Google’s 

car, the National Highway Traffic Safety Administration (NHTSA) 

has recognized that the software, not the human, is the driver. At 

the same time though, the international Vienna Convention on 

Road Traffic gives responsibility for the car to the driver, requiring 

that “[e]very driver shall at all times be able to control his vehicle”. 

The amendment to Vienna Convention, which came into effect in 

2016, to include article 8 paragraph 5bis VC, does little in clarifying 

matters regarding autonomous vehicles: as it is premised on the 

assumption that such automated systems can be overridden by the 

driver, it does not take into account fully automated systems. Far 

from establishing legal certainty, the current regulative framework 

regarding automated vehicles is still dispersed and in working 

progress. At the same time, the issue of agency is barely addressed, 

mainly due to the challenging issue of proving actual causation in 

automated technology (Wittenberg, 2016). Next, follows an 

attempt to understand the agent’s artificial “intelligence” through 

the lens of personhood – a doctrinal approach beyond the strict 

confines of liability.   

 

4 Deep Learning Conundrums: The Emergence of 

“Assimilated Personhood” in ADM Algorithms. 

 

At this point, let us pause for an intermediate summary: so far, 

we have attempted to provide a descriptive (section 2) and 

normative analysis (section 3) of machine learning algorithms. 

These analyses have validated the hypothesis set out in the 

introduction, that ADM  is a challenging concept for law because it 

rests on  both the artefact’s pedigree (see section 2) and the 

artefact’s behavior (see section 3). These are two separate yet 

intertwined elements in the process of mimicking human behavior. 

In the case of driverless cars considered above, it was shown how 

human behavior reinforces the artefact’s pedigree, while at the 

same time the artefact’s behavior can occur without any human 

involvement.   

Therein lies the heart of the argument put forth here: the 

understanding of what robotic “intelligence” is by legal scholars is 

often limited; to this shortcoming one should add the increased 

complexity of modern techniques like RL and deep algorithms in 

AI that lead to a difficult conundrum; importantly, this conundrum 

cannot be addressed purely with metaphors as it is often the case 

for other questions that are new to legal research (Calo 2016). 

Earlier, we considered different levels of automation in machine 

learning algorithms and different shades of human agency inbuilt 

in systems using deep learning. This led us to conclude that tools 

for legal assessment that are currently available (e.g. Vienna 

Convention) are expected to be unable to capture the different 

levels of automation and human-machine interaction. For example, 

RL is often characterized by an opaque mechanism of decision 

making: although RL robots bear anthropomorphic features, it is 

still not clear to the lawmaker how to deal with this emergent 

concept of “assimilated personhood”. In this final part, the paper 

explores the necessity for a new concept of personhood together 

with algorithmic transparency in ADM and attempts to show how 

modern machine learning algorithms like RL present us with new 

challenges that require novel sets of standards.  

  

4.1. Artificial Personhood v. Simulated 

Personhood: Focusing on “the loop”  

 
 (Gray 1921) defined personhood as the quality of any entity 

possessing “intelligence and will”.  The idea that AI systems should 

be given entitlements to personhood is hardly a new one: there is 

already rich literature (Allan and Widdison, 1996; Kerr and Millar, 

2001; Chopra and White, 2011) that suggests that autonomous 

artificial agents could potentially be considered as entities meriting 

“legal” personhood.   

This is not the first time that entities other than a person are 

entitled to the responsibilities and rights associated with the notion 

of personhood. The concept of a “fictitious” notion of personhood 

applying to entities other than human individuals has long been 

supported by many famous jurists such as Von Savigny and 

Blackstone (Dewey, 1925), and accounts for the nature of an 

artificial personality reserved for corporations (Hallis,1930), which 

is now embraced in most legal systems. Not surprisingly, this finds 

its roots in the Roman law tradition, where the doctrine of “persona 

ficta”, served the purpose of distinguishing monks to monasteries 

in canon law, avoiding thereby any structural deficiencies of the 

latter: lacking in soul but made of individuals, who could still be 

held guilty of delict.  

 In the early 19th century, the US Supreme Court in Dartmouth 

described corporations as “an artificial being, invisible, intangible, 

and existing only in contemplation of the law”, which displays in 

fact certain personhood virtues, not as a person but as a “mere 

creature of law.” (Dartmouth College v. Woodward, 17 U.S. 518, 

636 (1819). Since then, modern corporate law has developed a 

more nuanced approach, acknowledging that these entities - being 

the creation of private initiative and market forces- incorporate 

competing interests that need to be accounted for (Kaeb 2015). In 

a similar vein, robots and artificial agents are highly automated 

systems that are equally premised on “private initiative and market 

forces” and would therefore fit the criteria of “legal personhood” as 

such. In the era of algorithms being the driving force behind 

unmanned systems that could inflict harm, like military drones,  it 

is imperative not to afford them “the blessings of perpetual life and 

limited liability” (Rehnquist dissenting in Pellotti with regard to 

banking corporations).  

 This proposition has of course not gone without criticism: 

automated systems cannot experience life as a good to itself given 

their lack of consciousness (Aleksander 1994; Franklin 1995) and 

would fall beyond the strict confinements of liability as a 
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punishment aiming at deterrence (Bentham, 2009). Such arguments 

however oversimplify the way in which automated systems operate 

and do not carefully consider the various levels of automation, as 

described above. Solum (1992) has therefore disregarded these 

claims as purely “behavioristic approaches” and has urged for a 

distinction between simulated and artificial intelligence. This 

would be a good first step towards addressing some of the most 

complicated regulatory problems posed by AI: limited 

foreseeability of actions, operations based on a highly 

compartmentalized and opaque design, and a narrow scope of 

controlled tasks, are only a few examples that demonstrate the need 

to fully grasp the contours of “intelligence” in AI (Scherer, 2016).  

  

4.2. The “Intelligence and Will” in Deep 

Learning: An Interpretation of Opacity   
  

We saw earlier, that deep learning algorithms for ADM have an 

intricate architecture, are often opaque and allow for various levels 

of human-machine interaction and autonomy. In other words, they 

are much more complex and less transparent than earlier rule- based 

algorithms, however, this additional complexity has not adequately 

been taken into account in their legal assessment to date. We also 

suggested that such intricacies render the understanding the concept 

of “personhood” associated with ADM algorithms problematic.    

Previously, we associated personhood with any entity 

possessing “intelligence and will”. A highly sophisticated and 

automated system can be considered to possess “personhood” but 

in what ways is the system “intelligent” and has “will”? 

Furthermore, the system was designed by a programmer and might 

sometimes be influenced by the user. Both the programmer and the 

user have their one distinct “personhoods”, so how do they interfere 

with the “system’s personhood”?  

We here propose that to address the above difficult questions 

one needs to  adopt a legal approach that will focus on both what 

the infrastructure and behavior of the automated system is and what 

the role of  the human element (programmer, user) might be, see 

also (Jones, 2015). This means that one needs to go beyond older 

approaches that put too much emphasis on how (i) efficient   (cf 

Citron, 2007) and  (ii) objective the algorithm is (Zarsky, 2015) 

without at the same time considering what the potential role of the 

human influence might be. As we saw earlier, this influence can be 

important for the algorithms output; for example, it might introduce 

biases in the outputs of the automated decision process.   

Dissecting the role of the human element is not an easy task, 

because, as we saw earlier, human influence might be hidden 

behind opaque architectures of the sort used in deep learning or 

might be indirect in the case of human-in-the-loop applications.  

This might be important for the correct legal assessment of liability 

and similar issues in modern ADM: if one neglects the influence of 

the programmer or operator, she runs the chance of not correctly 

attributing to humans flaws in the ADM algorithms for which the 

humans should be held responsible. Of course, the opacity of the 

algorithms does not render this an easy task especially for legal 

scholars; however only by taking a deeper look into the ADM 

mechanics could we have any hope of properly understanding   

concepts like personhood and liability associated with highly 

automated systems.   

A good number of scholars (Pasquale, 2015; Citron and 

Pasquale, 2014; Crawford and Schultz, 2014; Zarsky, 2016) are 

currently focusing their critique towards the high levels of opacity 

and urge the law to “open the black box of algorithms” or even set 

up a body of independent auditors to carefully examine ADM 

(Sandvig et al., 2014). In section 2 above, we saw that one 

important aspect of this opacity that can perhaps be easily 

quantified is the “bias” introduced by the programmer to the ADM 

algorithm: this referred to some feature selection or similar process 

that crucially affects the output (decision) of the algorithm and 

which results from the programmer’s direct input at the stage of 

designing the algorithm. We agree with the aforementioned 

scholars about the need to restore transparency as a much needed 

ex post measure to eliminate bias and evaluate human involvement 

and liability. Yet, we will argue, opening the black box of 

algorithms only sees part of the picture when it comes to modern 

ADM algorithms as it merely focus on the algorithms’ design. On 

the other hand, the “intelligence and the will” of the algorithm 

cannot be disconnected from its performance after the design 

process (and training) has been finalized: for example, when the 

driverless car has to navigate in real world conditions and interact 

with human agents (imagine such a car navigating through a street 

filled with other cars driven by humans). At that moment, the 

algorithm has its own personhood, mimics human behavior and 

perhaps continuously interacts with humans like a normal person 

would do. All these are emergent normative features that should be 

taken into careful consideration during proper legal assessment of 

deep learning algorithms: we argue that understanding the 

mechanics of these algorithms at the stage (level) of their design is 

insufficient and should be supplemented by the study of what the 

overall scope of human involvement at all stages might be 

including training and unsupervised or semi –supervised 

performance. For example, consider a driverless car that is first 

trained in a racing track, then performs successfully in the highway 

and then is assisted by a human when navigating in narrower 

streets. Is it enough to merely study the technical details of the 

algorithms that are used and also try to embed morality in their 

design? We argue it is not, and suggest that the law should also 

attempt to define the “intelligence” or “smartness” (Hildenbrandt, 

2015) of the algorithm as well as how this is affected by the 

subsequent human influence (after the algorithm is designed and 

training has been completed).  

  

5   From the Imitation Game to the Voigt-Kampff 

Test - Towards an Updated Legal Understanding of 

Machine Intelligence and the Road Ahead 
  

This paper has attempted to provide a normative and legal 

grounding of the “intelligence” demonstrated in automated systems 

that rely on deep learning. This is highly relevant nowadays, as the 

technological advances in robotics and cognitive sciences have 

paved the way to more sophisticated systems that can act and in a 

completely autonomous manner. These systems demonstrate 
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remarkable abilities to mimic human behavior: this can be happen 

in such unprecedented ways that interactions between algorithms 

and humans can be quite difficult to predict, e.g. consider Microsoft 

2016’s apology on their official blog regarding their Chabot Tay, 

and its racist comments on Twitter. The law has therefore to 

inevitably adopt a new concept of personhood that will deal with 

behaviors of modern human-like agents. This concept should go 

beyond the scope of traditional (weak) AI and reconsider wha  

“personhood” might be; also, how personhood can be described 

when  human-like autonomous agents that act in an “intelligent” 

manner, learn and evolve on their own interact with humans in real 

world environments.   

This unavoidably takes us down the treacherous road of 

providing definitions of concepts like “intelligence”; a tedious task 

in itself due to the relativity the concept bears. A simple question 

that comes to mind when one first tries to define this concept is the 

following: is it a concept that can be understood in terms of a 

mechanism (or an algorithm) that generates certain (human-like) 

behaviors or is it a matter of a human perceiving an agent (a human 

or a machine) as intelligent? Although Turing’s original intention 

in ‘Computing Machinery and Intelligence’ was to explore whether 

a computer can “imitate a brain” (Copeland, 2004), he  then 

admitted to be skeptical as to how  the intelligence of a machine 

was to be perceived: “The extent to which we regard something as 

behaving in an intelligent manner” he noted (Turing, 1950) “is 

determined as much by our own state of mind and training as by 

the properties of the object under consideration” (see also Minsky, 

1988 for a similar view). In other words, Turing suggests that 

“intelligence” relates to how we perceive it in a manner remarkably 

similar to how the legal system operates: Turing’s “perception” of 

intelligence is akin to the principle of “interpretation”. The legal 

system tries to interpret human behaviors not to understand the 

mechanisms (algorithms) that might have generated them; this 

might be one reason why automated systems are not easily 

perceived in law and humanities in general. To address these 

shortcomings, theorists have sought to elucidate additional 

dimensions of machine intelligence, like consciousness (Floridi, 

2005), along the same lines of the empathy test employed in Philip 

Dick’s fictitious Voigt-Kampff test (Dick, 1968). Whereas 

intelligent processing shall always be opaque, it is desirable to go 

past the prima facie anthropomorphism of automated systems and 

actually enhance our understanding of what their “intelligence” 

might be. Deep Learning for instance, might yield results that even 

the programmers cannot anticipate. We therefore suggest that our 

perception of machine intelligence should be enhanced; this could 

either happen ex ante (“at the input stage”) or ex post (“at the output 

stage”):  

  

(i) ex ante efforts could include monitoring or prescribing the 

algorithm’s design features and principles e.g. carefully 

selecting training data or initial weights so that they are 

consistent with legal or ethical constraints (Wallach and 

Allen, 2008). 

(ii)  ex post efforts on the other hand, refer mostly to the user’s 

interpretation and feedback after the algorithm has 

performed an intelligent function (taken a decision).  

 

In other words, we should be able to assess the system’s 

performance, i.e. the processing instead of simply reviewing the 

decision met. This is also important as it places ADM within the 

socio-legal context it belongs to. In this sense, it echoes Pagallo’s 

view that we need to deepen our understanding of how this 

interaction works in vivo rather than in vitro (Pagallo, 2016). 

Unlike Pagallo however, we suggest that instead of reserving de-

regulated zones to test these interactions, we might be able to assess 

risks (and thus draft secondary rules) based on the performance as 

a means and not as an end to regulating automata.  

Machine learning has reached such a sophisticated level that it 

could not only result in misrepresenting an automated system that 

passed  the Turing test as a human but importantly  escape liability 

due to the judiciary’s inability to attribute a concept of 

“personhood” to  the system (algorithm). What is suggested here is 

not that we put ourselves in the shoes of the designers or engineers 

to be able and understand a software agent’s action/result. It is 

rather a matter of perception of its capabilities and context, as a way 

of rationalizing “intelligence” in AI. This shall help us overcome 

the issue of unpredictability as “the overall interpretation of the 

SA’s behavior will be based upon the hypothesis that the SA is 

operating ‘‘rationally’’, by adopting determinations appropriate to 

the purposes assigned to it, on the basis of the information available 

to it, in the context in which it is going to operate, that is, such an 

interpretation will be based upon the intentional stance” (Sartor, 

2009).  

This paper has sought to explore the challenges put forth by the 

application of modern machine learning algorithms like deep 

networks and reinforcement learning in the area of Automated 

Decision Making (ADM), which merits further research and 

consideration. We hope that our findings shall mobilize legal 

scholars and ethicists to undertake the difficult task of further 

dissecting the emergent normative features associated with ADM 

in the not so distant future.  
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