
PLECO: New Energy-Aware Programming Languages and Eco-Systems for the

Internet of Things

Jon Robinson Kevin Lee

Department of Computing & Technology

Nottingham Trent University

Nottingham, UK

e-mail: jon.robinson@ntu.ac.uk

e-mail: kevin.lee@ntu.ac.uk

Kofi Appiah
Department of Computing

Sheffield Hallam University

Sheffield, UK

e-mail: k.e.appiah@shu.ac.uk

Abstract— This paper outlines the aims of the Programming

Language ECO-system (PLECO) to create new energy-aware

programming languages and eco-systems for the Internet of

Things (IoT). It builds upon the Lantern language and focuses

on energy-awareness, security, resilience and communications

for the large infrastructure underpinning the next generation of

IoT. The paper outlines how IoT applications and deployments

need to be developed in an energy-aware, secure and cost-

effective manner using new secure, robust and energy-focused

programming languages and the importance of taking such an

approach.

Keywords-energy-aware; Internet of Things; programming;

distributed computing; security; Cyber-physical systems.

I. INTRODUCTION

It is projected that more than 50 billion Internet enabled

devices will be online within the next 10 years [15]. This

poses a problem for current ways of developing Internet of

Things (IoT) and Cyber-Physical Systems (CPS) software as

current practices do not consider the energy expenditure that

these devices will introduce on existing power distribution

networks. At present, developing applications for the

IoT/CPS exposes devices to a number issues relating to

energy use, security and reliability. IoT applications are

currently developed using existing languages, frameworks

and toolkits [16], which, in the case of programming

languages, have not altered since their initial creation.

Dynamic scripting languages like Python and JavaScript are

being embraced by most IoT/CPS designers at the expense of

high runtime cost due to the dynamic types and code

optimisation techniques (e.g., Just-In-Time compilation)

[19]. The applications they produce will tend to be less

efficient and insecure [17] as the underlying development

approach and programming language was initially designed

without considering the core concepts of resiliency, energy-

awareness and security. This leads to these concepts being

added as an afterthought rather than as the primary focus of

well-engineered software systems.

 To engineer these applications appropriately requires the

concepts of resiliency, energy-awareness and security to be

central in the design and implementation of a system. To

enable this, it is proposed that a new development approach,

built on a language focused around these concepts be the way

in which systems are written. This would ensure that

software is secure, reliant (i.e., dealing with communication,

distributed complexity and failover) and importantly, energy-

aware from their inception by allowing developers to

implement them using algorithms which promote these areas.

 In Section II, the need for energy-awareness is discussed

and current approaches to Internet of Things software

development is introduced. In Section III, the proposed

PLECO architecture is introduced and discussed. In Section

IV, the experiences learnt from the initial Lantern energy-

aware domain specific language is discussed. Finally, in

Section V, a summary of the work is provided.

II. CURRENT PRACTICES

Energy-efficiency is a growing research focus in all areas of

technology, including IoT. Energy-utilisation of hardware

had been addressed widely in the embedded systems area

where software can reduce the power usage of components

of the underlying hardware. However, energy-awareness is

still poorly represented when it comes to building large scale

distributed systems and the algorithms used to implement

them [18]. Additionally, languages suffer from providing

developers with practices and language constructs which

have been available in general purpose languages for many

years. However, when these languages were initially

designed, the computing and distributed landscape was

significantly different than from what it is today. Concepts

representing how to use energy-aware algorithms for

efficient interacting distributed systems, coordinate, adapt,

self-heal, secure and be resilient have not been fully

considered in their design phases.

 Energy-awareness has been a major focus within the

embedded systems world where the conservation of energy is

instrumental in the operation of a device. Incorporating

energy efficiency within the design of the circuitry

underlying the device has proven to be effective [1] and acts

as another justification on the PLECO approach. Other static

approaches to embedded design have been proposed [2][3].

 Energy-awareness in software development has highlighted

many challenges in the production of energy-aware software

systems. For example, application-level approaches advocate

applications being energy-aware and controlling their own

energy use [4]. To support application development, tools

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/155787747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that monitor applications to provide energy use information

[5][6] exist to aid in the process. In addition, by

incorporating middleware to help with efficient energy usage

in applications without them explicitly being aware of this

focus [7][8] could be utilised. The need for a dedicated

programming language with resource constraints to

streamline usage was identified in [9] and has been a

research trend mainly for security [10]. There are other

approaches to IoT development which fall into cloud,

Operating Systems, middleware or protocols (e.g., IF This

Then That (IFTTT), Azure IoT or AWS IoT, Kontiki, Brillo),

MQTT, Gaia, etc.). In [11], updates to the International

Technology Roadmap for Semiconductors (ITRS) [12] are

discussed. The ITRS provides a roadmap of hardware and

software technologies in the design and development of

silicon systems. The road map outlines the trends of future

technologies to address challenges regarding the cost of

design and power / energy use. Future trends within the

ITRS show that power-aware systems are currently a

challenge in the control of electronic devices. Thus, with the

popularity of the uptake of IoT devices, programming them

in an energy-aware manner is an important problem to

address.

III. THE PLECO ARCHITECTURE

 Current software development paradigms are not ideally

suited to tackle the energy efficient and distributed nature of

IoT and similar technologies. This is exacerbated by the lack

of energy, security and reliability standards and frameworks

for this domain. This opens up the need for alternative

methods for developing, deploying and supporting software

for IoT deployments and other related applications.

 To solve this problem, a shift in software development

which enables the efficient design, development, support

systems and eco-system for these emerging distributed

systems technologies. By focusing on the principles of low

energy, security and reliability, this will best serve the needs

of large-scale heterogeneous systems. We propose the

development of a complete eco-system for modern software

development, including development languages and support

systems which enable the efficient design and use of system

wide energy, and production of software systems which

address the key challenges of modern Internet based systems.

 The PLECO architecture aims to investigate new

paradigms and languages for software development in large

scale distributed systems by introducing a new energy-aware,

reliable and security focused eco-system. This aligns with

the ITRS future goal of energy-aware programming for IoT.

 We advocate the there are three fundamental pillars

underlying the design and development of a new eco-system

for developing energy-aware systems. For each of these

pillars, by directly integrating them into the development

process, developers would plan, design, implement, test and

deploy applications which satisfy these programming styles

from the onset: Energy-Awareness, Security and Reliability.

 The PLECO system builds on preliminary work into

energy-aware Domain Specific programming languages and

middlewares [13][14]. With the growing acceptance and use

of IoT enabled devices and the lack of security with these

devices, a new way in which to design, construct and

implement solutions needs to be considered. At present,

there are very few frameworks which directly address the

robust production of IoT systems. However, security is only

a secondary concern which leaves devices open to

exploitation. Thusly, the adoption of a new way in which to

design and build large scalable, secure, and robust distributed

systems requires a new platform and language is required.

The PLECO eco-system is presented in Figure 1. It outlines

the proposed main components of the eco-system

(middleware, compilers, language, optimisers and potential

standards). This builds on previous work into service

composition middlewares [13] and energy-aware domain

specific languages (Lantern) [14].

Figure 1. PLECO Eco-system architecture

User Applications/Agents

Energy-Aware Programming

Language

Energy-Aware Compiler

Energy-Aware

Optimiser

EE / Reliability/

Security

Analyser

Agent Bytecode

Eco-system Runtime

Energy-Aware / Efficiency

Coordinator

Reliability Coordinator

Sensor & Trusted Communication

Integrator

Eco-system Coordinator / VM

Coordinator

Security Coordinator

Agent & Messaging Coordinator

Secured Network & Communication Layer

Visualiser & Programming improvement

front-end

Principal

Optimisation,

Refinement &

Compilation

Runtime

Development

 The main contribution of this work can be summarised as:

1) fully complete energy-aware programming language for

controlling and managing IoT devices; 2) inclusion of

security into language design for secure software

development as well as failover support; 3) distributed

concepts for the management and communications in highly

scalable IoT architectures; and, 4) infrastructures for

supporting new methods. The approach taken is to consider

the development and runtime in three distinct phases.

Namely, development, compilation and optimisations and

runtime. What follows provides the architectural

breakdown of our proposed eco-system as well as the main

components and what their expectations will be.

Layer 1: Development language

 One of the contributions of this work is to provide a new

programming language which enables users to develop

energy-aware, secure and robust software systems which

builds upon prior work. At present, the focus on developing

systems is to use existing languages which forces developers

down specific design routes which requires them to consider

energy usage and security as secondary considerations. The

Lantern [14] Domain Specific Language (DSL) has been

previously developed, to provide developers with a language

in which service agents can be constructed and was designed

from the ground up to embody the notion of energy-

awareness as a key concept (see Figure 2 for an example of

Lantern code). The purpose of the Lantern system was to

investigate how to provide an energy-aware domain specific

language which was aimed at managing and controlling the

energy consumption of disparate IoT devices. This was the

first test iteration of a language to test ideas and confirm the

viability of energy-aware languages. These agents interface

with hardware-based devices as well as providing energy-

aware adaptive abilities to monitor and adapt the power

usage of devices within a home environment populated with

IoT devices.

 However, as it stands, Lantern acted as the first stage of

investigating adaptive energy-aware DSL’s and provides a

language which allows the control of devices rather than a

fully functional and semantically rich language for general

purpose development. Its purpose was to adapt to the

changing energy needs of a static location and allow devices

within the environment to alter their energy use, thus saving

energy. Other lessons that were learnt from this initial phase

will be introduced into the second generation of the

language. For example, a simplified notion of energy was

represented within the language where the amount of energy

used (Watts) was represented as values associated to power

control structures. However, even though these were not

strongly typed power values, the intention was that these

would infer the amount of energy used. No other form of

energy representation was included but the next step is to

represent energy in a variety of more strongly typed language

constructs which could represent Joules, or other energy-

based representations (e.g., temperature).

 Hence, the purpose of the next generation of the language

is to provide developers with a new way of developing

software programs for Internet of Things devices. It will be a

semantically rich language, rather than a DSL which will

provide them with the ability to provide more sophisticated

software. By providing a new language, rather than using an

API, requires them to consider the energy-awareness of the

design and operation of the software, security and robustness

which can have a direct impact of the energy use of the smart

environment they are located within. This ensures that the

considerations and requirements of writing software for

today’s highly distributed systems are considered from the

outset of development rather than as a secondary

consideration. For example, C and C++ languages have been

in use for decades before large scale distributed networks of

cooperating IoT devices where considered. Because of this,

the underlying languages do not provide the concepts of

security, energy-awareness and robust as central tenets of the

language and, hence, at best are considered after the design

and during the implementation of systems, and often not at

all.

This will introduce new ways to represent the energy-

awareness of systems through language constructs which

enable devices and software systems to be actively aware and

adapt their power utilisation. For instance, rather than focus

on energy consumption within the hardware level, energy-

aware constructs will allow software to be built which is both

efficient and energy-aware by using algorithms and program

design which facilitates in reducing the overall energy

expenditure of the interacting system. The notion of security

aliases {
 alias(heating_control) -> device(heating, ERD204)

 alias(heating_temp) <- device(heating, ERD204)

 alias(motion_control) -> device(motion, ERD204)

 alias(lights_control) -> device(lights_1, ERD204)

 alias(lights_power) <- device(lights_1, ERD204)

 alias(PC_control) -> device(pc1, ERD204)

 alias(PC_power) <- device(pc1, ERD204)

}
environment(ERD):{

 location(ERD204) : {

 uses device(heating) <- input(heating_temp)

 uses device(heating) -> output(heating_control)

 uses device(motion) <- input(motion_control)

 uses device(lights) <- input(lights_power)

 uses device(lights) -> output(lights_control)

 uses device(PC) <- input(PC_power)
 uses device(PC) -> output(PC_control)

 }

}

consumption(ERD):{

 override(ERD204 > 800) -> {

 condition(heating > high) -> action(heating = off)

 condition(lights == on) and condition(!movement) -> action(lights =
off)

 condition(PC == on) and condition(!movement) -> action(PC = off)

 }

}

(identity:cmp3robinj):(location:ERD204) {

 condition(at(7:30)) -> action(heating = on)

 condition(temperature < low) -> action(heating = on)

 condition(temperature > high) -> action(heating = off)
 condition(lights == off) and condition (!movement) -> action(lights =

on)

 condition(at(20:00)) and condition(!movement) -> action(lights = off)

 condition(at(20:05)) and condition(PC == on) and condition(

!movement) -> action(PC = off)

}

Figure 2. Example Lantern code

is currently poorly represented in software design, so another

key area of the language is to incorporate secure

development and language constructs from the outset. This

will enable developers to consider security related

considerations in the design and implementation of systems

by using algorithms and language constructs, which promote

secure systems. The final component of the language is to

incorporate constructs which allow resiliency (and

robustness) within interactive systems. The complexities of

distributed systems also will be addressed by providing

distributed management constructs. This is to ensure that

systems can adapt and reconfigure themselves if components

of the larger system fail or are unavailable.

Layer 2: Optimising technologies

 The purpose of this layer of the eco-system is to provide

programming support to developers and users. A variety of

sub-systems will be provided, which allow for the analysis

and improvement of software by enabling support for code

optimisation. A number of key components are required:

 Energy-aware programming language: As has been

previously discussed, the language will offer the concepts of

energy-awareness (by allowing the monitoring and

adaptation of energy use within an environment),

resiliency/robustness through failover, distributed

complexity, communications and management/control; and

security through secure communication and language

constructs. It will provide support on how to write adaptive

systems which can react according to environmental stimuli

to make best use of the resources on offer depending on the

energy requirements of devices. A focus on the representing

the interactions between devices and associating an energy

cost to these interactions will enable algorithms to start to

consider the economics between device interactions. The

language will be extensible and introduce notions of low

carbon foot-printing, identity, distributed systems, agents,

data generation, composition, mobility, reconfiguration,

security, privacy, trust built in which provides users with the

means for writing effective systems.

 Energy-aware optimiser: Optimisation of energy-aware

systems requires the analysis of both the programming style

and algorithms used within the software construction stage

and the way in which agents will interact with each other to

make best use of the resources that are on offer. This will

primarily focus on inspecting the code written by the end-

user to analyse whether there are more efficient ways of

representing the code which can be made. It will not analyse

how to make efficient use of the underlying hardware (e.g.,

turning off Wi-Fi, controlling processor state, etc) but instead

will examine the algorithms that have been used to see if it is

possible to increase their energy efficiency by modifying

how they work and how they interact within a larger system.

 Energy-Aware/Reliability/Security Analyser: This

component provides analysis of the agent based on the

notions of reliability and security. It will determine whether

the best practices have been followed to ensure that the agent

is secure. It will also analyse the agent to determine if it is

reliable and robust (i.e. distributed complexity as well as

securely constructed, including secure communication).

Debugging information will be generated which allows

higher-levels to visualise data based on how to improve the

security and debugging of agents within the system.

 Energy-Aware compiler: The energy aware compiler will

produce byte-code which makes best use of the three main

concepts behind the language to generate agents. Generated

byte-code will be executed within a safe, secure and reliable

environment provided by the eco-system runtime in line with

the existing Lantern system. This is currently being

developed and offers agents a distributed playpen in which to

execute. The agents that are produced will automatically

bind to the runtime which offers a controlled exposure to the

underlying runtime properties. Performance and profiling

information which includes programming specifications

outlining the type of data produced, consumed and linked to,

to help with the generation of mobile and location aware

agents will be considered. The compiler would optimise

applications based on the corpus of data generated by the

user and how the user intends the agent to interact within the

eco-system and how it consumes data and its reliance on

other agents. The compiler will determine the appropriate

hardware requirements and locality (i.e., closeness to work)

where agents running within the runtime close to where tasks

needs to be completed.

 Visualisation & Programming style improvement system:

Another key way in which languages need to be supported is

through verification, validation and visualisation of software

systems. This will provide a graphical front-end for

improving agent design and development. A hints/help

system will provide the user with ways in which to increase

system efficiency by suggesting improvements to security

and reliability considerations.

Layer 3: Eco-system runtime

 The purpose of the runtime system is to provide a

consistent environment for executing agents. It is comprised

of many sub-components that provide control for:

coordination; discovery; invocation; virtualisation; agent

mobility; reliability (i.e., failover, tolerance); energy-

awareness and adaptation; distributed complexity; and,

trusted communication & security. This builds on the

existing Lantern middleware as well as other areas that are

currently being investigated. The ecosystem runtime layer

will be formed out of the following coordinator sub-

components:

 Ecosystem coordinator / VM coordinator: This will

provide executing agents a safe, protected, virtual

environment to run within. Mobility of agents will be

managed within this level so that they can make use of the

resources within the environment. This was an issue with

Lantern as the language and agent were based on statically

located devices. For this iteration, agents will be mobile and

be able to transport themselves around within the eco-

system. This will mean that location dependency will ensure

that agents are running and interfacing with the best set of

devices depending on the whereabouts of users and deployed

system. Exposure to adaptive and reconfigurable aspects of

the runtime will be provided to agents so that they are able to

locate and adapt themselves to their surroundings. Agents

will be exposed to the discovery and linkage to other agents

provided by the agent and messaging coordinator. Therefore,

this will provide agents with a distributed, reconfigurable,

compositional and collaborative runtime for the coordination

and secure control of systems. The runtime will also provide

identity management and identity conflict resolution. This

builds on the initial Lantern representation of identity which

was weakly defined. For this iteration, to help with

managing a number of identities, a group based approach

will be taken which allows identities to inherit permissions

and access control for different environments.

 Agent & Messaging coordinator: This will maintain agents

by providing them with resources within the runtime and

provide them with mobility facilities. Control of processing

resources, complexity, memory, storage, and message

handling will be offered. The adaption and reconfigurable

nature of agents will be handled by this coordinator so that

they can adapt to conditions over time.

 Reliability coordinator: This will ensure that agents can

deal with situations where something goes wrong. This will

be through a combination of approaches ranging from agent

reconfiguration; failover control; re-incarnation; complexity;

agent adaptation (where agents can self-heal); and,

debugging information and mechanisms for diagnosing

interaction and programming issues.

 Energy-aware/efficiency coordinator: This will coordinate

the most efficient use of devices and interactions /

collaborations with other agents. Its primary purpose is to

provide exposure to the energy consumption aspects of

interfacing technology (i.e., actuators connected to devices).

It will also control the re-configurability and binding of

agents to devices based on power needs.

 Security coordinator: This will provide the underlying

security model for managing and coordinating agents and

devices. Secure and trusted communication between devices

will be provided for. It will offer protection from tampering

of agents and devices from malicious entities (e.g., other

users and systems) and provide cyber-security attack

resistance.

 Sensor & Trusted communication integrator: This will

provide exposure to an “Internet of Trust” layer for which

facilitates the trusted communication between agents to

guarantee secure and private communication within the eco-

system. Working in conjunction with the security

coordinator, it will formulate trust-relationships between

independent nodes within the eco-system. This is used in the

building of an “Internet of Trust” between devices running

the eco-system and sensors, and the brokering of

collaborations and transmission of trusted information

between trusted content producers and content consumers. It

will also determine how trust can be integrated into

communication protocols in a bid to aid in the routing of

information between trusted parties. The sensor integration

aspect to this layer will enable devices running the eco-

system to securely interface with agents.

IV. PHASE 1: LANTERN LESSONS

The PLECO language will expand on the initial
development phase of this work. The first phase, was the
design and development of the Lantern Domain Specific
Language (DSL) [14]. The key aim of this was to test ideas
on how energy-awareness could be represented within
programming language design for controlling Internet of
Things based devices within a home environment. Based on
these findings, several lessons were learnt which will be built
upon for PLECO.

Figure 3a provides a hierarchical overview of the
language constructs available within Lantern, while in Figure
3b shows the key components of the Lantern middleware.

Figure 3. Lantern overview

 An example of the Lantern language is given in Figure 2.
The language took the approach of providing developers with
a DSL which allowed environments to be represented within
the language. These environments would in the real-world,
translate into building representations. Any number of
environments could be provided and allowed the definition of
statically defined locations to be provided. These locations
allowed environments to be divided up into smaller
administrative boundaries to represent rooms, hallways and
other types of locations and provided a means in which the
grouping and control of devices located within these statically
defined areas could be provided. Consumption rules provided
the user with a way of specifying a number of rules in which
to monitor the energy usage within these locations and
provided a means in which the environment would adapt and
use devices located within the location. The consumption
construct acted as a container object where all rules which
needed to override user specific energy utilisation rules would
occur. The override construct would be used in tandem with
the consumption definition to provide the fine grained
adaptive nature of the environment. Identities were weakly
defined within Lantern and represented the user based on their
name or identifier. This meant that to allow the environment
to be truly adaptive to various users, many identities would
have to be defined. Because of this, a group-based
membership approach will be used to coordinate this process.
Conditions were used to represent the user defined rules
governing the energy usage and adaptive nature of the system.
An outline of the principal parts of a Lantern agent is shown
in Figure 2.
 As Lantern was to explore and experiment with languages
to represent energy-awareness, it did not provide a platform
for testing secure programming and communication styles or
reliable software. However, several things were learnt from
this initial phase which will inform PLECO. They are:

Lantern

program
Control

Service

Compiler

Middleware

Device Services

Devices

Environment

 Location

 Consumption

 Overrides

 Identity

 Conditions

(a) Hierarchical overview of

language constructs

(b) Language and compiler /

middleware stack

• using environments and sub locations proved to be quite
effective in representing buildings and static locations.
However, the mobility of devices and sensors was deemed
to be insufficient to cope with environments which are
dynamic and change over time. This will be investigated
further so that the necessary coordination and control
constructs are considered to allow situations where
mobility is needed.

• telemetry constructs for allowing the flow of information
from devices, as well as coordinating the control of such
devices proved to be quite effective.

• an expanded set of strongly typed constructs for the
representation of energy.

• a weak notion of identity was provided within Lantern and
was not powerful enough to represent the number of users
within an environment which resulted in scalability issues.
To address this, a group-based membership/user approach
to allow the inheritance of security principals as well as the
management of group-based identities will be adopted.

• a security concern in the Lantern language showed that
identities could be mapped to individuals due to the
simplistic way in which identities were programmed
(string based). However, this will be expanded upon to
provide anonymous identities as well as obfuscation of
user identities.

• condition rules allowed the introduction of the notion of
time (i.e., at a point in time, do something). This will be
expanded upon to provide users with more time-based
constructs to deal with different length durations (e.g., to
reduce the energy use for a specific amount of time in a
day).

• conditions provided a clause in which an action would be
performed once something had happened. This was found
to be adequate but improved structures and language
constructs for handling more complex interactions and
reacting to non-time bound interactions will be.

• to support verification, other approaches are being looked
at (for example contract based and assumed guarantee
reasoning).

V. CONCLUSION AND NEXT STEPS

This paper has introduced the PLECO architecture and its
objectives. The eco-system to support the next generation of
languages and middlewares which have been designed from
the ground up to incorporate the notions of energy-awareness,
security and reliability rather than added them as a secondary
consideration. By incorporating these notions in the design
and development of systems will provide more robust and
secure systems in which to control large scale distributed IoT
devices. The lessons learnt from the first iteration of energy-
aware languages have provided a foundation on which to
provide the language aspect of the eco-system.

REFERENCES

[1] S. Mittal. “A survey of techniques for improving energy
efficiency in embedded computing systems”, International
Journal of Computer Aided Engineering and Technology, 6(4),
pp. 440–459, 2014.

[2] P. Yang, P. Marchal, et al. “Managing dynamic concurrent
tasks in embedded real-time multimedia systems”, Proceedings

of the 15th international symposium on System Synthesis, pp.
112–119, ACM, 2002.

[3] Y. Ma, N. Sang, W. Jiang, and L. Zhang. “Feedback-controlled
security-aware and energy-efficient scheduling for real-time
embedded systems”, Embedded and Multimedia Computing
Technology and Service, pp. 255–268, Springer, 2012.

[4] F. Alessi, P. Thoman, G. Georgakoudis, T. Fahringer, and D.
S. Nikolopoulos. “Application-level energy awareness for
openmp”, International Workshop on OpenMP, pp. 219–232,
Springer, 2015.

[5] N. Amsel and B. Tomlinson. “Green tracker: a tool for
estimating the energy consumption of software”, CHI’10
Extended Abstracts on Human Factors in Computing Systems,
pp. 3337–3342, ACM, 2010.

[6] M. Sabharwal, A. Agrawal, and G. Metri. “Enabling green it
through energy-aware software”, IT Professional, 15(1), pp.
19–27, 2013.

[7] N. Nikzad, O. Chipara, and W. G. Griswold. “Ape: an
annotation language and middleware for energy-efficient
mobile application development”, Proceedings of the 36th
International Conference on Software Engineering, pp. 515–
526, ACM, 2014.

[8] Y. Xiao, R. S. Kalyanaraman, and A. Ylä-Jääski. “Middleware
for energy-awareness in mobile devices”, Proceedings of the
Fourth International ICST Conference on COMmunication
System softWAre and middlewaRE, p. 13, ACM, 2009.

[9] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I.
Stark. Mobile Resource Guarantees for Smart Devices, pp. 1–
26, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, URL
https://doi.org/10.1007/978-3- 540-30569-9_1.

[10] D. Franzen. “Quantitative bounds on the security-critical
resource consumption of javascript apps”, PhD Thesis,
University of Edinburgh, 2016.

[11] G. Smith. “Updates of the itrs design cost and power models”,
2014 IEEE 32nd International Conference on Computer
Design (ICCD), pp. 161–165, 2014.

[12] Semiconductor Industry Association. “The international
technology roadmap for semiconductors”, URL
http://www.itrs2.net, 2013. [retrieved: January, 2018]

[13] J. Robinson, I. Wakeman, and D. Chalmers. “Composing
software services in the pervasive computing environment:
Languages or apis?”, Pervasive and Mobile Computing, 4(4),
pp. 481–505, 2008.

[14] J. Robinson, K. Lee, and K. Appiah. “Lantern – A Smart-
Home Enabled Domain Specific Language for Energy
Awareness in Cyber-Physical Systems”, Under review -
unpublished, 2017.

[15] L. Ericsson. "More than 50 billion connected devices." White
Paper, 2011.

[16] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash. “Internet of things: A survey on enabling
technologies, protocols, and applications”, IEEE
Communications Surveys & Tutorials, 17(4), pp. 2347-2376.
2015.

[17] Z. Zhang, et al. "IoT security: ongoing challenges and research
opportunities", Service-Oriented Computing and Applications
(SOCA), IEEE 7th International Conference on. IEEE, pp.
230—234. 2014.

[18] A. Orgerie, M. de Assuncao, and L. Lefevre. "A survey on
techniques for improving the energy efficiency of large-scale
distributed systems." ACM Computing Surveys (CSUR) 46.4
47. 2014.

[19] C. Kim, et al. "Typed Architectures: Architectural Support for
Lightweight Scripting." Proc. of the 22nd International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 77-90, ACM, 2017.

