
Non-parametric Bayesian models
for structured output prediction

Sébastien Bratières

King’s College

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

April 2017

Abstract

Structured output prediction is a machine learning tasks in which an input object
is not just assigned a single class, as in classi�cation, but multiple, interdependent
labels. This means that the presence or value of a given label a�ects the other labels,
for instance in text labelling problems, where output labels are applied to each word,
and their interdependencies must be modelled.

Non-parametric Bayesian (NPB) techniques are probabilistic modelling tech-
niques which have the interesting property of allowing model capacity to grow, in a
controllable way, with data complexity, while maintaining the advantages of Bayesian
modelling. In this thesis, we develop NPB algorithms to solve structured output prob-
lems.

We �rst study a map-reduce implementation of a stochastic inference method de-
signed for the in�nite hidden Markov model, applied to a computational linguistics
task, part-of-speech tagging. We show that mainstream map-reduce frameworks do
not easily support highly iterative algorithms.

The main contribution of this thesis consists in a conceptually novel discriminat-
ive model, GPstruct. It is motivated by labelling tasks, and combines attractive prop-
erties of conditional random �elds (CRF), structured support vector machines, and
Gaussian process (GP) classi�ers. In probabilistic terms, GPstruct combines a CRF
likelihood with a GP prior on factors; it can also be described as a Bayesian kernel-
ized CRF.

To train this model, we develop a Markov chain Monte Carlo algorithm based on
elliptical slice sampling and investigate its properties. We then validate it on real data
experiments, and explore two topologies: sequence output with text labelling tasks,
and grid output with semantic segmentation of images. The latter case poses scalab-
ility issues, which are addressed using likelihood approximations and an ensemble
method which allows distributed inference and prediction.

The experimental validation demonstrates: (a) the model is �exible and its con-
stituent parts are modular and easy to engineer; (b) predictive performance and, most
crucially, the probabilistic calibration of predictions are better than or equal to that of
competitor models, and (c) model hyperparameters can be learnt from data.

3

Declaration

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except as declared in the Preface and speci�ed
in the text.

It is not substantially the same as any that I have submitted, or, is being concur-
rently submitted for a degree or diploma or other quali�cation at the University of
Cambridge or any other University or similar institution except as declared in the
Preface and speci�ed in the text. I further state that no substantial part of my disser-
tation has already been submitted, or, is being concurrently submitted for any such
degree, diploma or other quali�cation at the University of Cambridge or any other
University or similar institution except as declared in the Preface and speci�ed in the
text

It does not exceed sixty-�ve thousand words in length, and contains no more than
hundred �fty �gures.

2

To Beatrice and Giulio

Acknowledgements

I would like to express my sincere gratitude to my supervisor Zoubin Ghahramani
for his continuous support and his patient, steady and insightful guidance over the
course of my research. Like many in our research group, I have found inspiration
in Zoubin’s ability to boil down complex machine learning notions to their simplest
accurate explanation. Over the years, Zoubin made it a speciality to represent rela-
tionships between machine learning concepts with graph metaphors, and �gure 3.2.1
in this thesis bears witness to this in�uence.

This thesis would not have been possible without the support, intellectual stim-
ulation and friendships o�ered by my research group. In particular, I wish to thank
Zoubin and Carl Rasmussen, my adviser, for creating, shaping and fostering such a
brilliant group as ours; one that excels from a scienti�c point of view but also provides
a vibrant and supportive environment. Thanks to Diane Hazell, our group adminis-
trator, for her unfailing help, and thanks to Sae and David Franklin, for the good time
we had together. Thanks to Simon Lacoste-Julien, who sparked my interest for struc-
tured output prediction and statistical learning methods which lie outside the group’s
traditional scienti�c remit. I was fortunate to work with enthusiastic and knowledge-
able co-authors: Jurgen, Andreas, Novi, Sebastian and Zoubin; Novi’s drive and per-
severance in particular allowed many of the ideas on GPstruct, the statistical model
developed in this thesis, to come to fruition.

I chose to conduct my PhD research part-time, while working in industry, and
am indebted to my two employers, Voice Insight and dawin gmbh, for they support,
�exibility and trust.

“L’argent est le nerf de la guerre”, “Money is the sinew of war”, and accordingly,
I would like to express my sincere gratitude to: Amazon for their generous spon-
sorship, through two Amazon Educational Grants towards computing expenses, as
well as for the expert advice provided by the Amazon Elastic MapReduce engineering
team; Yahoo! for the funding provided through the Key Scienti�c Challenges Award;
King’s College, the Department of Engineering and the Ford of Great Britain Trust for
subsidising my conference trips; and my supervisor Zoubin Ghahramani for covering
research and travel expenses from group resources on several occasions.

5

6

My parents, my sister, and my grand-parents, each according to their own charac-
ter and life path, have been all of inspiration, encouragement and assistance at once.

Finally, and most importantly, I would like to thank my wife Vittoria, for encour-
aging me to return to Cambridge, for supporting me with patience, determination
and loving advice throughout these years, in particular during the trying times, for
keeping the home �res burning, and ultimately, for making the journey worthwhile.

Contents

List of �gures 14

List of acronyms 15

1 Introduction 17
1.1 Motivation . 17
1.2 Thesis structure . 20
1.3 Notations and conventions . 22

2 Map-reduce inference for the in�nite HMM 23
2.1 Sequence models and the IHMM . 24

2.1.1 Hidden Markov models, state space cardinality, clustering,
and non-parametric Bayesian models 24

2.1.2 Part-of-speech tagging . 26
2.1.3 De�ning a non-parametric model for sequence observations . 27
2.1.4 The HDP-HMM . 31

2.2 Distributed computing aspects . 33
2.2.1 Commodity computing infrastructure 33
2.2.2 Principle of map-reduce . 36
2.2.3 Map-reduce architecture for the PoS IHMM 37

2.2.3.1 Data storage . 37
2.2.3.2 Details of MR jobs 38
2.2.3.3 Dependency diagram 39

2.2.4 MR job latency . 39
2.2.5 Use of a reference, non-distributed implementation 43

2.3 Experiments . 44
2.3.1 Algorithm and data . 44
2.3.2 Con�gurations . 45
2.3.3 Results . 46

2.4 Iterative map-reduce . 49
2.4.1 Understanding of the issue in the community 50

7

CONTENTS 8

2.4.2 Fixing iterative map-reduce: today’s perspective 51
2.4.2.1 Adapted map-reduce frameworks 52
2.4.2.2 Beyond map-reduce 53

2.5 Review of the state of the art for distributed probabilistic inference . 54
2.6 Conclusion . 58

3 Discriminative models for structured output prediction 61
3.1 From generative to discriminative modelling 61
3.2 A roadmap . 63
3.3 Illustrating the roadmap: linear regression 64
3.4 Making the model Bayesian . 66
3.5 Making the model kernelised . 67
3.6 Making the model structured . 70
3.7 The CRF model and extensions . 71

3.7.1 Variants of the CRF . 73
3.7.2 Maximum margin extensions of the CRF 76

3.8 Conclusion . 78

4 GPstruct for sequence labelling 79
4.1 Model formulation . 80
4.2 Parameterisation for sequence problems 81
4.3 Kernel function speci�cation . 83
4.4 Inference procedures . 84

4.4.1 Predictive distribution . 84
4.4.2 Sampling from the posterior distribution 85

4.5 Experiments: text processing tasks . 86
4.5.1 Train vs. test split . 87
4.5.2 Baselines . 87
4.5.3 Computing . 87
4.5.4 Results and interpretation . 88

4.6 Experiments: video processing task 88
4.7 Practical issues . 89
4.8 Cross-chain MCMC variance . 91
4.9 Comparisons with existing models . 92
4.10 MAP variant of GPstruct . 96

4.10.1 Experiments . 97
4.11 Further GP models with structure . 97

4.11.1 Di�erent de�nitions of “structure” for GP structured regression 100
4.12 Conclusion . 101

CONTENTS 9

5 Scaling up GPstruct: pixel grid labelling 104
5.1 Grid parameterisation . 105
5.2 Approximations for scaling . 106
5.3 Algorithm . 109

5.3.1 Algorithm complexity . 109
5.4 Experimental setup . 110

5.4.1 Runtimes . 112
5.5 Experimental research questions and results 112

5.5.1 What is the predictive performance of GPstruct? 112
5.5.2 Are GPstruct’s predictions probabilistically calibrated? 113
5.5.3 Is GPstruct’s performance just due to bagging? 115
5.5.4 What is the in�uence of varying the number of sampled pixels? 115
5.5.5 What is the impact of PL and TRW approximations? 115

5.6 Scaling further . 117
5.6.1 Variational inference for GPstruct 119

5.7 Conclusion . 121

6 Hyperparameter inference 122
6.1 Motivation . 122
6.2 Bayesian hyperparameter inference for GPstruct 125

6.2.1 Canonical (forward) parameterisation 126
6.2.2 Whitening the prior . 126
6.2.3 Surrogate data method . 127
6.2.4 Further variants . 128

6.3 Geweke’s “Getting it right” tests . 129
6.3.1 Our variant of the test . 131
6.3.2 Experiment: testing elliptical slice sampling implementation . 132
6.3.3 Experiment: testing hyperparameter sampling implementations 133
6.3.4 Hyperparameter learning: synthetic data experiment 136

6.4 Experiments on NLP tasks . 139
6.4.1 Hyperparameter update runtime 139
6.4.2 Applying ARD kernels to the NLP tasks 139
6.4.3 Experimental con�guration and results 140

6.5 Conclusion . 151

7 Conclusion 155
7.1 Summary of scienti�c contributions 155
7.2 Concluding thoughts . 157

A IHMM Gibbs sampling steps 160

CONTENTS 10

Bibliography 164

List of Figures

2.1.1 Various clustering and HMM models 28
2.1.2 Graphical model of the IHMM. Rows πk, k ∈ N of the state transition

matrix are given a HDP prior. Cf. section 2.1.4 for a full description. 31
2.2.1 Dependency diagram for one MCMC iteration. “Regular �les” are

HDFS �les. “Standard processes” are small tasks executed in-memory
on the master node, possibly as Java for-loops. There is a se-
quence of in-place modi�cations of the sentences (represented in
vertical alignment) which traverses the following jobs: MR3, MR5,
MRCleanupUsedStates. 41

2.3.1 hadoop-1 experiments for selected data set sizes, with varying num-
bers of slave nodes (x-axis logarithmic). If total computational cost
of an experiment scaled linearly with the number of nodes (which is
the optimum when distributing computation over a cluster), the lines
would run parallel to the dashed line. However, they are more hori-
zontal; this means that the Gibbs step duration does not decrease as
much as desired. 46

2.3.2 All hadoop-2-{a...f} experiments are duplicates of one another. This
demonstrates that there is little variability between runs. 47

2.3.3 All experiments in the same plot. The general scaling trend follows
that of the parallel setup. Increasing data size even further than what
was tested here, we expect that hadoop-1 and hadoop-2 setups will
become faster than the parallel setup. However, the point where e.g.
lines for experiments hadoop-1-8 and parallel intersect seems several
orders of magnitude above present experiments. The hadoop-3 ex-
periments demonstrate a setup which beats the parallel setup, using
distribution and more powerful slave nodes. 48

3.2.1 An overview of some discriminative models in supervised learning.
(Author names in the �gure are included to distinguish several vari-
ants of a model) . 65

11

LIST OF FIGURES 12

3.7.1 Graphical model for a CRF as a mixed (i.e. directed and undirected)
graph, also called a partially directed graph. The MRF part speci�es
the dependencies inside y. All yt nodes depend on x, which may have
structure, but it is ignored here. 72

4.2.1 Factor graph for sequence prediction with two clique types, un-
ary location-dependent cliques c̃t and binary location-independent
cliques ˜̃c. Input nodes are always treated as observed. 82

4.6.1 Error rate cross plot of the 20 gesture video sessions. The axes corres-
pond to error rate of GPstruct with SE kernel and CRF, the diagonal
line shows equal performance. The shadowed stars are those with at
least 5% performance di�erence. 89

4.7.1 Top: E�ect of thinning, i.e. sampling f∗|f more rarely than every f

sample. Chunking task, f∗ MAP scheme, hb = 1. Bottom: E�ect of
number of f∗|f samples for each f sample. Chunking task, thinning
at 1:1 000, hb = 1. 90

4.8.1 Mean and variance plots over 20 MCMC chains for HE and ANLPM
metrics. 93

5.1.1 Grid factor graph with pairwise factors. There is one unary factor per
pixel (the observed variable nodes for the xt have been left out to not
crowd the picture), and one pairwise factor. 105

5.4.1 Semantic segmentation task. Example marginals (brightness level en-
codes certainty) and predicted labels from the Stanford Background
Dataset. All methods use the same image features. First row: input
image and true labels, second row: marginals and predicted labels
of independent, third row: of CRF PL, fourth row: of CRF LBMO,
�fth row: of GPstruct. The independent model performs reason-
ably well in predicting per-pixel segmentation, but makes rather noisy
predictions, whereas CRF PL puts more emphasis on pairwise factors
resulting in large same-label patches in predictions. GPstruct com-
bines the good per-pixel segmentation of independent and smooth-
ness of CRF PL. 113

5.5.1 Stanford Background Dataset: plot corresponding to table 5.1 (CRF
PL, whose results are much worse than the rest, is not represented). . 116

5.5.2 Quality of the posteriors, measured by the ANLPM metric. The ex-
perimental con�guration is described in section 5.5.2. 116

5.5.3 Speed-accuracy trade-o� for GPstruct and CRF LBMO bag. The pixel-
wise Hamming error is measured. The experimental con�guration is
the same as in section 5.5.2. 118

LIST OF FIGURES 13

5.5.4 E�ect of approximations in the standard GPstruct. All combinations
of exact likelihood vs. PL and max-product prediction vs. TRW pre-
diction are explored. The prediction approximation has virtually no
e�ect on performance (curves with exact max-product and TRW pre-
diction overlap), and the likelihood approximation proves very robust. 118

6.1.1 Sketch of probabilistic model with latent variables and hyperparameters 124
6.3.1 Graphical model illustrating the successive-conditional procedure. . . 131
6.3.2 Diagnostic plots of Geweke experiment runs resulting in di�erent res-

ults for the KS test. From top to bottom: not rejected, rejected but
correct implementation, rejected due to faulty implementation. Each
row is for a speci�c hyperparameter. The left plot shows the prior or
empirical posterior distribution, the right plot shows the (empirical)
cumulative distribution function. 135

6.3.3 Does hyperparameter learning help ignoring the noise features? Top:
Experiments with prior whitening vs. no hyperparameter sampling,
showing in�uence of noise feature weight. Bottom: experiments with
slice sampling, noise feature weight w = 10, showing the in�uence
of the hyperparameter update rate. 137

6.3.4 Histogram of sample path for the log ARD variances ψ1...ψ5 (signal
features, all collected in one set, in blue on the plot), and ψ6...ψ10

(noise features, collected in another set, in green on the plot). The con-
�gurations considered are: top, PW; bottom, SS. In both cases, noise
feature weight w = 10, and hyperparameter update rate is 1 every 10
ESS steps. The values of the hyperparameter were binned into 10 bins
of equal width over their range. 138

6.4.1 Plot of values of diag(XTX) whereX is the feature matrix. If we de-
cide to try and identify 5 boundary points between features of similar
covariance, we can choose the following values: 252, 522, 732, 852, 1186. 141

6.4.2 Experiment: learning the linear kernel’s binary scaling hyperpara-
meter hb (represented as log hb). Hyperparameter set: just log hb.
Hyperprior log hb ∼ U(log 10−3, log 102). Initial value log hb = 0.
Sampling hyperparameters every 1 000 latent variable updates. Dif-
ferent con�gurations: di�erent NLP tasks; hyperparameter updates
using slice sampling or prior whitening. 143

6.4.3 Continued from �gure 6.4.2 . 144
6.4.4 Experiment: linear ARD kernel. Task: segmentation. Sampling hy-

perparameters every 1 000 latent variable updates. Sampling method:
SS. Initial values log hb = 0, ψ1..6 = 0 145

LIST OF FIGURES 14

6.4.5 Experiment: linear ARD kernel. Task: segmentation. Sampling hy-
perparameters every 1 000 latent variable updates. Sampling method:
SS. Initial values log hb = 1, ψ1..6 = 0 146

6.4.6 Experiment: squared exponential ARD kernel, with 6 variances as-
signed each to one block, with block boundaries as identi�ed visu-
ally above. Task: segmentation. Di�erent con�gurations: learning
binary scaling hyperparameter hb and/or ARD hyperparameters ψb.
Hyperprior (on log hyperparameters): broad means N(0, σ2 = 0.7),
while narrow means N(0, σ2 = 0.3). Hyperparameter update every
100 MCMC steps. Initial values: hb = 0, ψb = 1

2 log(2 ∗ 7) for ARD
variances, following rule of thumb for squared exponential variances. 147

6.4.7 Task: segmentation. Hyperparameters �xed (di�erent values, cf. le-
gend). Initial value for log hb = 0. 148

6.4.8 Hyperparameter samples paths over the course of an MCMC chain.
Kernel exponential ARD. Each column shows one hyperparameter:
ψ1..6, last column: log hb. Groups of 2 rows are each for one fold
of the data (�ve folds in total). Odd rows: histogram of relative fre-
quency hyperparameter values, with plot of hyperprior for compar-
ison, in green. Even rows: Hyperparameter sample path. Experi-
mental con�guration: Task: segmentation. Sampling hyperparamet-
ers every 100 latent variable updates. Initial values: log hb = 0,
ψ1..6 = 1

2 log(2 ∗ 7) = 1.32. Sampling method: SS. Hyperparameter
set: log hb, ψ1..6 , hyperprior broad. 150

6.4.9 Hyperparameter sample paths, aggregated over the MCMC chains for
all 5 folds, kernel exponential ARD, experiment as in �gure 6.4.8. Each
column shows one hyperparameter: ψ1..6, last column: log hb. Task:
segmentation. Sampling hyperparameters every 1 000 latent variable
updates. Sampling method: SS. Initial values log hb = 0, ψ1..6 = 1.
Hyperparameter set log hb, ψ1..6. Hyperprior broad. 151

List of acronyms

AEMR Amazon Elastic Mapreduce
ANLPM average negative log posterior marginal
ARD automatic relevance determination
AWS Amazon Web Services
BCRF Bayesian conditional random �eld
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
CPU central processing unit
CRF conditional random �eld
ELBO evidence lower bound
EM expectation-maximisation
ESS elliptical slice sampling
GP Gaussian process
GPU graphical processing unit
HDFS Hadoop distributed �le system
HDP hierarchical Dirichlet process
HE Hamming error
HMC hybrid (or Hamiltonian) Monte Carlo
HMM hidden Markov model
HPY hierarchical Pitman-Yor
IBP Indian bu�et process
IHMM in�nite hidden Markov model
i.i.d. independent and identically distributed
JVM Java virtual machine
KCRF kernel conditional random �eld
KL Kullback-Leibler (divergence)
KS Kolmogorov-Smirnov (statistical test)
LBFGS limited-memory BFGS
LBMO loss-based marginal optimisation
LDA latent Dirichlet allocation
LV latent variable

15

LIST OF FIGURES 16

MAP maximum a posteriori
MC Monte Carlo
MCMC Markov chain Monte Carlo
MH Metropolis-Hastings
ML maximum likelihood
MPI message passing interface
MR map-reduce
MRF Markov random �eld
MVG multivariate Gaussian
NLL negative log likelihood
NLP natural language processing
NP noun phrase
NPB non-parametric Bayesian
PL pseudo-likelihood
POS part-of-speech
PW prior whitening
PY Pitman-Yor
QQ quantile-quantile (plot)
RKHS reproducing kernel Hilbert space
SBC stick-breaking construction
SD surrogate data
SS slice sampling
SVM support vector machine
TRW tree-reweighted belief propagation
UGM undirected graphical model
VB variational Bayes
VI variational inference
WSJ Wall Street Journal

Chapter 1

Introduction

1.1 Motivation

Machine learning is a young scienti�c discipline with high impact in the industry and
sciences. Situated at the junction between computer science and statistics, it bene�ts
from contributions from control theory, cognitive sciences, numerical computing, ap-
plied mathematics, and is fed with problems from arti�cial intelligence, engineering,
data science, as well as “big data”.

A large swathe of interesting problems concerns objects with structure, such as
images, signal, or text, rather than atomic objects (in the etymological sense of “indi-
visible”) such as continuous or discrete values, i.e. scalars or categories. In structured
output prediction, we are interested in cases where the output, more speci�cally, has
structure: the output consists of individual subcomponents, each of which is con-
strained by its neighbours, or even by the entire output.

We are motivated in particular by applications in natural language processing
and computer vision. In natural language text, words are strongly interdependent
due to grammatical agreement and linguistic �uency constraints. In computer vision,
images are typically consumed as entire images, as opposed to pixel by pixel, and
represents physical objects, therefore each pixel can be painted only in conjunction
with its neighbours.

We will concern ourselves only with structured classi�cation in this work, with
discrete labels. Structured regression, where atoms have continuous labels, is a dis-
tinct problem, and uses models such as Gaussian Markov random �elds or Gaussian
process networks (Wilson et al. (2012), discussed in section 4.11). An application
example for structured regression consists in modelling a network of temperature
sensors, where we wish to model the temperature measured by one sensor as being
correlated to the temperature measured by spatially close sensors.

This thesis examines labelling problems, where the input, for instance image or

17

CHAPTER 1. INTRODUCTION 18

text, already exhibits structure, and where the output consists of a set of labels applied
to the subcomponents of the input. Because there is structure in the input, it must
be found in the output as well. Such problems are usually important sub-tasks in
machine intelligence systems. For example, we will look at semantic segmentation
of images, which consists in assigning, to each pixel of an image, a label describing
which physical object it belongs to.

This is a very hard problem, because the algorithm needs to jointly satisfy a very
large number of hard or soft constraints on all atoms, and because any brute-force,
enumeration-based method fails due to the number of possible label combinations
being exponential in the number of atoms.

One technique for structured labelling basically ignores the purported interde-
pendence in the output, and simply performs local predictions on each atom. A com-
mon way to implement this approach is to take into account the local structure of the
input, as opposed to enforcing it in the output. This is achieved by extracting features
which represent not just the current input atom, but some context window around
this atom, in some cases even the entire input object. With these features as input, a
“local” classi�er makes a decision about each output label, without considering their
interdependencies. We call this approach input-driven structured prediction. For ex-
ample, to label each amino-acid of a protein with the type of structure (helix, sheet,
etc.) it will fold to in space — a problem known as protein secondary structure predic-
tion — we can build a local multi-class support vector machine classi�er which is fed
data about a context window of a few amino-acids to the right, and a few amino-acids
to the left of the current position (Wang et al., 2004).

In contrast, some �elds and problems, such as natural language processing, call
for a procedure which guarantees the coherence of the output, and work with prob-
abilistic models which implement this. We qualify this approach as model-driven. It is
the approach adopted in this thesis. A prominent example of a model built according
to this principle is the conditional random �eld (La�erty et al., 2001), in which la-
bels interact with their neighbours, and which forms an important inspiration for the
model we introduce in chapter 4, GPstruct. Of course, most practical implementations
of model-driven structured prediction, including ours in this thesis, also make use of
a feature template computed on context windows, to take advantage of information
supplied by the neighbourhood of the current atom.

The model-driven approach is computationally hard. Beyond the exponential size
of the output space, consider that learning, that is, adapting the parameters of a model
so that predictions are optimal, must make repeated use of the “prediction routine”
internally. Indeed, it calls it every time it evaluates the goodness of a particular choice
of parameters. This problem alone is the object of many research e�orts.

A traditional formulation of the prediction problem casts it as a score maximiser,
and makes sure that the learning problem can be formulated as a constrained optim-

CHAPTER 1. INTRODUCTION 19

isation problem. Subsequently, e�orts concentrate on gaining computational advant-
ages from manipulating the optimisation problem by relaxing or adding constraints,
working on the feasible set, introducing approximations, swapping the dual for the
primal problem, or replacing the numerical optimisation with search. The structure
of Nowozin and Lampert (2010), which gives an overview of the challenges and solu-
tions associated with structured output prediction in computer vision, is established
according to the type of reformulation of this very problem.

This thesis adopts a conceptually di�erent approach by describing the problem in
probabilistic terms, and by exploiting techniques from the sub�eld known as probab-
ilistic machine learning. In this view, the central objects are probability distributions:
observed input and output data are observations of random variables, while unob-
served quantities are considered as latent, that is, initially distributed according to
a prior distribution, and then constrained by the observed variables. This approach
may be computationally more intensive than an optimisation-based formulation, but
e�cient approximations, some of which are discussed in chapter 5, can be applied to
scale it to large data sets.

Its use is motivated by the number of advantages it brings. An important one is
that it deals naturally with sparseness, that is, the undesirable property that even in
large datasets, some characteristics which need to be learnt are exhibited only rarely.
For instance, in �lm rating systems, most of the long tail of �lms will only have been
rated by few people. Probabilistic models are able to easily and correctly combine
evidence from di�erent sources, and incorporate background information to evaluate
rarely seen events.

These models produce results in the form of probabilities, which means that un-
certainty in the prediction is accounted for naturally, and that going from probabilistic
hypotheses to �rm predictions can be informed by loss functions (or utility functions,
for the optimists). Therefore, once the model has been learnt, changes to the loss
function do not require the entire model to be learnt again (as is the case with many
non-probabilistic methods), which could be costly in the case of large data sets.

Non-parametric Bayesian (NPB) models are a class of probabilistic models which
exhibit one further advantage in this setting. Roughly speaking, one can view them as
in�nite-capacity models, i.e. as in�nite extensions of parametric models. For instance,
the Dirichlet process used for clustering can accommodate an unbounded number of
clusters; the in�nite hidden Markov model an unbounded number of discrete states;
the Indian Bu�et Process an unknown number of binary features per data point.

NPB models have recently received much attention, as they are more adaptive than
parametric models, while retaining the desirable features of probabilistic modelling.
Indeed, they allow the e�ective capacity to �uctuate towards its preferred value, with
for example only one or two parameters to control its propensity to grow. Hence,
these models eschew the issue of model averaging or model selection, which arises

CHAPTER 1. INTRODUCTION 20

in parametric modelling: there we must compare how well models with di�erent, but
�xed, capacity �t the data. This particular aspect makes NPB models a particularly
attractive choice for modelling, and justi�es our focus in this thesis.

This introduction provided an informal overview and motivation for the topic
of this dissertation. Further background on this dissertation’s subject matter can
be found in modern machine learning textbooks: on probabilistic machine learning,
Bishop (2006) and Murphy (2012) are excellent texts; on inference in graphical models,
a serious reference is Koller and Friedman (2009); on kernel machines, see Schölkopf
and Smola (2002); Rasmussen and Williams (2006) provides a good introduction to
Gaussian processes in machine learning.

1.2 Thesis structure

The thesis is roughly divided in two parts. The �rst, entirely contained in chapter 2, is
more algorithmic in nature than the second part, contained in chapters 3 to 6, which
is concerned with modelling. Each chapter has its own introduction and conclusion
to motivate and contextualise the research, which is why this general introduction is
kept short. In particular, chapter 3 functions as an introduction to the second part of
the thesis.

Chapter 2 presents the application of the map-reduce technique (Dean and Ghem-
awat, 2004) for distributed computing to a Markov chain Monte Carlo algorithm used
to train a Bayesian non-parametric model, the in�nite hidden Markov model (IHMM;
Beal et al. (2002)). The model is introduced as an answer to the issue of determ-
ining the state-space cardinality of sequence models like the hidden Markov model
(HMM). The Dirichlet process (Antoniak, 1974) proves an essential building block to
solve this problem, but only over a discrete base measure, which motivates the use of
the hierarchical Dirichlet process. We then present our use case in natural language
processing, unsupervised part-of-speech tagging. We give details of the method and
algorithmic alternatives which surface when porting the training algorithm into the
map-reduce framework. The main experimental insight from this work is the realisa-
tion that major map-reduce frameworks, such as Hadoop (White, 2009), which was
used in our experiments, are not suitable to highly iterative algorithms. We show
how, since our experiment, this �nding became mainstream knowledge in the �eld,
and how the map-reduce framework evolved into distributed paradigms which work
on more general computational graphs.

The second part of the thesis is devoted to a non-parametric, kernelised model for
structured output prediction, which we call GPstruct.

Chapter 3 presents the probabilistic model families which form the context of
GPstruct. This model was conceived in response to the lack of a model exhibiting a list

CHAPTER 1. INTRODUCTION 21

of desirable characteristics, so our presentation introduces these characteristics one by
one: Bayesian inference, kernelisation, structured classi�cation. This chapter, rather
than merely exploring related work, attempts to clarify how pre-existing models can
be inserted in a grid which schematises their characteristics, and to show that the last
vertex of that grid remains unoccupied: �lling this vertex is the role of GPstruct. The
subsequent chapters of the thesis demonstrate how the model’s characteristics come
to bearing.

Chapter 4 introduces GPstruct formally, and describes an MCMC training al-
gorithm based on elliptical slice sampling (Murray et al., 2010). In this chapter, we
present an application of GPstruct to sequence modelling for natural language pro-
cessing tasks, and show that it performs well in comparison to similar models. Analyt-
ical experiments probe di�erent aspects of learning with the model: we evaluate the
robustness of the learning algorithm against variations in the MCMC con�guration,
and test whether GPstruct works as well when moving from Bayesian to maximum a
posteriori inference. In this chapter, we also contrast GPstruct with related models.

Chapter 5 tackles the challenges appearing when GPstruct is applied to large-scale
data. For labelling tasks, image data sets obey the de�nition of “large-scale data”, as
they consist of a very high number of individual pixel positions which must be labelled
individually. We describe three strategies which help overcome the scaling issues:
(a) to overcome the intractability of the likelihood computation on a grid, we use a
pseudo-likelihood approximation; (b) in addition, the learning problem is distributed
over an ensemble of weak learners which are combined to produce predictions; (c) �-
nally, the prediction process itself, which requires performing the marginal maximum
a posteriori operation over a grid, is intractable, and is approximated. This chapter
describes image semantic segmentation experiments on two image datasets. GPstruct
is shown to perform well in terms of labelling accuracy and predictive probabilistic
calibration.

Chapter 6 explores hyperparameter learning, which probabilistic models can
achieve without grid cross-validation. To address the coupling between hyperpara-
meters and latent variables in GPstruct inference, several reparameterisations are
presented. A statistical test aimed at detecting MCMC implementation errors is de-
rived from Geweke’s “getting it right” setup (Geweke, 2004) and successfully applied
to GPstruct code. Extensive hyperparameter learning experiments are carried out
with both synthetic data and sequence data used in chapter 4. While labelling accur-
acy is not strongly improved, we show that hyperparameters are de�nitely learnt in
the process by analysing their posterior distributions.

Material in section 2.3 was published as Bratières et al. (2010b). Sections 4.1 to 4.7
were published as Bratières et al. (2015). Chapter 5 was published as Bratières et al.
(2014). All these works are the result of collaborations with my co-authors.

CHAPTER 1. INTRODUCTION 22

1.3 Notations and conventions

We write matrices with bold, uppercase letters, e.g. X, vectors with bold, lowercase
letters, e.g. x, and scalars with italicised lowercase letters, e.g. x. The t-th element of
vector x is written xt, like a scalar.

Except where unpractical, running indices are lowercase letters, and the maximal
value of an index is the corresponding uppercase letter: t ∈ {1...T}, n ∈ {1...N}.

We write f : X → Y to express the fact that function f has domain X and
codomain Y ; when referring to individual variables x ∈ X, y ∈ Y , this can be
written f : x 7→ y.

We ignore the distinction between a random variable and the value it takes, and
use the symbol p(·) to denote probability density or mass functions, according to the
variable. N denotes the normal distribution. y ∼ N (µ, σ2) is read “random variable
y is distributed according to a normal distribution with mean µ and variance σ2”, and
carries the same meaning as p(y|µ, σ2) = N (y|µ, σ2).

Throughout this thesis, log denotes the natural logarithm, i.e. in basis e.
Numbers are written according to standard ISO 80000-1, i.e. using a space for digit

grouping, and an English-style point as decimal sign, while positive numbers smaller
than 1 have a leading 0 before the decimal sign. Sometimes, large numbers are written
in “e-notation” (scienti�c notation) for readability, so 7e4 is 7× 104.

In citing references for speci�c techniques or concepts, modern, comprehensive
descriptions are favoured over pinpointing the historical source of the idea. As a con-
sequence, consolidated journal publications are preferred over the original conference
paper, and for more classical material, textbook presentations are retained over art-
icles. This is not to say, of course, that historical developments should be ignored.
Despite the fact that machine learning is still a young discipline, many of its tools de-
rive from applied mathematics in a broad sense, a much older established discipline.
For this reason, studying the historical development of machine learning concepts is
instructive; this motivates the importance of presentations such as Tanner and Wong
(2010) and Schmidhuber (2015).

Chapter 2

Map-reduce inference for the
in�nite HMM

This chapter examines the application of big data methods, speci�cally map-reduce, to
a probabilistic machine learning task. This research is best situated in the wider con-
text of distributed methods for probabilistic modelling, speci�cally non-parametric
Bayesian models.

“Big data”, i.e. data too large to �t onto a single computer, due to the size of
the data, or due to prohibitively long computation, calls for distributed algorithms.
We will make the following di�erence between parallel and distributed in this thesis:
parallel algorithms run on a multi-threaded (typically multi-core) processor and share
memory1 ; distributed algorithms run on separate processors, share no memory, but
are connected by a network infrastructure.

Distributed algorithms are often more complex to develop than their batch or par-
allel counterpart, but probabilistic models will be more useful when trained on large
datasets. This is especially true of the non-parametric family of models, to which
the in�nite HMM belongs, and whose capacity expands as more data is available for
training.

The goal of the research presented in this chapter is to port a pre-existing al-
gorithm, namely MCMC inference for the IHMM (introduced in section 2.1) on an
unsupervised part-of-speech tagging task, to a map-reduce framework, and imple-
ment it on a mainstream distributed platform, Apache Hadoop running on Amazon
Elastic MapReduce (introduced in section 2.2).

The broader research challenge is to invent scalable probabilistic inference tech-
1By “memory”, we mean RAM, not disk storage. The distinction is on access latency and bandwidth;

in a parallel setting, slave processes share access to a high-speed, high-throughput memory (RAM), while
in a distributed setting, communication (over the network) is expensive, and disk accesses are slower than
memory accesses.

23

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 24

niques, and to experimentally validate them on commodity computing clouds.
Before this project started, a parallel version of this algorithm had been imple-

mented (Van Gael et al., 2009). With growing datasets, the parallel implementation
was hitting its boundaries in terms of CPU power, while the non-parametric model
seemed capable of accommodating more data. The promise that superior NLP per-
formance was attainable motivated porting this speci�c algorithm to a distributed
platform. The limiting factor here is computation, not data size.

This chapter is organised as follows.
Section 2.1 introduces sequence models and their use in an unsupervised setting

akin to clustering, singles out the IHMM model, and describes how to apply it to
part-of-speech tagging. Aspects of our research concerning distributed computing are
analysed in section 2.2, which presents the motivation for a commodity cloud plat-
form, our design strategy for the map-reduce implementation, and related challenges.
Section 2.3 describes experimental settings and results. Section 2.4 discusses an im-
portant �nding of this research, namely the need for map-reduce platforms which
support highly iterative algorithms, and positions the research in trends we can name
and identify only today. Section 2.5 o�ers a detailed literature review of distributed
inference for probabilistic models, and section 2.6 concludes the chapter.

2.1 Sequence models and the IHMM

2.1.1 Hidden Markov models, state space cardinality, cluster-
ing, and non-parametric Bayesian models

The hidden Markov model (HMM) is an extremely popular model for probabilistic
modelling of sequential dynamics. It works in discretised time, and distinguishes
between a hidden state, which belongs to a discrete state space, and an observation
which causally depends on the state. The observation could be continuous, discrete, a
vector or matrix, as long as its emission probability p(observation|state) can be spe-
ci�ed. The model dynamics are �rst-order2 Markov, that is, the state at time t depends
only on the state at time t− 1. For this reason, the model needs a transition probab-
ility model p(statet|statet−1), as well as, to be complete, the distribution of the initial
state.

When used in machine learning, the most important questions about the HMM
are3:

(1) Given model parameters and an observation sequence, what is the probability
of the observation sequence?

2We will restrict our discussion to �rst-order models in this thesis. Higher-order HMMs are of course
possible and useful, depending on the task.

3cf. Rabiner (1989) for a classic tutorial overview, speci�cally its section C for the discussion of the
following problems

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 25

(2) Given model parameters and an observation sequence, what is the most likely
corresponding state sequence?

(3) Given training data in the form of observation sequences (states are hidden),
how do we infer the model parameters which make the observation sequences most
likely?

The answer to each of these question comes in the form of an algorithm.
Question (1) is answered by the forward-backward algorithm; (2) by the Viterbi

algorithm4, a dynamic programming algorithm; (3) by the Baum-Welch method, an
instance of expectation-maximisation used to �nd the maximum likelihood estimates
of the parameters.

When modelling a new real-world domain, one di�culty makes latent state infer-
ence on sequences hard: how many hidden states are there? For example, in speech re-
cognition, how many context-dependent triphone HMM states do we use to model the
phonetics of a language5? In activity recognition, among how many di�erent activit-
ies should we discriminate? In part of speech tagging, how many parts of speech are
there?

This problem is comparable to determining the number of clusters in a clustering
application. Latent state inference can be viewed as assigning each observation to a
cluster, with additional constraints or information provided by the Markov dynamics
of the sequence.

Determining the number of hidden states can be formulated as a model selection
issue in a probabilistic framework. A hard selection can be obtained by selecting
the model with best score according to some criterion: this is the model posterior if
we adopt a hierarchical Bayesian view, or it could be an information criterion like the
Bayesian information criterion (Schwarz, 1978) or the factorised information criterion
(Fujimaki and Hayashi, 2012). Alternatively, if the number of states itself is not of
interest, it can remain latent, and marginalised out in a Bayesian model.

This last approach is the one adopted in the formulation of the in�nite HMM (Beal
et al., 2002), a variant of the HMM with unbounded discrete state space, in which the
prior over states is given by a Dirichlet process. We describe this model and an MCMC
parameter inference algorithm in the present chapter, in further sections. The task on
which we apply the IHMM is part-of-speech tagging, which we describe now.

4assuming we are interested in the single best sequence (as opposed to other interpretations of the “most
likely” state sequence)

5This is a controversial question not only for the application of HMM, but in linguistics in general, so the
question is only exacerbated in the context of automatic speech recognition. A strand of research in speech
recognition has tried to do away with settling on a de�nite list of phonemes, since it is not directly relevant
to the determination of an orthographic form, trying to leave the choice “up to the data”; cf. Hannun et al.
(2014) for a recent contribution on this question.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 26

2.1.2 Part-of-speech tagging

Parts-of-speech (PoS) are grammatical categories of words, for instance verb, noun, or
adverb. PoS tagging is an important pre-processing task inside many natural language
processing pipelines.

Single words often do not correspond to a unique PoS, as exempli�ed in the sen-
tence “I can can a can”6: the PoS of the word “can” depends strongly on neighbour-
ing words, and neighbouring words’ own PoS. Therefore, context-dependent tagging
systems are needed. Early PoS tagging methods relied on rule and exceptions lists;
a prototypical example is the transformation-based Brill tagger (Brill, 1995), which
learns a set of rewrite rules from an annotated corpus; the Brill tagger has performed
excellently for a long time despite its simplicity.

In contrast to rule-based systems, PoS tagging systems based on probabilistic mod-
els explicitly model the dependencies between single words and their possible tags,
including neighbouring tags and words, sometimes inside a context window of sev-
eral words. It is bene�cial that the output is probabilistic, because the downstream
processing pipeline might want to preserve and manipulate uncertainty on tags as
subsequent operations deliver more information on the PoS.

A particularly fruitful model is the hidden Markov model, which is able to model
dependencies of tags on their direct predecessor. More speci�cally, since there need
not be a one-to-one correspondence between PoS tags and HMM states, the Markov
dependence is between states. We will come across another popular model for PoS
tagging, conditional random �elds, in chapter 3.

Traditionally, HMM PoS tagging models have been trained by supervised learn-
ing, i.e. using large databases of PoS-annotated natural language text. Such corpora
are expensive to produce, and especially scarce for new domains or low-resource lan-
guages. This state of a�airs has motivated the use of unsupervised methods, which
extract knowledge from unlabelled text, which is more easy to get by. Unsupervised
HMM PoS tagging had met with some success in the years prior to the work reported
in this chapter, cf. Johnson (2007); Gao and Johnson (2008); Gri�ths and Goldwater
(2007). A fundamental issue with the unsupervised approach is the identi�cation of
HMM states to PoS tags, as they appear in a tag list for instance. While Johnson (2007)
and Gao and Johnson (2008) report that this mapping is relatively easy to carry out
manually, Gri�ths and Goldwater (2007) applies some amount of supervision by spe-
cifying the PoS tags of some common words. Even without this identi�cation, though,
the result of supervised learning can be used in NLP pipelines for instance as a partial
language model, to assign scores to generated sentences (as in machine translation,
natural language generation or speech recognition).

A methodological issue quickly comes up: how to evaluate the quality of the un-
6or the famous “Bu�alo bu�alo bu�alo bu�alo” sentence

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 27

supervised model (Vlachos, 2011)? Accuracy of prediction is made meaningless since
HMM states cannot be compared to a reference labelling.

If we are ready to consider the clusterings induced by predictions on a test set, a
solution to this issue is o�ered by the variation of information (VI) metric introduced
by Meila (2007), which compares two clusterings. The scoring procedure compares
the clustering induced from reference labels on a test set, with the clustering induced
by some latent state assignment under the trained model (i.e. a sample of the latent
state sequence under the posterior model). To make this clear, let us introduce some
notation. We denote by (y1...yT) the sequence of words (observables), and by z1...zT
the sequence of labels applied to them. A clustering k is a function de�ned over pos-
itions t in the sequence, which assigns a label to each position : k(t) = zt is the label
applied to yt under clustering k. Clustering kref assigns the reference labels as they ap-
pear in the test data. Clustering kpred assigns as labels the HMM states obtained from
a sample of the posterior model. We then de�ne p(kref(t) = k, kpred(t) = k′) from
counts over the test data. We now have a joint probability distribution over couples
of (reference, predicted) labels (k, k′), based on which we can de�ne cross-entropies
H(ref|pred) andH(pred|ref). Finally we de�ne V I = H(ref|pred)+H(pred|ref). V I
e�ectively compares the homogeneity and point distributions of two clusterings. Its
interpretation and normalisation for comparison under di�erent settings needs some
thought, cf. the discussion in Meila (2007).

Other sensible ways of assessing a trained IHMM model for PoS tagging are ex-
trinsic, e.g. assuming we have a language processing pipeline which requires only
discrimination between PoS tags, but not their identity (as is the case for shallow
parsing, for instance). We can then observe the impact (positive or negative) on a
system metric when replacing a baseline PoS tagging component by the PoS tagger
under study. This is the approach adopted in Van Gael et al. (2009).

All unsupervised HMM methods report issues with deciding on the number of
HMM states. The in�nite HMM provides a principled solution to this problem by
assuming an unbounded pool of states, but actually only invoking a �nite number of
them for any �nite data set. This ultimately motivates the choice of PoS tagging as an
application for the work reported in this chapter.

2.1.3 De�ning a non-parametric model for sequence observa-
tions

In this section, we make the parallel between clustering and latent state inference
more concrete, by initially considering a Dirichlet mixture model used for unsuper-
vised clustering, and then applying changes, �rst to model sequential data, and then
to make the state inventory unbounded.

Observed data points are yn ∈ Y, n ∈ {1..N}, and assumed i.i.d. According to

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 28

from
b
ou

n
d
ed

to
u
n
b
ou

n
d
ed

sta
te

in
ven

tory
GG
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
GA

from single point to sequence
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGA

a) Mixture model b) Bayesian HMM

π

φk

η

G0

zn

yn
k ∈ {1...K}

n ∈ {1...N}

πk

φk

η

G0

z1

y1

z0 z2

y2
k ∈ {1...K}

c) DPMM d) DP-HMM (useless)

π

φ

α0

G0

zn

yn

n ∈ {1...N}

πk

φk

α0

G0

z1

y1

z0 z2

y2
k ∈ N

Figure 2.1.1: Various clustering and HMM models

the nature of the observables, Y could be a continuous space or a discrete space7. The
output distribution (over Y) is denoted by F , and is parameterised by φ. When yn is
discrete, F could be a categorical distribution (i.e. a multinomial distribution reduced
to one draw), and φ a vector of probabilities. φ is given a prior G0, in other words
the support of G0 is the parameter space for F .

In order for each state z to de�ne a di�erent emission probability, φ is indexed by
z.

We can now present the generative model for the Dirichlet mixture model, in
�gure 2.1.1a. It is further de�ned by:

cluster membership prior π ∼ Symmetric Dirichlet(η)

cluster membership zn ∼ Categorical(π)

cluster parameters φk ∼ G0

observed data yn ∼ F (φzn)

(2.1.1)

G0 serves as a prior over the parameters φk of each cluster. Both the states zn
and the cluster index k are bounded for this model.

7For our part-of-speech tagging application, Y is the set of words, also cf. the notation introduced in
section 2.2.3.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 29

Recapitulating, we have:
η ∈ R

π ∈ RK

zn, k ∈ {1..K}
yn ∈ Y

(2.1.2)

Turning this model into an HMM means making the n-plate Bayesian network a
dynamic Bayesian network (over t). Observed data now consists of sequences, each
of the form y1, ...yt, ...yT . We need to:

• de�ne transition probability vectors (over destination states) for each origin
state; therefore π is now inside the k-plate

• replicate the state and emission nodes over time steps; while each emission node
yt is connected to a hidden state node zt in the same way as before, paramet-
erised by φk , the hidden state is now parameterised by a transition distribution
which is indexed by the previous state, instead of being unique

This yields the HMM illustrated in �gure 2.1.1b, with the following de�nitions:

row of transition matrix πk ∼ Symmetric Dirichlet(η)

state zt ∼ Categorical(πzt−1
)

state parameters φk ∼ G0

observed data yt ∼ F (φzt)

(2.1.3)

Our graphical model represents the case T = 2. We still have a �nite state invent-
ory, so k ∈ {1..K} for this model, and zt ∈ {1..K}. We assume that the initial state
z0 is �xed. Rows πk of the transition matrix are (vectors of) transition probabilities
for a given origin state k (the state corresponding to the row). t ∈ {1...T} is the index
inside a given sequence (the data may consist of several sequences of di�erent length,
for simplicity we do not account for this in our notation here, and consider only one
sequence).

How to make the state inventory unbounded, i.e. how to make the model non-
parametric ?

Starting from the mixture model in �gure 2.1.1a, a known construction to make
the number of states unbounded is to turn the Dirichlet prior on the cluster identity
into a Dirichlet process prior, yielding a DP mixture model (Antoniak, 1974). Now the
number of statesK is unbounded, π is in�nite-dimensional, and φk is de�ned for any

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 30

k ∈ N. The corresponding model is illustrated in �gure 2.1.1c and de�ned as:

cluster membership prior π ∼ SBC(α0)

cluster membership zn ∼ Categorical(π)

cluster parameters φk ∼ G0

observed data yn ∼ F (φzn)

(2.1.4)

SBC denotes the stick-breaking construction, which Ewens (1988) originally de-
noted by GEM after the names of Gri�ths, Engen and McCloskey. We do not detail
the SBC further and refer to Teh et al. (2006) for details.
π is now an in�nite-dimensional vector. Yet for any realisation of the model with

a �nite number of data points N , only �nite representations of π will be needed.
In the hope of obtaining an HMM model with unbounded states, we now apply

the same changes to the HMM model in �gure 2.1.1b, and obtain the model in �gure
2.1.1d, which we might call the DP-HMM:

row of transition matrix πk ∼ SBC(α0)

state zt ∼ Categorical(πzt−1)

state parameters φk ∼ G0

observed data yt ∼ F (φzt)

(2.1.5)

Upon closer inspection, however, we �nd that this model su�ers from a fatal de-
fect. For each origin state k, the DP prior indeed yields a new transition vector πk
and a parameterφk for the emission probability F . However, with probability 1, each
draw φk from G0, since it is a continuous distribution8, will be di�erent from any
previous draw φk′ , k

′ < k: almost surely, sampled states will not coincide. In other
words, with transition probabilities drawn independently, and no coupling between
them, there is no reason for the chain to preferentially revisit already existing states.

To apprehend the key issue, consider the following step of the stick-breaking con-
struction of the DP: φk ∼ G0, i.e. for each draw from the DP, we need to sample
a new collection φk from the base measure G0, with no guarantee that we will en-
counter already sampled states (again, unlessG0 is discrete, because then the chances
could be non-zero, depending on the atom weights). To make sure we “recycle” states
between source state distributions, we will make the base measure discrete: speci�c-
ally, we will draw the base measure from another, higher-level DP, so that it is almost
surely discrete.

In conclusion, while the DP is an interesting prior over clusters (for mixture mod-
els), it is not helpful as a prior for state-to-state transitions.

8The case in which G0 is a �xed discrete distribution is contrived and not relevant here.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 31

πk

φk

α

H

z1

y1

z0 zT

yT

βγ

k ∈ N

Figure 2.1.2: Graphical model of the IHMM. Rows πk, k ∈ N of the state transition
matrix are given a HDP prior. Cf. section 2.1.4 for a full description.

2.1.4 The HDP-HMM

To solve the issue of the DP-HMM, we must make sure we “recycle” states between
source state distributions; to ensure this, we will make the base measure discrete:
speci�cally, we will draw the base measure G0 from another, higher-level DP, so that
G0 is almost surely discrete. Beal et al. (2002) discussed this issue and proposed the
hierarchical Dirichlet process HMM (HDP-HMM) to solve it.

A note on nomenclature: in this thesis, we will use the terms IHMM and HDP-
HMM interchangeably. The original “IHMM paper” Beal et al. (2002) derived the
IHMM by taking limits when K → +∞, and proposed an inference scheme con-
structed so that a parameter controls the propensity to create new states, and another
parameter controls the probability of self-transitions. Later, Teh et al. (2006) (which
uses the name “HDP-HMM”) proposed a Gibbs sampling inference scheme.

G0 is now a discrete distribution and transition probabilities πk are coupled, as
they are drawn from a DP with mean β (in doing so, we assimilate vectors with the
categorical distribution they parameterise, e.g. β with Categorical(β)).

We now formally de�ne the HDP-HMM when applied to the task of part-of-speech
tagging. We introduce the notation and terminology which we use in the remainder
of this chapter. The resulting model is illustrated in �gure 2.1.2.

Let a sentence of length T be represented as a sequence of words (tokens, or obser-
vations in HMM terminology) y1, ...yt...yT , with yt ∈ V , where V is the vocabulary,
that is the set of observed words. We note card(V) = V , where V is the total num-
ber of unique words. V is assumed to be �xed and known; at prediction (test) time,
unknown words can be dealt with via a back-o� method.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 32

In a generative view, tokens are generated from states (clusters) z1...zT according
to p(yt|zt,φzt) = Categorical(yt|φzt), where φs is the parameter for the emission
probability for state s; φs ∈ RV . In addition, we de�ne dummy start and end states,
and corresponding start and end tokens, which enclose each sentence.

State transitions are governed by a state transition matrix π, of which each row
πk governs the transitions out of state k, so the probability of transitioning from state
k at time t to state l at time t + 1 is p(zt+1 = l|zt = k) = πk,l. The total number
of states in usage for a given sample of the state sequences, including start and end
states, is written K , so πTk ∈ RK and π ∈ RK×K .

Thus far, our description corresponds to the structure of an HMM. We now place
priors on πk and φz , so that the number of states is variable, and governed by a
hierarchical Dirichlet process. In addition, note that ∀k,πk should be of in�nite size,
since the number of states is not bounded. At this point of the exposition, in order to
prepare for writing out the MCMC procedure, which, to be implemented, requires
manipulating �nite structures, and to keep a mathematically correct notation, we
will maintain the notation πk for the �nite-dimensional vector, and denote by π̄k
the in�nite-dimensional vector (equivalently π̄ vs. π, and β̄ vs. β, which will be
introduced below). Each sample of πk uses only a �nite number of states, since the
corresponding data uses only a �nite number of tokens. Consequently, we will call
the �nite-dimensional vector a “collapsed” version of its in�nite-dimensional coun-
terpart; it is obtained by ignoring elements corresponding to unused states, i.e. one
of the (countably in�nitely many) states which are not represented in the data.

The π̄k , like β̄, behave like probability distributions, so they sum to one, and it
is essential to represent the probability mass which has been discarded in the pro-
cess of collapsing (the “remaining mass”). For this reason, we append an extra ele-
ment to each of the �nite-dimensional counterparts: πk,K+1 and βK+1 are set so that
∀k, ∑j=K+1

j=1 πk,j = 1 and
∑j=K+1
j=1 βj = 1.

π̄k is a sample from a Dirichlet process with concentration parameter α and base
measure β̄ shared by all π̄k . β̄ is also generated by a Dirichlet process, and is modelled
by the stick-breaking construction (Sethuraman, 1994) with parameter γ, i.e. ∀i ∈
N, β̄i = ζi

∏j=i−1
j=1 (1 − ζj) with ∀k ∈ N, ζk

iid∼ Beta(1, γ), which is also written
β̄ ∼ SBC(γ), cf equation 2.1.4.

The observation vectors also receive a prior, namely a symmetric Dirichlet distri-
bution parameterised by H ∈ R+.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 33

Summing up, we have

yt|zt,φzt ∼ Categorical(φzt)

zt|zt−1, π̄zt−1
∼ Categorical(π̄zt)

π̄k|α, β̄ iid∼ DP(α, β̄) ∀k ∈ N

β̄|γ ∼ SBC(γ)

φk
iid∼ Dirichlet(H) ∀k ∈ N

(2.1.6)

where we have denoted by H the vector of size V with all elements set to H .
Note that there are two notation abuses in the line π̄k|α, β̄ ∼ DP(α, β̄). The �rst

is in DP(α, β̄): we really mean the DP which has β̄ as its stick-weights sequence. The
second is in writing π̄k|... ∼ DP(...): π̄k is the stick-weights sequence obtained for
the SBC for a draw from this DP; i.e. we completely ignore the positions φk of the
point-masses (which are shared anyway), only to concentrate on the weights.

We keep the hyperparameters α, γ and H �xed at all times (rather than giving
them priors or estimating them using maximum likelihood).

2.2 Distributed computing aspects

After describing and motivating the IHMM model, we now delve into the aspects
related to distributed computing and software engineering. We chose to avoid custom
(closed) computing clusters, as all prior work had done, but deliberately exploited
widely available commodity computing power.

2.2.1 Commodity computing infrastructure

In terms of deployment platform, this research targets commodity computing clouds
for impact, visibility, reproducibility, and reusability. In particular, we are interested
in clouds which are pre-con�gured for distributed computing, such as (in 2009, when
this research was undertaken) Amazon’s Elastic MapReduce (AEMR) platform, or Mi-
crosoft Azure with Microsoft HTC or Dryad (Isard et al., 2007). These clouds in-
tegrate storage, networking, computation, execution engine and language-level pro-
gramming interface. The understanding of their economic model and advantages in
2009 is re�ected in Armbrust et al. (2009).

At that time, distributed frameworks were in use in the industry and the open
source community (Pig9, Hadoop (White, 2009), BigTable (Google proprietary (Chang
et al., 2006)) and HBase10, Hive (Thusoo et al., 2009), Cassandra (Lakshman and

9http://pig.apache.org/
10http://hbase.apache.org/

http://pig.apache.org/
http://hbase.apache.org/

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 34

Malik, 2010)11). In actual practice, in industry, they tended to be used mainly for
non-statistical data manipulation: distributed grep’s, inverted indexing, hashing and
searching, sort, distributed aggregation. Distributed machine learning was very much
con�ned to research.

Yet such clouds bring several advantages for research in distributed machine learn-
ing: they are publicly available, have a low upfront cost, use widely shared software
con�gurations, and their hardware pro�les are rather generic and reproducible. This
summarises what we mean by “commodity” in this context, and is largely the opposite
of custom computing clusters.

In particular, the requirement of reproducibility in computational sciences12 has
gained traction in recent years. Tools, methods, supporting procedures by scienti�c
publishers, research institutions, funding agencies were developed to address this
need. For instance, reproducibility in research is one of the major drivers of the devel-
opment of the Python notebook system Jupyter13, and it is indeed increasingly used to
document scienti�c methods in supplementary material14. Often, software accompa-
nying machine learning publications is available on Github. GitXiv was developed to
coordinate the scienti�c preprint archive arXiv (largely used in the �eld of machine
learning) with code repositories like Github and Bitbucket. Container technology
such as Docker or Kubernetes, which was not widely available when this research
was conducted, now allows even better archivability of the software con�guration
than what is achievable with commodity computing clouds.

The research focus on commodity cloud services proved to correctly anticipate fu-
ture developments. AEMR, the deployment platform used in this research, was made
public in April 2009, and was a forerunner in this area. It included a patched version
of Apache Hadoop 0.18.3, a very early version. The Apache Hadoop Java open-source
project15 started around 2005 as a platform for map-reduce, and has since developed
in many other directions, to the point that it can nowadays be considered an ecosys-
tem for distributed computing. Its latest stable version16 at the time of this writing is
2.8.0, and was released on 22nd March 2017.

Hadoop fostered the development of Apache Mahout17, a Java package of map-
reduce implementations of popular machine learning algorithms, which became an
Apache top-level project on 4th May 201018. The O’Reilly book “Mahout in Action”

11http://cassandra.apache.org/
12cf. Sandve et al. (2013) for a review of best practices, and Crick et al. (2015) for a suggested process
13earlier named IPython (Pérez and Granger, 2007)
14cf. https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#

reproducible-academic-publications for several examples of scienti�c publications with accompa-
nying IPython (now Jupyter) notebooks and code.

15http://hadoop.apache.org/
16http://hadoop.apache.org/releases.html
17http://mahout.apache.org/
18https://blogs.apache.org/foundation/entry/the_apache_software_foundation_

announces4

http://cassandra.apache.org/
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-publications
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-publications
http://hadoop.apache.org/
http://hadoop.apache.org/releases.html
http://mahout.apache.org/
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces4
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces4

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 35

(Owen et al., 2011), written by the original authors of Mahout, was published on 9th
October 2011. Mahout still exists, and has changed drastically in the meantime, giving
up the map-reduce dependency altogether (cf. section 2.4.2). Our project uses the
Mahout linear algebra libraries, but not its implementations of algorithms.

The dates we have just cited demonstrate that this research exploited very novel
technology. Indeed, the founding papers for applications of machine learning to mul-
ticore platforms are arguably Dean and Ghemawat (2004) and Chu et al. (2007). To
draw a parallel with technological developments at Microsoft, we can note that Mi-
crosoft Dryad (Isard et al., 2007), a distributed execution platform based on more com-
plex computational graphs than map-reduce, started as an internal research project
in 2006; it had an academic release on 13th July 200919, including the Dryad platform
and DryadLINQ (Yu et al., 2008), which provided support to translate queries written
in the LINQ query language into Dryad execution graphs. On 11th November 201320,
however Microsoft withdrew its support to Dryad, favouring Apache Hadoop instead.

There now is a wide choice of managed distributed computing platforms, billed
by compute time, from companies such as Databricks (Apache Spark), Google (Data-
�ow, Dataproc), Microsoft (Azure HDInsights running Apache Spark), Amazon Elastic
MapReduce (now also running Apache Spark), Cloudera, MapR, Hortonworks.

Prior research in distributed probabilistic inference often did not target clouds or
even private clusters or grids, but parallel multicore machines, sometimes running
pseudo-distributed emulators. The few available deployments to clusters employed
custom software. For instance, Nallapati et al. (2007) deployed on a cluster with 96
machines, using the PThread library and rsh for communication, Wolfe et al. (2008)
ran a 32-machine cluster, (Doshi-Velez et al., 2009) deployed using Matlab Distributed
Compute Engine. The research which comes closest to ours was (Wang et al., 2009),
which used their own (Google Research) cluster with MapReduce, and compared with
the Message Passing Interface (MPI), which is considered a standard for distributed
computing in scienti�c �elds which have a long tradition in high-performance com-
puting such as climatology or theoretical chemistry), and is tailored less towards data
partitioning and more towards computation partitioning. This shows that prior res-
ults, to be reproduced, required an essentially identically con�gured and tuned setup.

This section demonstrates the relevance, timeliness and signi�cance, in the light of
subsequent technological developments, of the research goal consisting of deploying
on a commodity distributed computing cloud. In the rest of the present section 2.2,
we detail the principles which guided our map-reduce development, as well as issues
and best practices which emerged while implementing this research goal. We begin
by recalling the basics of the map-reduce algorithm.

19https://www.microsoft.com/en-us/download/details.aspx?id=52604
20http://www.zdnet.com/article/microsoft-drops-dryad-puts-its-big-data-bets-on-hadoop/

https://www.microsoft.com/en-us/download/details.aspx?id=52604
http://www.zdnet.com/article/microsoft-drops-dryad-puts-its-big-data-bets-on-hadoop/

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 36

2.2.2 Principle of map-reduce

We brie�y outline the map-reduce algorithm21.
Both mappers and reducers are functions which operate on key-value pairs, which

we note < K,V > here. A mapper (or map function) takes as input a single <
K1, V1 > pair, and outputs a single < K2, V2 > pair. A reducer (or reduce function)
takes as input a list of< K2, V2 > pairs with the same keyK2, which is equivalent to
de�ning their input as < K2, L2 > where L2 stands for a list of values. The reducer
outputs a single < K3, V3 > pair.

Here are the steps of the map-reduce algorithm:

Data preparation The input data is split up as< K1, V1 > pairs, so that the data size
of < K1, V1 > and computation needed by the mapper to process < K1, V1 >

is orders of magnitude smaller than what can be processed on a mapper node.
< K1, V1 > pairs are sent to mappers, which are distributed on slave nodes.

Map The map function is applied iteratively by each mapper to the< K1, V1 > pairs
it has been assigned.

Shu�le < K2, V2 > mapper outputs are sorted over the entire cluster according
to key K2, resulting in < K2, L2 > pairs. These pairs are then assigned to
reducers, which are also distributed on slave nodes. Each K2 is assigned to
exactly one reducer22.

Reduce The reduce function is applied iteratively by each reducer to the< K2, L2 >

pairs it has been assigned. Each reducer may have several such pairs, and thus
several K2, to process.

Gather The reducer outputs are made available from the master node as a collection
of < K3, V3 >.

We now illustrate the procedure on the word-count algorithm: given as in-
put a collection of text documents, it outputs a dictionary of unique words as-
sociated to their count in the input corpus. Here, the mapper consumes <

document index, document > pairs and outputs< w, 1 > pairs (one for each wordw;
the number 1 here is nothing but a placeholder). These are shu�ed, and reducers re-
ceive the pairs corresponding to a single word, so that given< w,L > they only have
to output < w, length(L) >, since L has exactly one element per word occurrence.

21More information can be found in very many places, starting with the original article Dean and Ghem-
awat (2004), countless web resources, the book White (2009).

22This, by the way, poses a restriction on the size of L2

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 37

2.2.3 Map-reduce architecture for the PoS IHMM

The starting point for our map-reduce (MR) implementation is the blocked Gibbs
sampling algorithm of the IHMM applied to PoS tagging. The derivation or prop-
erties of this algorithm are not the object of this thesis, so we refer to Beal et al. (2002)
and Teh et al. (2006) for details of the algorithm and derivations, as well as to appendix
A of this thesis, where we enumerate the steps of the Gibbs sampling algorithm and
sketch each.

Most steps are for-loops and can be cast as MR jobs in a straightforward way,
provided we solve issues regarding data sharing.

2.2.3.1 Data storage

Formalising the MR algorithm revolves around identifying data streams and sharing,
and therefore requires identifying inputs, outputs and parameters at each step. This
is done at the algorithm level in appendix A.

The question arises how to pass data from one MCMC iteration to the next. In
Hadoop, data must be written to disk, and cannot stay in memory between MR jobs,
because the Java virtual machine constitutes the execution framework for a single MR
job, and is restarted after each. There are several option available for data storage in
Hadoop (HDFS being the Hadoop distributed �le system):

a) part-�les: Mappers consume and reducers produce part-�les, which remain
local to the node after the reducer has �nished. All data which must be mapped over
by an MR job (as opposed to parameter data) is stored in this format. This concerns
(notation from appendix A)

• sentences Σ,

• emission counts f ,

• transition counts p,

• table counts t,

Therefore, when a MR job needs to access data produced by a previous job, the data
mapping of the former takes advantage of data locality.

b) regular HDFS �les: Such �les are accessible through the distributed �le system
from every worker node, and are be written once, and read several times. This format
is adequate for parameters which are not mapped over by MR jobs, therefore we use it
for hyperparameters π, β, φ, ν and the list of used states. This involves boilerplate
serialisation code, as well as organising a directory structure per iteration.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 38

2.2.3.2 Details of MR jobs

Analysing each Gibbs step from appendix A with these instruments, we can establish
table 2.1, where the inputs and outputs of each MR job are formalised.

The table starts with the initialisation job MR0 which turns the initial text corpus
into a set of Sentence objects, and is not part of the MCMC iterations. Each sentence
from the training corpus has an identi�er which is used as the key when the input to
further MR jobs is Σ.

The table counts output from MR4 serves as input for the rebreak step, which is
not a MR job. This is the only case in which data is reformatted, namely from part-�le
data format into a HDFS �le.

MR jobs in table 2.1 fall into the following types:

map-only job (MR0, MR4, MR5, MRCleanupUnusedStates) This corresponds to an
MR job which does not need a reducer. In that case the map’s output stays on
the slave nodes in part-�le form, where it was generated, and is available for a
subsequent map operation to run on.

summator reducer (MR1, MR2) This very basic and generic reducer will accept
< K2, V2 > with V2 a numeric input, sum the numeric values, and return
< K2,

∑
V2 >. Often, the numeric input is simply 1, so the summator per-

forms a count.

single reducer (MR1a, MR2a) Directing all the mapper output to a single reducer is
possible: just set all K2 to have a unique value, e.g. the numeric value 1. This
might be necessary because the reducer needs to see all the intermediate data to
run. This assumes that it is computationally e�cient to require a single reducer
to process the output of all mappers.

no-output reducer (MRMarkUsedStates) When the MR output of a reducer is not
meant to be used as the MR input of a further mapper, the reducer may have no
MR output (i.e. no < K3, V3 > data), but instead write a piece of data directly
to HDFS.

multiple reducer output types (mixed stream) (MR3) The need for V3 to be of
heterogeneous types may arise and requires workarounds to run with Ha-
doop23. Typically, di�erent V3 types are encapsulated into one single wrapper,
or carrier, type. In a subsequent stage of processing, the wrapper is decapsu-
lated according to the type of its content.
This issue does not arise in the single reducer case: since it is alone, the reducer
can choose to output one main V3 type as part-�les, and write other output data
directly to the distributed �le system.

23This is due to map and reduce functions being implemented as Java functions. Java is statically typed,
so that the input and output types are static throughout program execution.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 39

2.2.3.3 Dependency diagram

Because the Gibbs steps do not depend on each other cyclically on purpose, one entire
Gibbs iteration is realised by executing all these MR jobs in the order in which we have
presented them so far. It proves useful for the design of the system to stay aware of
the dependencies between MR jobs caused by input and output requirements. The
best instrument for this purpose is a dependency graph (�gure 2.2.1) of the MR jobs,
in which we can represent the MR jobs, their dependencies, and the data streams.
This diagram is read from top to bottom: the iteration input data (the (sentences, β)
tuple) is found, in updated form, as the iteration output data. This is the only data
passed between MCMC iterations. Note that the driver program, the one which is
initially invoked, which contains the MCMC for-loop, and which calls all MR jobs in
turn, runs on the master node.

2.2.4 MR job latency

As mentioned in the introduction to the present chapter, the reason why our task
quali�es as “big data”, and therefore the justi�cation for turning to a MR framework,
is the computing load, not the size of the data per se. Indeed all the source data (the
Wall Street Journal corpus, cf. section 2.3.1 for a description), as well as intermediate
data produced by single steps of the algorithm, �ts on a single node. However, the
computation needed for a single MCMC step on the full dataset (cf. section 2.3.1) on
a 4-core machine is around 280 sec (cf. section 2.3 and table 2.2), making running the
MCMC chain for several thousands of iterations, as seems needed by the model (cf.
Van Gael et al. (2009)), prohibitive. We are therefore in a situation where we wish to
accelerate a long computation by distributing it over several nodes.

A major contribution to the latency per MCMC iteration turned out to be MR job
startup and teardown time (also cf. section 2.3). This did not appear initially because
constant improvements on other aspects seemed to indicate that iteration duration
could be reduced to an acceptable value.

Here is a summary of measures which were taken to optimise MR job latency.

• data exchanged between MR jobs within an iteration must be written to HDFS:
The initial prototype was writing to AWS S3, generating extra latency and costs
(S3 writes get billed, while cluster-internal HDFS writes are free). The latency
impact turned out to be minor.

• JVM re-use: Hadoop by default restarts a JVM for each task, even when they
run on the same node. It is possible to run tasks on the same node. However,
JVM re-use is always among tasks of a single job. Tasks belonging to separate
jobs (consequently also to separate iterations) are always executed on separate
JVMs. Therefore this feature could not be exploited.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 40

Ta
bl

e
2.1

:S
tru

ct
ur

e
of

m
ap

-r
ed

uc
e

jo
bs

ke
y

va
lu

e
re

m
ar

k
K1

,V
1

se
nt

en
ce

ke
y

co
rp

us
lin

e
M

R0
K2

,V
2

se
nt

en
ce

ke
y

se
nt

en
ce

K3
,V

3
m

ap
-o

nl
y

jo
b

K1
,V

1
se

nt
en

ce
ke

y
se

nt
en

ce
M

R1
K2

,V
2

(fr
om

,t
o)

pa
ir

1
su

m
m

at
or

re
du

ce
r

K3
,V

3
(fr

om
,t

o)
pa

ir
#t

ra
ns

iti
on

s
K1

,V
1

se
nt

en
ce

ke
y

M
R2

K2
,V

2
(st

at
e,

to
ke

n)
1

su
m

m
at

or
re

du
ce

r
K3

,V
3

(st
at

e,
to

ke
n)

#e
m

iss
io

ns
K1

,V
1

(fr
om

,t
o)

pa
ir

#t
ra

ns
iti

on
s

th
is

is
eq

ui
va

le
nt

to
pa

ss
in

g
th

e
en

tir
e

sp
ar

se
tra

ns
iti

on
co

un
tm

at
rix

M
R1

a
K2

,V
2

1
(fr

om
,t

o,
#t

ra
ns

iti
on

s)
sin

gl
e

re
du

ce
r

K3
,V

3
-

-
re

du
ce

ro
ut

pu
tw

rit
te

n
di

re
ct

ly
to

H
D

FS
(π

)
K1

,V
1

(st
at

e,
to

ke
n)

pa
ir

#e
m

iss
io

ns
th

is
is

eq
ui

va
le

nt
to

pa
ss

in
g

th
e

en
tir

e
sp

ar
se

em
iss

io
n

co
un

tm
at

rix
M

R2
a

K2
,V

2
1

(st
at

e,
to

ke
n,

#e
m

iss
io

ns
)

sin
gl

e
re

du
ce

r
K3

,V
3

-
-

re
du

ce
ro

ut
pu

tw
rit

te
n

di
re

ct
ly

to
H

D
FS

(φ
)

K1
,V

1
se

nt
en

ce
ke

y
se

nt
en

ce
M

R3
K2

,V
2

1
or

se
nt

en
ce

ke
y

�o
at

re
sp

.s
en

te
nc

e
w

ith
au

xi
lia

ry
va

ria
bl

es
m

ix
ed

st
re

am
K3

,V
3

se
nt

en
ce

ke
y

se
nt

en
ce

w
ith

au
xi

lia
ry

va
ria

bl
es

K1
,V

1
(st

at
e,

to
ke

n)
pa

ir
#e

m
iss

io
ns

th
is

is
eq

ui
va

le
nt

to
pa

ss
in

g
th

e
en

tir
e

sp
ar

se
em

iss
io

n
co

un
tm

at
rix

M
R4

K2
,V

2
(fr

om
,t

o)
pa

ir
#t

ab
le

s
th

is
is

eq
ui

va
le

nt
to

pa
ss

in
g

th
e

en
tir

e
sp

ar
se

ta
bl

e
co

un
tm

at
rix

K3
,V

3
m

ap
-o

nl
y

jo
b

K1
,V

1
se

nt
en

ce
ke

y
se

nt
en

ce
w

ith
au

xi
lia

ry
va

ria
bl

es
M

R5
K2

,V
2

se
nt

en
ce

ke
y

se
nt

en
ce

w
ith

re
sa

m
pl

ed
st

at
es

K3
,V

3
m

ap
-o

nl
y

jo
b

K1
,V

1
se

nt
en

ce
ke

y
se

nt
en

ce
M

RM
ar

kU
se

dS
ta

te
s

K2
,V

2
1

us
ed

st
at

e
K3

,V
3

-
-

re
du

ce
ro

ut
pu

tw
rit

te
n

di
re

ct
ly

to
H

D
FS

(li
st

of
us

ed
st

at
es

)
K1

,V
1

se
nt

en
ce

ke
y

se
nt

en
ce

M
RC

le
an

up
Un

us
ed

St
at

es
K2

,V
2

se
nt

en
ce

ke
y

se
nt

en
ce

w
ith

re
nu

m
be

re
d

st
at

es
K3

,V
3

m
ap

-o
nl

y
jo

b

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 41

map-reduce
part-file

regular file

sentences

MR3

MR2 MR1

MR4MR1a
MR2a

MR5

MRCleanup

MRMark

rebreak

standard
process

resample β

cleanup β

β

β

used states

φ

π

ν

φ

β

π

sentences
(renumbered states)

sentences
+ aux vars

sentences
(new state seq)

emission counts
transition counts

table counts

β

map-reduce
process

Legend

Figure 2.2.1: Dependency diagram for one MCMC iteration. “Regular �les” are HDFS
�les. “Standard processes” are small tasks executed in-memory on the master node,
possibly as Java for-loops. There is a sequence of in-place modi�cations of the sen-
tences (represented in vertical alignment) which traverses the following jobs: MR3,
MR5, MRCleanupUsedStates.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 42

• JobControl parallelisation: this Hadoop option allows de�ning dependency
graphs of MR jobs. Implementing the entire iteration represented in �gure 2.2.1
as a dependency graph, as opposed to MR jobs called in program sequence,
hardly improved latency.

• map-only jobs: an initial implementation used an IdentityReducer which would
simply reproduce< K2, V2 > into< K3, V3 >, but we found the reducer could
be left out entirely. This improved the map-only MR jobs.

• set number of mappers per node: by default Hadoop starts several mappers per
node, as a preventive measure against mapper failure. This parameter was set
to one mapper per node.

• re-use Writable objects: the Writable object constructor is called several times
per map and reduce task. Instead of reconstructing the object, it can be reused,
and its properties modi�ed. This measure, found on a Hadoop performance
tuning blog, did not improve latency much.

Despite these measures, MR job startup and teardown latency remained long, on the
order of 10 to 20 sec per job24. Therefore, it seems opportune to re-examine the max-
imalist approach adopted so far, which consisted of formulating all possible steps as
MR jobs, resulting in nine such jobs per iteration, as seen in table 2.1.

To better understand their relevance, one should consider the cardinality of the
key-value data set on which each job operates.

Six MR jobs map over sentences, i.e. over the full training corpus. This data set
has the largest cardinality of all MR input data sets in our setup, on the order of 1e6 for
the text corpus we use in experiments in section 2.3. MR2a maps over the vocabulary
(cardinality of order 1e5); MR1a and MR4 map over realised (from, to) transition pairs
(cardinality at most the square of the total current number of states, i.e. on the order
of 1002 = 10 000).

Given that MR job latency is a limiting factor, it is not justi�ed to implement small-
cardinality Gibbs steps as MR jobs. To cut down on the number MR jobs, all but MR5
were turned into for-loops executed on the master node, as they are computationally
light. MR5 is both compute-intensive (it is a dynamic program) and data-intensive (it
maps over tokens), and consumes the largest part of total iteration computation time.

In our experiments, we implemented both variants: all steps as MR jobs and only
MR5 as an MR job (cf. section 2.3.2)

24This can be seen from table 2.2, in cases with very little data (N = 1000), so that the iteration time
is almost only dedicated to MR job startup and teardown. hadoop-1-* jobs have nine MR jobs per iteration,
hadoop-2-* jobs have one MR job per iteration.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 43

2.2.5 Use of a reference, non-distributed implementation

A successful model for turning a single-core algorithm into a map-reduce one was
given by the then early-stage Mahout project, in which several algorithms were pro-
grammed on Hadoop. Our work con�rmed that a particular design rule used in the
Mahout project proved to be of primary importance: starting from a reference, non-
distributed implementation of the algorithm25 .

Indeed, the typical path for distributing a machine learning algorithm, as described
by Gonzalez (2014), starts with a batch implementation, then maybe a sequential or
online learning version, followed by a parallel version, and eventually a distributed
version. At each step, the program often needs to be rewritten, new software archi-
tecture issues are solved, and testing, debugging, and optimisation take place.

While the answer of Gonzalez (2014) consists of new supporting technology, our
argument in this section is that improvements are brought about by systematically
starting from a reference implementation, then encapsulating algorithmic sections
into independent functions, which can be tested, typically with unit and functional
tests; and �nally writing the map-reduce driver program and individual jobs, where
each job reuses procedures from the reference implementation.

This approach brings the following advantages.
In maintenance terms, rewriting a speci�c algorithmic function, for performance

or correctness, is made simple as each is packaged in a modular form. To validate
and tune input/ output format, readers/ writers, and their compatibility across MR
jobs, development and debugging on the reference implementation does not incur
network latencies on the cluster. Evolving the program continuously from the original
implementation reduces the likelihood of introducing bugs.

Many of these advantages are rooted in the fact that debugging, monitoring
and logging on the map-reduce cluster is tedious. Hadoop 0.18.3 o�ered a rather
complete web interface for a running job to read text logs on slave nodes, per task.
However, the development “loop” time, i.e. the time between modifying source code,
compiling and deploying the application, running a session, and obtaining logs, lied
at about 2 or 3 minutes per cycle. This is long compared to development on a single
processor, where such time is usually reduced to seconds. (Despite major advance-
ments since this research was carried out, debugging on a cluster remains much more
complex and time-consuming than on a single machine). Causes for this state of af-
fairs are numerous: for instance each worker’s Hadoop con�guration still requires
e�ort (such as passphrase-less SSH on localhost, customising logging into the dis-
tributed �lesystem HDFS), while the reference implementation instead is a standard

25The reference implementation must be in the same language (Java in our case) as the map-reduce
implementation, to avoid bugs introduced while porting from one language to the other. In our case, the
research work started by porting the Matlab implementation used for Van Gael et al. (2008) to Java, using
Mahout linear algebra primitives. This phase proved easy.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 44

Java program with a main method, which supported all debugging functions of the
IDE (integrated development environment) (Eclipse), such as step-by-step execution
or variable inspection.

These remarks relate to debugging code written by the algorithm developer, not
platform or library bugs. As a matter of fact, our research project was a�ected by two
system-level AEMR bugs which we uncovered. The �rst bug consisted of gradually
slowing down each iteration’s execution time, and manifested itself as a memory leak
diagnosed by an Amazon system engineer. This is disturbing because JVMs are re-
started between MR jobs, and was attributed to the high number of intermediate �les
produced when all Gibbs steps are implemented as MR jobs. The second bug consisted
of a sudden crash of the master node after several thousand iterations, leaving only
a short error message. This problem had rarely been encountered before, and had no
resolution known to the Amazon team which accompanied the project. Both bugs
were unsolved, and blocking for a large-scale deployment, when this project ended.
These two issues demonstrate the challenges linked to working with cutting-edge
systems such as AEMR and Hadoop.

2.3 Experiments

The core motivation behind these IHMM PoS tagging experiments was to run a
Bayesian non-parametric method on a large amount of data, in a distributed setting,
in the hope of observing continuously increasing NLP performance as more data was
added, along the lines of n-gram language model results using very large corpora
(Brants et al., 2007).

During the experimentation phase, an unexpected hurdle was met, however, in
the form of large startup overheads for each Gibbs sampling step. This meant that
running the MCMC chain for a time long enough to obtain NLP-relevant results was
practically out of reach with the established Hadoop infrastructure. As a consequence,
the focus of experimental evaluation shifted from NLP performance to the scaling
behaviour of the IHMM MCMC inference algorithm26.

2.3.1 Algorithm and data

The implemented algorithm, as described in the above section, was the same in all
settings. In particular, the initial value for K was �xed to 100, a value to which the
state cardinality converges as reported in Van Gael et al. (2009).

In all our experiments, the datasets were derived from the Wall Street Journal
(WSJ) part of the Penn Treebank, which is one of the standard corpora used in NLP

26This section was adapted from, and has been previously published as, Bratières et al. (2010b).

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 45

research. It consists of 1 million tokens of �nancial newswire text and it has been
labelled manually with PoS tags.

We extracted subsets of the WSJ dataset of sizes 1e3, 1e4 and 1e5 tokens (words).
Together with the full dataset of 1e6 tokens and a dataset with all sentences duplicated
10 times (1e7 tokens) we are covering a large range. Note that the dataset with 1e7 is
not interesting from a NLP point of view as it consists of duplicated data; nonetheless
the computational analysis remains valid.

As a sanity check, we evaluated the output of our distributed implementation
on the 1e5 subset of the WSJ and the performance in terms of VI (as discussed in
section 2.1.2) was 4.5 bits, roughly equivalent to the ones achieved by the parallel
implementation of Van Gael et al. (2009). It must be noted that these scores are not
strictly comparable due to di�erences in the dataset size.

To investigate the scaling behaviour of the training algorithm, the performance
indicator used in our result reports below consists of the duration of a Gibbs sampling
iteration (in seconds), averaged over 10 Gibbs sampling iterations.

2.3.2 Con�gurations

parallel is an implementation of the IHMM in .Net which uses multithreading on a 4-
core 2.4 GHz machine with 8GB of RAM. The implementations stems from Van Gael
et al. (2009).

hadoop-1 is an implementation of the IHMM on Hadoop, where each step of the
Gibbs iteration, as enumerated in appendix A and table 2.1, is implemented as map-
reduce. “Each step” means each operation which scales with the number of data points
N , the number of states K or the size of the vocabulary V . There are nine such jobs
per iteration, and MR0 is run only once after deployment.

hadoop-2 is like hadoop-1, except that only the most CPU-intensive step, namely
the dynamic program in MR5, was implemented as map-reduce. The other steps were
programmed as for-loops and carried out on the master node. hadoop-2 runs are du-
plicates of each other and illustrate the variance of the measurements.

hadoop-3 is exactly like hadoop-2 from the software point of view, but used di�er-
ent hardware, as described below.

The Hadoop experiments were implemented in Java using the Hadoop map-reduce
library. They ran on Amazon’s Elastic MapReduce computing cloud. For hadoop-1
experiments, they ran on clusters of di�erent sizes: each cluster had one master node
(the job tracker, in map-reduce terminology) and one or several slave nodes: 1, 2, 3, 4,
8 or 16 depending on the experiment. For hadoop-2 experiments, the cluster size was
kept constant: one master and one slave node. For both hadoop-1 and hadoop-2, we
used nodes of the Amazon “small” type (marked as S in table 2.2), i.e. 32-bit platforms
with one CPU equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor, 1.7

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 46

Figure 2.3.1: hadoop-1 experiments for selected data set sizes, with varying num-
bers of slave nodes (x-axis logarithmic). If total computational cost of an experiment
scaled linearly with the number of nodes (which is the optimum when distributing
computation over a cluster), the lines would run parallel to the dashed line. However,
they are more horizontal; this means that the Gibbs step duration does not decrease
as much as desired.

1.0 2.0 3.0 4.0 8.0 16.0
slave nodes

102

103

104

G
ib

bs
 s

te
p

du
ra

tio
n

(s
ec

)

data size 1000
data size 100000
data size 1000000
perfect scaling

GB of memory, with 160 GB storage. For hadoop-3, to discover the cluster size needed
to outperform the parallel setting, we resorted to Amazon “extra large” nodes (marked
as XL in table 2.2), 64-bit platforms with 8 virtual cores, each equivalent to 2.5 times
the reference 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor, 7 GB of memory, 1690
GB of storage.

In our experiments, the reducers perform very fast tasks, if any at all, while the
bulk of the computation is devoted to the mappers. When there are any reducers (i.e.
only in hadoop-1), they are distributed on the slaves nodes just like the mappers.

2.3.3 Results

Figures 2.3.1, 2.3.2 and 2.3.3 represent the duration (in seconds) of a single Gibbs it-
eration across di�erent settings against the range of data set sizes described above,
in section 2.3.1. The raw data used for the plots is in table 2.2. In the plots, each
point marker represents an experiment with a given software and hardware setting,
and a given data set size. The results matrix is sparse due to the fact that not all
combinations (setting, data set size) were run during the original experiments. Given
the dissatisfying results of the experiment, as explained below, no further e�ort was

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 47

Figure 2.3.2: All hadoop-2-{a...f} experiments are duplicates of one another. This
demonstrates that there is little variability between runs.

103 104 105 106

tokens

101

102

103

104

G
ib

bs
 s

te
p

du
ra

tio
n

(s
ec

)

duplicate hadoop-2-a
duplicate hadoop-2-b
duplicate hadoop-2-c
duplicate hadoop-2-d
duplicate hadoop-2-e
duplicate hadoop-2-f

Table 2.2: Duration of a single Gibbs sampling iteration, in seconds, according to the
experimental con�guration used.

da
ta

siz
e

pa
ra

lle
l

ha
do

op
-1

-1

ha
do

op
-1

-2

ha
do

op
-1

-3

ha
do

op
-1

-4

ha
do

op
-1

-8

ha
do

op
-1

-1
6

ha
do

op
-2

-a

ha
do

op
-2

-b

ha
do

op
-2

-c

ha
do

op
-2

-d

ha
do

op
-2

-e

ha
do

op
-2

-f

ha
do

op
-3

-1

ha
do

op
-3

-4

1 000 1 260 238 209 186 10 10 10
10 000 1 26 20 21 26
100 000 21 600 402 337 359 239 250 152 145 179

1 000 000 280 3179 1434 680 487 3390 1515 1877 368 141
10 000 000 3893 6910 1066

#slave nodes n/a 1 2 3 4 8 16 1 1 1 1 1 1 1 4
AEMR machine n/a S S S S S S S S S S S S XL XL

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 48

Figure 2.3.3: All experiments in the same plot. The general scaling trend follows that
of the parallel setup. Increasing data size even further than what was tested here,
we expect that hadoop-1 and hadoop-2 setups will become faster than the parallel
setup. However, the point where e.g. lines for experiments hadoop-1-8 and parallel
intersect seems several orders of magnitude above present experiments. The hadoop-
3 experiments demonstrate a setup which beats the parallel setup, using distribution
and more powerful slave nodes.

103 104 105 106 107

tokens

100

101

102

103

104

105

G
ib

bs
 s

te
p

du
ra

tio
n

(s
ec

)

parallel
hadoop-1-1
hadoop-1-2
hadoop-1-3
hadoop-1-4
hadoop-1-8
hadoop-1-16
hadoop-2-a
hadoop-2-b
hadoop-2-c
hadoop-2-d
hadoop-2-e
hadoop-2-f
hadoop-3-1
hadoop-3-4
perfect scaling

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 49

invested into �lling the gaps.
log-log representation implies that an increase in computing cost linear with the

number of data points should be re�ected in a line. This is indeed the general trend
of all experiments. The initially �atter slope of some curves re�ects the overhead of
parts of the algorithm, or parts of the distribution process, which do not scale linearly
with the data size.

The parallel implementation scales almost perfectly with data size, but cannot ac-
commodate data sizes beyond those shown, i.e. from 10 million data points onwards,
because it is entirely memory-based (and therefore incurs no disk I/O costs). It is
therefore necessary, for large datasets, to resort to the distributed implementations.

hadoop-1’s performance does not scale well with the number of nodes. This im-
plementation, where each Gibbs iteration contains 9 map-reduce jobs, is apparently
badly suited to a Hadoop implementation because of the heavy overhead each map-
reduce job incurs: about 20 seconds (with almost no data to move) notwithstanding
the number of nodes it runs on.

hadoop-2’s performance is much better than that of hadoop-1, because it contains
only one map-reduce job, and does not su�er from the large overhead e�ect. It there-
fore scales well with the amount of data.

The isolated hadoop-3 experiments used hardware which is comparable with the
parallel experiment, and demonstrate a speed-up when running from a cluster of 4
machines (experiment hadoop-3-4).

Overall, none of the hadoop-1 and hadoop-2 implementations were faster, in abso-
lute terms, than parallel for the data sizes demonstrated here. It is true that parallel
experiments used a more powerful CPU than the hadoop-1 and -2 experiments, but the
bulk of the performance gap is due to the overhead incurred by individual map-reduce
jobs.

Adopting a broader perspective, this is also the main takeaway from these exper-
iments: despite demonstrating some scaling speed-up, the overhead due to each MR
job does not scale, and prevents running MCMC chains of length typical of machine
learning applications, with many thousands of iterations. We now discuss this issue
more thoroughly.

2.4 Iterative map-reduce

The initial goal of this project was to reproduce the experiments of Van Gael et al.
(2009) on a distributed map-reduce platform, and then observe near-linear accelera-
tion as the number of workers was increased. An important result of our research
shows that this was not the case with typical platforms such as Hadoop and Amazon
Elastic MapReduce.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 50

The crucial issue, not widely acknowledged at the time of our experiments, proved
to be running map-reduce iteratively. In this section, we o�er insights into how this
issue came to be understood in the years since, and how it lies at the root of the
progressive demise of map-reduce in favour of distributed computing frameworks
which support not only iterative �ow control, but general computational dependency
graphs.

It is legitimate to wonder “if we were to restart this project today, what should
change?”. A fresh look on continuation plans made at the time (involving the Twister
platform), and an analysis of existing options today (section 2.4.2) leads us to propose
Apache Spark as a platform of choice today27.

2.4.1 Understanding of the issue in the community

Iterative map-reduce is challenging. The core issue is that map-reduce (and the Ha-
doop implementation is no exception) has no provision for loops; operators are lim-
ited to map, shu�e, and reduce. Iteration must be controlled by an external driver
program which in turn calls the map-reduce framework.

This entails a number of performance-degrading consequences:

• job startup costs (“tens of seconds”, con�rms Lin (2012); we found a value of
10 to 20 sec): the machine processes embedding map and reduce operations are
not assumed to pre-exist the map-reduce job, and are restarted from scratch. In
Hadoop, this implies restarting the JVM, loading libraries, con�guring the jobs.

• data repartitioning: in our case, all the data �ts on every worker node, and
we are exempt of this issue, but in general, data needs to be repartitioned and
transmitted to the mapper or reducer. In iterative situations, in many cases, the
data assigned to a mapper stays the same across iterations.

• job synchronicity: the slowest reducer (“straggler”) determines the duration of
the entire map-reduce job. In an iterative setting, this induces poor cluster usage
since the faster nodes are idle while the straggler �nishes. This situation per-
sists in synchronous iterative algorithms such as ours, but not in asynchronous
settings, such as asynchronous MCMC (cf. section 2.5).

Algorithms which can be distributed with Hadoop map-reduce include those with
tens or at most hundreds of iterations, such as expectation-maximisation, Lloyd’s
algorithm for k-means, iterative graph algorithms like PageRank, optimisation al-
gorithms such as gradient descent. With MCMC algorithms, easily running into the

27It is not clear that moving back to a parallel setting and using GPUs would help, given that (a) the
HDP-HMM training algorithm is inherently sequential, and that (b) the length of matrices we manipulate
is at most the number of states (on the order of a few hundred at most), which is small for the current GPU
generation.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 51

thousands of iterations, the problem of incompressible per-iteration computational
cost is exacerbated.

We published our �ndings, not yet widely acknowledged in the distributed ma-
chine learning community, in (Bratières et al., 2010a,b). In the following years, these
�ndings were echoed in the literature, to the point that they became commonplace
in discussions about Hadoop and map-reduce. Researchers and practitioners ran into
the same issues time and again, and agreed with our �ndings. To present the gradual
understanding of the issue in the community in context, let us go through a couple of
examples of such statements, in chronological order.

• Panda et al. (2009), section 6 “Engineering issues”: [...] we encountered several
unanticipated challenges. First, because MapReduce was not intended to be used
for highly iterative procedures like tree learning, we found that MapReduce start
up and tear down costs were primary performance bottlenecks.28

• Bekkerman et al. (2012), section 12.3.1, page 246: [...] MapReduce is suitable for
non-iterative algorithms [...]

• Agarwal et al. (2012), section 2: However, the [MapReduce] abstraction is rather
ill-suited for machine learning algorithms [...], because it does not easily allow
iterative algorithms, such as typical optimization algorithms [...]

• Rosen et al. (2013), abstract: It is now widely recognized that while MapReduce
is highly scalable, it su�ers from a critical weakness for machine learning: it does
not support iteration.

• Sculley et al. (2015), section 5, “Abstraction debts”: Indeed, one of the few areas
of broad agreement in recent years appears to be that Map-Reduce is a poor ab-
straction for iterative ML algorithms.

The progression of certainty in these statements is telling of the increasing awareness
of the issues surrounding iterative map-reduce.

2.4.2 Fixing iterative map-reduce: today’s perspective

Answers to the problem, with special attention to Hadoop, came in di�erent guises.
At the �rst level, one can con�gure Hadoop as best as possible to cope; this was

our approach, as illustrated above in section 2.2.5.
At the second level, one can try to turn the problem into an non-iterative al-

gorithm, an approach advocated by Lin (2012). We did not follow this route as we
were interested in a speci�c MCMC algorithm for IHMM training.

28To work around the issue during the course of their project, the authors applied extra task scheduling
tricks : jobs are started before they are needed, and stay idle until they are required. While this shortens the
runtime of each individual job, this technique does not reduce the runtime of the entire loop, as it merely
shifts workload in time.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 52

At the third level, one can port the code to another framework than Hadoop, which
inevitably lacks the traction, maturity, community expertise around Hadoop. We can
divide such frameworks in frameworks which maintain the map-reduce framework,
on the one hand, and frameworks based on more general or di�erent computational
concepts, on the other hand. The former are becoming increasingly marginal, while
the latter started developing in the footsteps of map-reduce and Hadoop, and are still
expanding in scope, performance and supported platforms (e.g. nowadays GPUs are
becoming a relevant target platform). We now examine each of these two categories
in turn.

2.4.2.1 Adapted map-reduce frameworks

HaLoop (Bu et al., 2010) modi�es the Hadoop code to introduce an iteration con-
trol to the Hadoop master node. It avoids data transfer latency by leaving data on a
node across iterations when possible, by caching. It distinguishes data which changes
across iterations from data which does not. Peregrine29, a Java open-source project
which ran until 2012 before being abandoned, was addressing the same issues, with
design ideas close to Pregel (cf. below).

iHadoop (Elnikety et al., 2011) addresses the task scheduling issue of iterative map-
reduce (synchronicity exposes to straggler latency) by introducing asynchronous it-
erations and tentative execution, where possible: nodes which are done with their
computation start the next iteration before all nodes are �nished. This measure does
not apply when global parameters must be updated before the next iteration.

iMapReduce (Zhang et al., 2012) and i2MapReduce (Zhang et al., 2016b), deal with
this same issue. While iMapReduce targets use cases with one-to-one or one-to-all
mapper-to-reducer correspondence, i2MapReduce lifts this restriction. Both cache
loop-invariant data and exploit data locality.

The system described by Rosen et al. (2013) introduces loops as fundamental lan-
guage constructs. Loops contain chains of map-reduce and mapper-only30 operators,
where the �rst operator is constrained to take output generated by the last operator of
the chain, to make iterations possible. An optimiser deals with partitioning the data
and shu�ing intermediate results.

At the time of our project, we had set our eyes on Twister (Ekanayake et al., 2010)
31, a memory-stream-based map-reduce framework under development in 2009-2010
at the University of Indiana, as part of a PhD thesis (development has ceased since). To
support iterative constructs, job restarts are avoided, and data is kept alive in memory
between iterations. Like HaLoop, task scheduling favours data locality, and caches

29http://peregrine_mapreduce.bitbucket.org
30named “sequential” in the paper
31The authors, in a smart move in the light of later developments documented section 2.4, had secured

the domain name http://www.iterativemapreduce.org/ in November 2009 already.

http://peregrine_mapreduce.bitbucket.org
http://www.iterativemapreduce.org/

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 53

static data. Twister is much more lightweight than Hadoop. It o�ers no distributed
�le system (data broadcasting and collection are command-line operations), no failure
recovery, no web-based monitoring interface. It never had a broad user base, and was
much less documented and tested than Hadoop. However, at the time, we had direct
access to Twister’s developers, it ran on Amazon EC2 (which meant we could export
at least some of our experience), it is a Java application (which meant we could re-use
the reference implementation), it had demonstrated high performance in tests, due to
its simplicity it would have been easier to �x platform errors than with Hadoop, and
�nally, it seemed deliberately designed for iterative map-reduce algorithms.

I was awarded an Amazon AWS Education grant of EC2 credits to implement
my project on Twister, but the project was abandoned, considering that this would
have made more of a distributed computing and software engineering project than a
machine learning one, and was therefore ill-adapted to the purpose of this thesis.

2.4.2.2 Beyond map-reduce

In the second category, several platforms for distributed machine learning, based on
di�erent computational concepts than map-reduce, have appeared.

For instance, Pregel (Malewicz et al., 2010) is a message-passing, graph comput-
ing operator. It implements the bulk-synchronous parallel model (Valiant, 1990).
In this model, the graph topology is central; computations consist of aggregating
vertex-incoming messages, and distributing outgoing messages. Implementations like
Giraph or Apache Spark’s GraphX work optimally when the graph structure is kept
in memory. The popular injunction to the programmer working with graph-centric
platforms is “think like a vertex!” — underlining that they place the burden of formu-
lating the algorithm of interest as message-passing on the programmer. Clearly, cer-
tain classes of algorithms can be more easily formulated as vertex-oriented message-
passing algorithms than others. While implementing iterative map-reduce on Pregel
is no doubt possible (by seeing mappers and reducers as vertices, and taking care of
the messages they need to pass to each other), it is not a natural programming model.

It is worth mentioning that as of this writing, Hadoop has outgrown its 2010 de-
scription of a map-reduce implementation. It is now a complete stack, with important
pieces such as its �le system HDFS, the resource management and scheduling platform
Yarn, and a large ecosystem of other libraries developed under the aegis of the Apache
Foundation. Similarly, Mahout has evolved from a collection of machine learning al-
gorithms using Hadoop as its map-reduce backend, to deprecating the map-reduce
concept32 in 2014 and o�ering an R-like domain-speci�c language running under a
variety of backends (Apache Spark, H2O, Apache Flink).

Frameworks centring on a distributed implementation of computational graphs,
32https://issues.apache.org/jira/browse/MAHOUT-1510GoodbyeMapReduce

https://issues.apache.org/jira/browse/MAHOUT-1510 Goodbye MapReduce

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 54

like Microsoft Dryad (Isard et al., 2007), or the open-source Apache Spark (Zaharia
et al., 2010) appeared after map-reduce had registered some successes, but also had
started to show shortcomings, speci�cally for iterative tasks as outlined above, and
after the need for more elaborate distributed frameworks had become apparent.

These frameworks function in similar ways: the programmer starts by describing
the computations to perform on the data in a high-level idiom, which may be a gen-
eral purpose programming language, like Scala (Spark) or a .Net language (Dryad), or
a domain-speci�c language (LINQ for DryadLINQ (Yu et al., 2008)). An optimisation
engine casts the execution jobs as a directed acyclic graph, and takes care of distrib-
uting the computation, which can be con�gured by the programmer to some extent.
Task-speci�c operations are supplied as user-de�ned functions.

The dominant platform for distributed machine learning now is Apache Spark (Za-
haria et al., 2010), which originated in 2009 at the University of California at Berkeley
and was open-sourced in 2010. Spark uses immutable data containers as base ob-
jects33, which should �t in memory for optimal execution. It o�ers operators for data
transformations (map, �lter, sample, union, group) and aggregation actions (reduce
and variants). It also incorporates a graph computation library, GraphX, mentioned
above. Spark has proven very popular and enduring, has seen a large community
grow around it, has matured to its version 1.0 in 2014 and 2.0 in 2016, and is probably
the platform we would choose today if we were to re-implement these experiments.
In addition, Spark has been adopted as a managed service by many commercial cloud
o�erings.

2.5 Review of the state of the art for distributed
probabilistic inference

We present a review of the state of the art of distributed inference for probabilistic
models, with special consideration to NPB models and MCMC methods. This section
situates our research project within a larger context, and illustrates the research land-
scape both before and after our research was conducted. We will �rst discuss schemes
in which a single MCMC step should be distributed, before moving on to approaches
which run several MCMC chains in parallel. The last part of our discussion centres
around clustering models, both parametric and Dirichlet-process-based, and �nally
the IHMM.

Many ideas for distributed inference in probabilistic models are actually generic to
distributed computing in general. This is the case of the synchronous vs. asynchron-
ous distinction, common to inference schemes which can be formulated iteratively

33named “resilient distributed datasets” (RDD) in Spark parlance; these are wrapped by DataFrames in
Spark 2.0, which support streaming data, and appear like RDD with unbounded rows

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 55

(sampling approaches, variational approaches, exact or approximate message passing
approaches).

For example, consider an MCMC chain in which every MCMC step is compu-
tationally demanding and needs to be distributed. This could be the case of Gibbs
sampling in a mixture model with K clusters and N data points. Typically, we will
want to map over the dataset, because N is large, and the dataset may not �t on
one single worker node; but in general terms, the advisable distributed architecture
is dictated by the speci�cs of the task, including characteristics of the data, and more
speci�cally the dimension or parameter which can be iterated or mapped over.

The most natural algorithm in this example consists of iterating two Gibbs steps:
in the �rst step, the algorithm maps over data points in worker nodes, and updates the
cluster assignments; in the second step, it collects the cluster parameters on the master
node based on current assignments. At the end of the iteration, the cluster parameters
are synchronised, which is why the scheme is characterised as synchronous. As a
drawback, the master node must wait for the iteration’s slowest node each time, which
introduces a bottleneck. In addition, at larger scales, the central aggregation step may
become infeasible on a single machine.

Asynchronous approximate methods were developed to counter these e�ects.
Their approximation can often be characterised as treating a local subgraph’s stat-
istics, parameters, or messages as if they were the entire model’s, so that algorithms
do not maintain a central copy of the parameters, but decentralised copies. In block-
synchronous schemes, blocks stay synchronous but the whole model does not. In
window-synchronous schemes for MCMC, synchronicity of parameters is preserved
“in the long run” over several iterations, by allowing a forward or backward lag
between samples from di�erent blocks, with regular synchronisation steps. While
asynchronous schemes pose a convergence issue in general, in the MCMC case this
surfaces as the fact that the stationary distribution is no longer the true posterior. Des-
pite this, (Asuncion et al., 2008; Newman et al., 2007) showed that, at least in certain
cases, statistics of interest converge rapidly to a robust estimate.

As mentioned, the synchronous vs. asynchronous distinction carries over outside
of MCMC inference. Synchronous and asynchronous approximate belief propagation
is distributed over very large undirected graphs in (Gonzalez et al., 2009), or factor
graphs in (Stern et al., 2009). Variational expectation-maximisation is also amenable
to distributed inference for mixture models (Kowalczyk and Vlassis, 2005), and for
LDA (Nallapati et al., 2007). The E step is a natural candidate for parallelisation, and
Wolfe et al. (2008) investigated how to distribute an M step which would exceed the
capacity of one compute node.

To conclude the discussion of the case where a single MCMC step needs to be dis-
tributed, some approaches34 are generic to Metropolis-Hastings, in contrast to meth-

34see Green et al. (2015), section 2.7, for a review

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 56

ods which distribute over a model-speci�c parameter. Brockwell (2006) suggests tent-
atively precomputing the next Metropolis-Hastings step without waiting for the cur-
rent step to terminate, by tentatively branching on the outcome of the accept/ reject
step; this procedure can be conducted several steps in the future by maintaining a tree
of outcomes. Calderhead (2014) suggests drawing several proposals instead of just
one, considering the index of the replica as an auxiliary variable. These approaches
take advantage of a parallel architecture to accelerate single MCMC chains, but since
they waste computation, they do not reduce the computational cost of each sample.

On the other hand, if the single MCMC step is fast enough, we can naïvely run
parallel independent MCMC chains on the full data, and combine their samples for
prediction; this approach is very natural, and requires that the chains mix well inde-
pendently. Similar approaches, inspired by particle �ltering, motivated Strid (2008);
Brockwell (2006); Wood and Gri�ths (2007).

Another strategy aims at increasing the number of samples produced per unit of
time on the entire distributed platform. Consensus Monte Carlo (Scott et al., 2016)35

and other methods cited by Green et al. (2015) suggest rewriting the posterior

p(parameters|data) =

R∏
r=1

pr(datar|parameters)p(parameters)1/R (2.5.1)

where data =
⋃R
r=1 datar is a partitioning of the data, and we split the prior over the

partitioning. Chain r runs on datar , each pr is estimated separately and combined as
a factor. A similar idea is explored by VanDerwerken and Schmidler (2013): instead
of partitioning the data, the parameter space is partitioned. The chains each explore
a portion of the parameter space; this raises the practical di�culty of partitioning the
space in the �rst place.

We now change our point of view and discuss distributed inference for speci�c
models, starting with clustering models.

Indeed, distributed inference for latent Dirichlet allocation (LDA) and its non-
parametric counterpart, hierarchical Dirichlet Process mixture modelling, had seen
considerable interest before our research. Wang et al. (2009) implemented a synchron-
ous approach for LDA, while (Asuncion et al., 2008; Newman et al., 2007) had syn-
chronous and asynchronous schemes. Asuncion et al. (2008) worked on asynchronous
MCMC for hierarchical Dirichlet Processes. The most compelling work on distributed
inference for NPB models before 2009 was Huang and Renals (2007): language model-
ling requires large text corpora to cover as many word combinations as possible, and
is therefore an application of interest for distributed machine learning; Huang and
Renals (2007) showed how a hierarchical Pitman-Yor language model trained over a
computing cluster outperforms traditional language modelling techniques (n-grams

35�rst published as Scott et al. (2013)

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 57

with accurate back-o� schemes).
The period since 2009 is covered by Qiu et al. (2014), which in its section 2 reviews

the di�erent implementations proposed in the meantime36: they vary in inference
method, be it variational learning, or synchronous and asynchronous MCMC, and in
the underlying backend, be it multi-core CPUs, map-reduce, MPI, GraphLab or GPUs.

A related line of research (Lovell et al. (2012); Williamson et al. (2013); Dubey et al.
(2014); Williamson et al. (2015)) focuses on parallel MCMC implementations of DP-
based non-parametric Bayesian models, building on an auxiliary variable formulation
(and accompanying independence properties) of DP models. Williamson et al. (2013)
introduces the auxiliary variable formulation used in the subsequent papers. The key
remark is that a DP mixture model is a Dirichlet mixture of DP models. Using this
equivalence, the mixture assignments in the latter model can be made an auxiliary
variable. Hence, in a Gibbs sampling algorithm, conditional on the mixture assign-
ments, one part of the computation is local to data assigned to that mixture; the other
part of the computation is global and requires resampling the mixture assignments
(and potentially moving around the data corresponding to newly assigned data points,
in case the entire dataset does not �t on each worker). The cited references extend this
construction to HDP, PY and HPY processes. An issue with this approach, analysed
in Gal and Ghahramani (2014), is that the allocation of data to worker nodes is unbal-
anced and may make the algorithm impractical. (In fact, the issue is more general and
applies to distributed inference overall, suggesting several questions: how must data
and computation be mapped onto the cluster topology? Instead of the naïve “uni-
formly at random” scheme, should data move adaptively across the cluster to form
similarity blocks which enhance the approximation? Are there smarter distribution
schemes?)

Finally, we return to the IHMM.
To our knowledge, there have not been other e�orts to parallelise the IHMM since

the research described in this chapter. Interacting particle Gibbs MCMC (Rainforth
et al., 2016), a variant of particle Gibbs MCMC used in Tripuraneni et al. (2015) as a
building block for IHMM inference, can, in essence, run di�erent particles on paral-
lel workers; yet it is hard to imagine applying this to the IHMM, as it would require
parallelising the state sampling step of each sequence. In applications with many
sequences like ours, the computational cost of a single such step vanishes when com-
pared to the overall computational cost, therefore parallelising it would presumably
bring more overhead than savings.

There have been recent developments in inference methods for the IHMM since
the beam sampling approach of Van Gael et al. (2008), but these have not been distrib-

36It ignores Zhai et al. (2012), which is based on variational inference. Note that by picking Apache
Mahout’s very basic inbuilt LDA implementation, it chooses a weak opponent in its benchmark; the choice
is presumably motivated by the fact that it is another map-reduce VB algorithm.

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 58

uted. Rather than attempting to review them here, we will refer the interested reader
to the engaging discussion in Tripuraneni et al. (2015), section 1 and appendix C, for
sampling schemes, and Zhang et al. (2016a) for variational schemes.

2.6 Conclusion

This work’s main contributions are the following:

• the Gibbs sampling training algorithm for an important non-parametric model,
the in�nite HMM, was adapted to the map-reduce distributed computing
paradigm

• in particular, a Java implementation based on Mahout and Hadoop was pro-
duced

• the distributed implementation was compared experimentally to a parallel im-
plementation

• the lessons learnt during development, deployment and debugging were ana-
lysed

• the current state of the art on iterative map-reduce and distributed MCMC
methods was summarised, addressing the issues encountered in this project

Can we characterise to which class of problems the distributed inference strategy
exposed in this chapter is applicable?

We distribute single Gibbs sampling steps within each MCMC iteration. In par-
ticular, the most computationally intensive step, referred to as MR5 above, which
consists of sampling a new state sequence, is data-parallel. Therefore, while the or-
der of Gibbs sampling operations and MCMC both computationally sequential due to
their dependence on previous computations, the �rst level at which we can distrib-
ute computation is within single Gibbs steps. Our strategy is therefore applicable to
problems in which individual MCMC iterations are computational bottlenecks, but
where the mixing behaviour is good, that is, where we do not require on the order
of millions of MCMC iterations. Future work could explore other strategies reviewed
in section 2.5, such as running slow MCMC steps on a single node each, but drawing
several new posterior samples (e.g. by using di�erent random seeds) starting from a
select previous sample; this procedure would be bene�cial once the chain has mixed,
to obtain more posterior sample than from running a simple chain.

To our knowledge, no other work has attempted to apply the IHMM to large-
scale datasets on a distributed platform since our work. This research question thus
remains unanswered. It is worth considering a follow-up project in which the IHMM
training procedure would run on Apache Spark on a public cloud, running widespread

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 59

operating systems and software, on publicly available large-scale text data. Our Java
implementation could be partially re-used.

For this follow-up project for the IHMM, should the application still be PoS tag-
ging? If so, considering the increase in computational capacity of cloud platforms, we
would consider moving from a corpus with one million tokens such as the WSJ to e.g.
English Wikipedia (currently 3 billions of words37).

Without looking into alternative applications at this point, let us reformulate this
question in two ways: �rstly, is it fair to consider the IHMM clusters as PoS tags
at all? Secondly, assuming that IHMM-based, or more broadly, HMM-based models
are viable for PoS induction, as the NLP community seems to do, is the large-scale
application of the IHMM promising for this purpose?

From a fundamental point of view, it is surprising that while PoS tags are in large
part just syntactic classes (determinants, prepositions, modal verbs) which determine
long-range structure, current unsupervised PoS tagging models are limited to very
local dependency structures such as the bigram conditionals found in HMM. That
is, syntax beyond the immediate neighbours is not taken into account, and certainly
no hierarchical (parse tree) information is. This prompts the suggestion that IHMM
states in our experiments might not be best thought of as PoS tags. Indeed, they are
probably better characterised as clusters of words with similar distributional proper-
ties based on �rst-order Markov dependencies. In fact, an early language modelling
paper, Brown et al. (1992), which used several methods to cluster words into groups
based on their distributional properties, found many di�erent types of classes and
mixes of classes: semantic, topical, syntactic, genre-related, co-occurrence, natural
classes (“January February etc.”, “daily monthly quarterly periodic etc.”). Interest-
ingly, a benchmark (Christodoulopoulos et al., 2010) shows this model to perform
better than others, when used to bootstrap a prototype-based unsupervised PoS in-
duction model. Considering the types of clusters which are found by the Brown et al.
(1992) model, the IHMM could be considered a class-based language modelling device,
with a Markov constraint on class transitions, and with in-class emission probabilit-
ies de�ned (in our current model) by a multinomial observation probability. These
remarks all put the use of IHMM for unsupervised PoS learning into question.

Considering the second question, the same benchmark (Christodoulopoulos et al.,
2010) suggests that the IHMM would not fare particularly well among available meth-
ods38 on the standard corpus for PoS tagging, the Wall Street Journal corpus.

All this seems to discourage from conserving the PoS tagging task for a rerun
of this project; and to turn to other tasks based on sequence observations, such as
activity recognition or change point detection, for example. On the other hand, it

37https://en.wikipedia.org/wiki/Wikipedia:Size_comparisons
38This study did not run the IHMM code, unfortunately, cf. its footnote 2. However, results reported on

the IHMM do not seem to top the benchmark.

https://en.wikipedia.org/wiki/Wikipedia:Size_comparisons

CHAPTER 2. MAP-REDUCE INFERENCE FOR THE INFINITE HMM 60

might well be that the competing methods, all of which are parametric, have seen
their inductive bias engineered so as to perform well on currently accessible corpus
sizes, while non-parametric models still have potential on larger corpora, at scales
where the performance of parametric models saturates.

Chapter 3

Discriminative models for
structured output prediction

3.1 From generative to discriminative modelling

The HMM is an example of a generative model, i.e. it models the full joint distribution
p(x, y), where x is generically some input, and y is the output. Generative models
have the advantage that, because they model the input, they can “impute” missing
data naturally, and can be used for simulation, by sampling from the joint distribution.

The remainder of this thesis is concerned exclusively with prediction and su-
pervised training, with models of the form p(y|x). This type of model is called a
conditional model, as it is conditional on the input; it is also called a discriminat-
ive model because it discriminates between outputs, and, in the case of classi�ca-
tion, can be thought of as modelling the boundary between classes. A generative
model would require p(x) so that we can produce p(x, y) = p(y|x)p(x). Yet for
prediction, the part p(x) of the model is useless. This follows from decision theory,
when considering the choice of a decision rule given some observed input x: if we
adopt the Bayesian approach, we will want to minimise the posterior expected loss
Ey|x[loss(predicting y under state of nature x)]1. As a consequence, we only need ac-
cess to p(y|x).

At this point, to provide some context, we can attempt to give a rather general
catalogue of predictors commonly used in supervised machine learning.

1. The most general type of predictor directly maps x 7→ y, such as linear binary
discriminant functions (of the form x 7→ sign(wTx), with w ∈ R a weight

1This is further motivated by the fact that it corresponds to minimising the Bayes risk
EyEx|y [loss(predicting y under state of nature x)], and that Bayes decision rules are admissible. Cf. dis-
cussions in Berger (1985), chapters 1 and 4, and Lehmann and Casella (1998).

61

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION62

vector) or rule-based systems, such as association rule learning.

2. Often, the decision is based on the maximisation of a score function s(x, y),
so that the predictor takes the form x 7→ arg maxy s(x, y); this covers many
non-probabilistic approaches to machine learning, such as linear predictors and
their kernelised variants, e.g. support vector machines, or voting schemes, e.g.
k-nearest-neighbours.

3. Probabilistic approaches typically separate inference, i.e. obtaining a conditional
model for p(y|x), from decision, which is the stage where the predictor or de-
cision rule comes into play, and which seeks to minimise the expected loss.
This separation is motivated by decision theory, and takes into account the loss
function. Often enough, 0-1 loss is used here, so that the predictor becomes the
maximum a posteriori decision rule, x 7→ arg maxy p(y|x).
Discriminative models are therefore the simplest class of probabilistic models.

4. Among probabilistic approaches, we �nd the generative models: they represent
p(y|x) as p(x,y)∑

y′ p(x,y
′) , and therefore model the joint distribution p(x, y). As a

consequence, they also model p(x).

Dispensing of a density model for x, as discriminative models do, gives a decisive
engineering advantage: we can represent x under the most diverse and most relevant
aspects, as a rich set of features; it would be hard to specify a distribution for these
features. When x is composed of text, for instance, features can be as diverse as:
capitalisation, location in a semantic net such as WordNet, membership of application-
speci�c word lists, morphological and in�ectional features, features of surrounding
words, position in a sentence, or even the output of some other machine learning
model, such as a word embedding or the hidden layer representation obtained from a
deep neural network.

As an alternative to maximum likelihood training, a popular parameter estima-
tion method for generative models is maximising the conditional likelihood p(y|x)

over the training set. This parameter estimation method ignores the p(x) term of the
distribution, and hence does not appear to maximise the correct likelihood term. Yet it
can be defended as an alternative to maximum likelihood parameter estimation by ar-
guing that the asymptotic consistency guarantees o�ered by e.g. maximum likelihood
or MAP training (with the use of the plug-in ML or MAP decision rule) break down
in case of model misspeci�cation, i.e. when the family of models under consideration
does not contain the true model. This approach is common in speech recognition
(Chou and Juang, 2003, chapters 1 to 3), machine translation (Andrés-Ferrer et al.,
2008) and many other applied �elds, and often called “discriminative training of a
generative model”2.

2These �elds, specially speech recognition, have seen a �ourish of alternative training methods which

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION63

Minka (2005) takes issue with this nomenclature and remarks that this procedure
actually consists of maximum likelihood or MAP training of a model which is de-
rived from the generative model. Building on this result, Lasserre and Bishop (2007);
Lasserre (2008) propose a method to construct hybrids of discriminative and generat-
ive models, leading to better predictive performance than either type in isolation.

The debate “discriminative or generative?” received the beginning of an answer
with Ng and Jordan (2001), which produced the intuitively appealing conclusion that
generative models would fare better in a small-data setting, while discriminative mod-
els would obtain higher accuracy with large datasets. This conclusion, however, was
put in question by later research (Xue and Titterington, 2008), which does not �nd a
clear cut regime change. Further theoretical research in the comparison and hybrid
models (Liang and Jordan, 2008; Xue and Titterington, 2009; Bouchard, 2007), as well
as many comparisons of discriminative and generative methods on a given problem,
are witness to the continuing interest in this question. A recent incarnation is found
in generative adversarial networks (Goodfellow et al., 2014), a neural network method
consisting of an adversarial con�guration of a generative and a discriminative model,
the latter working on the output of the former (here, however, the discriminative
problem is auxiliary to the main task).

3.2 A roadmap

While the previous section motivated conditional models from general considerations,
we would now like to discuss speci�cs of such models. Rather than presenting an un-
ordered catalogue of models, we have developed a synthetic, if partial, diagrammatic
view of models, their characteristics and relations, which we present here, and use as
a roadmap in the remainder of this chapter.

Figure 3.2.1 o�ers a panorama of discriminative models for the progressively
more complex tasks of regression (with output y ∈ R), binary classi�cation (y ∈
{+1,−1}), multi-class classi�cation (y ∈ R = {1, 2, ...R}), and �nally structured
output prediction (y ∈ Y , a structured set, for instance Y = RT for sequence la-
belling problems).

Each vertex of the graph could typically be illustrated by several models; we will
not comment on or name them all here, but instead provide references to a few rep-
resentative models.

This diagram is necessarily schematic: for instance, by only distinguishing “(fully)
Bayesian vs. not Bayesian”, we ignore learning principles: “not Bayesian” covers MAP
and ML, but also max-margin learning. In addition, while the “kernel” and “struc-
tured” axes refer to properties of the model, the “Bayesian” axis refers to the train-

try to get over the model misspeci�cation hurdle: minimum Bayes risk, maximum mutual information,
minimum phone or word error, to name but a few.

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION64

ing and inference procedure in probabilistic models, as discussed in section 3.4. As
a matter of fact, in the machine learning literature the distinction between model
and algorithms, i.e. the training procedure, is often blurred, unfortunately: “CRF”
often denotes the CRF model (which we introduce section 3.7) trained using max-
imum likelihood parameter estimation, implemented with some variant of gradient
descent. Similarly, the term “SVMstruct training” often implicitly refers not only to
the SVMstruct model, but to the 1-slack, margin rescaling, linear kernel, cutting plane
algorithm described in Joachims et al. (2009).

3.3 Illustrating the roadmap: linear regression

We will now illustrate how to move around this roadmap with an example based on
linear regression:

• input feature vectors3 are written x ∈ RD

• outputs are written y ∈ R

• training inputs {x1, . . .xN} are stacked (in transpose form) in matrix X ∈
RN×D

• training outputs are stacked in y ∈ RN

• test data is denoted by x∗, y∗

We adopt the following model: the output y is a noisy version of a latent variable,
with independent Gaussian noise. The latent variable is obtained from a linear model
parameterised by a weight vector w ∈ RD : it is xTw.

Thus
y ∼ N (f, β−1) (3.3.1)

where we note the inverse variance (a.k.a. precision) β. In this way, p(y|x,w) =

N (y|xTw, β−1).
To build a full Bayesian probabilistic model, we de�ne a prior over the weights,

e.g.:
w ∼ N (0,Σ) (3.3.2)

with the covariance matrix Σ symmetric positive de�nite of shape (D,D).
We wish to obtain the predictive distribution for new, unseen test points. Applying

the rules of probability, we can write

p(y∗|x∗,X,y) =

∫
p(y∗|x∗,���X,y,w)p(w|��x∗,X,y) dw (3.3.3)

3We represent inputs directly as feature vectors here, instead of making the feature extraction function,
usually written φ, explicit; this simpli�es notation. Otherwise we would have to write φ(x) ∈ RD instead
of x.

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION65
ke

rn
el

iz
ed

►

regression ► binary ► multi-class ► structured

◄
Bay

es
ian

kernel classifier
SVMbin

GP binary
classification

Bayesian linear
regression

Bayesian logistic
regression

kernel regression

logistic
regression

linear
regression

GP regression

GP multi-class
classification

multi-class logistic
regression

SVMstruct, M3N
KCRF (Altun, Lafferty)

SVMmc
(Crammer, Weston)

Bayesian multi-
class logistic
regression

CRF

BCRF

GPstruct

GP Gaussian process Rasmussen and Williams (2006)
GPbin GP binary classi�cation Rasmussen and Williams (2006)
GPmc GP multi-class classi�cation Williams and Barber (1998)
CRF conditional random �eld La�erty et al. (2001), and Sutton (2012) for a review
KCRF kernelised CRF La�erty et al. (2004), Altun et al. (2004a)
BCRF Bayesian CRF Qi et al. (2005)
M3N maximum-margin Markov network Taskar et al. (2004)
SVM support vector machine Schölkopf and Smola (2002)
SVMbin binary SVM Schölkopf and Smola (2002)
SVMmc multi-class SVM Weston and Watkins (1999), Crammer and Singer (2001)
SVMstruct structured SVM Tsochantaridis et al. (2005)
GPstruct structured GP classi�cation Bratières et al. (2015)

Figure 3.2.1: An overview of some discriminative models in supervised learning. (Au-
thor names in the �gure are included to distinguish several variants of a model)

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION66

where terms cancel because of the conditional independence properties of our model.
How to compute this integral? As a �rst approximation, we could apply the max-

imum a posteriori (MAP) learning principle: we approximate the integral by its value
in the point wMAP :

p(y∗|x∗,X,y) u p(y∗|x∗,wMAP) (3.3.4)

= N (y∗|f∗MAP = xT∗wMAP , β
−1) (3.3.5)

To obtain wMAP , we must conduct the following optimisation:

wMAP = arg max
w

p(w|y,X) (3.3.6)

= arg max
w

p(y|w,X)p(w) (3.3.7)

= arg max
w

β(y −Xw)T (y −Xw) + wTΣ−1w (3.3.8)

where in the last line we have substituted the log probabilities obtained from equa-
tions 3.3.1 and 3.3.2. Setting the gradient to 0 yields

wMAP = (XTX + β−1Σ−1)−1XTy (3.3.9)

so the predictive distribution is

p(y∗|x∗,X,y) = N (y∗|f∗MAP = xT∗ (XTX + β−1Σ−1)−1XTy, β−1) (3.3.10)

This solution is equivalent to a linear regression model with squared loss and an
L2 (a.k.a. ridge) regulariser.

3.4 Making the model Bayesian

The “Bayesian” axis indicates the passage from

1. a MAP or more generally a point-wise parameter estimate, as the output of the
training step

2. to a fully Bayesian training procedure which preserves the uncertainty over the
parameters, learns a posterior distribution over them (having speci�ed a prior),
and where prediction consists of marginalising out the parameters of the model

To illustrate the di�erence with the previous section, we now calculate the fully
Bayesian solution. Instead of approximating w to a point estimate, we calculate its

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION67

posterior distribution:

p(w|X,y) ∝ p(y|w,X)p(w) (3.4.1)

= N
(
w|(Σ−1 + βXTX)−1βXTy, (Σ−1 + βXTX)−1

)
(3.4.2)

To obtain this, we apply the classical formulae for joint Gaussian distributions4.
Now p(y∗|x∗,X,y) is obtained as the convolution of two Gaussians in equation

3.3.3, hence

p(y∗|x∗,X,y) ∼ N (xT∗ (Σ−1 + βXTX)−1βXTy, (3.4.3)

β−1 + xT∗ (Σ−1 + βXTX)−1x∗) (3.4.4)

By comparing with equation 3.3.10, we see that the predictive mean is the same
as in the MAP case, but the variance is larger by the second term, which re�ects the
uncertainty in w. The Bayesian solution has a correct estimation of the uncertainty
in the predictive distribution, which is important for applications where uncertainty
at one stage in�uences actions or decisions at a later stage, such as active learning or
information maximisation settings.

This very simple example illustrates the passage from point-wise (maximum like-
lihood or maximum a posteriori) estimates of latent variables to a fully Bayesian treat-
ment of the uncertainty.

3.5 Making the model kernelised

Continuing with the same example, we now illustrate kernelisation. So far, com-
puting the predictive distribution in equation 3.4.4 requires the inversion of a D×D
matrix which requires O(D3) operations, or equivalently solutions to a system of D
linear equations with D unknowns. We replace this operation by an O(N3) inver-
sion, which can be less costly if the dimensionality of the output space is very high
(as in the case of sparse binary features).

To achieve this, we work �rst on the predictive mean and apply the Woodbury
inversion lemma in its variant (A+BBT)−1B = A−1B(I+BTA−1B)−1 (Pedersen
et al. (2008), equation 150):

4cf. for example Bishop (2006), section 2.3.2, or Murphy (2012), section 4.3.1

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION68

xT∗ (Σ−1 + βXTX)−1βXTy (3.5.1)

= xT∗ (β−1Σ−1 + XTX)−1XTy (3.5.2)

= xT∗ βΣXT (IN + XβΣXT)−1y (3.5.3)

= xT∗ΣXT (β−1IN + XΣXT)−1y (3.5.4)

In the same way, applying the Woodbury lemma in its variant (A+CBCT)−1 =

A−1 −A−1C(B−1 +CTA−1C)−1CTA−1 (Pedersen et al. (2008), equation 145), we
can rewrite the predictive variance:

β−1 + xT∗ (Σ−1 + βXTX)−1x∗ (3.5.5)

= β−1 + xT∗
[
Σ + ΣXT (β−1IN + XΣXT)−1XΣ

]
x∗ (3.5.6)

Now, note that x∗, X and Σ appear only in dot products involving Σ, for instance
xT∗Σx∗ = 〈x∗,x∗〉Σ. That is to say, to express the solution, we only need to know
the value of the equivalent kernel, de�ned by k(x,x′) = 〈x,x′〉Σ, over the training
and test inputs {x1, . . .xN}∪ {x∗}. These values are entirely contained in the Gram
matrix of k over this set of points. We can write:

(
X

xT∗

)
Σ

(
X

xT∗

)T
=

(
XΣXT xT∗ΣXT

XΣx∗ xT∗Σx∗

)
=

(
K kT∗
k∗ k∗∗

)
(3.5.7)

Using this de�nition, the predictive distribution takes the form

p(y∗|x∗,X,y) ∼ N (kT∗ (β−1IN +K)−1y, (3.5.8)

β−1 + k∗∗ + kT∗ (β−1IN +K)−1k∗) (3.5.9)

What have we gained by performing this transformation? Not much if we keep
the equivalent kernel de�ned using Σ in equation 3.5.7, and whose rank is at most
D. Much more if we start from the kernel as a �rst-class construct, use it as a dot
product, and no longer look to the input space, as will now become clear.

In practice, suppose the feature vectors x ∈ RD , with which we have been work-
ing so far, are the output of a feature map φ : Ω→ RD, ω 7→ x. Now, ω, the original
input object, might be an image, a string, a tree, a video, the representation of a web-
site user, a product. Kernels have been devised for a wide variety of such input spaces
Ω, for instance the TF-IDF (term frequency-inverse document frequency) kernel for
documents, spectrum kernels for strings, pyramid match kernels for images, or even

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION69

more generally Fisher kernels de�ned from probabilistic models5.
In the linear regression example, we found out that we can work with kernels

instead of feature maps; a kernel is a representation of similarity, and implicitly de�nes
a feature map. This enables us to use any (positive de�nite) kernel which is suitable
for the input space Ω we wish to work with. We can inject a great deal of engineering
in making a kernel which adequately expresses similarity in the input space. Some
such kernels might be equivalent to very high, or even in�nite-dimensional feature
maps. For instance the squared exponential kernel

k(x,x′) = exp

(
−|x− x′|2

σ2

)
(3.5.10)

is equivalent to an in�nite-dimensional feature representation, while the polynomial
kernel

k(x,x′) = 〈x,x′ + c〉d , c ∈ R (3.5.11)

is equivalent to a feature representation containing all the monomials of degree d of
elements of x,x′.

If we simply use a linear kernel

k(x,x′) = 〈x,x′〉 (3.5.12)

we are using the original input feature representation x, and this is just Bayesian
linear regression, so it is like not using any kernel at all.

More generally, the theory of reproducing kernel Hilbert spaces tells us, in the
form of the Moore-Aronszajn lemma6, that any positive de�nite kernel (a.k.a. Mercer
kernel), de�nes a (possibly very high- or even in�nite-dimensional) feature repres-
entation, and its corresponding feature space.

This means that the kernelised formulation can port the problem into such a fea-
ture space (termed a reproducing kernel Hilbert space), solve it as a linear problem
there, and therefore express a non-linear solution in the original space. This manipu-
lation (replacing the dot products appearing in an algorithm by kernel values) is called
the “kernel trick”, and can be applied to a range of algorithms which can be expressed
exclusively in terms of dot products7.

An alternative kernel-based view of linear regression introduces Gaussian
stochastic processes8; GP regression appears in �gure 3.2.1 on the same vertex as ker-

5cf. Murphy (2012), chapter 14, or Schölkopf and Smola (2002), chapter 13.
6cf. for example Rasmussen and Williams (2006), theorem 6.1
7We will not introduce kernels and the theory of reproducing kernel Hilbert spaces any further in this

thesis; several excellent introductions are available, for instance Schölkopf and Smola (2002), chapters 1
and 2. For a didactic presentation of the kernel trick, cf. for example Murphy (2012), section 14.4.

8We will not further introduce Gaussian processes in this thesis. Seeger (2004), Bishop (2006), section
6.4, Murphy (2012), chapter 15 provide excellent introductions. Rasmussen and Williams (2006) is an in-

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION70

nelised Bayesian linear regression for this reason. We will not derive this approach
here, but refer to Rasmussen and Williams (2006), chapter 2. The Bayesian treatment
of GP regression with independent noise will yield the same predictive distribution
as we obtained in equation 3.5.9.

3.6 Making the model structured

We have described how to move along the “kernelisation” and “Bayesian” edge of
the diagram in �gure 3.2.1. How do we move along the “structure” edge, and turn
the regression models into classi�cation, and then structured classi�cation models, as
de�ned in section 1.1 ?

The �rst step in that direction consists of turning a regression model into a bin-
ary classi�cation model (with output y ∈ {+1,−1}). This is typically achieved
by directing the noise-free regression output (in R) through a “squeezing” function
σ : R → [0, 1] (usually a logistic function a 7→ 1

1+exp(−a) , or another sigmoid func-
tion), which will turn it into a scalar in the interval [0, 1]. This scalar can then be
interpreted as the probability of belonging to the positive class. In this way, the model
becomes linear logistic regression9:

p(y = +1|x) = σ(xTw) (3.6.1)

Moving one notch to the right in the diagram, multi-class classi�cation with R
classes can be achieved by modelling each class probability using a separate regression
model, now using the multi-class extension of the logistic, called softmax:

p(y = r|x) =
exp

(
xTwy

)∑R
y′=1 exp (xTwy′)

, ∀r ∈ R (3.6.2)

Note that this parameterisation of R probability masses by R scalars is overcom-
plete: one could use onlyR−1 scalars (and therefore weights wr) for p(y = r|x), r ≤
R − 1, and then assign p(y = R|x) = 1 −∑R−1

r=1 p(y = r|x). However, the former
parameterisation has the advantage of being symmetric: all classes play the same role.

These steps can be applied to Gaussian processes to go from regression to bin-
ary and multi-class classi�cation (Williams and Barber (1998)). An important di�er-
ence to the parametric models described here is that the dot product xTw is replaced,
applying the kernel trick, by a GP-distributed latent variable. In multi-class classi-
�cation, we need R such latent variables, and therefore the question arises how to
describe the covariance between them, the simplest solution being to consider them
independent (cf. section 4.3). Another di�culty, present in GP binary classi�cation

depth textbook on the topic.
9which, despite the name, is a model used for classi�cation

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION71

already, arises from the form of the likelihood; while in GP regression with Gaussian
noise (i.e. Gaussian likelihood), the solution is analytic, but as soon as the likelihood
takes another form, computing the posterior and predictive distributions requires re-
sorting to approximations; these are well explored by now, cf. Kuss and Rasmussen
(2005, 2006); Nickisch (2008), and Rasmussen and Williams (2006), chapter 3, for a
textbook presentation.

The passage to structured models is achieved by moving to a structured softmax
likelihood; the resulting model could naïvely be written:

p(y|x) =
exp

(
xTwy

)∑
y′∈Y exp (xTwy′)

(3.6.3)

This presentation, however, is unrealistic: it assumes that we can index, as before,
the weight parameters w with y. However,Y is now of size exponential in the number
of atoms in y, which makes the entire problem intractable, were we to use it as an
index.

We now introduce conditional random �elds, which were developed to address
this issue.

3.7 The CRF model and extensions

The central idea of the CRF model (La�erty et al., 2001) is a change of parameterisation
with respect to the logistic regression model. Instead of indexing the weights wy with
y, we will rewrite the vector product xTwy in the form φ(x, y)Tw. To achieve this,
we can stack all wy,∀y, into a large vector w ∈ RRD , and on the other hand, build a
vector of the same lengthRD consisting of only zeros, except for the elements which
will be multiplied, in the dot product, with the desired wy inside w: in this position
we place x. The result can be written with a Kronecker product ⊗ and ey ∈ {0, 1}R,
the unit vector containing a single one in the position corresponding to y:

p(y|x) ∝ exp
(

(ey ⊗ x)
T

w
)

(3.7.1)

This is now in the desired form φ(x, y)Tw.
As noted, we cannot directly generalise this to the structured setting, because

manipulating ey with y ∈ Y = RT is unwieldy: it would entail w ∈ RRT×D .
Instead, the CRF parameterisation makes an assumption on the dependency struc-

ture of components of y = (yt)t: it assumes they are modelled by a Markov random
�eld (MRF). In addition, it posits that each of the yt depends on x. This results in the
graphical model represented in �gure 3.7.1. In the MRF part of the model, the yt are
conditionally independent of each other given x and their neighbours.

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION72

x

y1 y2

y3

y4

y5

Figure 3.7.1: Graphical model for a CRF as a mixed (i.e. directed and undirected) graph,
also called a partially directed graph. The MRF part speci�es the dependencies inside
y. All yt nodes depend on x, which may have structure, but it is ignored here.

The Hammersley-Cli�ord theorem10 applies in this graph, and tells us that p(y|x)

factorises over the maximal cliques11 of the graph:

p(y|x) =
1

Z(x)

∏
c∈max cliques

exp
(
φc(x,yc)

Twc

)
, (3.7.2)

where the φ are functions called clique potentials, which parameterise p(y|x).
The normalisation function is Z(x) =

∑
y′∈Y exp

(∑
c φc(x,y

′
c)
Twc

)
.

We can make four remarks on equation 3.7.2.
Firstly, we now have a parameterisation which decomposes over cliques, and re-

quires much fewer parameters than the naïve attempt in equation 3.6.3.
Secondly, in contrast to the parameterisation used so far in this chapter, we have

made the feature extraction function explicit, hence used φ(x) instead of x, and
moved the dependency on y into the feature extraction function, which therefore
becomes an input-output feature extraction function φ(x,y).

Thirdly, the formulation in equation 3.7.1 makes apparent that logistic regression
is a special case of the CRF, corresponding to a single-clique CRF, and a single-node

10The Hammersley-Cli�ord theorem can be summarised as follows: a positive distribution satis�es the
independence properties encoded in a graph if and only if it decomposes over maximal cliques of the graph
as a product of factors. Cf. Hammersley and Cli�ord (1971) for the original formulation, and Koller and
Friedman (2009), theorem 4.2, for a didactic presentation.

11In a graph consisting of vertices and edges, a clique is a set of vertices such that every element of the
set is connected by an edge to every other element. A maximal clique is a clique which cannot be made
larger by including further vertices.

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION73

y, i.e. T = 1.
Finally, while the exponential clique potential seems to follow from the use of the

softmax function in equation 3.6.2, it is interesting to note that they have an inde-
pendent motivation as a maximum entropy, or log-linear, model (Della Pietra et al.,
1997).

The CRF has been popular and successful, particularly in sequence labelling prob-
lems in NLP. The typical training procedure is maximum likelihood or maximum a
posteriori parameter estimation. In the latter case, a Gaussian prior on w is often
used, so that the optimisation problem becomes:

arg min
w

log p(w)

N∏
n=1

p(xn,yn|w) (3.7.3)

= arg min
w

 1

2σ
‖w‖2 +

N∑
n=1

log

∑
y′∈Y

exp
(
φ(xn,y

′)Tw
)− φ(xn,yn)Tw


(3.7.4)

(we have stacked the φc and wc to simplify the notation). The objective function
is convex12. In La�erty et al. (2001), the optimisation is performed using a form of
improved iterative scaling; nowadays, on small data sets quasi-Newton methods are
used, while stochastic gradient descent is preferred on large data sets.

3.7.1 Variants of the CRF

A close variant of the CRF is the structured perceptron (Collins, 2002), motivated by
sequence labelling problems. It can be characterised as follows: the likelihood model
p(y|x,w) is comparable to the CRF (but goes under the name “maximum entropy
tagger”), however the parameter estimation procedure is not maximum likelihood as
usually assumed for the CRF. Instead, training uses the so-called perceptron algorithm,
which consists of iterative updates13 to the parameter vector w: initialising w0 = 0,
for epoch e from 1 to E, for each training example n from 1 to N ,

1. predict the labelling

ŷen = arg max
y

p(y|xn,we−1) = arg max
y
φ(xn,y)Twe−1 (3.7.5)

based on current parameters
12This follows from standard convexity results, using Boyd and Vandenberghe (2004), section 3.10, in-

cluding convexity of log-sum-exp, section 3.1.5.
13The number of epochsE has to be estimated using a subset of the training data set apart for validation

(a.k.a. development data set).

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION74

2. if ŷen 6= yn (i.e. the prediction results in an incorrect labelling), update the
parameter vector:

we = we−1 + η (φ(xn,yn)− φ(xn, ŷ
e
n)) (3.7.6)

(where η is a learning rate)

This training procedure amounts to a noisy gradient version of CRF maximum like-
lihood training with learning rate η, where the term φ(xn, ŷ

e
n) approximates the ex-

pected feature vector term Ey∼p(y|xn,w)φ(xn,y) which appears in the gradient of
the CRF log-likelihood∇w log p(yn|xn,w). The update is therefore based on a local
gradient update which may have convergence issues.

As with linear regression above, we would now like to look at Bayesian and ker-
nelised variants of the CRF. The prize question, and the one which motivates the rest
of this thesis, is then: just like GP regression was both a Bayesian and kernelised
method, but now moving to structured output prediction, can we �nd a model that is
both Bayesian and kernelised, �lling the last vertex on �gure 3.2.1?

We begin by looking at the Bayesian CRF (Qi et al., 2005): Rather than using a
point estimate for w, this paper pursues a Bayesian training (and prediction) proced-
ure as explained above in the case of linear regression. In the Bayesian CRF, the pos-
terior is approximated by a Gaussian distribution using power expectation propaga-
tion, a generalisation of expectation propagation and fractional belief propagation
(which all carry out some form of minimisation of an α-divergence) to arbitrary α.

As before, we can also kernelise the CRF. This gives rise to the kernel CRF de-
scribed in La�erty et al. (2004), and in a di�erent form, with reference to Gaussian
processes, in Altun et al. (2004a)14. These two papers are important for the model
developed in the next chapter, so we discuss them now. We refer to both as KCRF, in
agreement with Perez-Cruz et al. (2007), which also discusses them.

In the KCRF, instances of φc(x,yc)Twc are replaced by f(x,y, c). Learning is
formulated as a regularised empirical risk minimisation problem of the form

arg min
f
−
∑
n

∑
c

f(xn,yn, c)− log
∑
y′

exp

(∑
c

f(xn,y
′, c)

)+ λ ‖f‖K

(3.7.7)
14Note that Altun et al. (2004a) contains a pervasive error: in every statement of the objective function in

dual terms, the regulariser 1
2
uTK−1u is turned into αTKα, forgetting the 1

2
term. This error is present

in eq. 6 (both terms), 8, 12, 15 (where the gradient contains an unwanted factor 2), as well as in the technical
report version (Altun and Hofmann, 2003) eq. 5, 6, 9, 21 (and presumably in the gradients eq. 17 and 22,
though it is not clear what γ is there). The correct derivation, however, follows from Altun et al. (2004a) eq.
5: umap(xi, y) =

∑
j,y′ α(j,y′)K(i,y),(j,y′) = αKe(i,y) = eT

(i,y)
Kα (with e and α column vectors),

so that by stacking the nm terms, umap = Inm·nmKα = Kα, and the regularising term in the objective
can be rewritten as 1

2
umapTK−1umap = 1

2
αTKK−1Kα = 1

2
αTKα. It is unclear whether this error

was carried over to the implementation and a�ected experimental results.

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION75

where (simplifying the notation by removing dependencies) n runs over training
structures, c runs over cliques in the structure corresponding to n, y′ represents any
labelling compatible with c, and ‖·‖K is the RKHS norm of kernel k, whose Gram mat-
rix is K. The problem is equivalent to maximum a posteriori parameter estimation
with a Gaussian prior (with covariance matrix K).

The representer theorem15 states that a minimiser of the cost function of equation
3.7.7 has the form

f(·) =
∑
n

∑
c

∑
y′

α(n, c,y′)k((n, c,y′), ·) (3.7.8)

We have cause for concern at this point: this multiple summation contains the
intractable element

∑
y′∈Yn (the set of labellings on data point n depends on n, for

instance if data consists of sequences, they might have di�erent length). It would be
desirable that the solution exhibit some amount of sparsity, i.e. the fact that most α
terms are zero, making computation easier. We are not in the lucky case of binary
classi�cation with support vector machines, however, where the hinge loss induces
sparsity automatically; we have the log loss here.

Can we obtain a sparser solution nonetheless? Following a line of thought also
present in the import vector machine (Zhu and Hastie, 2005), both La�erty et al. (2004)
and Altun et al. (2004a) seek approximate solutions f̂ ∈ span (A), whereA is a (hope-
fully small) set of functions k((n, c,y′), ·). Starting with f = 0, i.e. A = ∅, the learn-
ing algorithm greedily adds the k((n, c,y′), ·) which gives the direction of steepest
(maximal) gradient of the objective function. La�erty et al. (2004), section 3, refers to
this as “clique selection”, because each k((n, c,y′), ·) corresponds to one clique, while
Altun et al. (2004a), section 4.2, calls this “column generation”, referring to columns
of the Gram matrix K of the Mercer kernel k.

A related strategy is employed in the Conditional Graphical Model16 of Perez-
Cruz et al. (2007). A surrogate loss (Bartlett et al., 2006) of the logistic/ softmax loss
is introduced, and brings advantages in terms of computation: gradient computation
decouples over cliques.

Of the models discussed so far, Altun et al. (2004a)’s model comes closest to our
desiderata. One originality of this paper resides in the route it takes, starting with an
approach which seems paradoxical. The paper’s steps can be schematised as follows
(equations numbers refer to Altun et al. (2004a)):

• approach sequence labelling as a multi-class classi�cation problem (boldly ig-
noring the cardinality of the output space for a moment, like in the naïve at-

15For a modern statement and proof, cf. Schölkopf and Smola (2002), theorem 4.2, page 90. La�erty et al.
(2004), with good notation and a clear conceptual basis, proves the representer theorem for the speci�c
case of the KCRF.

16Somewhat of a misnomer, since the probabilistic model (used for prediction, for instance) really is still
the CRF; the di�erence is in the objective function for training, which now contains a surrogate loss.

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION76

tempt presented in section 3.6 of this thesis)

• formulate a probabilistic model in which latent variables u (which play the role
of f above) are GP-distributed

• note that marginalising u is intractable, so formulate the MAP objective (eq. 4)

• apply the representer theorem, obtain a dual objective which contains intract-
able sums (eq. 6);

• remark that the sparseness in the corresponding SVM solution is due to the
hinge loss, as opposed to the logistic loss here

• formulate (section 3.2) a kernel from feature maps, inspired by the HMM, re-
specting the design assumption that yt is only a�ected by y

t−1
and yt+1

• recognise that this simpli�es the objective function su�ciently (eq. 12), because
arbitrary labellings y′ (the labellings absent from the training data) need only
be considered clique-wise, not sequence-wise, which reduces the cardinality of
the index set notably

• notice that some latent variables (specialised to micro-labels) are responsible
for unary or binary e�ects (as seen in the ad hoc design of the linear map Λ eq.
9, 10, and discussed in Altun and Hofmann (2003), below eq. 14)

3.7.2 Maximummargin extensions of the CRF

Another perspective is given by abandoning ML, MAP or the (mathematically) equi-
valent empirical risk minimisation learning principles in favour of maximum-margin
learning.

This is the basic choice which motivates the de�nition of support vector meth-
ods for regression, classi�cation, multi-class classi�cation (Weston and Watkins, 1998;
Crammer and Singer, 2001), up to structured classi�cation with the SVMstruct models
(Tsochantaridis et al., 2004, 2005; Altun et al., 2003)17.

We now discuss max-margin Markov networks (Taskar et al., 2004) (M3N),
which, like La�erty et al. (2004) and Altun et al. (2004a), are very close to the model
we are looking for.

M3N’s starting point is a maximum margin formulation of a CRF model.
In the structured output context, adopting the maximum margin learning principle

simultaneously imposes its own losses18.
17Schmidt (2009) o�ers a didactic presentation, comparative discussion and derivation of the SVMstruct

“family of models” from a probabilistic formulation (using log-loss empirical risk minimisation).
18It is interesting to note that these losses cannot be formulated as likelihoods, cf. Sollich (2002) for the

binary classi�cation case.

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION77

This can be seen when moving from the separable to the non-separable data case,
and answering the question: “how to penalise constraint violations?”. The alternat-
ives are typically margin-scaled and slack-scaled loss, which correspond to respect-
ively a margin rescaling or slack rescaling formulation of the penalties19. Of the two,
M3N use margin rescaling (Taskar et al. (2004), equation 4). The margin-scaled loss,
maxy∈Y `(yn,y) + wT (φ(xn,y)− φ(xn,yn)), where `(y∗,y) denotes the loss in-
curred by predicting y while the truth is y∗, is also know as structured hinge loss. The
resulting optimisation maxy∈Y(...) is an example of loss-augmented inference, since
the loss `(yn,y) appears in the objective function.

The structured hinge loss is a generalisation of the hinge loss

max
(
0, 1− ynwTψ(xn)

)
(3.7.9)

used in binary classi�cation. To understand this, observe the maximand in the
structured hinge loss: when y = yn ∈ Y , it is 0, and so the loss rewrites as
max

(
0,maxy∈Y\yn ...

)
: we see the “hinge” appear. Further, noting that Y is reduced

to {−1,+1}, and setting φ(xn, y) = 1
2yψ(xn), we recover the hinge loss. In addition,

like the hinge loss, it is a convex surrogate loss to `(yn, y) (cf. e.g. Murphy (2012),
equations 19.105 sq.).

We have described the sparsity-inducing training methods employed by La�erty
et al. (2004) and Altun et al. (2004a) above. Taskar et al. (2004) has a di�erent approach,
in its section 7, to the problem of the sum over all possible labellings appearing in the
solution. By exploiting the fact that, conditional on xn, the α in the solution can
be interpreted as unnormalised probabilities, and the fact that the loss function they
use decomposes over cliques, they reinterpret the sums appearing in their formula-
tion of the dual problem (their equation 7) as expectations of the loss, which can be
expressed analytically using the marginals of the clique-related factors. This insight,
termed the “Taskar trick” in analogy to the “kernel trick” applied in kernel machines20,
generates extra constraints to ensure the marginals are valid marginals of the MRF.
For Markov networks which can be triangulated21, this results in a quadratic program
with a number of constraints which is polynomial in the number of nodes; relaxations
are introduced for networks which cannot be triangulated.

19cf. Keshet (2014), equations 10 and 11 for a formulation in terms of losses; cf. Murphy (2012) equation
19.101 for the equivalence between the loss and constraint formulations of the objective.

20cf. p. 69
21i.e. whose graph can be made chordal, i.e. so that every minimal loop is of length 3; cf. Koller and

Friedman (2009), de�nition 2.24, and theorem 9.8

CHAPTER 3. DISCRIMINATIVEMODELS FOR STRUCTURED OUTPUT PREDICTION78

3.8 Conclusion

Starting from regression models, and moving on to classi�cation models, we have re-
viewed members of the discriminative probabilistic (i.e. conditional) family. Focusing
on structured classi�cation models, we went through the MAP branch, for which a
prominent representative is the CRF, as well as the max-margin branch, epitomised
by the SVM, and represented here by the max-margin Markov network.

What appears clearly in such a review is the lack of a model endowed with all
the desirable properties exhibited separately by each of the existing models: to be
kernelised and non-parametric, fully Bayesian (i.e. preserve uncertainty between the
learning and the prediction stage), and apply to structured, i.e. multi-label multi-class,
data. The goal of the next chapter is really to complete the roadmap in �gure 3.2.1
with such a model.

Chapter 4

GPstruct for sequence
labelling

Chapter 3 gave a reasoned overview of a family of discriminative models in increasing
order of complexity, going from linear regression to CRF models, explaining their
relations and advantages, and generally setting the stage for the present chapter.

We are now in a position to present GPstruct, a conceptually novel model which
�lls the gap pointed out at the end of the last chapter; it �ts into the last vertex of
�gure 3.2.1 : it is kernelised, fully Bayesian and performs structured classi�cation.
More particularly, as discussed in section 1.1, our motivating task is labelling: atoms in
the input are individually labelled with output categories, so that the output structure
maps directly to the input structure.

After de�ning the modelling assumptions underlying GPstruct, we instantiate it to
sequence data, and present an MCMC inference algorithm. We then show experiment-
ally, on natural language processing tasks, that GPstruct performs well in comparison
to other models adapted to the same tasks. Several analytical experiments shed light
on the con�guration of the MCMC training algorithm and on the performance of the
MAP variant of GPstruct, which is similar to a KCRF. We then compare GPstruct to
related models, and conclude the chapter with ideas for further developments.

Sections 4.1 to 4.7 were published in Bratières et al. (2015), and are the result of col-
laboration with my co-authors.

79

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 80

4.1 Model formulation

We de�ne GPstruct straight away, to clarify the exposition. Assume data consists of
observation-label (or input-output) tuples, which we will write

D = {(x(1),y(1)), . . . , (x(N),y(N))} (4.1.1)

where N is the size of the dataset, and (x(n),y(n)) ∈ X ×Y is a data point. y, which
we would like to predict, is a structured object such as a sequence, a grid, or a tree,
which exhibits structure in the sense that it consists of interdependent categorical
atoms. Sometimes the output y is referred to as the macro-label, while its constituents
are termed micro-labels. The observation (input) x may have some structure of its
own.

GPstruct consists of two parts:

1. a conditional log-linear likelihood which speci�es the dependency structure
in the output y, as a Markov random �eld, given latent variables (LV) which
mediate the in�uence of the input on the output. This e�ectively results in a
CRF.

2. a (prior) distribution for the latent variables, which is given by an appropriate
Gaussian process

The likelihood model speci�es the distribution of the output labels given the input and
the LV. It is de�ned per clique of the CRF de�ned over the output y. The likelihood
model is:

p(y|x, f) =
exp (

∑
c f(c,xc,yc))∑

y′∈Y exp (
∑
c f(c,xc,y′c))

(4.1.2)

where yc and xc are tuples of nodes belonging to clique c, while f(c,xc,yc) is a LV
associated with this particular clique and values for nodes xc and yc. We call the
distribution (4.1.2) structured softmax, in analogy to the softmax (a.k.a. multinomial
logistic) likelihood used in multinomial logistic regression, equation 3.6.2.

The prior distribution of the LV f(c,xc,yc) is given by a Gaussian process (GP)
with covariance function (i.e. Mercer kernel) k((c,xc,yc), (c

′,xc′ ,yc′)): denoting by
f the collection of all LV of the form f(c,xc,yc),

f ∼ GP(0, k(·, ·)) (4.1.3)

In summary, the GPstruct is a probabilistic model in which the likelihood is given
by a structured softmax, with a conditional Markov random �eld modelling output
interdependencies; the CRF’s latent variables, one per factor, are given a GP prior. It
can be viewed in di�erent ways: as a variant of a multi-class GP classi�er, using a

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 81

joint input-output kernel, and specialised for structured output; or as a GP indexed
by factors (or cliques) in a factor graph; or as a kernelised, Bayesian log-linear model.

The GPstruct model has the following appealing statistical properties, which mo-
tivate its design:

Structured: the output structure is controlled by the design of the CRF, which
is very general. The only practical limitation is the availability of e�cient inference
procedures on the graphical model.

Non-parametric: the number of LV grows with the size of the data. For se-
quences (section 4.2), it is the number of unary LV which grows with the total length
of input sequences.

Bayesian: this is a probabilistic model that supports Bayesian inference, with the
usual bene�ts of Bayesian learning. At prediction time: uncertainty estimates (“er-
ror bars”) and reject options. At learning time: model selection and hyperparameter
learning with inbuilt Occam’s razor e�ect, without the need for cross-validation.

Kernelised: a joint (input-output) kernel is de�ned over the LV. Kernels poten-
tially introduce several hyperparameters, making grid search for cross-validation in-
tractable. Kernelised Bayesian models like GPstruct do not su�er from this, as they
de�ne a posterior over the hyperparameters.

This chapter is structured as follows. Now that we have given a schematic descrip-
tion of the model, we will present design choices to be made to apply it to sequence
labelling problems. We are then in a position to describe an MCMC sampling al-
gorithm for training. Experiments on real datasets, and a benchmark comparison to
similar structured output prediction techniques are then presented. Practical aspects
of inference and prediction are discussed. This chapter closes with limitations of the
model and possible remedies.

Chapter 5 presents an application of GPstruct to grid structures in a large-scale
application, which requires several adjustments to the inference procedure. Because
GPstruct is a Bayesian model, it is interesting to investigate whether hyperparameters
can be learnt during inference alongside latent variables; this is the object of Chapter
6.

4.2 Parameterisation for sequence problems

While this model is very general, we will now instantiate it for the case of sequential
data, on which our experiments are based. Both the input and output consist of a
sequence of length T . The input is represented as feature vectors of lengthD, i.e. X =

RD . The micro-labels of the output all stem from a common set, i.e. Y =
∏

t=1,...,T

Yt
with ∀t, Yt = R, with |R| = R. We will therefore write y = (y1, . . . , yt, . . . , yT) and
x = (x1, . . . ,xt, . . . ,xT). In this context, macro-labels can be called label sequences,

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 82

y1 y2 yt yT

x1 x2 xt xT

f(y1, y2) f(y2, yt) f(yt, yT)

f(x1, y1) f(x2, y2) f(xt, yt) f(xT , yT)

Figure 4.2.1: Factor graph for sequence prediction with two clique types, unary
location-dependent cliques c̃t and binary location-independent cliques ˜̃c. Input nodes
are always treated as observed.

and micro-labels just “labels”, without risk of confusion.
In our experiments below, we tackle text data: the input generally consists of

sentences (chains of words), and the output of corresponding chains of task-speci�c
labels. A common natural language processing task is noun phrase recognition: here
the (3-class) micro-labels are B, to label the beginning of a noun phrase segment, I ,
to label the inside of a segment, and O, for all other tokens.

We will now expose further design decisions involved in instantiating GPstruct to
a sequence CRF. Among the available choices, we point out the options we selected
for our experiments.

To start with, the sequence CRF we work with is according to the factor graph
in �gure 4.2.1: there are two clique types (or clique templates (La�erty et al., 2004)):
binary cliques (yt, yt+1), and unary1 cliques (xt, yt). If we removed binary factors,
we would be carrying out micro-label-wise prediction, and micro-labels would not
be interdependent (this type of prediction can be quali�ed as structured in the weak
sense, cf. section 1.1). We could add factors (yt, yt+2) and (yt, yt−2) for longer-range
dependencies.

A priori, there is one LV per (c,xc,yc) tuple, i.e. per clique and node values.
Parameter tying amounts to grouping (tying) some of these LV, thus decreasing the
number of LV which need to be learnt.

In our treatment of sequential GPstruct, we distinguish each individual unary
clique based both on position t and node values, but tie all binary cliques independ-
ently of their position (but distinguish on their nodes values), so that we can denote
them by c̃t resp. ˜̃c. This is illustrated in �gure 4.2.1 . By distinguishing each unary
clique, we obtain a non-parametric model, where the number of unary LV grows with
the data. Plausible alternatives are: tie binary LV except for the edge positions t = 1

or t = T , where the task may dictate a special behaviour; tie unary LV with identical
values of (xt, yt), e�ectively ignoring the position (this introduces some bookkeeping
since the values of xt are usually from a high-dimensional feature space; there may

1These are unary because in our supervised learning setting, we always assume x to be given.

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 83

be no identical xt values in the data in fact).
How many LV do we need to store? We have to de�ne LV for all possible labels yt

(more generally, ∀y ∈ Y), not just the ones observed. This is because in equation 4.1.2,
the normalisation runs over y′ ∈ Y , and also because we want to evaluate p(y|x, f)

for any potential y. Concerning the inputs, we do not need to de�ne LV for ranges of
xt values, since both x and xt are always assumed observed.

Let T (n) denote the length of y(n) (which need not be constant across label se-
quences). In our chosen parameterisation, there is one unary LV for each position t,
and each value yt, so there are

∑
n T

(n) × R unary LV. There is one binary LV per
(yt, yt+1) tuple; and so there are |Yt|× |Yt+1| = R2 binary LV. The number of unary
LV usually dominates the number of binary LV.

4.3 Kernel function speci�cation

The Gaussian process prior de�nes a multivariate Gaussian density over any subset
of the LV, with a covariance function given by the positive de�nite kernel (Mercer
kernel) k. For a sequence CRF depicted in �gure 4.2.1, we need to specify a kernel
over arbitrary pairs cliques, either binary (yt, yt+1) or unary (xt, yt):

k((c,xc,yc), (c
′,xc′ ,yc′)) =

huI[c, c′are unary] ku((t,xt, yt), (t
′,xt′ , yt′))

+ hbI[c, c′are binary] kb((yt, yt+1), (yt′ , yt′+1)) (4.3.1)

In the above, we make use of Iverson’s bracket notation: I[P] = 1 when proposition
P is true and 0 otherwise. The positions of c, c′ are denoted by t, t′, and xt,xt′ , yt, yt′

are the corresponding input resp. output node values. In this chapter, we will set
hu = hb = 1, but will attempt to learn these values in chapter 6.

The unary kernel ku((t,xt, yt), (t
′,xt′ , yt′)) corresponds to a dot product

between features associated with unary cliques (xt, yt) and (xt′ , yt′). We make
the common assumption that the joint feature map φ(xt, yt) is an outer product
ϕ(yt)⊗ ψ(xt). With this assumption, the unary kernel is a product:

ku((t,xt, yt), (t
′,xt′ , yt′)) = ky(yt, yt′)kx(xt,xt′). (4.3.2)

kx is an “input-only” kernel, for instance the linear kernel 〈xt,xt′〉, or the squared
exponential kernel:

kse(xt,xt′) = exp

(
− 1

σ2
||xt − xt′ ||2

)
(4.3.3)

where σ2 is a kernel hyperparameter. ky is an “output-only” kernel. Here we choose

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 84

a label-identity output kernel ky(yt, yt′) = I[yt = yt′] corresponding to the standard
winner-takes-all multi-class classi�cation (Tsochantaridis et al., 2005). The �nal form
of our kernels for unary resp. binary cliques is now:

ku((t,xt, yt), (t
′,xt′ , yt′)) = I[yt = yt′]kx(xt,xt′) (4.3.4)

kb((yt, yt+1), (yt′ , yt′+1)) = I[yt = yt′ ∧ yt+1 = yt′+1] (4.3.5)

The above kernel has also been explored in Altun et al. (2004a).
With the proper ordering2 of LV, the Gram matrix has a block-diagonal structure:

K = cov[f] =

(
Kunary 0

0 Kbinary

)
=


Kx 0 . . . 0

0
. . .

...
... Kx 0

0 . . . 0 Kbinary

 (4.3.6)

It is a square matrix, of length equal to the total number of LV,
∑
n T

(n)×R+R2.
Kunary is block diagonal, with R equal square blocks, each the Gram matrix Kx of kx
of size

∑
n T

(n), and Kbinary = IR2 .
To summarise, designing an instance of a GPstruct model requires three types of

model design decisions: the choice of the CRF shape, mainly dictated by the task and
the output data structure; parameter tying; kernel design.

4.4 Inference procedures

4.4.1 Predictive distribution

Given an unseen test point x∗, and the LV f∗ corresponding to x∗, we wish to predict
label ŷ∗ with lowest loss. Given x∗ and f∗, the underlying CRF is fully speci�ed. For
sequences, if we adopted 0/1 loss `(y, ŷ) = I[y = ŷ], we would predict the jointly
most probable output sequence obtained from the Viterbi procedure. The 0/1 loss
ignores error locality, and penalises an error in a single label in the sequence as much
as an error in all labels. A loss which �xes this defect, and which is widely used for
sequence labelling, is Hamming (micro-label-wise) loss `(y, ŷ) =

∑
t I[yt = ŷt]: to

minimise this loss, the prediction decouples into maximising the marginal for each
micro-label: y∗t = arg maxŷt p(ŷt|f).

Given f , due to the GP marginalisation property, the test point LV f∗ are distrib-
uted according to a multivariate Gaussian distribution (cf. e.g. Nickisch (2008, section

2unaries before binaries, and unaries in the following sequence: iterate over positions t, keeping yt
constant, and iterate over micro-labels yt in the “outer for-loop”, so as to obtain: f(c̃t=1, xt, yt =
1) . . . f(c̃t=T , xt, yt = 1) . . . f(c̃t=1, xt, yt = R) . . . f(c̃t=T , xt, yt = R)

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 85

2) for a derivation; this simply stems from the expression for a conditional distribution
of variables given a Gaussian joint distribution):

f∗|f ∼ N(KT
∗ K

−1f ,K∗∗ −KT
∗ K

−1K∗) (4.4.1)

where matrices K,K∗,K∗∗ have their element (i, j) equal to k(fi, fj) resp. k(fi, f∗i)

resp. k(f∗i, f∗j), with k the kernel described section 4.3, and assimilating k to the GP
covariance function.

Uncertainty over f∗|f is accounted for by Bayesian model averaging: ŷ∗ =

arg maxy∗∈Y∗ p(y∗|f), with

p(y∗|f) =

∫
p(y∗|f∗)p(f∗|f) df∗ (4.4.2)

≈ 1

Nf∗|f

∑
f∗|f

p(y∗|f∗) (4.4.3)

where Nf∗|f is the number of samples from f∗|f . Instead of sampling, an approxim-
ation at this stage consists of reducing p(f∗|f) to a point mass at its mode, fMAP

∗ ,
so that p(y∗|f) ≈ p(y∗|fMAP

∗). This approximation, which we refer to as “f∗ MAP
scheme” below, was retained as it did not seem to impact accuracy, as discussed in
section 4.7.

4.4.2 Sampling from the posterior distribution

We wish to represent the posterior distribution f |D (as opposed to performing a MAP
approximation of the posterior to a single value fMAP). The training data likelihood
is p(D|f) =

∏
n p(y

(n)|f ,x(n)), with the single point likelihood given by (4.1.2). We
suggest using elliptical slice sampling (ESS) (Murray et al., 2010), an e�cient MCMC
procedure for tightly coupled LV with a Gaussian prior.

In all our experiments below, we discard the �rst third of the samples before car-
rying out prediction, to allow for burn-in of the MCMC chain.

The computation of the likelihood itself is a non-trivial problem due to the pres-
ence of the normalising constant, a sum over Y , of size exponential in the number of
micro-labels R. In the case of tree-shaped MRFs, however, belief propagation yields
an exact and usually e�cient procedure; in the linear case, it is referred to as forwards-
backwards procedure, and runs in O(R2T).

ESS requires the following operations: computing, storing, and multiplying the
Cholesky decomposition of the kernel matrixK by any vector. Equation 4.3.6 showed
that it has diagonal block structure, so that these operations can be performed on
a reduced form of K which contains only one exemplar of Kx, as well as Kbinary.
Despite this, the large size of the Kx is a limiting factor to our implementation.

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 86

Algorithm 4.1 Training and Prediction of GPstruct
Input Training dataset D = {(x(1),y(1)), . . . , (x(N),y(N))} and a test sequence
x∗
Input Unary ku(·, ·) and binary kb(·, ·) kernel functions with their hyperparamet-
ers
Compute the block-diagonal Gram matrix K of the training dataset as in equation
(4.3.6)
Compute Cholesky factorisation on (K + 10−4I∑

n T
(n)×|L|+|L|2) (cf. page 91 for

a description of the jitter parameter)
Sample posterior distribution f |D using elliptical slice sampling (ESS) with
forwards-backwards procedure to compute likelihood p(y(n)|f ,x(n))
Sample predictive latent function f∗ of test sequence x∗ via equation (4.4.1)
Compute p(y∗|f∗,x∗) using forwards-backwards procedure
Perform averaging over f∗ to obtain p(y∗|f) as in equation (4.4.2)
Perform averaging over f to obtain p(y∗|x∗,D) as in equation (4.4.4)
Output predictive distribution p(y∗|x∗,D)

ESS yields samples of the posterior. To perform prediction, it is necessary to in-
troduce one more level of Bayesian model averaging: continuing from (4.4.2),

p(y∗|D) =

∫
p(y∗|f)p(f |D) df (4.4.4)

≈ 1

Nf

∑
f

p(y∗|f) (4.4.5)

where Nf is the number of samples of f |D available.
The entire sequence of operations is recapitulated in algorithm 4.1.

4.5 Experiments: text processing tasks

We evaluate sequential GPstruct on standard natural language processing tasks con-
sisting of sequence labelling. The tasks, corresponding datasets and relevant feature
de�nitions are provided by CRF++3. All methods we compare receive the same input
features.

Base NP consists of identifying noun phrases (NP): tokens in English sentences
are labelled with one of three labels: B to signal the beginning token of an NP, I (for
inside) for a follow-up token, and O for any other token.

Chunking is a shallow parsing task in which tokenised English text is labelled
according to its syntactic constituents, using the B/I/O system, but with B and I du-
plicated for each of several syntactic classes.

Segmentation tags sequences of Chinese ideograms with B/I tags to group them
into words.

3by Taku Kudo http://crfpp.googlecode.com/svn/trunk/doc/index.html

http://crfpp.googlecode.com/svn/trunk/doc/index.html

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 87

Japanese NE (named entity recognition) labels several types of named entities
(organisations, persons, etc.) occurring in Japanese text.

Feature extraction using CRF++ yielded sparse binary feature vectors, which were
considered as input data x. Typical features for CRF NLP applications were used, see
for instance Sutton (2012), section 2.5 “Feature engineering”.

4.5.1 Train vs. test split

Except for the segmentation task, the data sets are large enough (cf. table 4.1) to be
split in �ve; each subset is used as training set for an experiment, with the following
subset as test set. In this way, �ve experiments can be run with no overlap in training
or test sets. The segmentation data set (36 sentences) was subjected to 5-fold cross-
validation.

Note that throughout this thesis, cross-validation is used exclusively to obtain a
better estimate of the generalisation error, but not to perform any model selection.

4.5.2 Baselines

GPstruct was compared, using the same input features, to a maximum-likelihood
trained CRF, and to a max-margin trained SVMstruct. The CRF implementation4

used LBFGS optimisation. In nested cross-validation, the L2 regularisation parameter
ranged over integer powers from 10−8 to 1. Prediction in the CRF and GPstruct min-
imised Hamming loss (cf. section 4.4.1). The SVMstruct5 toolbox does not support
non-linear kernels yet, so linear kernels were used for both SVMstruct and GPstruct;
in the case of GPstruct, this means that kx is the ordinary dot product. The SVM-
struct regularisation parameter ranged over integer powers from 10−3 to 102 in nes-
ted cross-validation.

4.5.3 Computing

The CRF package is MEX-compiled Matlab, while the SVMstruct system is coded in
C++. Our Matlab implementation of GPstruct used MEX functions from the UGM
toolbox6 for likelihood (implementing the forward-backward algorithm). To illus-
trate runtimes, a 10 hour job on a single core of a 12-core Hex i7-3930K 3.20 GHz
machine can accommodate CRF/SVMstruct learning and prediction, including nested
cross-validation over the parameter grid mentioned above, for one fold, for one task.
In the same computing time, GPstruct can perform 100 000 iterations for one exper-
iment for the chunking or segmentation task (the fastest), or 50 000 resp. 80 000
iterations for Base NP resp. Japanese NE. Getting a precise runtime comparison of

4by Mark Schmidt http://www.di.ens.fr/~mschmidt/Software/crfChain.html
5by Thorsten Joachims http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
6by Mark Schmidt http://www.di.ens.fr/~mschmidt/Software/UGM.html

http://www.di.ens.fr/~mschmidt/Software/crfChain.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
http://www.di.ens.fr/~mschmidt/Software/UGM.html

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 88

Base NP Chunking Segmentation Japanese NE

number of categories |L| 3 14 2 17
number of features D 6438 29 764 1386 102 799
size training/ test set (sentences) 150 / 150 50 / 50 20 / 16 50 / 50
number of tokens in training set

∑
n T

(n) 3739.8 1155.8 942.0 1315.4
SVMstruct 5.91±0.19 9.79±0.43 16.21±0.99 5.64±0.37
CRF 5.92±0.10 8.29±0.34 14.98±0.50 5.11±0.29
GPstruct 4.81±0.21 8.76±0.48 14.87±0.80 5.82±0.37

Table 4.1: Experimental results on text processing task. In the top part of the table,
data sets are described; token numbers are averaged over the training sets. In the
bottom part of the table, Hamming error rate across 5 experiments (cf. section 4.5.1)
are reported (mean± standard error). GPstruct experiments on 250 000 ESS steps (i.e.
f samples), using the f∗MAP scheme, linear kernel, thinning at 1:1000. The best result
and those results not signi�cantly worse than it are highlighted in boldface. We used
a paired t-test with 99% con�dence level as reference.

CRF, SVMstruct and GPstruct code is not straightforward since implementation lan-
guages di�er. Having said that, our GPstruct experiments were roughly a factor of
two slower than the baselines including grid search.

4.5.4 Results and interpretation

Our experimental results are summarised in table 4.1. GPstruct is generally compar-
able to the CRF, and slightly better than SVMstruct.

4.6 Experiments: video processing task

We now apply CRF and GPstruct to the ChaLearn gesture recognition dataset7. The
dataset consists of 20 video recording sessions of an actor (one actor per session)
performing 100 instances of scripted gestures, and returning to a rest position between
each gesture. Gestures are taken from a lexicon which is session-speci�c, and is of
size 8 to 15. Each video frame is labelled with a gesture.

Each session contains a variable number of videos. The videos have an average
length of 86 frames, and maximum length 305 frames.

For each session, we use a prescribed training set of 10 videos (covering all ges-
tures) to train a chain CRF or GPstruct. At each frame of the video we extract
histogram of gradient/ histogram of optical �ow (HOG/HOF) (Laptev et al., 2008)
descriptors and construct a codebook of 30 visual words using a k-means clustering
algorithm. Frames are represented by normalised histograms of visual words occur-
rence, resulting in 30 feature dimensions. A squared exponential kernel (equation

7https://www.kaggle.com/c/GestureChallenge/data

https://www.kaggle.com/c/GestureChallenge/data

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 89

20 30 40 50 60 70 80
CRF, Error rate

20

30

40

50

60

70

80

G
P
st

ru
ct

 S
E
 k

e
rn

e
l,
 E

rr
o
r

ra
te

 5 / 20

15 / 20

Figure 4.6.1: Error rate cross plot of the 20 gesture video sessions. The axes corres-
pond to error rate of GPstruct with SE kernel and CRF, the diagonal line shows equal
performance. The shadowed stars are those with at least 5% performance di�erence.

4.3.3) was used8.
Results The experimental results are presented in the following table, in which

we show the Hamming error rates averaged across 20 sessions (mean± one standard
deviation).

Error

CRF 52.21±11.73
GPstruct linear kernel 51.91±11.02
GPstruct SE kernel 50.42±11.09

Considering the high standard deviation, we can only conclude that GPstruct’s
performance is roughly comparable to the one of the CRF.

Since each session e�ectively represents one speci�c learning task, we compare
the pairwise performances across 20 sessions between GPstruct SE kernel and CRF
in �gure 4.6.1. GPstruct outperforms the CRF baseline by more than 5% in �ve cases,
while it underperforms it in one case. GPstruct SE kernel performs better than CRF.

4.7 Practical issues

Code Our code is available as an open-source Python package, which we hope will
expose the GPstruct model more widely and encourage experimentation9.

8Note that this experiment used hyperparameter learning using the prior whitening scheme described
in algorithm 6.2. Only the squared exponential kernel hyperparameter σ2 is learnt. It is given a scaled
Gamma prior so that σ2/10−4 ∼ Gamma(1, 2) and is initially set to the median pairwise distance.

9https://github.com/sebastien-bratieres/pygpstruct

https://github.com/sebastien-bratieres/pygpstruct

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 90

20000 40000 60000 80000
f samples

0.00

0.05

0.10

0.15

0.20

0.25

e
rr

o
r

ra
te

thin 1:1
thin 1:1000
thin 1:4000
thin 1:8000
thin 1:16000

20000 40000 60000 80000
f samples

0.00

0.05

0.10

0.15

0.20

e
rr

o
r

ra
te

f* MAP
1 f* sample
2 f* samples
10 f* samples

Figure 4.7.1: Top: E�ect of thinning, i.e. sampling f∗|f more rarely than every f
sample. Chunking task, f∗ MAP scheme, hb = 1. Bottom: E�ect of number of f∗|f
samples for each f sample. Chunking task, thinning at 1:1 000, hb = 1.

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 91

Kernel matrix positive-de�niteness To preserve numerical stability of the
Cholesky operation, diagonal jitter of 10−4 is added to the kernel matrices. Depend-
ing on the hyperprior, some hyperparameter samples may make the kernel matrices
ill-conditioned: this is best prevented by rejecting such a proposal by simulating a
very low likelihood value.

How many f samples? The MCMC trace plots in �gure 4.7.1 plot the error rate
of some con�guration against the number of f samples generated (i.e. iterations of
the ESS procedure). For all our tasks, the error rate improves until 100 000 iterations,
which shows heuristically that sampling histories of at least this length are needed to
attain equilibrium for these problems.

How often to sample f∗|f? f∗ need not be sampled for every f sample which is
generated; to save computing time, we can thin and e.g. sample f∗|f only every 10th
f sample, disregarding the other nine samples entirely. Our exploratory experiments
show the following: high thinning rates, such as 1:4000, seem to have very limited
impact on the error rate, cf. �gure 4.7.1 (top).

Howmany f∗|f samples? Do we need any at all, or could we use only the mean
of the predictive posterior? This would save computing the predictive variance, which
involves a Cholesky matrix inversion, and is called “f∗ MAP” here. Figure 4.7.1 (bot-
tom) answers this: sampling more often does not decrease the error rate. These �nd-
ings are very valuable in practice, and seem to indicate that the predictive posterior
is peaked, while the posterior is rather �at, and requires a long MCMC exploration
path to be adequately sampled from. Computing time is dictated by the ESS sampling
procedure, so performance improvement e�orts should clearly aim at obtaining de-
correlated posterior samples.

4.8 Cross-chain MCMC variance

To gain an understanding of the order of magnitude of variation between di�erent
random initialisations of the ESS chain, we have performed the following experiment.

We selected the segmentation task, and for each fold, ran 20 ESS chains to sample
f |D. Due to the computational cost of the experiment, we have not conducted more
experiments, and will have to extrapolate to other tasks and con�gurations.

We measured the following two metrics, which both decompose over test ex-
amples and sequence positions t, and make use of the predicted micro-labels ŷ∗t:

• the Hamming error, used so far in this chapter:

HE =
1

|Dtest|
∑
n∈Dtest

1

T (n)

t=T (n)∑
t=1

I[ŷ∗t = y
(n)
t] (4.8.1)

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 92

• the average negative log posterior marginals, which we will use in chapter 5
and 6:

ANLPM =
1

|Dtest|
∑
n∈Dtest

1

T (n)

t=T (n)∑
t=1

− log p(ŷ∗t|D) (4.8.2)

For each MCMC step (up to 250 000), we took the mean value, over the 5 data folds,
of each metric. (In results in section 4.5.4, we report this value for HE for the �nal
MCMC step.) We then compute the standard deviation of this value over all of the 20
MCMC chains. In �gure 4.8.1, we plot both the mean value and the standard deviation
of either metric.

At the end of the chain, the standard deviations are:

• around 3e-3 for HE, i.e. around 1% of the mean value

• around 4e-4 for ANLPM, i.e. around 1h of the mean value

We conclude that overall, in the results we report, the cross-chain variation due to
random initialisation is negligible, as it is much less than the variation due to the
train vs. test data split.

4.9 Comparisons with existing models

GPstruct shares common ground with the models described in section 3.7.
An important shared modelling assumption is the use of the MRF to specify the

output structure and likelihood. MRFs are pervasive in the structured output predic-
tion literature (Bakir et al., 2007; Nowozin and Lampert, 2010; Nowozin et al., 2014),
specially in NLP (with the CRF (Sutton, 2012)) and computer vision (Blake et al., 2011).
MRF posit Markov dependencies (not necessarily �rst order) in output atoms, and
they make it hard to include long-range dependencies (patch or object information
in vision, or grammatical dependencies in language), or additional sources of statist-
ical knowledge such as n-gram information. As a consequence, GPstruct, just like the
other models we have reviewed, has to use MRF inference repeatedly during train-
ing, and therefore faces the known issues and depends on solutions from the MRF
literature: computational complexity of training, especially in non-tree-shaped MRF,
techniques applicable to submodular potentials, approximate likelihoods, and oth-
ers10. We will put such techniques to use in the next chapter.

Further shared issues are the exponential cardinality of the output label set, which
one could really consider as the fundamental curse of structured prediction, and which
goes hand in hand with the known problem of (a) local vs. global potential normal-
isation; (b) scale issues which occur almost immediately.

10Cf. Nowozin and Lampert (2010) for a review.

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 93

0 50000 100000 150000 200000 250000

MCMC iterations

0.170

0.175

0.180

0.185

0.190

0.195

H
a
m

m
in

g
 e

rr
o
r

0 50000 100000 150000 200000 250000

MCMC iterations

0.446

0.448

0.450

0.452

0.454

a
v
e
ra

g
e
 n

e
g
 l
o
g
 p

o
st

e
ri

o
r

m
a
rg

in
a
l

Figure 4.8.1: Mean and variance plots over 20 MCMC chains for HE and ANLPM
metrics.

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 94

Let us now compare GPstruct with individual models.
In the CRF, potentials are log-linear in the parameters, with basis function

wTφc(xc,yc), where w is the weight parameter and φc a feature extraction func-
tion. In contrast, GPstruct replaces the dot product by f(c,xc,yc), a non-parametric
function of its arguments, and gives this function a GP prior.

In contrast to most of the GP literature, the GPstruct’s Gaussian processes is in-
dexed over MRF cliques, at the �rst level, and labels or label tuples, not just outputs.
Furthermore, due to the parameterisation step mentioned in section 3.7, GPstruct uses
input-output kernels, as opposed to output kernels in GP multi-class classi�cation.

Comparing GPstruct to the KCRF model of Altun et al. (2004a), we can make the
following points:

• In Altun et al. (2004a), binary parameters are absorbed in the unary parameters,
so that the �nal parameter count corresponds to the number of unary paramet-
ers. In the presentation of this chapter, binary latent variables are kept separate.

• The GPstruct formulation starts from parameterisation and parameter tying.
As a consequence, GPstruct easily supports di�erent CRF shapes, likelihoods,
kernels, tying schemes. Some of these will be demonstrated in the following
chapter.

• In contrast, Altun et al. (2004a) uses a formulation that starts from kernels over
entire label sequences, and takes advantage of the decomposition of u and α
over cliques (Altun et al., 2004b). This makes it more di�cult to formulate model
variants such as those just cited for GPstruct.

• In particular, Altun et al. (2004a) has not been applied to other tasks than
sequence labelling. Altun (2005) (section 4, page 85) leaves applications to
more general graphs than chains as future work, using approximate inference
schemes. The next chapter of this thesis �lls that gap for GPstruct, by applying
it to grid graphs using approximate likelihoods.

Compared to all the KCRF models, GPstruct’s main advantage is the use of Bayesian
inference instead of MAP or max-margin parameter estimation of the latent variables.
This opens the door to principled model selection or comparative model criticism, and
hyperparameter learning without grid search or cross-validation (cf. chapter 6). In ad-
dition, it contributes to making posterior probability estimates produced by GPstruct
better than those of other models. This should stay true even in the face of attempts
at probabilistic interpretations of SVM (cf. section 4.12), or attempts to have max-
margin methods produce probabilistic output, which is known to be hard to calibrate
(Stoyanov et al., 2011; Stoyanov and Eisner, 2012; Finley and Joachims, 2008; Yuille
and He, 2012; Uřičář et al., 2013).

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 95

Now taking a broader perspective on MRF-based models for structured output
prediction, note that MRF parameters (governed by a GP in GPstruct) could really
be supplied by any function approximator. Jancsary et al. (2012) suggests using a
random forest to model the energy function of a Gaussian MRF, allowing higher-order
interaction. Do and Artières (2010) take the energy function from a neural network.
Chen et al. (2015) also uses an neural network on top of an MRF, and jointly learns
the MRF parameters and the neural network parameters.

Several sequence structured classi�cation problems, especially in natural language
processing, have seen great experimental success thanks to recurrent neural networks
(RNN). Sequence labelling problems can be tackled by synchronous RNNs in which one
output is produced each time one input is consumed. Sequence generation problems
like machine translation can be modelled by asynchronous RNN, in which all input
tokens are consumed, while a hidden representation of the input sequence is accu-
mulated, and in a second stage, all output tokens are generated. The latter approach
is referred to as “sequence-to-sequence” paradigm (Sutskever et al., 2014). How do
such models compare to GPstruct? They generally require larger data sets to start
performing well, but are capable of automatic feature extraction in the input, while
(at least in the embodiment presented in this thesis) requires hand-crafted features.
To adapt to a new problem, however, the neural network topology needs to be ad-
apted, and sometimes the e�ort gained from automatic feature extraction is spent on
network structure search, an approach which gains prominence in industrial applic-
ations. The major drawback of RNNs, however, lies in their inability to enforce or
explicitly model inter-label constraints like CRFs, which the GPstruct models in its
MRF component. For this reason, in several modern applications RNNs are topped
with some graphical model to model label constraints (e.g. Ma and Hovy (2016)).

GPstruct builds on a probabilistic approach, with a prior parameterised by a ker-
nel function, and a likelihood governed by the MRF topology. Alternatively, one can
combine direct loss optimisation with the bene�ts brought by neural networks, not
least the availability of reliable open-source libraries. Belanger and McCallum (2016);
Belanger et al. (2017); Belanger (2017) generalise the energy function (which is equi-
valent to operating on the loss) from factor graphs to autoregressive energy functions,
and relax discrete output spaces into continuous spaces, so that the energy function
can be di�erentiated all the way through to inputs and parameters; in this architec-
ture, complicated constraints between output labels can be implemented in the energy
function, which GPstruct achieves both in the kernel function over output labels, and
in the MRF distribution over output labels. Building on this work, Tu and Gimpel
(2018) learn inference networks to bypass combinatorial optimisation or argmax op-
erations, while Gygli et al. (2017) directly learn to estimate the loss function using
gradient-based inference.

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 96

4.10 MAP variant of GPstruct

How to probe whether using a fully Bayesian parameter estimation procedure
provides an advantage with respect to a MAP procedure ? This question arises in
the comparison between GPstruct and KCRF schemes, for example.

In this section, we will compare the following two experimental con�gurations:

• (Bayesian method) predictions are obtained as described in section 4.4.1:

p(y|D) =

∫
p(y|f∗)p(f∗|f)p(f |D) df∗ df (4.10.1)

≈ 1

Nf

∑
f∼p(f |D)

p(y|f∗MAP) (4.10.2)

with f∗MAP obtained from a sample f . This is “Bayesian” in that it uses MCMC
samples from f |D. Note that it uses a single MAP value for f∗, however, as we
found out experimentally, early on, that this was su�cient.

• (MAP method) predictions are obtained as

p(y|D) =

∫
p(y|f∗)p(f∗|f)p(f |D) df∗ df (4.10.3)

≈ p(y|f∗MAP) (4.10.4)

with f∗MAP obtained from fMAP = arg maxf p(f |D). This is obtained as fol-
lows:

fMAP = arg max
f

log p(f |D) (4.10.5)

= arg max
f

(log p(f) + log p(D|f)) (4.10.6)

= arg max
f

(
−1

2
fTK−1f +

∑
n

log p(y(n)|x(n), f)

)
(4.10.7)

We obtain the maximum of this concave function by setting the derivative to zero.
The derivative of the second term, which sums over D with index n, with respect to
the element fc of f corresponding to clique c, is:

∂ log p(y(n)|x(n), f)

∂fc
= #c ∈ (x(n),y(n))−Eỹ∼p(ỹ|x(n),f)[#c ∈ (x(n), ỹ)] (4.10.8)

where #a ∈ A (read “count a in A) is the number of instances of pattern a in set A.
Thus for each training sequence n, the �rst term is a count on the training data.

The second term, the expectation, is computed as follows:

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 97

• when c is a unary clique (x, yt): E[#c] = p(yt|x, f) is the marginal obtained
from the forward-backward algorithm (to be computed for each position t in
the sequence)

• when c is a binary clique (yt, yt+1): E[#c] =
∑
t p((yt, yt+1)|x, f) is the two-

slice marginal, which can also be obtained exactly from the forward-backward
algorithm

This result, which in its more general form can be formulated as: “at the maximum
likelihood estimate, the empirical su�cient statistics are equal to the expected suf-
�cient statistics”, can be extended to exponential families in general, and is a con-
sequence of the convex duality between maximum likelihood and maximum entropy
problems in exponential families.

4.10.1 Experiments

We run the NLP tasks described above with the MAP and MCMC methods, and report
the metrics HE and ANLPM de�ned section 4.8. We use a linear kernel for kx, and
hu = hb = 1. The gradient ascent procedure to estimate fMAP uses the o�-the-shelf
BFGS implementation from the scipy.optimize library, with f initialised by a draw from
the prior.

Results are presented in table 4.2.
On the Japanese NE task, GPstruct MAP does better than GPstruct Bayesian, and

mostly so on the Segmentation task. On the Base NP task, GPstruct Bayesian does
consistently better than MAP. Results on the Chunking task are mixed.

As it is, this experiment does not give a clear-cut answer. We have not reproduced
these experiments using hyperparameter learning (cf. chapter 6), which for the MAP
scheme would imply a costly cross-validation procedure; we believe results would
be similar. As we discuss in section 4.12, we believe that the datasets and tasks we
are using, despite being standard benchmarks for structured prediction output, can-
not discriminate between these two rather good models. Di�erent datasets and tasks
might be more revealing.

4.11 Further GP models with structure

We now discuss several more distantly related statistical models, mainly to give the
reader a complete overview.

GP regression networks (Wilson et al., 2012) tackle structured regression, i.e.
the problem of regression over a �xed-size vector output y. The input x may belong
to an arbitrary set. The inductive bias realised by GP regression networks can be sum-
marised as follows: we wish to model input-dependent signal and noise correlations

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 98

MCMC ANLPM MAP ANLPM MCMC HE MAP HE MCMC HE | last f

task= segmentation fold=0 0.369 *0.365 *0.155 0.166 0.193
task= segmentation fold=1 0.331 *0.315 0.134 *0.132 0.173
task= segmentation fold=2 0.354 *0.345 0.154 *0.152 0.193
task= segmentation fold=3 0.391 *0.379 *0.155 0.157 0.224
task= segmentation fold=4 0.356 *0.341 *0.143 0.146 0.219
task= basenp fold=0 *0.151 0.163 *0.044 0.057 0.074
task= basenp fold=1 *0.162 0.167 *0.048 0.051 0.086
task= basenp fold=2 *0.161 0.164 *0.048 0.054 0.072
task= basenp fold=3 *0.150 0.155 *0.046 0.052 0.072
task= basenp fold=4 *0.156 0.166 *0.050 0.056 0.080
task= chunking fold=0 0.329 *0.312 *0.067 0.080 0.163
task= chunking fold=1 0.361 *0.350 *0.082 0.086 0.174
task= chunking fold=2 *0.379 0.382 0.100 *0.096 0.184
task= chunking fold=3 0.342 *0.333 *0.086 0.089 0.167
task= chunking fold=4 *0.383 0.400 *0.094 0.101 0.178
task= japanesene fold=0 0.300 *0.276 0.069 *0.064 0.074
task= japanesene fold=1 0.266 *0.261 0.061 *0.058 0.068
task= japanesene fold=2 0.263 *0.240 0.051 *0.050 0.062
task= japanesene fold=3 0.314 *0.277 *0.059 *0.059 0.072
task= japanesene fold=4 0.224 *0.203 0.049 *0.047 0.054

Table 4.2: GPstruct Bayesian vs. MAP. Each row represents one data split for one
given task. Every column represents one metric. Meaningful columns to compare:
MCMC ANLPM vs MAP ANLPM, MCMC HE vs MAP HE. The * marks the better
(lower) of the two scores. The column “MCMC HE | last f” is the HE when computed
using the last sample from f |D as a point-wise estimate, and is given for information.
Folds are displayed separately to illustrate the variance across folds.

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 99

between dimensions of the output. The output is modelled as a noisy mixture of GPs,
in which the mixing weights W are GP-distributed:

y(x) = W(x)[f(x) + σfε] + σyz (4.11.1)

where ε and z are independent Gaussian noise processes, and both f and W are
independent Gaussian processes. In this fashion, the output is modelled as a spa-
tially (i.e. w.r.t. x) adaptive combination of GP latent variables. Variational inference
methods for this model were developed by Nguyen and Bonilla (2014).

Still for structured regression, in cases where we can build kernels over both the
input and the output spaces, an interesting learning technique consists of building an
implicit model of output correlations via a kernel similaritymeasure (Weston et al.,
2002). The twin Gaussian processes of Bo and Sminchisescu (2010) address structured
continuous-output problems by forcing input kernels to be similar to output kernels.
This objective re�ects the assumption that similar inputs should produce similar out-
puts. The input and output are separately modelled by GPs with di�erent kernels.
Learning consists of minimising KL divergence as a measure of discrepancy.

GP latent random �elds11 (Zhong et al., 2010) are a version of the GP latent
variable model (Lawrence, 2005) augmented with discriminative information, as an
improvement over the discriminative GP latent variable model of Urtasun and Dar-
rell (2007). The input consists of points in Rd, which all belong to some class. The
aim of the model is to obtain a good representation of the input in latent space,
with the help of the class membership information. The model places a Gaussian
Markov random �eld prior on each dimension of the latent representation (the con-
nectivity of the random �eld being imposed by the class membership). The likeli-
hood p(observation|latents) consists of a Gaussian distribution with covariance mat-
rix equal to the Gram matrix of a given kernel over the latent variables.

An interesting non-parametric extension of the SVM, parallel to GPstruct, is the
in�nite SVM (Zhu et al., 2011), which is based on a DP mixture of SVMs, which
contains aspects of both Bayesian inference in modelling the DP mixture, and of ker-
nel machines in the SVM component. In Zhu et al. (2014), this model was recast in
the RegBayes framework12, which we do not detail further here. It was extended to
structured prediction and applied to speech recognition problems in Yang et al. (2014).
These models’ non-parametric character is not induced by GP as in GPstruct. Instead,
they are based on DP models, and perform point-wise parameter estimation.

11Despite the similar name, GP random �elds (Moore and Russell, 2015) are a method for scaling GP
computation; instead of partitioning the GP input space, and learning separate GPs for each partition, a
random �eld of (parameters of) GPs is built over the input space.

12We ought to remark that several works by Jun Zhu and collaborators are relevant to the study of the
generative-discriminative interface, including a form of the HDP-HMM (Zhang et al., 2014).

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 100

4.11.1 Di�erent de�nitions of “structure” for GP structured re-
gression

The GPstruct model for structured classi�cation, as presented in this chapter, is one of
possible non-parametric GP models which exhibit “structure”. Here are suggestions
for constructing di�erent models for structured regression, which emerged during our
research, but which we did not explore further. A complete review on vector-valued
(multivariate) Gaussian processes is provided by Alvarez et al. (2011).

GPstruct uses a softmax link function, and as a consequence, it de�nes both an
output structure (governed by the MRF) and a latent variable structure over the factors
of the MRF (governed by the GP and the structure of its kernel). In the following
models, we are discussing only the latent variable structure.

GPstruct as de�ned here has the global property that its Gram matrix K is sparse,
with zeroes encoding marginal independence of the variables – a sensible design de-
cision in the case of GPs, because deleting one variable will change K only locally,
not globally, but will change K−1 globally, and also because it is hard to specify the
inverse covariance of two points.

While GPstruct encodes structure in the CRF, we could de�ne a Gaussian MRF
which captures interdependencies between variables. Missing edges in a Gaussian
MRF correspond to conditional independence of variables, and are encoded as zeroes
in the inverse covariance matrix of the Gaussian distribution over the variables13.
Formally, we could de�ne this model as follows: x is of arbitrary shape, while output
y ∈ RT . Precision matrix W ∈ RT×T speci�es the inverse covariance of a Gaussian
MRF over the latent variables ft. We now de�ne

y = f(x) + ε

∀t, yt|ft ∼ N (0, σ2)

f ∼ GP (0, k)

(4.11.2)

where k is assumed to be a separable kernel, cov(ft(x), ft′(x
′)) = k((t,x), (t′,x′)) =

kW(t, t′)kx(x,x′), where kW has Gram matrix W−1. In this model however, nothing
connects the output yt to local features inside x; if this is a modelling goal, it can be
introduced by appending a multiplicative factor klocal(φ(t,x), φ(t′,x′)) to the kernel.

We could also assign the structure to the noise (the residuals), with a model where

y = f(x) + ε

y|f(x) ∼ N (f(x),W−1)
(4.11.3)

A model of this type is explored by Rakitsch and Lippert (2013).
If we replace the Gaussian MRF by a Gaussian bidirected graphical model (de An-

13Sparseness in the inverse covariance matrix is a su�cient condition for conditional independence

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 101

drade e Silva and Ghahramani, 2006), missing edges encode marginal independence
between variables, and appear as zeroes in the covariance matrix. This is not usually
considered “structured”, but could correspond to speci�c modelling needs.

Still assuming vector-valued latent variables f(x), we can impose structure over
their components ft(x) by de�ning a Gaussian directed graphical model: let µ be
the mean vector of f(x), and g(x) = f(x) − µ the centered version of the variables,
then such a model can be expressed as g = Wg + Sz, where W is the regression
weight matrix (which can be restricted to be lower triangular, without loss of gener-
ality, provided the variables are ordered according to topological ordering), S is the
diagonal matrix of noise covariances, and z ∼ N(0, I) is the noise. Structure is built
into the regression weights W. The covariance matrix across values of t is then (cf.
derivation in

Murphy (2012, section 10.2.5) and Bishop (2006, section 8.1)) cov(x,x) =

(I−W)−1SST (I−W)−1T .

4.12 Conclusion

In designing GPstruct, two main bene�ts were key: the model can be engineered
nicely, and it produces calibrated probabilistic predictions. We comment on how these
bene�ts were (or were not) obtained, and pursue by pointing out some limitations of
our work.

The model engineering advantage means it is easy for humans to add knowledge
to the model, in the form of kernel design, form of the likelihood, feature extraction,
dependencies and types of factors in the CRF governing the output structure. This
chapter was dedicated to sequence models, and in the next chapter we adapt GPstruct
to grid models and approximate likelihoods. It would be relevant to apply GPstruct to
further tasks, for instance to parsing with probabilistic context-free grammars, which
is regularly used as a benchmark for structured output prediction (e.g. Taskar (2004)).

Calibrated probabilistic predictions are important when the mere “best” predic-
tion is not su�cient, but we need “error bars”, an estimation of uncertainty. This is
the case when a machine learning components is part of a pipeline, as is typically the
case in NLP, and its output must be fed into further components while preserving and
quantifying uncertainty in the predictions. An example of such a situation occurs in
speech understanding: the exact words used in an utterance and output by the speech
recognition engine are not crucial, but the semantic extraction engine has to margin-
alise over di�erent word sequences which yield the same semantic representation,
which requires summing over probabilities of recognised word sequences. Another
important scenario is active or reinforcement learning, where exploration depends on
expected information gain.

In such contexts, relevant probabilistic information includes the posterior prob-

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 102

ability of a prediction p(y|x,D), as well as marginal probabilities of micro-labels
p(yt|x,D), both for the best and for other predictions. In addition, probabilistic an-
swers to queries, i.e. the probability mass assigned by the posterior to an event, is often
important. For instance, in printed character recognition, we might need a probabil-
istic answer to the question “does this character sequence represent a bank account
number?”, ignoring (i.e. marginalising over) the exact sequence of characters.

For classi�ers which do not naturally produce probabilistic predictions, there are
attempts to retro�t the model to output such information, e.g. probabilistic interpret-
ations of SVMs14. An issue that arises frequently with such schemes is the missing
calibration: said bluntly, there is no reason why a number which looks like a prob-
ability should be a probability. This motivates further e�orts to calibrate retro�tted
probabilistic output, as in Kuleshov and Liang (2015).

GPstruct, instead, should produce better calibrated probabilistic output by design;
in the next chapter, comparing GPstruct to other models, we con�rm this experiment-
ally.

What are advantages of a kernelised Bayesian model compared to mainstream
structured prediction approaches, such as SVMstruct and CRF? One common bene�t
lies in the domain knowledge which can be infused in the MRF structure (higher-order
factors, network topology). Kernelised models have kernel design as an additional
handle, whose potential we have only started to explore in this work; for instance
one can de�ne informative kernel (similarity) values between output labels, instead
of an identity matrix. As a kernelised Bayesian model, GPstruct has some robustness
against approximations, unlike other models which rely on optimisation. For instance,
CRFs trained with pseudo-likelihood (cf. chapter 5 for a discussion) are known to
perform poorly; SVMstruct has di�culties when exact energy minimisation is not
available, as the cutting plan algorithm fails to �nd the worst margin violation.

We are aware of several limitations of the work presented in this chapter.
Experimental results in this chapter and the next, while showing a slight superi-

ority of GPstruct beyond the state of the art, are not as strong as we expected. The
experiments in section 4.5 and 4.6 did not give GPstruct a large winning margin, and
results in section 4.10 are disappointing. In chapter 6, a related issue will be pointed
out, and discussed in section 6.5: the interpretation of results is quite sensitive to the
choice of metric.

We argue that di�erent tasks and datasets are needed to establish under what cir-
cumstances GPstruct’s inductive bias is helpful. On NLP and video tasks, the methods
we have tested are all very good, and seem to be hitting a ceiling in terms of per-
formance. Our models may be over�tting, that is, �tting residual noise on these tasks.
Arguably, synthetic tasks could be designed to display where GPstruct is at an advant-

14This issue has been worked on many times, mostly unsatisfactorily; cf. Platt (1999) for an early refer-
ence, and Franc et al. (2011) for a recent approach.

CHAPTER 4. GPSTRUCT FOR SEQUENCE LABELLING 103

age, but would not necessarily illuminate real-world applicability for GPstruct. More
credibly, new tasks should come from domains where probabilistic output makes a
di�erence, as discussed above: active learning15, reinforcement learning, Bayesian
optimisation problems, and tasks with a downstream requirement that uncertainty
on results is preserved.

A Bayesian statistician would �nd that our MCMC analysis can be improved. We
have characterised cross-chain variance in section 4.8 and attempted to give practical
guidance on settings of training con�guration settings (hyperparameters, really) in
section 4.7, but our analysis was largely experimental and heuristic. This thesis work
could be furthered by a complete MCMC convergence analysis, taking into account
e�ective sample size and convergence criteria. A more complete study would shed
light on stopping criteria and thinning rates, in connection with desired levels of per-
formance.

Finally, we have not explored GP sparsi�cation techniques in our work16. The
Kronecker structure of the particular kernel we are working with could be exploited
to reduce memory footprint, probably at the expense of computation, so that a trade-
o� has to be considered. The Gram matrix can also be approximately factorised, and
it remains to be seen what impact this would have on performance.

15One scheme to create such tasks consists of casting a supervised learning task into an active learning
task, as in Blundell et al. (2015).

16cf. section 5.6.1 for related work on sparsi�cation in variational inference schemes

Chapter 5

Scaling up GPstruct: pixel grid
labelling

Having convinced ourselves that GPstruct is a useful model, the natural next step
is to scale up the datasets in can handle. The most obvious limiting factors are the
number of iterations needed in ESS, and the storage and computation requirements
connected to the kernel matrix. In addition, GPstruct is expected to be “engineerable”,
in the sense that several pieces can be replaced by variants; we would like to see how
it accommodates a new CRF topology, and a new expression for the likelihood.

Semantic image segmentation is a labelling task over pixels grids which poses all
these challenges. It is much harder than text labelling tasks, because the number of
pixels in a typical image is vastly larger than the number of words in a sentence. The
task typically consists of separating zones of the image depicting di�erent objects,
such as persons, cars, the sky, buildings, and so forth. The number of object classes
to be identi�ed varies from application to application. Labels are often applied at
pixel level, which distinguishes this task from other computer vision task such as
object identi�cation, where the output could come as a single image label, or such as
joint object localisation and identi�cation, where the output is a label jointly with a
bounding box.

It is manifest that there are strong inter-pixel label agreement constraints due to
the spatial continuity of physical objects. This makes it a typical application for struc-
tured prediction algorithms, which, to label the current pixel, combine constraints
from neighbouring labels with information from a pixel patch centered at the current
pixel.

104

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 105

y1 y2 y3

y4 y5 y6

y7 y8 y9

f(y1, y2) f(y2, y3)

f(y4, y5) f(y5, y6)

f(y7, y8) f(y8, y9)

f(y1, y4)

f(y4, y7)

f(y2, y5)

f(y5, y8)

f(y3, y6)

f(y6, y9)

f(x1, y1) f(x2, y2) f(x3, y3)

f(x4, y4) f(x5, y5) f(x6, y6)

f(x7, y7) f(x8, y8) f(x9, y9)

Figure 5.1.1: Grid factor graph with pairwise factors. There is one unary factor per
pixel (the observed variable nodes for the xt have been left out to not crowd the
picture), and one pairwise factor.

5.1 Grid parameterisation

We now describe the parameterisation used to apply GPstruct to grid labelling tasks,
and introduce our notation along the way.

We are given images which are grids (or lattices, in graphical model parlance)
of pixels, and which we represent as grids x of feature vectors xt. A semantic seg-
mentation of an image is represented by y = (yt)t∈{1..T}, with yt ∈ R, the set of
pixel-level semantic labels, and |R| = R. Following the notation introduced in the
previous chapter, we continue to note t ∈ {1...T} the positions in x and y. In contrast
to the previous chapter, however, we assume that all images have the same shape, and
hence total number of pixels T .

As before, training data is denoted byD = {(x(1),y(1)), ...(x(Ntrain),y(Ntrain))}.
A CRF topology adapted to a grid output, similarly to the sequence CRF we worked

with in the previous chapter, consists of unary factors for each pixel, and binary (edge)
factors representing the potential between two neighbouring pixel labels, cf. �gure
5.1.1. Unary factors depend on the pixel label yt and on the corresponding input pixel
feature vector xt. The neighbourhood for binary factors consists of the four closest
pixels in the North, West, South, East positions (except for edge and corner pixels,
which have fewer neighbours). We noteN (t) the index set of the neighbour positions
of a given position t.

An alternative topology could include binary factors for diagonal pixels in addition
to these, or even larger neighbourhoods, or higher-order factors.

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 106

5.2 Approximations for scaling

Learning in GPstruct consists of obtaining

p(f |D) ∝ p(D|f)p(f) (5.2.1)

where the likelihood is given by the CRF model, and the prior is given by the GP prior
over clique factors. In the approach introduced in the previous chapter, we represent
this distribution as a collection of posterior samples obtained through an elliptical
slice sampling MCMC algorithm.

Prediction of label y∗ for test input image x∗ consists of minimising an expected
loss. As before, we use per-pixel Hamming loss rather than 0-1 loss, which more
closely resembles losses which decompose over the image pixels than global losses.
Our probabilistic problem for prediction is therefore the maximum posterior marginal
inference (Marroquin et al., 1987) problem

∀t, arg max
y∗t

p(y∗t |x∗,D) (5.2.2)

for which we marginalise

p(y∗t |x∗,D) =

∫
f∗
p(y∗t |x∗, f∗)p(f∗|x∗,D) df∗ (5.2.3)

=

∫
f∗
p(y∗t |x∗, f∗)

∫
f

p(f∗|x∗, f)p(f |D) df df∗ (5.2.4)

The �rst term is again the likelihood given by the CRF model, the second term
is a multivariate Gaussian, and the third is the posterior obtained during training.
We approximate the integrals by Monte Carlo sums using samples of the relevant
distributions.

In the sequence case, the partition function in the likelihood p(y|f) could be ob-
tained exactly using the forwards-backwards algorithm. In the grid case, we no longer
have a tree-shaped CRF, which would allow the application of linear-time algorithms.
An exact solution would be given by the junction tree algorithm, whose runtime, how-
ever, is exponential in the treewidth of the graph. For an n× n grid, the treewidth is
n, therefore, for even small pixel grids, the junction tree algorithm is intractable.

To address the intractability of the likelihood normaliser, we use a surrogate like-
lihood, the pseudo-likelihood (Besag, 1975) (PL), as a drop-in for the true likelihood
in the ESS procedure. The PL approximation can be explained in simple terms: we
can write the likelihood in any MRF model as a product of likelihoods by repeated

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 107

applications of the chain rule of probability:

p(y) =
∏
t

p(yt|{yu|u < t}) (5.2.5)

Here, each factor depends on the “previous” variables in index order. The pseudo-
likelihood consists of approximating each factor by its prediction given all other vari-
ables1:

p(yt|{yu|u < t}) ≈ p(yt|{yu|u 6= t}) (5.2.6)

Applied to an undirected graphical model, conditioning on all other variables is
equivalent to conditioning on the Markov blanket, which consists of the neighbouring
variables:

p(yt|{yu|u 6= t}) = p(yt|{yu|u ∈ N (t)}) = p(yt|yN (t)) (5.2.7)

with the slight abuse of notation yN (t) = {yu|u ∈ N (t)}. Hence

p(y) ≈
∏
t

p(yt|yN (t)) (5.2.8)

The global normalisation necessary for the exact likelihood computation is re-
placed with a local, neighbourhood-based computation, which makes it tractable.

The full-data likelihood used in equation 5.2.1 is therefore approximated as

p(D|f) ≈
∏
n

∏
t

p(y
(n)
t |y(n)N (t), f) (5.2.9)

The maximum PL estimator (as an estimator for model parameters) is known to be
a consistent estimator in special cases such as the Boltzmann machine (Besag, 1975),
but here we use it to approximate the intractable likelihood function itself. The use
of PL in MCMC schemes for Bayesian parameter learning in Markov random �elds
dates back to Wang et al. (2000).

A detailed study of MCMC for Bayesian learning in non-trivial undirected graph-
ical models is given in Murray and Ghahramani (2004), which conjectures that for
general undirected models, there are no tractable MCMC methods that give the cor-
rect equilibrium distribution over parameters. Their pragmatic solution is to explore a
variety of approximations for the normalising constant Z(x, f). The method of Mur-
ray et al. (2006) is not exactly suited to elliptical slice sampling, since it works on
the Metropolis-Hastings acceptance rate. However, earlier, Parise and Welling (2005)
have concluded that for fully observed MRFs (as in our case), PL is recommended over

1This is the only approximate step in pseudo-likelihood. Any di�erent motivation for PL is therefore
necessarily equivalent.

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 108

perfect sampling due to the computational burden of the latter, which is not balanced
by a corresponding performance gain. In this research, we show empirically that PL
works well when used as a likelihood approximation in the GPstruct model.

This approximation does not solve all scaling issues posed by learning on images,
however. Consider a data set with 1000 square images of dimension 100× 100 pixels.
During MCMC, a single evaluation of the PL requires the evaluation of 1e7 local prob-
abilities p(yt|yN (t)), cf. equation 5.2.9, which is very high. In addition, the number
of latent variables necessary to parameterise a binary segmentation output, such as
foreground-background segmentation, is 2e7, and the input kernel matrix is square
that size (4e14). For these reasons, we need to cut down on the number of parameters.

We achieve this by formulating an ensemblemethod as in Nowozin and Lampert
(2010, section 4.5), in which each weak learner is trained on only a small subset of pixel
positions S ⊂ {1...T}. The corresponding subset PL is

pPL(D|f ,S) =
∏
n

∏
t∈S

p(y
(n)
t |y(n)N (t), f) (5.2.10)

To produce diversi�ed weak learners, a necessity for ensemble methods, we train
them on disjoint subsets SnWL

of pixels, while keeping |S| �xed. To clarify, we do not
cover all pixel positions in this fashion, i.e.

⋂
nWL
SnWL

({1...T}. This approach to
subset-based ensemble learning is related to the Bayesian committee machine (Tresp,
2000)2.

Much evidence shows that ensemble learners can exceed the performance of
simple models. Examples of ensemble methods are bagging, boosting, random forests
and their variants. The bagging algorithm (Breiman, 1996), which we apply, trains
each weak learner from bootstrap data and combines individual predictions by uni-
form averaging or voting over class labels. We use the non-parametric bootstrap of
Fushiki et al. (2005) to construct the predictive distribution from Monte Carlo samples.

At prediction time, for each t, we need to compute p(y∗t |x∗, f∗). The marginal pre-
dictive likelihood is again intractable due to the normaliser. We address this last issue
by applying tree-reweighted (TRW) belief propagation (Wainwright and Jordan,
2008) as an approximation. TRW yields a tractable upper bound on the log partition
function, which might give inconsistent marginal predictive likelihoods p(y∗t |x∗, f∗),
in the sense that no joint distribution would yield those marginals. Despite this in-
consistency, practically, TRW-based inference delivers state-of-the-art predictive per-
formance (see for example Domke (2013)).

Note that we cannot use TRW instead of PL to obtain an approximation of the
likelihood, because our PL is calculated over a subset of labels S : this is natural to do
with PL, but cannot be obtained with TRW; also, TRW gives an upper bound on the
partition function, and hence a lower bound on the likelihood, but not an approxim-

2It would be interesting to try and match it with Dillon and Lebanon (2010)

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 109

ation, which instead is needed for MCMC training. Conversely, PL cannot be used
instead of TRW for prediction because it is only a likelihood approximation, not a
marginal MAP inference method.

5.3 Algorithm

We now restate the resulting algorithm for clarity.

1. (Distributed stage) for each weak learner nWL ∈ {1..NWL}

(a) Generate bootstrap data DnWL
⊂ D from the empirical distribution

p(x,y) = 1
Ntrain

∑Ntrain
n=1 δ(x−x(n))δ(y−y(n)). Draw a pixel set SnWL

.

(b) (Training) Based on the subset of pixel positions SnWL
⊂ {1...T}, per-

form training by ESS using the PL expression from equation 5.2.10 applied
to DnWL

, resulting in MCMC samples f̃nWL
.

(c) (Partial prediction) For each test image x∗, for each sample f̃nWL
,

obtain samples f̃∗nWL
from the multivariate Gaussian distribution

f∗nWL
|f̃nWL

. For each sample f̃∗nWL
, obtain the predictive distribution

p(y∗|x∗, f̃∗nWL
) using TRW. Using a Monte Carlo estimate, aggregate

these in p(y∗|x∗,DnWL
) ≈ 1

Npredictive

∑
f̃∗nWL

p(y∗|x∗, f̃∗nWL
).

2. (Aggregation stage) Compute the complete predictive distribution as a uni-
form average p(y∗|x∗,D) ≈ 1

NWL

∑
nWL

p(y∗|x∗,DnWL
).

Note that we do not share binary latent variables in our algorithm; this is a reasonable
idea, but requires synchronising the weak learners, which partly defeats distribution.

5.3.1 Algorithm complexity

The algorithm complexity can be computed separately for the distributed stage, where
it scales linearly with the number of weak learners NWL, and for the aggregation
stage.

Learning occurs in each weak learner in parallel. For each weak learner nWL, a
one-time setup phase involves computing the kernel matrix from the features, and
vector-multiplying by the Cholesky decomposition: with |S|× |DnWL

| = Npixel/WL

subsampled pixels in the whole of DnWL
, the kernel computation takes O(M2), and

a Cholesky factorisation takes O(M3), where M = RNpixel/WL + R2; however in
practice, due to the repeat block-diagonal structure of the kernel matrix due to our
particular choice of kernel, cf. equation 4.3.6, we work with Kx of lengthNpixel/WL.
Space requirements for learning are dominated by the storage of the Cholesky matrix.
The ESS runtime is dominated by likelihood computations; ESS being a slice sampling

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 110

algorithm, the number of likelihood computations in each MCMC step is not �xed.
Each PL computations scales as O(Npixel/WL). In practice the number of required
MCMC iterations seems adequate when each WL runs for 12 hours.

Partial prediction (1c in section 5.3) is carried out on each weak learner, for each
test image in sequence. Runtime is dominated by the TRW computation for each im-
age, for each sample f̃nWL

obtained by ESS. Space requirements are dominated by
storing the marginals for each such sample, and by the train-test and test-test kernel
matrices: for a weak learner nWL with T pixels in each test image, these matrices
contain Npixel/WLT and T 2 elements respectively, but they need not be present in
memory simultaneously, since partial predictions are independent for di�erent im-
ages. GPstruct has this in common with other kernel methods that at test time, it
needs to evaluate, store and vector-multiply by the Cholesky decomposition of these
matrices, and its prediction runtime is therefore linear with the test dataset size.

Aggregate prediction (stage 2 in section 5.3) is carried out for each image inde-
pendently and is the fastest stage, consisting of averaging the marginals over weak
learners.

5.4 Experimental setup

We assess the performance of these approximation techniques applied to the GPstruct
model on a multi-class image segmentation task using two datasets. We compare
GPstruct to a number of other techniques.

Stanford Background Dataset (Gould et al., 2009)3 This dataset consists of 715
photographs of outdoor scenes, resised to 50 × 150 pixels. Each pixel in the image
is labelled with one of 8 classes, i.e. {sky, tree, road, grass, water, building, mountain,
foreground object}. We keep 80% of the data for the training set (572 images), and
20% for the test set (143 images). This split is repeated over 5 folds. The dataset
was chosen over more challenging datasets such as the MSRC 23-class dataset4 for
comparison purposes: Domke (2013) uses it, and makes its code available.

LabelMeFacade Image Database (Fröhlich et al., 2010)5 To check that results
generalise, we conducted further experiments with this other, similar dataset. By
convention, it is pre-split in 100 images for training and 845 images for testing. The
original images are of di�erent sizes and are resised to 50× 150 pixels. Each pixel in
the image is labelled with one of 9 classes, i.e. {building, car, door, pavement, road,
sky, vegetation, window, unlabelled}.

For both datasets, we used the output of a random forest algorithm (Nowozin et al.,
2011) as feature vectors. The feature vectors are prediction probabilities for each of

3http://dags.stanford.edu/projects/scenedataset.html
4https://www.microsoft.com/en-us/research/project/image-understanding/
5https://github.com/cvjena/labelmefacade

http://dags.stanford.edu/projects/scenedataset.html
https://www.microsoft.com/en-us/research/project/image-understanding/
https://github.com/cvjena/labelmefacade

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 111

the pixel class labels.
We compare the performance of GPstruct to that of other models suited to the

same task. Our aim is to assess the contribution of di�erent aspects of our proposed
model: the non-parametric property of the latent variables, the choice of learning
technique (MCMC vs. margin optimisation), the “structured output” property of GP-
struct obtained by factors on the inter-pixel edges, and the improvement brought by
bagging.

CRF PL is a CRF model trained with pseudo-likelihood.
CRF LBMO (for loss-based marginal optimisation) is the model described in Domke

(2013), and is considered to be state-of-the-art for vision CRF applications. While tra-
ditionally, CRF parameter learning optimises the likelihood, Domke (2013) suggests
�tting parameters based on the quality of prediction of a given marginal inference
algorithm, obtained by TRW or mean-�eld (we use TRW in our experiments), using
truncated univariate logistic loss. Domke (2013) outperforms likelihood-based learn-
ing methods such as PL on di�cult problems where the model being �t is approximate
in nature, such as image denoising and image segmentation tasks.

independent is a variant of CRF LBMO based on the same training procedure, but
where prediction ignores pairwise edges, preserving only unary features. This helps
appreciating the contribution of the edge factors.

CRF LBMO bag applies the same bagging procedure as the GPstruct model to
the CRF LBMO model, i.e. weak learners are trained on the training set, and their
predictions combined to obtain an overall prediction. Since CRF LBMO is CRF-based,
it produces probabilistic predictions, so that combining predictions consists of aver-
aging marginals produced by each weak learner.

We train these CRF-based models with a regularisation parameter of 10−4 as in
Domke (2013). Splitting regularisation parameters into unary and pairwise paramet-
ers, and giving the pairwise parameter a smaller value did not improve performance
in our experiments. We use a data independent pairwise Potts factor. Our implement-
ation was done in Matlab, and we use J. Domke’s toolbox6 for the CRF models.

The GPstruct model uses a squared exponential kernel between the pixels, with
kernel width σ2 set to 1/(number of features) = 1/(number of classes).

We train NWL = 50 weak learners in total. Each weak learner is trained on
Npixel/WL = 5000 pixel positions uniformly chosen in the training set images, irre-
spective of the training set size. The runtime of the training algorithm is proportional
to NWL. To explore the trade-o� between predictive quality and runtime, we will
carry out predictions using only a random subset of these 50 weak learners.

Computations for GPstruct were distributed on an Amazon Web Services cluster
using MIT’s Starcluster7. Each weak learner trained and issued partial predictions

6http://users.cecs.anu.edu.au/~jdomke/JGMT/
7http://star.mit.edu/cluster

http://users.cecs.anu.edu.au/~jdomke/JGMT/
http://star.mit.edu/cluster

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 112

(steps 1a through 1c in section 5.3) on a separate slave node, and the �nal aggregation
step (step 2) was carried out on the master node.

A sample visualisation of marginals and predicted labels for all methods is in �gure
5.4.1.

5.4.1 Runtimes

Training runtimes on the full training data set are around 360 000 sec for CRF PL,
61 000 sec for CRF LBMO and independent. The ensemble method we describe here
allows trading performance against runtime, since we can choose how many weak
learners to train. Each weak learner of GPstruct trains for around 12h (43 000 sec),
the same applies to each weak learner of CRF LBMO bag. GPstruct outperforms
the other non-bagging methods with just around 5 weak learners (equivalent runtime
215 000 sec). It has equal runtime to CRF LBMO bag and outperforms it from around
15 weak learners.

How many images can be processed if no bagging is used? For a single image
of shape 50 × 150 = 7500 pixels, we have as many unary latent variables. The
limiting factor is the storage of the kernel matrix for Kx in equation 4.3.6, square of
length O(

∑
n T

(n)). Assuming the largest reasonable memory requirement is 1.5 GB
per CPU, we can store 1.5GB

4 byte ≈ 4e8 single-precision �oating numbers, for a kernel
matrix length of 2e4. That is, we can store the kernel matrix for about 3 images. These
values are in line with the discussion in Hensman et al. (2013).

5.5 Experimental research questions and results

5.5.1 What is the predictive performance of GPstruct?

We measured the per-pixel Hamming error of the predictions of each algorithm. For
the Stanford Background dataset, we evaluated the error on a test set of 143 images,
while varying the size of the training data set over the following values: Ntrain ∈
{25, 50, 100, 200, 300, 572}. We experiment with bagging con�gurations involving
either NWL = 15 or 50 weak learners. For the LabelMeFacade dataset, we vary the
size of the training data set over Ntrain ∈ {1, 5, 10, 25, 50, 100}.

Results are in tables 5.1 and 5.2. For ease of interpretation, Stanford Background
results are also plotted in �gure 5.5.1.

GPstruct outperforms the other models consistently, even with only about 15
weak learners. Note that in all cases, each GPstruct weak learner ever only learns
from Npixel/WL = 5000 pixels. The decrease in error rate when increasing Ntrain
is therefore only due to GPstruct being exposed to a larger variety of images. More
independent training images wins over more dependent pixels from the same images;
this corroborates Shotton et al. (2011) and Nowozin et al. (2011).

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 113

Figure 5.4.1: Semantic segmentation task. Example marginals (brightness level en-
codes certainty) and predicted labels from the Stanford Background Dataset. All meth-
ods use the same image features. First row: input image and true labels, second row:
marginals and predicted labels of independent, third row: of CRF PL, fourth row:
of CRF LBMO, �fth row: of GPstruct. The independent model performs reason-
ably well in predicting per-pixel segmentation, but makes rather noisy predictions,
whereas CRF PL puts more emphasis on pairwise factors resulting in large same-
label patches in predictions. GPstruct combines the good per-pixel segmentation of
independent and smoothness of CRF PL.

CRF PL performs weakly, which is consistent with previous studies (Domke, 2013)
which found CRF trained with PL su�ers from model mis-speci�cation and places too
much emphasis on the pairwise factors. However, interestingly, PL performs well
when used as a likelihood approximation for ESS in the GPstruct model.

5.5.2 Are GPstruct’s predictions probabilistically calibrated?

We evaluate the average negative log posterior marginal, de�ned in section 4.10. A
plot against NWL is in �gure 5.5.2.

The experimental setup is that of the Stanford Background Dataset, with a training
set of Ntrain = 50 images, and NWL ∈ {1, 2, ...50}. In order to reduce the variance
when using very few weak learners, we averaged over repeats of the experiments;
the number of repeats was set to max(5, 50/NWL), so that for NWL ∈ {1..10}, for

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 114

Table 5.1: Error rate performance on test set of 143 images when training set size
varies, Ntrain ∈ {25, 50, 100, 200, 300, 572}. WL denotes weak learner. Results are
averaged over 5 folds. The best result and those results that are not signi�cantly
worse than it are highlighted in boldface. We used a paired Wilcoxon test with 95%
con�dence level as reference. Bayesian posterior inference of GPstruct generalises
well at all training set sizes.

Stanford Background Dataset
Ntrain 25 50 100 200 300 572 (all)
CRF PL 57.14± 6.92 58.40± 6.46 47.19± 3.67 44.92± 2.05 60.00± 1.51 65.00± 1.33

CRF LBMO 30.60± 1.21 27.03± 0.67 26.09± 0.67 25.31± 0.65 24.91± 0.63 24.78± 0.61
CRF LBMO bag 15 WL 29.56± 0.77 25.68± 0.61 25.24± 0.54 24.76± 0.58 24.50± 0.61 24.63± 0.57
CRF LBMO bag 50 WL 29.56± 0.77 25.65± 0.61 25.20± 0.54 24.73± 0.58 24.49± 0.61 24.61± 0.57

GPstruct 15 WL 26.61± 0.65 24.94± 0.68 24.82± 0.63 24.60± 0.67 24.56± 0.72 24.55± 0.70
GPstruct 50 WL 26.56± 0.64 24.90± 0.67 24.75± 0.63 24.51± 0.68 24.50± 0.72 24.53± 0.69

Table 5.2: Error rate performance on test set of 845 images when training samples
size varies, Ntrain ∈ {1, 5, 10, 25, 50, 100}. Bayesian posterior inference of GPstruct
generalises well even with small training set sizes.

LabelMeFacade Image Database
Ntrain 1 5 10 25 50 100 (all)

CRF LBMO 55.99 34.84 32.11 28.37 28.01 27.81
GPstruct 34.05 30.23 28.57 27.86 27.84 27.80

Table 5.3: Error rate performance on the Stanford Background Dataset on a test set
of 143 images, when �xing the training set size to Ntrain = 50 images, and using 15
weak learners. Results are averaged over 5 folds. The number of subsampled pixels
is varied. The last column corresponds to the standard case in table 5.1 above, with
Ntrain = 50 training images. The performance decreases only slightly when training
from fewer pixels.

Varying Subsampled Pixel Number
Npixel/WL 1250 2500 5000

GPstruct 15 WL 25.23±0.68 25.18±0.70 24.94±0.68

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 115

instance, 5 repeats were used. In all cases, results are averaged over 5 folds of the
complete dataset, using Ntest = 143 test images in each fold.

5.5.3 Is GPstruct’s performance just due to bagging?

As can be seen in table 5.1 and �gure 5.5.3 (from NWL = 10 weak learners onwards),
bagging also has a positive e�ect on the performance of CRF LBMO. However this
e�ect is insu�cient to bring it to par with GPstruct. This is also seen in the ANLPM
metric in �gure 5.5.2.

Therefore bagging alone does not explain why GPstruct performs better than
CRF LBMO.

5.5.4 What is the in�uence of varying the number of sampled
pixels?

The main experiment was carried out with Npixel/WL = 5000 pixels sampled at
random from the training images. Results of an analytic experiment in which we
vary this number are shown in table 5.3. GPstruct’s performance seems robust against
sampling from fewer pixels, which illustrates its robustness in the small-data regime.

On a related note, due to pixel subsampling, there are fewer pseudo-likelihood
terms than there are original likelihood terms: the former is the number of subsampled
pixels on each image, while the latter is the number of pixels on the original im-
age. We could have upscaled the pseudo-likelihood contribution to reverse this e�ect,
but did not; despite this, our results are very good overall. We attribute this e�ect
to the improvement provided by power-likelihood techniques (Antoniano-Villalobos
and Walker, 2013; Walker and Hjort, 2001) in the presence of model mis-speci�cation.
In speech recognition, this same technique is applied routinely in the form of a lan-
guage model scaling factor, cf. for example Gales and Young (2008), chapter 2, footnote
2.

5.5.5 What is the impact of PL and TRW approximations?

In order to assess the e�ect of approximating the likelihood with PL, and the predict-
ive marginals with TRW, we conducted a small-scale experiment using the standard
GPstruct, in which exact likelihood and prediction are tractable. For this, the Stanford
Background Dataset images were resised to 10 by 10 pixels, and the multi-class seg-
mentation problem was turned into a foreground-background (2-class) segmentation
task (the foreground label is available in the original dataset). We perform 4 shu�es
of the data, and in each select 100 images for training, and 100 for testing. Error rates
are averaged over these 4 shu�es and plotted against ESS iterations in �gure 5.5.4.
The exact inference algorithms are implemented in libDAI (Mooij, 2010).

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 116

25 50 100 200 300 572 (all)
Ntrain

22

24

26

28

30

32

E
rr

o
r

ra
te

Error rates compared across methods and Ntrain

CRF LBMO

CRF LBMO bag 15 WL

CRF LBMO bag 50 WL

GPstruct 15 WL

GPstruct 50 WL

Figure 5.5.1: Stanford Background Dataset: plot corresponding to table 5.1 (CRF PL,
whose results are much worse than the rest, is not represented).

0 10 20 30 40 50

NWL used in GPstruct

0.76

0.78

0.80

0.82

0.84

p
e
r-

p
ix

e
l
a
v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

GPstruct

CRF LBMO bag

Figure 5.5.2: Quality of the posteriors, measured by the ANLPM metric. The experi-
mental con�guration is described in section 5.5.2.

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 117

This �gure shows that the e�ect of approximating the prediction function has
virtually no e�ect in the error rate (curves with exact and TRW predictions overlap).
The approximation in parameter estimation using PL appears to be robust in GPstruct,
leaving only a 1% gap in absolute accuracy with the exact likelihood. We can therefore
conclude that the approximations we use, while e�cient enough to make GPstruct
scalable, are still robust enough to have a small impact on performance.

5.6 Scaling further

While the model design properties of GPstruct are convincing, the ESS training al-
gorithm does not scale well. This motivated the work described in this chapter, with
the help of chie�y three techniques: a pseudo-likelihood approximation of the likeli-
hood, a TRW approximation for prediction, and a bootstrapping technique to distrib-
ute training.

In addition to using subsets of pixels to train weak learners, GP sparsi�cation
techniques (Snelson and Ghahramani, 2005b) applied inside each weak learner should
allow further scale gains. GP sparsi�cation techniques aim at reducing the time com-
plexity of GP methods from O(N3) to O(NM2), where N is the number of training
data points, and M is a user-selected number of inducing points. Indeed, almost all
sparse GP methods exploit a conditional independence assumption between training
and test sets, given a set of inducing points (see Quiñonero-Candela and Rasmussen
(2005) for a unifying review of such methods).

Recent progress in sparsi�cation, based on stochastic variational inference, has led
to methods that can potentially process millions of data points (Hensman et al., 2013).
Applying these methods inside each weak learner would result in hybrid methods that
combine sampling and variational methods (see for example Welling et al. (2008)). A
di�culty stems from the fact that these methods assume that the likelihood factors
over the data (cf. e.g. Hensman et al. (2013), section 2, above equation 2), which the
MRF likelihood used in GPstruct does not. Approaches to this problem are presented
below, section 5.6.1.

More work on the kernel computation and storage could also bring bene�ts. Low
rank approximations of the kernel are possible; in case we were using a linear ker-
nel, in our applications, the Gram matrix would be of rank at most the number of
features, which is low, and therefore the factorisation could be accurate. A further
avenue of research could be on-demand computation of the kernel, to trade storage
for computation.

If the size of the test images turned into a bottleneck, we could apply the ensemble
approach described for training here to prediction, by distributing the stage in which
we sample from f∗nWL

|f̃nWL
: this implies subdividing the latent variable set in test

images, and sampling the posterior LV in parallel processes, before collecting them to

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 118

0 10 20 30 40 50

NWL used in GPstruct

24.5

24.6

24.7

24.8

24.9

25.0

e
rr

o
r

ra
te

GPstruct

CRF LBMO bag

Figure 5.5.3: Speed-accuracy trade-o� for GPstruct and CRF LBMO bag. The pixel-
wise Hamming error is measured. The experimental con�guration is the same as in
section 5.5.2.

0 500 1000 1500 2000 2500

MCMC iterations

0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130

e
rr

o
r

ra
te

exact likelihood, max-product prediction

exact likelihood, TRW prediction

PL, max-product prediction

PL, TRW prediction

Figure 5.5.4: E�ect of approximations in the standard GPstruct. All combinations of
exact likelihood vs. PL and max-product prediction vs. TRW prediction are explored.
The prediction approximation has virtually no e�ect on performance (curves with
exact max-product and TRW prediction overlap), and the likelihood approximation
proves very robust.

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 119

compute the predictive distribution using TRW. This technique would allow higher
resolution images, but a balance must be found between the size of pixel subsets per
weak learner, and the computation overhead. Further inspiration to accelerate pre-
diction could come from compaction techniques such as Snelson and Ghahramani
(2005a) or Balan et al. (2015).

5.6.1 Variational inference for GPstruct

After the publication of Bratières et al. (2015), two separate strands of work proposed
variational inference techniques for training a sequence GPstruct model, the �rst in
Srijith et al. (2016)8, and the second in Galliani et al. (2017).

Both essentially aim at approximating the latent variable posterior with a tract-
able approximate (variational) distribution q; this is achieved by constructing a lower
bound (a.k.a. ELBO, for “evidence lower bound”) to the marginal log-likelihood, which
takes the form

log p(y) = −KL[q(f)||p(f)] + Eq(f)[log p(y|f)] (5.6.1)

The second term of the right-hand side is referred to as the expected log-
likelihood, and is usually the most di�cult term to approximate.

We now analyse the techniques employed by both papers.
To apply a variational Bayes method, Srijith et al. (2016) approximates the se-

quence softmax likelihood, which does not factorise over positions t in a sequence,
by several types of pseudo-likelihoods, which do factorise.

In the previous chapter, in the grid structure case, we were considering, as the
neighbourhood, the local unary factor, as well as the binary factors connecting to
neighbouring pixels. While still restricting to a single local unary factor, Srijith et al.
(2016) allow more breadth for the binary factors, by considering, in principle, any
shape of neighbourhood de�ned on the output sequence. The experiments cover three
such shapes: the factor connecting to the previous (i.e. left) atom, the factors con-
necting to both the left and right atoms, and as the third shape, the same factors, with
factors connecting the current atom to the -2 and +2 atoms (these 2nd order Markov
factors are not present in a 1st order Markov chain, as we considered in chapter 4).

Like in our PL approximate likelihood, in Srijith et al. (2016) each binary factor
appears several times, once in each “dependency set” to which it belongs, where one
such dependency set is de�ned with respect to the current position t in the sequence.
This implies that at prediction time, each factor will be estimated several times, in
di�erent dependency sets, and an iterative heuristic is introduced to converge to one

8Srijith et al. (2016) is a consolidated version of Srijith et al. (2014a) and Srijith et al. (2014b), which
report on intermediate stages of the work.

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 120

single predicted value. In contrast, in this chapter, we use TRW for prediction, not
PL, and are not confronted with this issue.

The following technical measures are implemented in the derivation of the vari-
ational lower bound for the expected log-likelihood, to proceed from Srijith et al.
(2016)’s equation 8 to equation 9:

• the PL approximation allows the expectation to traverse the
∑
t, where t is the

position in a sequence

• with Jensen’s inequality, the expectation with respect to the variational distri-
bution traverses the log in logZ

• the moment-generating function of a multivariate Gaussian is used to obtain an
analytic expression for terms of the type Eq[exp f], where f is a single latent
variable

The ELBO is optimised by gradient ascent under positive semi-de�niteness con-
straints. To obtain an estimate of kernel hyperparameters, variational expectation
maximisation is applied.

The experimental setup uses the same tasks and datasets as Bratières et al. (2015)
(sequence tasks); the proposed inference method has similar accuracy but faster
runtimes than ESS (no results are given concerning posterior calibration).

Galliani et al. (2017)’s approach does not rest on an approximation to the like-
lihood. Instead, it applies the variational inference method of Dezfouli and Bonilla
(2015) to the GPstruct sequence model. Following Dezfouli and Bonilla (2015), the
posterior approximating family is the mixture of Gaussians family. The KL term in
the variational lower bound can be lower-bounded analytically. The expected log-
likelihood term undergoes a stochastic approximation, which is improved using con-
trol variates. On this basis, a conjugate gradient descent optimiser can be used, and
supplied with the approximate gradients.

In a second step, an inducing point sparsi�cation based on Titsias (2009) allows
reducing the computational complexity.

Experiments are conducted using both the sequence softmax likelihood, and on
the “one-neighbour” pseudo-likelihood. Performance is comparable to training with
the ESS algorithm, which shows that the approximations which were introduced
cause no harm, and training time is reduced, so that medium-scale experiments, based
on the original CRF++ data set, of which Bratières et al. (2015) used a subset, can be
run.

Both reported methods are important improvements on the original GPstruct
training method for sequences. Two comments come to mind. With such approx-
imate schemes, it would be interesting to explore the computation versus accuracy
trade-o�. Also, in both cases, performance is on par with ESS-trained GPstruct, but

CHAPTER 5. SCALING UP GPSTRUCT: PIXEL GRID LABELLING 121

also SVMstruct and CRF, as if the analysed tasks did not allow designating a clear win-
ner. This prompts the remark that new, possibly harder or di�erent tasks are needed,
on which the accuracy of di�erent methods would vary, as discussed in sections 4.12
and 6.5.

5.7 Conclusion

The GPstruct model has appealing properties which distinguish it among the struc-
tured prediction models, but it does not scale well due to both itsO(M2) memory and
O(M3) computation complexities, where M is the number of atoms to be labelled.
This chapter’s task, image labelling, constitutes a challenging test case for GP-based
methods in general.

The main contribution of this research is a distributed ensemble method in which
weak GPstruct learners produce partial probabilistic predictions based on subsets of
latent variables, which can be aggregated for a high-accuracy �nal prediction. Each
individual weak learner bene�ts from the GPstruct properties: it is kernelised, non-
parametric and performs Bayesian inference.

The resulting method is shown to match and sometimes outperform state-of-the-
art methods, and to scale very well.

GPstruct does share fundamental modelling issues with MRF-based models.
For instance, long-range dependencies are ignored, while in reality, objects cover

not just a few, but very many pixels. Further, pixels are not a natural atomic repres-
entation of images (as tokens are in text), as they are tied to a particular scale of the
scene, while image properties are independent of the scale9. For good performance in
pixel-level labelling tasks, the computer vision community often uses edge features:
this would amount to introducing a new type of pairwise factor in our model which
connects neighbouring labels yt and yt′ , but is also parameterised by edge features
based on xt and xt′ : c(xt, xt′ , yt, yt′). For instance, these factors can encode direc-
tionality or colour/ intensity gradients, and can even by non-symmetric (i.e. inverting
t and t′ yields a di�erent potential).

Using Bayesian model selection and hyperparameter learning, it can be “left to
the data” whether to make use of these model design options. In the next chapter, we
examine a particular case of these techniques: hyperparameter inference for GPstruct
kernel hyperparameters.

9Nowozin et al. (2011) has some insights on the performance impact of varying image resolution.

Chapter 6

Hyperparameter inference

6.1 Motivation

In the previous chapters, we used arbitrarily set values for several covariance para-
meters, such as hu and hb, the scaling factors for the unary and binary kernel com-
ponents, or the length-scale σ2 in a squared exponential kernel. Our experiments
demonstrate that these values provide decent results, but can we be sure they are set
to their optimal value? They certainly in�uence the learning ability of our model and
its predictive capability. Are we sure the values we chose are right? Will di�erent
datasets not call for di�erent values of these parameters?

In addition, several choices exist in the model design, many of which we are not
exploring in this thesis, for instance: which kernel type is best? Should we incorporate
third or higher-order factors in the CRF design? Should we apply di�erent kernels to
di�erent parts of the feature vector? The former type of questions relates to the choice
of so-called kernel hyperparameters, and the latter to model design. In many ways,
though, these questions can be addressed jointly. In this chapter, we will look at the
treatment of kernel hyperparameters, but much if not all of the discussion carries over
to model design options as well.

In statistical machine learning, the traditional answer to these problems is a form
of systematic search called cross-validation. The data set is split into training set, test
set and validation set. Given a choice of hyperparameters θ, a modelMθ is trained on
the training set, and its performance according to some metric is evaluated on the val-
idation set. In this way, the best model Mθ∗ can be retained based on its performance
on the validation set. To obtain an estimate of the performance of Mθ∗ on unseen
data, it is assessed on the test set.

In cross-validation, the search for the best hyperparameters proceeds by exploring
a grid of values (often assuming continuous hyperparameters). Because the number
of di�erent models (each of them to be trained) is exponential in the number of grid

122

CHAPTER 6. HYPERPARAMETER INFERENCE 123

values and of hyperparameters, this method is hard to apply to cases with three or
more hyperparameters.

Therefore, improved methods attempt to guide search by focusing on regions of
interest in hyperparameter space.

Reinforcement learning approaches consider this problem as an information ac-
quisition process, with actions consisting of training a model and querying its per-
formance, and feedback consisting of the validation set performance, as an estimate
of the generalisation error. In other words, we seek to maximise a metric (the valid-
ation set performance), under the computational cost incurred by training the model
and computing its performance. The �eld of Bayesian optimisation (Shahriari et al.,
2016) was born out of a probabilistic perspective on this problem statement. Typically,
the search is aided by (a) assuming that the variations of the function to be maximised
(the validation set performance) are bounded, and (b) balancing the gain from locally
maximising function in a known, good neighbourhood (exploitation) with informa-
tion to be obtained by a totally new data point in an unexplored region (exploration).

In line with the probabilistic modelling approach used in this thesis, we can also
o�er a Bayesian treatment of the problem. We re�ect our uncertainty in the best value
of the hyperparameters θ (or indeed in model design) by turning them from �xed val-
ues into random variables in our probabilistic model. As random variables, we place
priors p(θ) on them, thereby creating a hierarchical probabilistic model. After training
the hierarchical model, we will obtain a posterior distribution of the hyperparamet-
ers p(θ|D), which we expect to be in�uenced by data and look di�erent from the
hyperpriors1.

The change in the probabilistic model is illustrated in �gure 6.1.1.
Before introducing hyperparameters, the prediction problem could be summarised

as as follows (y∗ is the predicted output, f collects all the latent variables, θ are the
(�xed) hyperparameters):

p(y ∗ |D, θ) =

∫
f

p(y ∗ |f)p(f |D, θ)df

where p(f |D, θ), the posterior latent variables, are obtained from p(f |D, θ) ∼
p(D|f)p(f |θ), where we recognise the likelihood and the latent variable prior. If we
now decide that the hyperparameters θ are no longer �xed, but are random variables,
with hyperprior p(θ|η), the prediction problem requires marginalising out both f and
θ, which is often impossible analytically in practice.

As an alternative, approximating p(θ|D,x) point-wise, using a maximum likeli-
hood estimate2 (an approach know as empirical Bayes or type II maximum likelihood)
is probably the most popular method in GP applications. This especially applies when

1We con�rm this experimentally in section 6.4.3
2It could be turned into a MAP estimate by adjoining a prior or regulariser to the likelihood.

CHAPTER 6. HYPERPARAMETER INFERENCE 124

manually set
parameters

and hyperpriors

input

hyper-
parameters

latent
variables

predicted
output

observed
output

Figure 6.1.1: Sketch of probabilistic model with latent variables and hyperparameters

gradients of the (log) marginal likelihood can be computed analytically or approxim-
ated well, since gradient methods can come into play.

If we are prepared to place an explicit, possibly vague, hyperprior on the hy-
perparameters, we can treat the entire system homogeneously (following the argu-
ment “hyperparameters are just another type of latent variables”), and apply learn-
ing methods from the Bayesian toolkit: variational inference will approximate the
latent variables’ distributions by a parameterised family of distribution, and �nd the
closest matching distribution by �tting (maximising) a lower bound on the likelihood;
sampling methods will approximate the latent variables’ distribution by a �nite but
arbitrarily high number of samples.

In this chapter we will apply the latter family of techniques, as sampling tech-
niques are usually a �rst point of call when a new inference algorithm is needed: they
are easy to derive from the probabilistic graphical model, as they require no analytic
approximations, and will, though maybe at the cost of high runtime, give posterior
samples eventually. A further motivation stems from the fact that the inference tech-
nique we have developed so far for GPstruct is an MCMC sampling technique, there-
fore developing additional sampling steps to sample not only from f |D, but also from
θ|D, is very intuitive.

CHAPTER 6. HYPERPARAMETER INFERENCE 125

6.2 Bayesian hyperparameter inference for GP-
struct

So far, we are obtaining the posterior over latent variables f |D, θ using a sampling
approach, elliptical slice sampling. Sampling methods applied to the problem of ob-
taining the posterior over hyperparameters, θ|f ,D, are a natural continuation, and
we will detail them in this section. Important references for this section are Murray
and Adams (2010); Filippone et al. (2013); Yu and Meng (2011).

There have been attempts at marginalising hyperparameters using deterministic
(variational) approximations of the posterior, which rely on quadrature for integra-
tion, see for instance Rue et al. (2009). Because these methods are di�cult to use in
the case of several hyperparameters, we will not investigate them further here.

Returning to sampling approaches, what Monte Carlo transition operators could
we use?

The Metropolis Hastings sampler, with a proposal distribution of the form
p(θ′|θ) = N(θ′|θ, αI), simulates a random walk.

Hamiltonian Monte Carlo (Neal, 2011) is a method based in a physical analogy:
a point particle, characterised by position and momentum, moves without fric-
tion in a potential energy �eld. The movement of the particle is described by the
partial di�erential equations of Hamiltonian dynamics. This method avoids the
random walk behaviour of Metropolis-Hastings, and is therefore well suited to
problems in which components of the parameter vector are highly correlated.
It has several tunable parameters: the mass matrix M (which is often chosen
to be of the form αI), the size of a leapfrog step ε, and the number of leapfrog
steps L.

Slice sampling (Neal, 2003) is an auxiliary variable MCMC method which o�ers
the advantage, in practice, of requiring no parameter to be tuned. (This applies
in practice because slice sampling parameters like the stepping-out size make
little di�erence to e�ciency and are usually not tuned).

Variants, as well as other, more specialised methods exist; some are compared in Fil-
ippone et al. (2013).

All is not said with the choice of the transition operator. Indeed, sampling hy-
perparameters is made di�cult in practice by the strong coupling between the hy-
perparameters and the latent variables: p(θ|f) is sharply peaked. Thus it is fruitful
to work on a reparameterisation of the dependence between θ and f to reduce the
coupling. Several methods have been developed for this, and can be combined with
any of the transition operators above.

CHAPTER 6. HYPERPARAMETER INFERENCE 126

6.2.1 Canonical (forward) parameterisation

The canonical parameterisation for the connection between f and θ stems directly
from the hierarchical model: f |θ ∼ N(0,K). It is called “su�cient augmentation3” in
Yu and Meng (2011), because it can be viewed as a MCMC data augmentation scheme
(in the sense that the MCMC procedure builds upon the auxiliary variable f), and
because f is a su�cient statistic for θ. Sampling a new θ′ with this parameterisation
boils down to applying the transition operator of our choice to the previous state θ,
using the following distribution:

p(θ|f ,D) ∝ p(D, f |θ)p(θ) = p(D|f)p(f |θ)p(θ) = L(f)N (f |0,Kθ)p(θ) (6.2.1)

The corresponding algorithm 6.1 is very straightforward, and can be compared to
the progressively more complex alternatives which we will now discuss. We refer to
this algorithm as simply “slice sampling” (and abbreviate SS) in the following. This is
the parameterisation we will end up using preferentially.

Algorithm 6.1 Transition operator for θ using the forward parameterisation
Input: θ, f
Output: θ′
sample θ′ from p(θ|f ,D) ∝ L(f)N (f |0,Kθ)p(θ)
Return θ′

6.2.2 Whitening the prior

As a �rst alternative, consider a white noise variable ν ∼ N(0, I). We can rewrite
f |θ ∼ N(0,Kθ) in terms of ν using f = LKθν, where Kθ is the lower Cholesky
decomposition of Kθ . Therefore starting from f , whose prior distribution we know
to be f |θ ∼ N(0,Kθ), we can obtain a white noise variable ν ∼ N(0, I) by positing
ν = L−1Kθ f .

This suggests the following procedure (algorithm 6.2): starting from θ and f , ob-
tain a new sample of θ|ν,D; for this, apply the transition operator of our choice using
p(θ|ν,D) ∝ L(f)p(θ) (rederived below). At this point, to obtain a new sample of the
posterior latent variables f |θ,D, instead of applying our transition operator to f using
Kθ (which yields a weakly coupled sample f ′), we will compute ν = L−1Kθ f , and then
“unwhiten” ν by taking as our new sample f ′ = LKθ′ ν, where Kθ′ is computed from
the new sample θ′, not θ.

This scheme is called “whitening the prior” by Murray and Adams (2010), and
“ancillary augmentation” by Yu and Meng (2011), because now, the data augmentation

3Cf. Yu and Meng (2011, section 1, page 533) for a discussion of the “su�ciency” vs. “ancillarity”
terminology.

CHAPTER 6. HYPERPARAMETER INFERENCE 127

scheme rests on the auxiliary variable ν, which is an ancillary statistic of θ (in other
words, p(ν) is free of θ, or ν is unconditionally independent of θ).

The sampling distribution is derived as follows:

p(θ|ν,D) ∝ p(θ, ν,D)

= p(θ, f = LKθν,D)

∣∣∣∣ ∂f

∂ν

∣∣∣∣
= p(D|f , θ)p(f |θ)p(θ) |LKθ |
= L(f = LKθν)N (f = LKθν|0,Kθ)p(θ) |LKθ |

= L(f = LKθν)
1∣∣2πLKθLTKθ ∣∣ 12 e

− 1
2 fTL−TKθ

L−1
Kθ

f
p(θ) |LKθ | (6.2.2)

= L(f = LKθν)
1

|2πI| 12
e−

1
2ν
T νp(θ)

= L(f = LKθν)N (ν|0, I)p(θ)
= L(f = LKθν)p(ν)p(θ)

∝ L(f = LKθν)p(θ)

We refer to this algorithm as “prior whitening” (PW) in the following.

Algorithm 6.2 Transition operator for θ using prior whitening
Input: θ, f
Output: θ′, f ′
compute Kθ and LKθ
sample θ′ from p(θ|ν,D) ∝ L(f)p(θ) (cf. text)
compute ν = L−1Kθ f
compute new f ′ = LKθ′ ν
Return θ′, f ′

6.2.3 Surrogate data method

A further alternative, presented in Murray and Adams (2010) and known as the “sur-
rogate data” parameterisation, goes one step further (algorithm 6.3). The sampling

CHAPTER 6. HYPERPARAMETER INFERENCE 128

distribution is derived as follows4:

p(θ|η,g,D) ∝ p(θ, η,g,D)

= p(θ, f = LRθη +mθ,g,g,D)

∣∣∣∣∂f

∂η

∣∣∣∣
= p(D|θ, f ,g)p(f |g, θ)p(g|θ)p(θ) |LRθ |
= L(f = LRθη +mθ,g)N (f |mθ,g, Rθ)N (g|0,Kθ + Sθ)p(θ) |LRθ |

(6.2.3)

= L(f = LRθη +mθ,g)
1

|LRθ |
N (η|0, I)N (g|0,Kθ + Sθ)p(θ) |LRθ |

∝ L(f = LRθη +mθ,g)N (g|0,Kθ + Sθ)p(θ)

We refer to this algorithm as “surrogate data” (SD) in the following.

Algorithm 6.3 Transition operator for θ using the surrogate data method from Mur-
ray and Adams (2010)
Input: θ, f
Output: θ′, f ′
Parameters: auxiliary noise covariance Sθ
compute Kθ , LKθ
draw surrogate data vector g|f , θ ∼ N (f , Sθ)
sample θ′ from p(θ|η,g,D) ∝ L(f)N (g|0,Kθ + Sθ) (cf. text)
compute η = L−1Rθ (f −mθ,g) with Rθ = (K−1θ + S−1θ)−1

compute new f ′ = LRθ′ η +mθ′,g

Return θ′, f ′

6.2.4 Further variants

Further variants are possible. Murray and Adams (2010) compares di�erent para-
meterisations using slice sampling as the MCMC transition kernel. Filippone et al.
(2013) compares di�erent parameterisations with their own choice of MCMC trans-
ition kernel. One scheme they mention stems from Yu and Meng (2011), which sug-
gests alternating the canonical and prior whitening parameterisations under the name
of Ancillarity-Su�ciency Interleaving Strategy. Another scheme mentioned in Filip-
pone et al. (2013) stems from Knorr-Held and Rue (2002), which suggests a Metropolis-
Hastings strategy for jointly sampling f and θ. The joint proposal then undergoes an
accept-reject decision. This addresses the main issue of the standard MH strategy
above, where the accept-reject decision concerns f and θ separately, so that it is hard
to �nd an acceptable f after accepting θ. To obtain a proposal distribution for f , their
strategy requires a Laplace approximation to p(f |D, θ′) inside the MH procedure; this
introduces an extra parameter, and requires a series of Cholesky factorisations.

4This expands on Murray and Adams (2010)’s equation 11 and uses their notation and de�nitions.

CHAPTER 6. HYPERPARAMETER INFERENCE 129

To conclude our discussion of design choices for hyperparameter sampling, we
must remark that its computation runtime is orders of magnitude larger than that of
latent variable sampling. We are assured that in in�nite time, any of the proposed
MCMC operators will explore the entire posterior hyperparameter space; however, to
explore this space faster, it makes sense to interleave fast updates of f |D, θ before one
expensive update of θ|f ,D (or possibly jointly θ, f |D), which will be based on the last
sample f ′. This improvement, inspired by Murray and Adams (2010), will reduce the
correlation between subsequent samples of the hyperparameters at little cost.

6.3 Geweke’s “Getting it right” tests

Among inference methods for probabilistic models, MCMC algorithms and several
other stochastic methods stand out because they o�er the theoretical guarantee that
sampling for “long enough” yields samples from the target distribution, so that un-
biased estimators of quantities of interest can be constructed from MCMC samples.

However, their manual implementation is delicate and error-prone. Errors can
occur at several levels.

Once a family of MCMC algorithm has been chosen, for instance Gibbs sampling,
slice sampling, or simulated annealing, the method must be applied to the probabil-
istic model of interest. This requires determining which quantities (typically condi-
tionals) have to be computed, in what order, within which algorithmic control �ow
of acceptance or other conditions, and iterations. Errors can be introduced already at
that stage, as demonstrated by Geweke (2004) on a synthetic example in his section 3
(error examples 2 and 5), and on a real example, in his section 4.

Not unlike their variational counterparts, their derivation often requires pages of
calculations, in which mathematical (algebra) errors can occur, such as sign errors,
drawing from the wrong distribution, etc.

The computer implementation sometimes does not correspond to the pseudo-code
for various reasons. Real-life examples include errors in function calls, wrong choice
of a library function, mistake in parameters, overlooked defaults, or wrong overloaded
function choice.

Finally, despite falling into the same category, errors in the last level of imple-
mentation, namely numerical or library bugs, occur but they are very rare.

What makes MCMC implementations hard to debug is that, judging from statist-
ics obtained from the MCMC chain, such as likelihood plots and others, such bugs are
confounded by convergence issues. Correctness is a necessary, not su�cient, condi-
tion for convergence on the correct stationary distribution. An incorrect algorithm
may even perform well on benchmarks. Convergence itself is hard to assess, and there
is an ample body of work on MCMC convergence checks, both in the form of liter-
ature (Gelman et al., 2009, section 11.6) and implementations (cf. the CODA package

CHAPTER 6. HYPERPARAMETER INFERENCE 130

in R, Plummer et al. (2006), or convergence checking in PyMC (Salvatier et al., 2016)).
There is not much work on correctness checks, however, and we could extend this
criticism to stochastic machine learning in general5.

In response to this lack, this section describes the correctness test which was
applied to GPstruct inference, both in the case of latent variables (elliptical slice
sampling) and hyperparameters. Our approach builds on the seminal paper by John
Geweke (Geweke, 2004), who set out to identify MCMC implementation errors in his
own papers of the previous decade. We will brie�y describe his proposed method,
before describing our adaptation of it.

For this section, we assume a two-level generative model: parameters θ, distrib-
uted according to prior p(θ), generate observed data x i.i.d. according to p(x|θ). We
will usually assume our forward implementations of the prior p(θ), and the likeli-
hood (or conditional) p(x|θ), to be correct, as they are simple and usually consist of
sampling from a parametric distribution. In contrast, the posterior p(θ|x) is imple-
mented as an MCMC procedure and needs to be tested for correctness.

Geweke’s suggested procedure is simple: we will produce joint samples of (θ, x) in
two di�erent ways, take real-valued functions of the samples, and apply a goodness-
of-�t test to check whether their function values stem from the same distribution. The
test can be a Kolmogorov-Smirnov (KS) test for continuous distributions, or a χ2-test
for discrete distribution. We will assert that we have uncovered an implementation
error if the statistic rejects the null hypothesis.

More speci�cally, the suggested procedure is:

• de�ne a number of L2-integrable scalar test functions (θ, x) 7→ g(θ, x) ∈ R

• obtain samples (θm, xm) according to the marginal-conditional procedure (the
�rst of two procedures, e�ectively a forward sampling procedure), which
amounts to iterating

– sample θm from p(θ)

– sample xm from p(x|θm)

• obtain samples (θm, xm) according to the successive-conditional procedure (the
second of the two procedures, which involves iterating between forward and
backward sampling), which initialises θ0 from p(θ) and then iterates (cf. �gure
6.3.1)

– sample xm from p(x|θm)

– sample θm+1 from p(θ|xm)

5cf. the useful Schaul et al. (2013) for a counterexample

CHAPTER 6. HYPERPARAMETER INFERENCE 131

θ1

x1

θ2

x2

· · · θm

xm−1 xm

θm+1

Figure 6.3.1: Graphical model illustrating the successive-conditional procedure.

• for each m, each test function g, and each of the two procedures, compute the
value of g(θ, x)

At this point, the most intuitive and popular decision tool is, for each g, a PP-plot (for
probability-probability) or QQ-plot (for quantile-quantile) to compare the two distri-
butions visually6. The visual inspection of the plot, and of the successive-conditional
distribution plot, may already hint at the cause of the error.

For cases where a single test result per statistic g is desired (as opposed to a plot
which needs to be analysed)7, a goodness-of-�t test can be conducted between the
two samples, as we describe in our adapted procedure below.

6.3.1 Our variant of the test

We adapt the Geweke procedure slightly, by making use of the property that the em-
pirical distribution of θ will approach the marginal distribution of θ (with unobserved
x, since we are marginalising over x), that is the prior p(θ). This is clearly the case in
the marginal-conditional procedure.

There are two ways of proving this in the successive-conditional procedure, in
addition to the proof in Geweke (2004).

First, we can consider x as an auxiliary variable added to the model containing
only the θ node, for the sake of introducing an MCMC transition kernel making use
of x.

A di�erent, inductive argument consists of viewing the model as in �gure 6.3.1,
under the assumptions that p(θm) = π(θm) with π the prior over θ, that p(xm|θm) =

L(θm;xm) is given by the likelihood function, and that

p(θm+1|xm) =
L(θm+1;xm)π(θm+1)

p(xm)
(6.3.1)

6cf. a typical use case in Grosse and Duvenaud (2014)
7Note that Geweke’s original intent seems to have been combining both statistics into a single one (cf.

Geweke (2004), eq. 6), which converges to N(0, 1) in probability, and presumably to conduct a normality
test. His BACC software does not seem to be available any more.

CHAPTER 6. HYPERPARAMETER INFERENCE 132

is the posterior. It results that the marginal distribution of θm+1 is the distribution of
θm. Indeed

p(θm+1) =

∫
p(θm+1|xm)p(xm) dxm

=

∫
L(θm+1;xm)π(θm+1)

p(xm)
p(xm) dxm

= π(θm+1)

∫
L(θm+1;xm) dxm

= π(θm+1)

(6.3.2)

Now, the prior over θ is supposed to be known analytically as π(·), so as a test,
we will simply compare θ samples from the successive-conditional procedure to the
analytic prior.

We deal with continuous distributions in this chapter, and would like to apply
the Kolmogorov-Smirnov (KS) test. A caveat is in order here: the computation of the
two-sample KS quantiles relies on two conditions:

1. the samples need to be independent8, which is an issue when the reference
distribution’s parameters are estimated from the data; in our setup, however,
this condition is veri�ed

2. the samples need to be uncorrelated9. The successive-conditional sample
clearly does not meet this condition, since it is produced from an MCMC pro-
cedure.

To approximately meet the second condition, and reduce the autocorrelation almost
down to 0, we suggest thinning to the e�ective sample size before applying the KS
test. Ignoring this precaution practically results in more frequently rejecting the null
hypothesis10; when debugging MCMC samplers like here, this implies more often
signalling a faulty implementation; therefore, it only makes the test more demanding,
not lenient, which makes it a minor ailment.

We found several publications and tutorials guilty of this methodological over-
sight (Heaukulani et al. (2014, appendix D), Ardia (2008, section 3.2)), although some
statistical literature points out this very problem and suggests solutions: computation-
ally intensive bootstrap methods (Olea and Pawlowsky-Glahn, 2009), or modelling the
correlation (Weiss, 1978).

6.3.2 Experiment: testing elliptical slice sampling implement-
ation

We now switch notation back to GPstruct notation, using f ,y instead of θ, x.
8cf. Babu and Feigelson (2006) for a discussion
9cf. Olea and Pawlowsky-Glahn (2009) for a discussion

10cf. Olea and Pawlowsky-Glahn (2009, eq. 7 and 8)

CHAPTER 6. HYPERPARAMETER INFERENCE 133

We wish to check the correctness of our elliptical slice sampler applied to GPstruct.
This test will enable us to probe not only the MCMC code, but also the code computing
the likelihood.

Since f ∼ N(0,K), each of its elements’ marginal prior is fi ∼ N(0,Kii): we
can apply the Kolmogorov-Smirnov test for each fi, under the null hypothesis H0

that each thinned sample (f
(n)
i)n obtained from the Geweke procedure stems from

this marginal prior. If the MCMC code is bug-free (and the test carried out correctly)
the rate ofH0 rejection asymptotically equals the level of signi�cance assigned to the
test (we will use the usual α = 5%).

In our experiments, to test GPstruct code in realistic conditions, rather than isolat-
ing the MCMC transition operator, we designed a simpli�ed, synthetic data structure
consisting of length 1 chains, i.e. with a single label y ∈ {1...5}. There are 5 data
points, one for each value of the label. The features are a one-hot encoding of the
micro-label, therefore they allow perfect prediction. There are no binary latent vari-
ables, but only unary variables, and the covariance function over the unary latent
variables is identity11. The Geweke procedure produces 2000 samples from f |D, by
alternately applying the MCMC transition operator to latent variables f |D, and for-
ward sampling D.

We consider the sample sequence obtained at each position i in f separately. Ac-
cording to the position i, the e�ective sample size is roughly between 250 and 400.
Each sequence (f

(n)
i)n is thinned to its e�ective sample size, in order to obtain ap-

proximately uncorrelated sequences. The resulting thinned sample is compared, using
the one-sample KS test at a signi�cance threshold of α = 5%, to the true marginal
prior which we set to fi ∼ N(0, 1).

Results
When averaging over 5 random seeds, we �nd a rejection rate of 5%. This corrob-

orates that the elliptical slice sampling MCMC implementation in our code is correct.

6.3.3 Experiment: testing hyperparameter sampling imple-
mentations

We use the same synthetic data as above. This time, the kernel is the exponential ARD
kernel

kexponential ARD(x,x′) = exp

(
−1

2

∑
i

(xi − x′i)2
(expψi)2

)
(6.3.3)

. The hyperparameters are stochastic, and their prior is either

• uniform: ψi ∼ U(log 10−3, log 102), or
11From a theoretical point of view, we could have simpli�ed down to a binary classi�cation task with

only one data point, but more code coverage could be achieved by the described synthetic data setup.

CHAPTER 6. HYPERPARAMETER INFERENCE 134

• Gaussian: ψi ∼ N(0, log 10)

The steps of the Geweke successive-conditional procedure are:

• from ARD hyperparameters θ, for a set of data points Dx, generate f ∼
N(0,Kθ) and y ∼ softmax(exp(f(x,y))).

• using likelihood function based on new data set Dx,Dy , and hyperparameter
prior, apply MCMC transition operator to θ: obtain θ′

The transition operator uses one of the three parameterisations presented in section
6.2: forward parameterisation, prior whitening, or surrogate data.

We run the Geweke procedure for 20 000 steps, across 32 random seeds. As above,
we thin each sequence of hyperparameters, and carry out the KS test each time. For
each con�guration (MCMC parameterisation, hyperprior uniform or Gaussian), we
average over random seeds.

Results
This test allowed us to catch mistakes in the implementations, several of which

remain undetectable if one relies only on MCMC monitoring tools12. Such mistakes
would systematically exhibit very high reject proportions (above 90%). In addition,
a very helpful tool for diagnosing such mistakes is the cumulative distribution plot
of the prior and of the empirical distribution. Figure 6.3.2 shows such plots in cases
where the KS test rejects or does not reject the null hypothesis. In practice, we have
found the KS test to be relatively conservative.

In the case of incorrect implementations of the MCMC transition operator, we
have observed a systematically di�erent shape of the empirical distribution: for in-
stance, it could be shifted, squeezed, or asymmetric, as can be seen in �gure 6.3.2.

When applying the experiment to the corrected and �nal version of the source
code, we obtain the following results.

% KS rejections SS PW SD

uniform prior 6% 3% 7%
Gaussian prior 4% 6% 6%

12One such mistake, found in our Python code, turned out to originate in Murray and Adams
(2010)’s accompanying Matlab code. Speci�cally, their implementation of the surrogate data method
in the �le update_theta_aux_surr.m does not use the expression for p(θ|η,g,D) derived in Mur-
ray and Adams (2010) equation 11 and in our equation 6.2.3, but the alternative p(θ|η,g,D) ∝
p(D|θ, f ,g)p(g|f , θ)p(f |θ)p(θ)

∣∣LRθ ∣∣, implemented in source code in lines 124 to 147. In line 146, the
expression for Lg_f, corresponding to log p(g|f , θ) = logN (g|f , Sθ), is missing a 1/2 in the second
additive term. The Matlab code was downloaded from http://homepages.inf.ed.ac.uk/imurray2/

pub/10hypers/surr_code.tar.gz on 5/10/2016. The author believes this is indeed a bug in the source
code (Iain Murray, personal communication).

http://homepages.inf.ed.ac.uk/imurray2/pub/10hypers/surr_code.tar.gz
http://homepages.inf.ed.ac.uk/imurray2/pub/10hypers/surr_code.tar.gz

CHAPTER 6. HYPERPARAMETER INFERENCE 135

10 5 0 5 10

x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

/
d
e
n
si

ty

random seed = 1, theta[3]

prior distribution

empirical posterior distribution

10 5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

prior distribution

empirical posterior distribution

10 5 0 5 10

x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

/
d
e
n
si

ty

random seed = 1, theta[4]

prior distribution

empirical posterior distribution

10 5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

prior distribution

empirical posterior distribution

10 5 0 5 10

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

/
d
e
n
si

ty

random seed = 0, theta[0]

prior distribution

empirical posterior distribution

10 5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

prior distribution

empirical posterior distribution

Figure 6.3.2: Diagnostic plots of Geweke experiment runs resulting in di�erent results
for the KS test. From top to bottom: not rejected, rejected but correct implementation,
rejected due to faulty implementation. Each row is for a speci�c hyperparameter. The
left plot shows the prior or empirical posterior distribution, the right plot shows the
(empirical) cumulative distribution function.

CHAPTER 6. HYPERPARAMETER INFERENCE 136

These reject proportions are around the expected 5%, corresponding to the KS test
signi�cance α. This supports the assertion that the implementation used in our main
experiments, cf. section 6.4.3, is correct.

6.3.4 Hyperparameter learning: synthetic data experiment

We implemented the three parameterisations of section 6.2 with slice sampling as the
MC transition operator.

Two tests helped corroborate that our implementation was sound: the Geweke-
Kolmogorov test described above, and a test on a synthetic task, which we present
now. Moving on to real data in section 6.4, we will apply the di�erent hyperparameter
learning methods to the NLP tasks used in chapter 4, and monitor the results.

The data used for our synthetic task consists of single-atom structures, as above:
one input node, one output node. The output label y takes its values in {1, 2, 3, 4, 5},
while the input, x ∈ R10, consists of two parts: x1...x5 are a one-hot encoding of the
output (we will call x1...x5 “signal features”), and x6...x10

iid∼ U(0, w) are irrelevant
noise features. The “weight” w controls the magnitude of the noise feature values
with respect to the signal feature values (binary).

Input similarity is determined by an exponential automatic relevance determina-
tion (ARD) kernel (Rasmussen and Williams, 2006, section 5.1) of the form

kexponential ARD(x,x′) = exp

(
−1

2

∑
i

(xi − x′i)2
(expψi)2

)
(6.3.4)

. The hyperparameters are given a uniform prior ψi ∼ U(log 10−3, log 102), and are
initialised at 0 (this is also their default value when they are kept �xed).

Our hope is that, by learning kernel hyperparameters, the hyperparameters
ψi, i ∈ {6...10} corresponding to noise features will grow large so as to cancel out
the e�ect of noise terms in kexponential ARD(x,x′).

In our �rst experiment, we visualise the MCMC likelihood plot (�gure 6.3.3, top
plot) obtained when modelling this synthetic data with GPstruct as described, with
and without hyperparameter learning (using prior whitening), withw = 0 orw = 10.
In another experiment using slice sampling, we investigate varying the hyperpara-
meter update rate while keeping w = 10.

The experiments show several points.

• noise features with w = 10 make learning hard or impossible (�gure 6.3.3, top
plot, line “hp �xed, w = 10”)

• their e�ect can be mostly removed by learning the ARD hyperparameters (�g-
ure 6.3.3, top plot, line “PW, w = 10”)

CHAPTER 6. HYPERPARAMETER INFERENCE 137

Figure 6.3.3: Does hyperparameter learning help ignoring the noise features? Top:
Experiments with prior whitening vs. no hyperparameter sampling, showing in�u-
ence of noise feature weight. Bottom: experiments with slice sampling, noise feature
weight w = 10, showing the in�uence of the hyperparameter update rate.

CHAPTER 6. HYPERPARAMETER INFERENCE 138

Figure 6.3.4: Histogram of sample path for the log ARD variances ψ1...ψ5 (signal
features, all collected in one set, in blue on the plot), and ψ6...ψ10 (noise features,
collected in another set, in green on the plot). The con�gurations considered are: top,
PW; bottom, SS. In both cases, noise feature weight w = 10, and hyperparameter
update rate is 1 every 10 ESS steps. The values of the hyperparameter were binned
into 10 bins of equal width over their range.

• updating the ARD hyperparameters every 10 or 100 latent variable updates still
produces good results (�gure 6.3.3, bottom plot), while doing it every 1000 up-
dates is more noticeably ine�cient (though it would presumably reach the same
levels of likelihood had we run the MCMC chain for order of magnitudes longer)

As an additional diagnostic tool, we can plot the sample path histograms obtained by
collecting values of the noise hyperparameters from the MCMC chain, and compare
them to signal hyperparameters. The histograms can be found in �gure 6.3.4 . While
the signal hyperparameters adopt small values, which causes their respective contri-
bution in the sum to be large, the noise hyperparameters adopt large values, making
their contribution vanishingly small.

In this synthetic data case, hyperparameter learning has demonstrated its useful-
ness, and we now hope to apply it to real data.

CHAPTER 6. HYPERPARAMETER INFERENCE 139

6.4 Experiments on NLP tasks

6.4.1 Hyperparameter update runtime

What is the computational cost of hyperparameter updates with each of the three
methods?

We need to measure the runtimes of updates, to make sure the trade-o� between
performance gain and computational expense remains manageable. We compared
timings for each of the three methods, on the following experimental con�guration:
Base NP task, 50 000 MCMC iterations, hyperparameter updates every 100 latent
variable updates, full data set, several folds of the data. Each of SS, PW, SD routines
ran 4000 times. This experiment took around 2e6 CPU-seconds to run (1e5 CPU-
seconds per fold). Every fold, we report median runtimes and standard deviations of
the hyperparameters update step. The runtimes are generally variable because unlike
a Metropolis-Hastings update, which is not iterative in nature, slice sampling may
iterate an unknown number of times before �nishing “on slice” again. These are the
results.

parameterisation runtime in sec

SS (6.1) 102± 50

PW (6.2) 117± 52

SD (6.3) 607± 208

After exploratory experiments in which the surrogate data or prior whitening
methods did not appear superior, and considering the runtime of the tasks per se, we
decided to carry out the main experiments with the SS method, and occasionally PW,
but discarding SD.

6.4.2 Applying ARD kernels to the NLP tasks

In addition to their feature selection properties, ARD kernels (Rasmussen and Wil-
liams (2006, section 5.1) and MacKay (1996)) lend themselves to compare structured
feature vectors, which are obtained by stacking feature vectors of di�erent origins.
This is the case of the NLP experiments, with feature vectors comprising e.g. gazetteer
features; word identity features; features applied to left neighbour, to right neighbour,
etc.

A naïve approach would attempt to assign an ARD hyperparameter to every fea-
tures; in the NLP tasks, they run into the tens or hundreds of thousands of features13.
Learning such a high number of hyperparameters is challenging, if only because of
a data sparseness issue: any hyperparameter change has very little impact, and their

13cf. task description in section 4.5.4

CHAPTER 6. HYPERPARAMETER INFERENCE 140

posteriors will probably be remarkably �at. In addition, in the particular case of mul-
tivariate slice sampling MCMC methods, we need to make coordinate-wise moves, i.e.
we will cycle through all the dimensions of the hyperparameter vector to complete a
hyperparameter update, each time computing the training data Gram matrix, and its
Cholesky factorisation, anew.

How do we take advantage of the feature vector make-up to reduce the number
of hyperparameters? The feature vector is obtained by concatenation of subvectors
of di�erent nature. We may exploit its internal structure by assigning the same ARD
variance to a contiguous block of features of similar nature, using the assumption that
similar features should be scaled similarly.

To discover these blocks post-hoc, without access to the feature extraction func-
tions, a simple, heuristic method is to plot the empirical variance of each feature (an
example of such a plot is �gure 6.4.1), and to identify visually similar blocks. In our
experiments we arbitrarily decided to use 6 ARD hyperparameters, and so identi�ed
6 blocks in this fashion. This method is crude, but e�cient.

The ARD kernels we will use thus take the form:

klinear ARD(x,x′) =
∑
i

xix
′
i

(expψB(i))2
(6.4.1)

kexponential ARD(x,x′) = exp

(
−1

2

∑
i

(xi − x′i)2
(expψB(i))2

)
(6.4.2)

whereB(i) is the index of the feature block to which feature i belongs, and the ψb are
the ARD kernel hyperparameters. The particular form of the hyperparameters allows
the ψb to be interpreted as length-scale hyperparameters.

Setting the values of theψ controls the weight given to each group of features. For
squared exponential ARD kernels, there exists a rule of thumb in the computer vision
community for a “decent” default value (cf. for instance Lampert (2009), section 2.7.1):
set the denominator so that the exponent becomes -1 for the median of (xi − x′i)2,
which is easy to evaluate on the training set. It is not clear what motivates this rule of
thumb. We use it in some of our experiments as a reasonable default value, cf. table
6.1 for details.

6.4.3 Experimental con�guration and results

In section 4.5, we described the experimental con�gurations for latent variable infer-
ence on the NLP tasks. We now complement these with new con�guration parameters
for the hyperparameter inference experiments we conducted.

Kernel type We used either the linear kernel, the linear ARD kernel, or the squared
exponential ARD kernel.

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

Figure 6.4.1: Plot of values of diag(XTX) whereX is the feature matrix. If we decide
to try and identify 5 boundary points between features of similar covariance, we can
choose the following values: 252, 522, 732, 852, 1186.

Hyperparameter set, initial values In the case of ARD kernels, the 6 ARD hyper-
parameters obtained as in section 6.4.2 could vary. Their initial value is indic-
ated in each experiment description. In addition, the log binary scaling hyper-
parameter log hb (de�ned in equation 4.3.1) was optionally allowed to vary. Its
initial value was always 0. The initial values also serve as �xed values in case
the hyperparameters are not allowed to vary, i.e. they are not sampled. The
jitter hyperparameter is never sampled in our experiments, though it could be
in theory, and is set to log 10−4.

Hyperparameter priors We used Gaussian priors, in the descriptions broad means
N(0, σ2 = 0.7), while narrow means N(0, σ2 = 0.3). When a uniform prior is
used, it is log hb ∼ U(log 10−3, log 102).

Hyperparameter updates We used the methods described in section 6.2. We up-
dated the hyperparameters either every 100 or 1 000 latent variable updates.

The experiments we conducted are exhaustively described in table 6.1, along with
pointers to the corresponding MCMC traces, and partial result interpretations.

Considering that the results are not clear-cut, a legitimate question to ask is: “In
our tasks, will the choice of hyperparameters determine performance at all? Or is
the posterior distribution of hyperparameters so �at that any value is as good as any
other, and variations in performance are spurious?” We set up a simple experiment to
answer these questions. We keep the hyperparameters �xed, but test several values
in a range resulting from an educated guess. The MCMC runs are depicted in �gure
6.4.7.

In both cases, we observe thatψb = 1 gives better results thanψb = 0; in addition,
in the case of SE ARD, this is much better than ψb = −1. We also observe that, in the
case of linear ARD, which gives better HE and ANLPM than exponential ARD anyway,
HE and ANLPM are not consistent. We hypothesise this shows that with already
excellent performance metrics, any improvement in one metric will be detrimental to

CHAPTER 6. HYPERPARAMETER INFERENCE 142

kernel common parameters varying
parameters con�guration

�nal
Ham-
ming
error

�nal
ANLPM interpretation

linear

Hyperparameter set: just
log hb. Hyperprior log hb ∼
U(log 10−3, log 102). Initial
value log hb = 0. Sampling
hyperparameters every 1 000
latent variable updates.
(�gure 6.4.2)

Task: basenp,
segmentation,
chunking,
japanesene.
MCMC method:
none, SS or PW

task: basenp, no hp
sampling 0.047 0.156

Hyperparameter learning brings
no performance bene�t.

task: basenp, method:
PW 0.048 0.157

task: basenp, method: SS 0.049 0.158
task: segmentation, no
hp sampling 0.148 0.360

task: segmentation,
method: PW 0.150 0.361

task: segmentation,
method: SS 0.150 0.360

task: chunking, no hp
sampling 0.086 0.359

task: chunking, method:
PW 0.089 0.366

task: chunking, method:
SS 0.086 0.365

task: japanesene, no hp
sampling 0.058 0.273

task: japanesene,
method: PW 0.059 0.299

task: japanesene,
method: SS 0.058 0.290

linear
ARD

Task: segmentation.
Sampling hyperparameters
every 1 000 latent variable
updates. Sampling method:
SS. Initial values log hb = 0,
ψ1..6 = 0. (�gure 6.4.4)

Hyperparameter
set log hb, ψ1..6

or just ψb.
Hyperprior.

ψ1..6, prior broad 0.152 0.358 Hyperparameter learning seems
to do better than the “bad” choice
ψ1..6 = 0, but worse than the
“good” choice ψ1..6 = 1. (NB:
experiments with di�erent initial
values should be comparable, but
they’re not; it is not clear
whether to attribute this to the
chain not mixing long enough, or
to cross-chain variance.)

log hb, ψ1..6, prior broad 0.152 0.358

ψ1..6, prior broad 0.150 0.363

log hb, ψ1..6, prior broad 0.152 0.360

As above, but initial values
log hb = 0, ψ1..6 = 1. (�gure
6.4.5)

Hyperparameter
set log hb, ψ1..6

or just ψ1..6.
Hyperprior.

ψ1..6, prior broad 0.155 0.360
log hb, ψ1..6, prior broad 0.153 0.358
ψ1..6, prior broad 0.153 0.356
log hb, ψ1..6, prior broad 0.154 0.358

Task: segmentation.
Hyperparameters �xed.
Initial value for log hb = 0.
(�gure 6.4.4 and 6.4.5)

Initial value for
ψ1..6.

ψ1..6 = 1 0.154 0.352

ψ1..6 = 0
0.149 0.362

expo-
nential
ARD

Task: segmentation.
Sampling hyperparameters
every 100 latent variable
updates. Initial values:
log hb = 0,
ψ1..6 = 1

2 log(2 ∗ 7) = 1.32.
Sampling method: SS. (�gure
6.4.6)

Hyperparameter
set log hb , ψ1..6

or just ψ1..6, and
hyperprior. Hy-
perparameters
�xed, vary
random seed (as
an indicator of
cross-chain
MCMC
variance)

ψ1..6 , prior broad 0.180 0.443

Hyperparameter learning works;
the best results are obtained from
specifying a broad hyperprior
and including log hb among the
sampled hyperparameters.

log hb, ψ1..6 , prior
broad. (Hyperparameter
posteriors �gure 6.4.8
and 6.4.9)

0.182 0.443

ψ1..6 , prior narrow 0.181 0.446
log hb, ψ1..6 , prior
narrow 0.182 0.447

seed 0 0.181 0.449
seed 1 0.180 0.449
seed 2 0.177 0.448
seed 3 0.178 0.448

Task: segmentation.
Hyperparameters �xed.
Initial value for log hb = 0.
(�gure 6.4.7)

Initial value for
ψ1..6.

ψ1..6 = −1 0.181 0.449 Analysis experiment:
Hyperparameter values do make
a di�erence in performance.

ψ1..6 = 0 0.219 0.489
ψ1..6 = 1 0.320 0.596

Table 6.1: Summary of NLP hyperparameter learning experiments

CHAPTER 6. HYPERPARAMETER INFERENCE 143

0 50000 100000 150000 200000 250000

MCMC iterations

−280

−270

−260

−250

−240

−230

cu
rr

e
n
t

LL
 t

ra
in

 s
e
t

no hp sampling

prior whitening

slice sample theta

0 50000 100000 150000 200000 250000

MCMC iterations

0.046

0.047

0.048

0.049

0.050

0.051

0.052

0.053

e
rr

o
r

ra
te

,
te

st
 s

e
t,

 m
a
rg

in
a
liz

e
d
 o

v
e
r

fs

no hp sampling

prior whitening

slice sample theta

0 50000 100000 150000 200000 250000

MCMC iterations

0.155

0.160

0.165

0.170

p
e
r-

a
to

m
 a

v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

no hp sampling

prior whitening

slice sample theta

basenp

0 50000 100000 150000 200000 250000

MCMC iterations

−275

−270

−265

−260

−255

−250

−245

−240

cu
rr

e
n
t

LL
 t

ra
in

 s
e
t

no hp sampling

prior whitening

slice sample theta

0 50000 100000 150000 200000 250000

MCMC iterations

0.146

0.148

0.150

0.152

0.154

0.156

e
rr

o
r

ra
te

,
te

st
 s

e
t,

 m
a
rg

in
a
liz

e
d
 o

v
e
r

fs

no hp sampling

prior whitening

slice sample theta

0 50000 100000 150000 200000 250000

MCMC iterations

0.359

0.360

0.361

0.362

0.363

p
e
r-

a
to

m
 a

v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

no hp sampling

prior whitening

slice sample theta

segmentation

Figure 6.4.2: Experiment: learning the linear kernel’s binary scaling hyperparameter
hb (represented as log hb). Hyperparameter set: just log hb. Hyperprior log hb ∼
U(log 10−3, log 102). Initial value log hb = 0. Sampling hyperparameters every 1 000
latent variable updates. Di�erent con�gurations: di�erent NLP tasks; hyperparameter
updates using slice sampling or prior whitening.

CHAPTER 6. HYPERPARAMETER INFERENCE 144

0 50000 100000 150000 200000 250000

MCMC iterations

−180

−170

−160

−150

−140

−130

cu
rr

e
n
t

LL
 t

ra
in

 s
e
t

no hp sampling

prior whitening

slice sample theta

0 50000 100000 150000 200000 250000

MCMC iterations

0.086

0.088

0.090

0.092

0.094

0.096

e
rr

o
r

ra
te

,
te

st
 s

e
t,

 m
a
rg

in
a
liz

e
d
 o

v
e
r

fs

no hp sampling

prior whitening

slice sample theta

0 50000 100000 150000 200000 250000

MCMC iterations

0.360

0.365

0.370

0.375

0.380

0.385

p
e
r-

a
to

m
 a

v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

no hp sampling

prior whitening

slice sample theta

chunking

0 50000 100000 150000 200000 250000

MCMC iterations

−80

−70

−60

−50

−40

−30

cu
rr

e
n
t

LL
 t

ra
in

 s
e
t

no hp sampling

prior whitening

slice sample theta

0 50000 100000 150000 200000 250000

MCMC iterations

0.0575

0.0580

0.0585

e
rr

o
r

ra
te

,
te

st
 s

e
t,

 m
a
rg

in
a
liz

e
d
 o

v
e
r

fs

no hp sampling

prior whitening

slice sample theta

0 50000 100000 150000 200000 250000

MCMC iterations

0.275

0.280

0.285

0.290

0.295

0.300

0.305

p
e
r-

a
to

m
 a

v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

no hp sampling

prior whitening

slice sample theta

japanesene

Figure 6.4.3: Continued from �gure 6.4.2

CHAPTER 6. HYPERPARAMETER INFERENCE 145

0 50000 100000 150000 200000 250000

MCMC iterations

−280

−260

−240

−220

−200

cu
rr

e
n
t

LL
 t

ra
in

 s
e
t

Ã1: : 6, prior broad (init 0)

loghb; Ã1: : 6, prior broad (init 0)

Ã1: : : 6, prior narrow (init 0)

loghb; Ã1: : 6, prior narrow (init 0)

hp fixed: Ã1: : 6=1, loghb=0

hp fixed: Ã1: : 6=0, loghb=0

0 50000 100000 150000 200000 250000

MCMC iterations

0.144

0.146

0.148

0.150

0.152

0.154

0.156

e
rr

o
r

ra
te

,
te

st
 s

e
t,

 m
a
rg

in
a
liz

e
d
 o

v
e
r

fs

Ã1: : 6, prior broad (init 0)

loghb; Ã1: : 6, prior broad (init 0)

Ã1: : : 6, prior narrow (init 0)

loghb; Ã1: : 6, prior narrow (init 0)

hp fixed: Ã1: : 6=1, loghb=0

hp fixed: Ã1: : 6=0, loghb=0

0 50000 100000 150000 200000 250000

MCMC iterations

0.350

0.352

0.354

0.356

0.358

0.360

0.362

0.364

p
e
r-

a
to

m
 a

v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

Ã1: : 6, prior broad (init 0)

loghb; Ã1: : 6, prior broad (init 0)

Ã1: : : 6, prior narrow (init 0)

loghb; Ã1: : 6, prior narrow (init 0)

hp fixed: Ã1: : 6=1, loghb=0

hp fixed: Ã1: : 6=0, loghb=0

Figure 6.4.4: Experiment: linear ARD kernel. Task: segmentation. Sampling hyper-
parameters every 1 000 latent variable updates. Sampling method: SS. Initial values
log hb = 0, ψ1..6 = 0

CHAPTER 6. HYPERPARAMETER INFERENCE 146

0 50000 100000 150000 200000 250000

MCMC iterations

−280

−260

−240

−220

−200

−180

cu
rr

e
n
t

LL
 t

ra
in

 s
e
t

Ã1: : 6, prior broad (init 0)

loghb; Ã1: : 6, prior broad (init 0)

Ã1: : : 6, prior narrow (init 0)

loghb; Ã1: : 6, prior narrow (init 0)

no hp learning, linear ARD, variances +1

no hp learning, linear ARD, variances 0

0 50000 100000 150000 200000 250000

MCMC iterations

0.146

0.148

0.150

0.152

0.154

0.156

0.158

0.160

e
rr

o
r

ra
te

,
te

st
 s

e
t,

 m
a
rg

in
a
liz

e
d
 o

v
e
r

fs

Ã1: : 6, prior broad (init 0)

loghb; Ã1: : 6, prior broad (init 0)

Ã1: : : 6, prior narrow (init 0)

loghb; Ã1: : 6, prior narrow (init 0)

no hp learning, linear ARD, variances +1

no hp learning, linear ARD, variances 0

0 50000 100000 150000 200000 250000

MCMC iterations

0.350

0.352

0.354

0.356

0.358

0.360

0.362

0.364

p
e
r-

a
to

m
 a

v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

Ã1: : 6, prior broad (init 0)

loghb; Ã1: : 6, prior broad (init 0)

Ã1: : : 6, prior narrow (init 0)

loghb; Ã1: : 6, prior narrow (init 0)

no hp learning, linear ARD, variances +1

no hp learning, linear ARD, variances 0

Figure 6.4.5: Experiment: linear ARD kernel. Task: segmentation. Sampling hyper-
parameters every 1 000 latent variable updates. Sampling method: SS. Initial values
log hb = 1, ψ1..6 = 0

CHAPTER 6. HYPERPARAMETER INFERENCE 147

0 50000 100000 150000 200000 250000

MCMC iterations

−400

−390

−380

−370

−360

cu
rr

e
n
t

LL
 t

ra
in

 s
e
t

Ã1: : 6, prior broad

loghb; Ã1: : 6, prior broad

Ã1: : : 6, prior narrow

loghb; Ã1: : 6, prior narrow

hp fixed, seed 0

hp fixed, seed 1

hp fixed, seed 2

hp fixed, seed 3

0 50000 100000 150000 200000 250000

MCMC iterations

0.175

0.180

0.185

0.190

e
rr

o
r

ra
te

,
te

st
 s

e
t,

 m
a
rg

in
a
liz

e
d
 o

v
e
r

fs

Ã1: : 6, prior broad

loghb; Ã1: : 6, prior broad

Ã1: : : 6, prior narrow

loghb; Ã1: : 6, prior narrow

hp fixed, seed 0

hp fixed, seed 1

hp fixed, seed 2

hp fixed, seed 3

0 50000 100000 150000 200000 250000

MCMC iterations

0.442

0.444

0.446

0.448

0.450

p
e
r-

a
to

m
 a

v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

Ã1: : 6, prior broad

loghb; Ã1: : 6, prior broad

Ã1: : : 6, prior narrow

loghb; Ã1: : 6, prior narrow

hp fixed, seed 0

hp fixed, seed 1

hp fixed, seed 2

hp fixed, seed 3

Figure 6.4.6: Experiment: squared exponential ARD kernel, with 6 variances as-
signed each to one block, with block boundaries as identi�ed visually above. Task:
segmentation. Di�erent con�gurations: learning binary scaling hyperparameter hb
and/or ARD hyperparametersψb. Hyperprior (on log hyperparameters): broad means
N(0, σ2 = 0.7), while narrow means N(0, σ2 = 0.3). Hyperparameter update every
100 MCMC steps. Initial values: hb = 0, ψb = 1

2 log(2∗7) for ARD variances, follow-
ing rule of thumb for squared exponential variances.

CHAPTER 6. HYPERPARAMETER INFERENCE 148

0 50000 100000 150000 200000 250000

MCMC iterations

−460

−440

−420

−400

−380

−360

cu
rr

e
n
t

LL
 t

ra
in

 s
e
t

Ã1: : 6= ¡ 1
Ã1: : 6=0

Ã1: : 6=1

0 50000 100000 150000 200000 250000

MCMC iterations

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

e
rr

o
r

ra
te

,
te

st
 s

e
t,

 m
a
rg

in
a
liz

e
d
 o

v
e
r

fs

Ã1: : 6= ¡ 1
Ã1: : 6=0

Ã1: : 6=1

0 50000 100000 150000 200000 250000

MCMC iterations

0.45

0.50

0.55

0.60

p
e
r-

a
to

m
 a

v
e
ra

g
e
 n

e
g
a
ti

v
e
 l
o
g
 m

a
rg

in
a
l

Ã1: : 6= ¡ 1
Ã1: : 6=0

Ã1: : 6=1

Figure 6.4.7: Task: segmentation. Hyperparameters �xed (di�erent values, cf. legend).
Initial value for log hb = 0.

CHAPTER 6. HYPERPARAMETER INFERENCE 149

the other.
We see that overall, the linear and linear ARD kernels are much better suited

to the task than the exponential ARD kernel. This is natural considering that the
data are represented as sparse binary feature vectors, for which the dot product is
more meaningful than the Euclidean distance. It seems that, as a consequence, while
hardly any improvements can be obtained in the linear and linear ARD experiments,
there is some room for improvement in the exponential ARD experiments, which
hyperparameter inference manages to exploit.

The default values selected for hyperparameters before conducting these exper-
iments seem to have been in the correct range. An optimistic view of our results
would assert that, despite knowing hardly anything about the hyperparameters, the
hyperparameter inference procedure managed to obtain competitive results.

The interpretation of results is a�ected by MCMC cross-chain variance. As a
yardstick, we use the cross-chain estimates obtained in section 4.8. It must be noted,
however, that these values were obtained when sampling f |D, not f , θ|D . The cross-
chain variance for the latter model is presumably higher, and depends on the sampling
method used, although we have not explored this further experimentally.

An insightful result obtained as a by-product from the MCMC runs is the shape
of the hyperparameter posterior, p(θ|D). We plot a histogram of the samples of each
hyperparameter and compare it to the hyperparameter prior (de�ned analytically).
This is done for the exponential ARD experiments in �gure 6.4.8. We note that the
results are remarkably similar across the 5 folds, in the sense that the hyperparameter
posteriors are comparable across folds. This motivates aggregating the posteriors for
all folds, per hyperparameter, as is done in �gure 6.4.9 (top plot). We also plot the
result for a linear ARD experiment14. In some cases (e.g. for exponential ARD, ψ2

and ψ5) posteriors sit at the tail of the Gaussian hyperprior, suggesting that a broader
hyperprior would still have received support from the evidence.

The most important observation from these plots, however, is the following: In
all cases, we remark that the posteriors are visually distinct from the hyperprior; this
indicates that the evidence from the data in�uenced the posterior. This is despite
modest improvements in the performance metrics, and suggests that our choice of
tasks is moderately suited to revealing the advantage of hyperparameter inference.
That is to say, not much improvement is visible in the task metrics, despite clear signs
that hyperparameter inference is working.

14Here we note that some posteriors, like those for ψ4..6, seem particular: they are one-sided on the
positive side of the real line. It is not clear why this is the case, and whether it has any bearing on the
average performance of hyperparameter inference in this experiment.

CHAPTER 6. HYPERPARAMETER INFERENCE 150

2

0

2

0 100000 200000 300000

2

0

2

0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000

2

0

2

0 100000 200000 300000

2

0

2

0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000

2

0

2

0 100000 200000 300000

2

0

2

0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000

2

0

2

0 100000 200000 300000

2

0

2

0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000

2

0

2

0 100000 200000 300000

2

0

2

0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000

Figure 6.4.8: Hyperparameter samples paths over the course of an MCMC chain. Ker-
nel exponential ARD. Each column shows one hyperparameter: ψ1..6, last column:
log hb. Groups of 2 rows are each for one fold of the data (�ve folds in total). Odd rows:
histogram of relative frequency hyperparameter values, with plot of hyperprior for
comparison, in green. Even rows: Hyperparameter sample path. Experimental con-
�guration: Task: segmentation. Sampling hyperparameters every 100 latent variable
updates. Initial values: log hb = 0, ψ1..6 = 1

2 log(2 ∗ 7) = 1.32. Sampling method:
SS. Hyperparameter set: log hb, ψ1..6 , hyperprior broad.

CHAPTER 6. HYPERPARAMETER INFERENCE 151

3

2

1

0

1

2

3

Figure 6.4.9: Hyperparameter sample paths, aggregated over the MCMC chains for all
5 folds, kernel exponential ARD, experiment as in �gure 6.4.8. Each column shows
one hyperparameter: ψ1..6, last column: log hb. Task: segmentation. Sampling hyper-
parameters every 1 000 latent variable updates. Sampling method: SS. Initial values
log hb = 0, ψ1..6 = 1. Hyperparameter set log hb, ψ1..6. Hyperprior broad.

6.5 Conclusion

In this chapter, we have detailed several sampling methods suited to hyperparameter
learning in GPstruct. Since the potential for a faulty MCMC implementation to go
undetected is considerable, we put emphasis on synthetic data experiments and veri-
�cation procedures. To assess how well the proposed methods work in practice, we
conducted experiments on NLP datasets, with GPstruct using ARD kernels, and learn-
ing their variance hyperparameters. The scienti�c contributions of this chapter con-
sist in:

• developing, implementing and demonstrating a correctness test for MCMC
samplers which improves on Geweke’s “Getting it right” test (Geweke, 2004)

• a synthetic task demonstrating hyperparameter learning15

• publicly available implementations16 of the three hyperparameter learning
schemes for GPstruct detailed section 6.2

• insights into hyperparameter inference with GPstruct using several di�erent
experimental settings (table 6.1)

As is often the case, the research was conducted in a di�erent order from the order
of exposition adopted in this chapter. After an initial implementation of the three
reparameterisation schemes for hyperparameter inference, and preliminary experi-
ments on the binary scaling hyperparameter, we moved on to experiments with ARD
hyperparameters, to which we expected the task performance to be sensitive. Im-
provements did not turn out to be as strong as expected. These experiments run for
several days each, and are thus computationally demanding, so we decided to focus
only on slice sampling, despite being exposed to coupling between hyperparameters
and latent variables. Fearing implementation issues, the MCMC samplers were rede-
rived from their mathematical formulation, the pseudo-code was rewritten, the im-

15in a setting where GPstruct is restricted to Bayesian GP multi-class classi�cation
16http://github.com/sebastien-bratieres/pygpstruct

http://github.com/sebastien-bratieres/pygpstruct

CHAPTER 6. HYPERPARAMETER INFERENCE 152

plementation carefully tested with unit tests, and to remove any doubt, we carried out
the Geweke tests detailed in section 6.3. We were able to demonstrate hyperparameter
inference on a synthetic task, section 6.3.4. Several smaller bugs were uncovered, but
the conclusions of the experiments conducted so far remained unchanged. To identify
a favourable con�guration, and to perform a solid analysis, we extended the experi-
ments to cover the bulk of the cases listed in table 6.1, and carried out several analytic
experiments, such as �xing the hyperparameters (�gure 6.4.7), or inspecting hyper-
parameter sample path histograms, which demonstrated that hyperparameters were
being learnt but a�ected task performance weakly (�gure 6.4.9).

On the basis of these actions and insights, we believe we have conducted a thor-
ough investigation, are convinced that our code is correct, and eliminated several
causes of poor performance. Future work could include MCMC convergence dia-
gnostics, which are computationally even more expensive than the current experi-
ments, but with hindsight we believe we should have changed our dataset altogether
earlier in our project. In fact, we hypothesise that the datasets and tasks we are work-
ing with do not have much leeway for performance improvement stemming from bet-
ter learning procedures. This would explain issues found in section 4.12, namely the
closeness of performance measurements for GPstruct against similar models, as well
as, in section 6.4.3, the sometimes paradoxical behaviour of performance metrics (HE
and ANLPM). Regarding this last point, however, we must point out that predictions
are done on the basis of the Hamming loss and therefore optimise the Hamming error
metric; nonetheless, HE has high cross-chain MCMC variance, and the visual analysis
of MCMC trace plots shows that in-chain variance is relatively high too, which seems
to show that it is hard to rely on at the levels of performance we are working with.

As described throughout this chapter, several alternative paradigms and meth-
ods for hyperparameter learning could have been applied. Noteworthy among these,
HMC can jointly train both the latent parameters and the hyperparameters. When this
research was undertaken (2014), HMC was thought to be di�cult to tune; subsequent
research (Filippone et al. (2013); Hensman et al. (2015)) has shown the issue to be a
manageable one, and this method looks like a useful replacement. However, known
methods require the likelihood function to factorise over f , which calls for approxima-
tions or bounds. In fact, one solution is to resort to a pseudo-likelihood approximation
of the model as in Srijith et al. (2016), discussed in section 5.6.1), where hyperparamet-
ers are estimated point-wise by a VB-EM algorithm (Beal and Ghahramani, 2003)17.

Overall, the idea of using a hyperparameter learning scheme which closely integ-
rates with latent variable inference paid o�. We reaped the bene�ts of a probabilistic
approach and avoided the curse of dimensionality brought about by grid search.

The surrogate data method was implemented and tested, but not found to be ef-
17an extension to VB in which at each iteration, the variational lower bound is subjected to a round of

expectation maximisation to estimate the hyperparameters

CHAPTER 6. HYPERPARAMETER INFERENCE 153

�cient enough to compensate for its high computational cost (one inversion and two
Cholesky factorisations of matrices of size

∑
n T

(n)). These �ndings are in line with
the conclusions of Filippone et al. (2013). Nevertheless, we can o�er improvements.
In our implementation, we used a �xed auxiliary noise covariance matrix Sθ = αI , as
suggested in Murray and Adams (2010). This could be improved, either by an MCMC
pre-run to estimate the posterior covariance, or by working out a softmax version of
the moment-matching approximation of the posterior variance, which for the exper-
iments of Murray and Adams (2010) was obtained for logistic regression18.

Using a likelihood-based approach as we do o�ers several advantages in terms
of making model selection modular in a machine learning system. More concretely,
note we are using the (log) marginal likelihood as a score indicating how good the �t
between hyperparameters and data is, as opposed to reporting a performance metric
on the data, such as cross-validation performance. This way, we can compare model
selection for a new model which was initially not considered; or we can train a set
of hyperparameters jointly on several datasets (transfer learning), because log like-
lihoods over several datasets can be combined correctly (by adding them), so that
hyperparameters can be trained using the sum of log likelihoods. This also opens the
way to kernel learning as in e.g. Duvenaud et al. (2013).

Finally, by dealing only with covariance parameters, we have only scratched the
surface of the possibilities o�ered by hyperparameter learning in the context of GP-
struct. Many of the GPstruct model design choices introduced in chapter 4 could be
learnt instead of being �xed. We think speci�cally of:

• the type of kernel, possibly a combination of kernels (with their respective scal-
ing factors) when the feature vector is known to be a concatenation of very
di�erent features (e.g. a dense scalar part and a sparse binary part)

• the order of factors in the CRF; we have only considered binary factors in this
work

• the size of the Markov blanket of a node in the CRF; we have only considered
immediate neighbours

• parameter tying schemes (which would change the structure of f)

• the kernel priors, and more speci�cally, their sparsity structure

A remark in terms of research agenda: implementing these options naïvely incurs a
heavy computational cost; this cost has to be tackled by the development of accelera-
tion techniques for GPstruct learning, such as GP sparsi�cation, fast Cholesky matrix

18Cf. Murray and Adams (2010) after equation 12 for a discussion, and the code (�le logistic_aux.m,
line 27), which uses (Sθ)ii = (Σθ)ii · (1 − 1

π/2+4/(Σθ)ii
). It is not clear how to obtain a similar

approximation for the softmax case.

CHAPTER 6. HYPERPARAMETER INFERENCE 154

updates, and kernel approximations. Gordon and Desjardins (1995), in its section 2
“What is inductive bias?”, details two major sources of inductive bias: the represent-
ational and the procedural. This distinction is re�ected throughout modern probab-
ilistic machine learning, in treating models and algorithms separately. Applying this
to our work on GPstruct, it is apparent that the exploration of GPstruct’s represent-
ational possibilities has to go hand in hand with progress on the procedural front,
e�cient inference.

Chapter 7

Conclusion

7.1 Summary of scienti�c contributions

We now point out the speci�c scienti�c contributions this thesis is making to the �eld
of machine learning.

We contribute to the study of distributed MCMC algorithms with a map-reduce
implementation of the “beam sampling” algorithm (Van Gael et al., 2008). Our im-
plementation targeted a commodity platform (Amazon Elastic MapReduce, running
Hadoop) for scienti�c reproducibility and re-use, was programmed in Java on top of
Hadoop, and used the open-source Apache Mahout library.

This thesis o�ers good practices and lessons learnt for porting algorithms to a
map-reduce framework, and details speci�c forms of mappers and reducers which
are relevant for di�erent algorithms. We explored alternative ways of adapting the
original algorithm to map-reduce, and reported the corresponding experimental res-
ult. These are contributions to the �eld of distributed machine learning.

Our main experimental �nding, communicated in our publication (Bratières et al.,
2010a) obviates the need for new distributed platforms which support iteration as a
base construct. This result has been obtained repeatedly in machine learning and
systems research since, and the distributed computing research community has ad-
dressed this need with platforms supporting several algorithmic constructs beyond
just the map-shu�e-reduce operations.

Our contribution to large-scale learning with the IHMM is still up-to-date. We are
not aware of any new attempts to reproduce our experiments, which we would expect
to take place on a distributed platform supporting highly iterative algorithms.

This thesis o�ers surveys of research on several connected issues: large scale
Bayesian inference; distributed MCMC algorithms, and more speci�cally non-
parametric Bayesian methods; and iterative map-reduce platforms.

Moving on to the part of this thesis dedicated to GPstruct, chapter 3 contains a self-

155

CHAPTER 7. CONCLUSION 156

contained reasoned introductory presentation of discriminative probabilistic models
in machine learning, leading up to the structured family, with several variants of the
CRF.

We provide the “missing block” in this very presentation: we formulate GPstruct,
a conceptually novel probabilistic model, endowed with a set of desirable properties
which existing models exhibit only in isolation. It is a kernelised, non-parametric
model; it supports fully Bayesian inference; it applies to structured output prediction
tasks.

GPstruct is formulated in a modular way, which makes it �exible and adaptable.
In particular, con�gurable modules are: the MRF structure, the parameter tying (i.e.
sharing) scheme, the kernel design, in particular the form of the kernel for label-label
and input-input similarity, and the likelihood formulation. All of these options are
illustrated in this thesis and most are experimentally illustrated. Thanks to the prob-
abilistic properties of GPstruct, all are amenable to automatic model selection; indeed,
as a speci�c contribution to this issue, we research and experiment with hyperpara-
meter learning in chapter 6.

We develop an MCMC training algorithm for GPstruct based on elliptical slice
sampling (Murray et al., 2010). An open-source, easily accessible Python implement-
ation of GPstruct is provided1, which allows the reproduction of almost all of the
experiments presented in chapters 4, 5 and 6.

Our experiments in chapters 4 and 5 provide several contributions at once:

• we demonstrate the �exibility of the model by adapting it to both sequence and
grid models, and to di�erent forms of the likelihood and predictive distribution

• we explore very di�erent machine intelligence tasks: part-of-speech tagging,
noun phrase tagging, named entity recognition, lexical segmentation, video
classi�cation, semantic image segmentation

• we benchmark GPstruct against several state-of-the-art methods, which shows
its excellent predictive performance.

In analytic terms, we conducted complementary experiments to better understand
the impact of MCMC con�guration choices (section 4.7), cross-chain MCMC variance
(section 4.8), how a MAP version of GPstruct performs (section 4.10), and how good
the probabilistic calibration of GPstruct predictions is with respect to other models
(section 5.5.2).

We address the challenge of taking GPstruct to large-scale tasks in chapter 5.
Several complementary strategies are applied to achieve our goal; we detail them in
this thesis and experimentally investigate the impact of approximations on predict-
ive accuracy, in a small-scale experiment where exact inference is tractable (section

1http://github.com/sebastien-bratieres/pygpstruct

http://github.com/sebastien-bratieres/pygpstruct

CHAPTER 7. CONCLUSION 157

5.5.5). The approximations we exploit are not speci�c to the grid topology used in
this chapter; pseudo-likelihood approximations for GPstruct are reused in Srijith et al.
(2016), and the ensemble method we apply is very general indeed.

Our �ndings were shared with the research community in our publications
Bratières et al. (2015) and Bratières et al. (2014).

Probabilistically calibrated predictions are one advantage of the fully Bayesian al-
gorithm used in GPstruct; in chapter 6 we explore another, hyperparameter learning
during MCMC training for latent variables. We compare reparameterisation schemes
which can be used for this purpose and compare their usefulness on our problem, to
conclude that the computationally cheapest, the forward parameterisation, seems the
best suited. We obtain mitigated results in terms of predictive performance, which we
attribute to the nature of the experimental task, a hypothesis which is supported by
evidence from our other experiments (as discussed in sections 6.5, 4.10, 4.12). How-
ever, we demonstrate that hyperparameter posteriors are consistently di�erent from
their priors, which proves that we have achieved hyperparameter learning after all.

Finally, we make an independent, methodological contribution in the form of a
method to test the correctness of MCMC implementations, based on an adaptation of
Geweke (2004), in section 6.3.

7.2 Concluding thoughts

Individual chapters already discuss conclusions, open issues and opportunities for
future work. Here, we bring up broader issues which seem worth pursuing, pointing
to �elds of research which are connected to this thesis.

Firstly, our research implied deploying algorithms to distributed settings in
chapter 2 and 5 because of the scale of computation. Despite improved platforms, this
process is still cumbersome. We believe that a successful approach relies on a user
specifying a computational procedure in the form of a graph, and a platform taking
care of the deployment. Such an approach inspired numerous distributed platforms2,
but it is in deep learning libraries that it has seen most successes. In Theano (Al-Rfou
et al., 2016) or Tensor�ow (Abadi et al., 2016), the developer constructs a computa-
tion graph which is optimised, compiled and deployed to an adapted target platform:
initially GPUs (graphical processing units), but now also computing clusters and spe-
cialised microchips. This paradigm fully acknowledges that the person who writes
the code, maybe a data scientist or a researcher, is not an expert, and is ultimately
not interested, in how the code is optimised. By implementing this separation of con-
cerns, libraries built according to this model can also seize the opportunity to optimise
deployments dynamically during execution, or over several redesign and recompila-

2like Pig and Spark, but cf. also the user-side desiderata expressed by Lin (2012) for a distributed platform
in an industry setting.

CHAPTER 7. CONCLUSION 158

tion cycles. Indeed, it can instrument the resulting code with counters and timers,
has access to measurements, and often also to costs which determine trade-o�s, such
as costs of di�erent disk storage options, memory, computation, or network commu-
nication on a cloud computing platform, all while integrating with user-imposed per-
formance metrics. Machine learning applications will bene�t from work on e�cient
deployment tools which separate platform issues from algorithm issues.

Secondly, Bayesian methods o�er many advantages in theory, but it seems that
they don’t fare well in structured settings. One fundamental reason is that the faith
in a Bayesian inference result rests in part on the asymptotic consistency guarantees
it o�ers that with more data, its posterior will converge as a point on the true pos-
terior. This, however, only applies when the model space contains the data-generating
model; in other words, when our model for the world is correct. However, on prob-
lems of practical relevance, e.g. in machine intelligence, we are usually quite sure that
our model is mis-speci�ed; for the image segmentation problems in chapter 5, we can
be certain that the dependency structure of neighbouring labels we specify with a
CRF is wrong, since it does not model traits of the spatial world which gave rise to
the image, such as the continuity of material objects. On the contrary, machine learn-
ing methods based on ensembles, which do not perform Bayesian model averaging
and do not converge to a single best model in the limit of in�nite data, seem to have
an advantage on empirical “data science” problems. Therefore, is it reasonable to be
Bayesian when our model is known to be mis-speci�ed? Are there variants, gener-
alisations (such as Zhu et al. (2014), Grünwald (2016), or more generally divergence
minimisation schemes) of the Bayesian paradigm which give better results, while still
o�ering rational consistency guarantees? Because it is not necessarily the case that
a learning strategy which appears correct under rational analysis is optimal in a real
setting, should we work on hybrids between fully Bayesian inference and other in-
ductive principles, such as search, ensemble methods, energy-based methods?

These interrogations bring us to our last point, which relates to both previous
arguments. A major di�erence between the ideal setting for rational decision and
decision-making in the real world is that the latter occurs under constrained com-
puting resources. In practice, a variety of aspects might be constrained, bounded, or
budgeted: computation, due to battery power limitation on small devices; memory or
storage capacity; there might be training costs vs. prediction costs trade-o�s; feature
acquisition (from the real world) or feature extraction (through computation) costs;
likelihood evaluation costs or simulation costs. There already is work on these is-
sues, with approximate Bayesian computation, Bayesian optimisation, active learning,
model compression, limited-precision machine learning, feature selection, approxim-
ate inference algorithms (such as in chapter 5), anytime prediction methods. Focusing
on structured prediction, Bolukbasi et al. (2017) and Shi et al. (2015) are two recent ex-
amples of prediction under budget constraints. Section 5.5.5 illustrates how to obtain

CHAPTER 7. CONCLUSION 159

a trade-o� between training cost and predictive performance. There is a need for com-
putationally aware algorithms, even adaptive methods which can react to changing
budget constraints, and ways to learn costs and constraints based on measurements.
Such techniques are needed in many applied machine learning scenarios, from robot-
ics to data science.

All these questions are rhetorical, of course, and fortunately some have received
consideration and partial answers; our argument here is that in our own research
experience, re�ected in this thesis, they hold potential for practical bene�t and for
our understanding of machine learning. As a �eld, machine learning has seen many
successful applications in the last decade, and yet its most important problems seem
to lie ahead of us.

Appendix A

IHMM Gibbs sampling steps

This appendix details each of the steps of the Gibbs sampling procedure illustrated as
a whole in �gure 2.2.1 and table 2.1.

It will prove convenient to introduce a central data structure, the Sentence object,
which contains:

• an array of tokens, of length T ;

• an array of currently assigned cluster IDs (also called states), of length T ;

• an array of auxiliary variables (one between each pair of adjacent tokens), of
length T − 1. Auxiliary variables are introduced below, in section A.

Thus, we can pack all tokens, states, and auxiliary variables into a set of Sentence
objects. Let Σ be the set of sentences, σ ∈ Σ a sentence, σ.length its length denoted by
T above, σ.states = (z1 . . . zT), σ.tokens = (y1 . . . yT), and σ.auxiliaryVariables =

(ν1 . . . νT−1). Note that hyperparameters α, γ, andH are not considered inputs since
they are �xed throughout the program, as is V . K , the current number of used states,
is always deduced from the size of β.

Count transition frequencies (MR1)

input: Σ

output: p ∈ NK×K

pij is the frequency of the subsequence (i, j) in the state sequences,

for all sentences

Sample π (MR1a)

input: p

160

APPENDIX A. IHMM GIBBS SAMPLING STEPS 161

output: a new draw for π from the posterior distribution

p′:=extend p with a column of zeroes to have matching sizes with β

Draw each πk from Dirichlet(αβ + p′k,·)

Count emission frequencies (MR2)

input: Σ

output: f ∈ NK×V

fkw is the frequency of state k generating token w, across all sentences

Sample φ (MR2a)

input: f

output: a new draw of φ from the posterior distribution

Draw each φk from Dirichlet(H + fk)

Sample auxiliary variables, and determine the minimum auxiliary variable
(MR3)

The auxiliary variables are an addition to the IHMM’s original model, and hence do
not change any other variable’s marginal distribution, so the MCMC procedure con-
verges to the true posterior. They allow auxiliary variable Gibbs sampling, e�ectively
cutting down on the computational cost of state re-estimation. Details can be found
in Van Gael et al. (2008).

input:Σ, π

output: ∀σ ∈ Σ, a new draw of σ.auxiliaryVariables;

ν, the smallest auxiliary variable drawn

foreach σ:

foreach t ∈ {1 . . . σ.length− 1}
σ.auxiliaryVariables[t]:= draw from Uniform(0, πzt,zt+1)

Sample Chinese Restaurant Franchise table counts (MR4)

Details can be found in Van Gael and Ghahramani (2010). Each transition i → j is
considered a customer who either sits at a new table or not, and the resulting table
number is stored.

input: f , β

APPENDIX A. IHMM GIBBS SAMPLING STEPS 162

output: t ∈ NK×K

foreach (i, j) ∈ {1 . . .K}2
tij = tableCount(j, fij , βj)

tableCount:

input: j, fij , βj

output: the number of tables generated by the transitions i→
j

initialise t = 0

foreach m ∈ {1 . . . fij}
draw r from Bernoulli(

αβj
αβj+m−1)

t:=t+r

return t

Sample β

Details can be found in Teh et al. (2006, equation 35).

input: t, β

output: a new draw of β from the posterior

g:= extend
∑k=K
k=1 tk,· with element γ, yielding a vector of

length K + 1

Draw β from Dirichlet(g)

Note that this takes care of the remaining mass element, as it ensures that the resulting
draw sums to one.

“Re-break” β and π

input: ν, π, φ, β

output: new, expanded versions of π, φ, β

We omit details of this step here. The idea is to iteratively expand (“rebreak”) the
three variables by extracting new states from the remaining mass, in order to ensure
that after the process, none of the πij is larger than ν. This is done by drawing a
breaking point according to a Beta(1, γ), and splitting the remaining mass according
to this. Each rebreak increases K by 1. The exact procedure involves quite some
book-keeping in order to enforce the following constraints on π, φ, β:

• Summation to 1

APPENDIX A. IHMM GIBBS SAMPLING STEPS 163

• Supervision for dummy start and end states, which must correspond to start
and end tokens, and which have restrictions on

– transitions (end cannot transition anywhere, no state can transition to
start);

– emissions (newly created state cannot emit the start or end tokens).

Sample states of entire sequence (MR5)

This is carried out using beam sampling (Van Gael et al., 2008), which is a dynamic
program of complexity O(σ.length×K2) in the worst case.

input: Σ, π, φ

output: ∀σ ∈ Σ, a new draw of σ.states

for a given σ:

initialise DP ∈
RK×T to hold temporary values of the dynamic program

for t=1 to T

for k=0 to K

for l=0 to K

if πlk > σ.auxiliaryValues[t− 1]

DPkt = DPkt +DPl,t+1

DPkt = DPkt · φk, σ.tokens[t]
now backtrack to sample the state sequence:

for t=T-1-1 to 0

initialise τ ∈ RK

for k=0 to K

τk =

1 if πk, σ.states[t+1] > σ.auxiliaryValues[t]

0 else

draw σ.states[t] from Categorical(τ ◦DP·, t),

Here ◦ denotes the Hadamard, or element-wise, product (of vectors of dimension K ,
in the present case).

List states e�ectively used in the new state sample (MRMarkUsedStates)

input: Σ

output: the list of unused states, obtained by going through all the σ.states

Collapse β

input: β, the list of unused states

APPENDIX A. IHMM GIBBS SAMPLING STEPS 164

output: a collapsed β, where unused states no longer appear.

Their probability mass is added to the remaining mass element βK+1.

States are renumbered in this step and in the immediately following step. This cleaning-
up step ensures that we always only consider the minimum number of states required.

Renumber states in state sample (MRCleanupUnusedStates)

input: Σ, the list of unused states

output: Σ, with the following constraint enforced:

∀σ ∈
Σ, σ.states contains no element from the list of

unused states

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.
(2016). TensorFlow: A System for Large-scale Machine Learning. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, pages 265–283, Berkeley, CA, USA. USENIX Association. (cited p. 157)

Agarwal, A., Chapelle, O., Dudik, M., and Langford, J. (2012). A reliable e�ective
terascale linear learning system. arXiv preprint arXiv:1110.4198. (cited p. 51)

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bas-
tien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A., Bergstra, J.,
Bisson, V., Bleecher Snyder, J., Bouchard, N., Boulanger-Lewandowski, N., Bout-
hillier, X., de Brébisson, A., Breuleux, O., Carrier, P.-L., Cho, K., Chorowski, J.,
Christiano, P., Cooijmans, T., Côté, M.-A., Côté, M., Courville, A., Dauphin, Y. N.,
Delalleau, O., Demouth, J., Desjardins, G., Dieleman, S., Dinh, L., Duco�e, M., Du-
moulin, V., Ebrahimi Kahou, S., Erhan, D., Fan, Z., Firat, O., Germain, M., Glorot,
X., Goodfellow, I., Graham, M., Gulcehre, C., Hamel, P., Harlouchet, I., Heng, J.-P.,
Hidasi, B., Honari, S., Jain, A., Jean, S., Jia, K., Korobov, M., Kulkarni, V., Lamb, A.,
Lamblin, P., Larsen, E., Laurent, C., Lee, S., Lefrancois, S., Lemieux, S., Léonard, N.,
Lin, Z., Livezey, J. A., Lorenz, C., Lowin, J., Ma, Q., Manzagol, P.-A., Mastropietro,
O., McGibbon, R. T., Memisevic, R., van Merriënboer, B., Michalski, V., Mirza, M.,
Orlandi, A., Pal, C., Pascanu, R., Pezeshki, M., Ra�el, C., Renshaw, D., Rocklin, M.,
Romero, A., Roth, M., Sadowski, P., Salvatier, J., Savard, F., Schlüter, J., Schulman,
J., Schwartz, G., Serban, I. V., Serdyuk, D., Shabanian, S., Simon, É., Spieckermann,
S., Subramanyam, S. R., Sygnowski, J., Tanguay, J., van Tulder, G., Turian, J., Urban,
S., Vincent, P., Visin, F., de Vries, H., Warde-Farley, D., Webb, D. J., Willson, M., Xu,
K., Xue, L., Yao, L., Zhang, S., and Zhang, Y. (2016). Theano: A Python framework
for fast computation of mathematical expressions. arXiv e-prints, abs/1605.0. (cited
p. 157)

165

BIBLIOGRAPHY 166

Altun, Y. (2005). Discriminative Methods for Label Sequence Learning. PhD thesis,
Brown University. (cited p. 94)

Altun, Y. and Hofmann, T. (2003). Gaussian process classi�cation for segmenting and
annotating sequences (Technical Report CS-03-23). Technical report, Department
of Computer Science, Brown University. (cited p. 74, 76)

Altun, Y., Hofmann, T., and Smola, A. J. (2004a). Gaussian process classi�cation for
segmenting and annotating sequences. In Proceedings of the twenty-�rst Interna-
tional Conference on Machine Learning, page 4. ACM. (cited p. 65, 74, 75, 76, 77, 84,
94)

Altun, Y., Smola, A. J., and Hofmann, T. (2004b). Exponential families for conditional
random �elds. In UAI 2004: Proceedings of the Twentieth Conference Conference on
Uncertainty in Arti�cial Intelligence, Ban�, Canada. AUAI Press, ISBN 0-9749039-0-
6. (cited p. 94)

Altun, Y., Tsochantaridis, I., and Hofmann, T. (2003). Hidden Markov support vector
machines. In Proceedings of the 21st International conference on Machine Learning,
volume 20, page 3. (cited p. 76)

Alvarez, M. A., Rosasco, L., and Lawrence, N. D. (2011). Kernels for vector-valued
functions: A review. arXiv preprint arXiv:1106.6251, pages 1–37. (cited p. 100)

Andrés-Ferrer, J., Ortiz-Martínez, D., García-Varea, I., and Casacuberta, F. (2008). On
the use of di�erent loss functions in statistical pattern recognition applied to ma-
chine translation. Pattern Recognition Letters, 29(8):1072–1081. (cited p. 62)

Antoniak, C. E. (1974). Mixtures of Dirichlet Processes with Applications to Bayesian
Nonparametric Problems. The Annals of Statistics, 2(6):1152–1174. (cited p. 20, 29)

Antoniano-Villalobos, I. and Walker, S. G. (2013). Bayesian Nonparametric Infer-
ence for the Power Likelihood. Journal of Computational and Graphical Statistics,
22(4):801–813. (cited p. 115)

Ardia, D. (2008). Bayesian Estimation of the GARCH(1, 1) Model with Normal Innov-
ations. In Financial Risk Management with Bayesian Estimation of GARCH Models:
Theory and Applications, pages 17–37. Springer Berlin Heidelberg. (cited p. 132)

Armbrust, M., Fox, A., Gri�th, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., and Zaharia, M. (2009). Above the Clouds: A Berkeley
View of Cloud Computing. Technical report, EECS Department, University of Cali-
fornia, Berkeley. (cited p. 33)

BIBLIOGRAPHY 167

Asuncion, A., Smyth, P., and Welling, M. (2008). Asynchronous distributed learning
of topic models. Advances in Neural Information Processing Systems, pages 81–88.
(cited p. 55, 56)

Babu, G. J. and Feigelson, E. D. (2006). Astrostatistics: Goodness-of-Fit and All That! In
Gabriel, C., Arviset, C., Ponz, D., and Solano, E., editors, Astronomical Data Analysis
Software and Systems XV ASP Proceedings of the Conference Held 2-5 October 2005 in
San Lorenzo de El Escorial, Spain, page 127, San Francisco. Astronomical Society of
the Paci�c. (cited p. 132)

Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and Vishwanathan,
S. V. N. (2007). Predicting Structured Data. MIT Press. (cited p. 92)

Balan, A. K., Rathod, V., Murphy, K., and Welling, M. (2015). Bayesian Dark Know-
ledge. CoRR, abs/1506.0. (cited p. 119)

Bartlett, P. L., Jordan, M. I., and McAuli�e, J. D. (2006). Convexity, classi�cation, and
risk bounds. Journal of the American Statistical Association, 101(473):138–156. (cited
p. 75)

Beal, M. J. and Ghahramani, Z. (2003). The Variational Bayesian EM Algorithm for
Incomplete Data: with Application to Scoring Graphical Model Structures. Bayesian
Statistics, 7:453–454. (cited p. 152)

Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2002). The in�nite hidden Markov
model. In Advances in Neural Information Processing Systems, pages 14:577–584.
(cited p. 20, 25, 31, 37)

Bekkerman, R., Bilenko, M., and Langford, J. (2012). Scaling Up Machine Learning:
Parallel and Distributed Approaches. In Proceedings of the 17th ACM SIGKDD In-
ternational Conference Tutorials, page 475. (cited p. 51)

Belanger, D. (2017). Deep Energy-Based Models for Structured Prediction. PhD thesis,
University of Massachusetts Amherst. (cited p. 95)

Belanger, D. and McCallum, A. (2016). Structured Prediction Energy Networks. In
ICML. (cited p. 95)

Belanger, D., Yang, B., and McCallum, A. (2017). End-to-End Learning for Structured
Prediction Energy Networks. In ICML. (cited p. 95)

Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. Springer-Verlag.
(cited p. 61)

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical
Society. Series D (The Statistician), 24(3):179–195. (cited p. 106, 107)

BIBLIOGRAPHY 168

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, New York.
(cited p. 20, 67, 69, 101)

Blake, A., Kohli, P., and Rother, C. (2011). Markov random �elds for vision and image
processing. MIT Press. (cited p. 92)

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight Uncer-
tainty in Neural Networks. In Bach, F. R. and Blei, D. M., editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1613–
1622. Journal of Machine Learning Research. (cited p. 103)

Bo, L. and Sminchisescu, C. (2010). Twin Gaussian Processes for Structured Prediction.
International Journal of Computer Vision, 87(1-2):28–52. (cited p. 99)

Bolukbasi, T., Chang, K.-W., Wang, J., and Saligrama, V. (2017). Resource Constrained
Structured Prediction. In Singh, S. P. and Markovitch, S., editors, Proceedings of
the Thirty-First AAAI Conference on Arti�cial Intelligence, February 4-9, 2017, San
Francisco, California, USA., pages 1756–1762. AAAI Press. (cited p. 158)

Bouchard, G. (2007). Bias-variance tradeo� in hybrid generative-discriminative mod-
els. In Sixth International Conference on Machine Learning and Applications (ICMLA
2007), pages 124–129. IEEE. (cited p. 63)

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge University
Press. (cited p. 73)

Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. (2007). Large Language Models
in Machine Translation. In Eisner, J., editor, EMNLP-CoNLL 2007, Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic,
pages 858–867. ACL. (cited p. 44)

Bratières, S., Quadrianto, N., and Ghahramani, Z. (2015). GPstruct: Bayesian Struc-
tured Prediction Using Gaussian Processes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 37(7). (cited p. 21, 65, 79, 119, 120, 157)

Bratières, S., Quadrianto, N., Nowozin, S., and Ghahramani, Z. (2014). Scalable Gaus-
sian process structured prediction for grid factor graph applications. In Proceedings
of the 31st International Conference on Machine Learning, ICML 2014. (cited p. 21,
157)

Bratières, S., Van Gael, J., Vlachos, A., and Ghahramani, Z. (2010a). Learning the
iHMM through iterative map-reduce. In Unpublished. Poster at the Thirteenth In-
ternational Conference on Arti�cial Intelligence and Statistics (AISTATS 2010), Chia
Laguna, Sardinia, Italy. (cited p. 51, 155)

BIBLIOGRAPHY 169

Bratières, S., Van Gael, J., Vlachos, A., and Ghahramani, Z. (2010b). Scaling the iHMM:
Parallelization versus Hadoop. In 10th IEEE International Conference on Computer
and Information Technology, CIT 2010, Bradford, West Yorkshire, UK, June 29-July 1,
2010, pages 1235–1240. (cited p. 21, 44, 51)

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2):123–140. (cited p. 108)

Brill, E. (1995). Transformation-Based Error-Driven Learning and Natural Language
Processing : A Case Study in Part-of-Speech Tagging. Computational Linguistics,
21(4):543–565. (cited p. 26)

Brockwell, A. E. (2006). Parallel Markov chain Monte Carlo Simulation by Pre-
Fetching. Journal of Computational and Graphical Statistics, 15(1):246–261. (cited
p. 56)

Brown, P. F., DeSouza, P. V., Mercer, R. L., Della Pietra, V. J., and Lai, J. C. (1992). Class-
Based n-gram Models of Natural Language. Computational Linguistics, 18:467–479.
(cited p. 59)

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2010). HaLoop: e�cient iterative
data processing on large clusters. Proceedings of the VLDB Endowment, 3(1-2):285–
296. (cited p. 52)

Calderhead, B. (2014). A general construction for parallelizing Metropolis-Hastings
algorithms. Proceedings of the National Academy of Sciences of the United States of
America, 111(49):17408–13. (cited p. 56)

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra,
T., Fikes, A., and Gruber, R. (2006). Bigtable: A Distributed Storage System for
Structured Data. In Bershad, B. N. and Mogul, J. C., editors, 7th Symposium on
Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seattle, WA,
USA, pages 205–218. USENIX Association. (cited p. 33)

Chen, L.-C., Schwing, A. G., Yuille, A. L., and Urtasun, R. (2015). Learning deep struc-
tured models. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, pages 1785–1794. (cited p. 95)

Chou, W. and Juang, B. (2003). Pattern recognition in speech and language processing.
CRC Press. (cited p. 62)

Christodoulopoulos, C., Goldwater, S., and Steedman, M. (2010). Two decades of un-
supervised POS induction: How far have we come? EMNLP 2010 - Conference on
Empirical Methods in Natural Language Processing, Proceedings of the Conference,
pages 575–584. (cited p. 59)

BIBLIOGRAPHY 170

Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G. R., Ng, A. Y., and Olukotun, K.
(2007). Map-Reduce for Machine Learning on Multicore. In Schölkopf, B., Platt,
J. C., and Ho�man, T., editors, Proceedings of the Twentieth Annual Conference on
Neural Information Processing Systems, pages 281–288, Vancouver. MIT Press. (cited
p. 35)

Collins, M. (2002). Discriminative Training Methods for Hidden Markov Models: The-
ory and Experiments with Perceptron Algorithms. In Proceedings of the ACL-02 Con-
ference on Empirical Methods in Natural Language Processing - Volume 10, EMNLP
’02, pages 1–8, Stroudsburg, PA, USA. Association for Computational Linguistics.
(cited p. 73)

Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2:265–292.
(cited p. 65, 76)

Crick, T., Hall, B. A., and Ishtiaq, S. (2015). Reproducibility as a Technical Speci�cation.
CoRR, abs/1504.0. (cited p. 34)

de Andrade e Silva, R. B. and Ghahramani, Z. (2006). Bayesian Inference for Gaussian
Mixed Graph Models. In UAI ’06, Proceedings of the 22nd Conference in Uncertainty
in Arti�cial Intelligence, Cambridge, MA, USA, July 13-16, 2006. AUAI Press. (cited
p. 100)

Dean, J. and Ghemawat, S. (2004). MapReduce: Simpli�ed data processing on large
clusters. In Operating Systems Design and Implementation, pages 137–149. (cited
p. 20, 35, 36)

Della Pietra, S., Della Pietra, V. J., and La�erty, J. (1997). Inducing features of random
�elds. IEEE Transactions on Pattern Analysis andMachine Intelligence, 19(4):380–393.
(cited p. 73)

Dezfouli, A. and Bonilla, E. V. (2015). Scalable Inference for Gaussian Process Models
with Black-Box Likelihoods. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama,
M., and Garnett, R., editors, Advances in Neural Information Processing Systems 28,
pages 1414–1422. Curran Associates, Inc. (cited p. 120)

Dillon, J. V. and Lebanon, G. (2010). Stochastic Composite Likelihood. J. Mach. Learn.
Res., 11:2597–2633. (cited p. 108)

Do, T.-M.-T. and Artières, T. (2010). Neural conditional random �elds. In Proceed-
ings of the Thirteenth International Conference on Arti�cial Intelligence and Statistics,
volume 9. JMLR: W&CP. (cited p. 95)

BIBLIOGRAPHY 171

Domke, J. (2013). Learning Graphical Model Parameters with Approximate Mar-
ginal Inference. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(10):2454–2467. (cited p. 108, 110, 111, 113)

Doshi-Velez, F., Miller, K., Van Gael, J., and Teh, Y. W. (2009). Variational inference for
the Indian bu�et process. In Proceedings of the International Conference on Arti�cial
Intelligence and Statistics, volume 12, pages 12:137–144. (cited p. 35)

Dubey, A., Williamson, S., and Xing, E. P. (2014). Parallel Markov chain Monte Carlo
for Pitman-Yor mixture models. In Proceedings of the Conference on Uncertainty and
Arti�cial Intelligence. (cited p. 57)

Duvenaud, D. K., Lloyd, J., Grosse, R., Tenenbaum, J., and Ghahramani, Z. (2013).
Structure Discovery in Nonparametric Regression through Compositional Kernel
Search. JMLR, 28(3):1166–1174. (cited p. 153)

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., and Fox, G. (2010).
Twister. In Proceedings of the 19th ACM International Symposium on High Perform-
ance Distributed Computing - HPDC ’10, page 810, New York, New York, USA. ACM
Press. (cited p. 52)

Elnikety, E., Elsayed, T., and Ramadan, H. E. (2011). IHadoop: Asynchronous iterations
for MapReduce. In Proceedings - 2011 3rd IEEE International Conference on Cloud
Computing Technology and Science, CloudCom 2011, pages 81–90. (cited p. 52)

Ewens, W. J. (1988). Population genetics theory – the past and the future. In Lessard,
S., editor, Mathematical and Statistical Problems in Evolution. University of Montréal
Press, Montréal. (cited p. 30)

Filippone, M., Zhong, M., and Girolami, M. (2013). A comparative evaluation of
stochastic-based inference methods for Gaussian process models. Machine Learn-
ing, 93(1):93–114. (cited p. 125, 128, 152, 153)

Finley, T. and Joachims, T. (2008). Training Structural SVMs when Exact Inference is
Intractable. In Proceedings of the Twenty-Fifth International Conference on Machine
Learning (ICML 2008), Helsinki, Finland, June 5-9, 2008. (cited p. 94)

Franc, V., Zien, A., and Schölkopf, B. (2011). Support Vector Machines as Probabilistic
Models. In Getoor, L. and Sche�er, T., editors, Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 -
July 2, 2011, pages 665–672. Omnipress. (cited p. 102)

Fröhlich, B., Rodner, E., and Denzler, J. (2010). A Fast Approach for Pixelwise La-
beling of Facade Images. In Proceedings of the International Conference on Pattern
Recognition (ICPR 2010). (cited p. 110)

BIBLIOGRAPHY 172

Fujimaki, R. and Hayashi, K. (2012). Factorized Asymptotic Bayesian Hidden Markov
Models. In Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. (cited p. 25)

Fushiki, T., Komaki, F., and Aihara, K. (2005). Nonparametric bootstrap prediction.
Bernoulli, 11(2):293–307. (cited p. 108)

Gal, Y. and Ghahramani, Z. (2014). Pitfalls in the use of Parallel Inference for the
Dirichlet Process. In Proceedings of the 31st International Conference on Machine
Learning (ICML 2014), pages 208–216. (cited p. 57)

Gales, M. and Young, S. (2008). The Application of Hidden Markov Models in Speech
Recognition. Foundations and Trends in Signal Processing, 1(3):195–304. (cited p. 115)

Galliani, P., Dezfouli, A., Bonilla, E. V., and Quadrianto, N. (2017). Gray-box inference
for structured Gaussian process models. In AISTATS. (cited p. 119, 120)

Gao, J. and Johnson, M. (2008). A comparison of Bayesian estimators for unsupervised
Hidden Markov Model POS taggers. EMNLP ’08: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, (October):344–352. (cited p. 26)

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2009). Bayesian Data Analysis.
CRC Press. (cited p. 129)

Geweke, J. (2004). Getting It Right: Joint Distribution Tests of Posterior Simulators.
Journal of the American Statistical Association, 99(1):799–804. (cited p. 21, 129, 130,
131, 151, 157)

Gonzalez, J., Low, Y., and Guestrin, C. (2009). Residual splash for optimally paralleliz-
ing belief propagation. Arti�cial Intelligence and Statistics (AISTATS). (cited p. 55)

Gonzalez, J. E. (2014). Emerging systems for large-scale machine learning. ICML
tutorial. (cited p. 43)

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Cour-
ville, A., and Bengio, Y. (2014). Generative Adversarial Nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates,
Inc. (cited p. 63)

Gordon, D. F. and Desjardins, M. (1995). Evaluation and selection of biases in machine
learning. Machine Learning, 20(1-2):5–22. (cited p. 154)

Gould, S., Fulton, R., and Koller, D. (2009). Decomposing a Scene into Geometric and
Semantically Consistent Regions. In IEEE 12th International Conference on Computer
Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009. (cited p. 110)

BIBLIOGRAPHY 173

Green, P. J., Łatuszyński, K., Pereyra, M., and Robert, C. P. (2015). Bayesian com-
putation: a summary of the current state, and samples backwards and forwards.
Statistics and Computing, 25(4):835–862. (cited p. 55, 56)

Gri�ths, T. L. and Goldwater, S. (2007). A fully Bayesian approach to unsupervised
part-of-speech tagging. ACL’07 - 45th Annual Meeting of the Association of Compu-
tational Linguistics, pages 744–751. (cited p. 26)

Grosse, R. B. and Duvenaud, D. K. (2014). Testing MCMC code. 2014 NIPS workshop
on Software Engineering for Machine Learning. (cited p. 131)

Grünwald, P. (2016). Safe Probability. CoRR, abs/1604.0. (cited p. 158)

Gygli, M., Norouzi, M., and Angelova, A. (2017). Deep Value Networks Learn to Eval-
uate and Iteratively Re�ne Structured Outputs. In ICML. (cited p. 95)

Hammersley, J. M. and Cli�ord, P. (1971). Markov �elds on �nite graphs and lattices.
Unpublished manuscript. (cited p. 72)

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R.,
Satheesh, S., Sengupta, S., Coates, A., and Ng, A. Y. (2014). Deep Speech: Scaling
up end-to-end speech recognition. arXiv preprint. (cited p. 25)

Heaukulani, C., Knowles, D. A., and Ghahramani, Z. (2014). Beta Di�usion Trees.
Proceedings of the 31st International Conference on Machine Learning (ICML 2014),
32(2011):1809–1817. (cited p. 132)

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian Processes for Big Data.
In Nicholson, A. and Smyth, P., editors, Proceedings of the Twenty-Ninth Conference
on Uncertainty in Arti�cial Intelligence, UAI 2013, Bellevue, WA, USA, August 11-15,
2013. AUAI Press. (cited p. 112, 117)

Hensman, J., Matthews, A. G. d. G., Filippone, M., and Ghahramani, Z. (2015). MCMC
for variationally sparse Gaussian processes. Advances in Neural Information Pro-
cessing Systems, pages 1648–1656. (cited p. 152)

Huang, S. and Renals, S. (2007). Hierarchical Pitman-Yor language models for ASR in
meetings. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and
Understanding, volume 10. (cited p. 56)

Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. (2007). Dryad: Distributed
Data-parallel Programs from Sequential Building Blocks. In Proceedings of the 2007
Eurosys Conference. Association for Computing Machinery. (cited p. 33, 35, 54)

BIBLIOGRAPHY 174

Jancsary, J., Nowozin, S., Sharp, T., and Rother, C. (2012). Regression Tree Fields -
An E�cient, Non-parametric Approach to Image Labeling Problems. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society. (cited p. 95)

Joachims, T., Finley, T., and Yu, C.-N. J. (2009). Cutting-plane training of structural
SVMs. Machine Learning, 77(1):27–59. (cited p. 64)

Johnson, M. (2007). Why doesn’t EM �nd good HMM POS-taggers. EMNLP-CoNLL
2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, June 28-30, 2007,
Prague, Czech Republic, (June):296–305. (cited p. 26)

Keshet, J. (2014). Optimizing the Measure of Performance in Structured Prediction.
In Nowozin, S., Gehler, P. V., Jancsary, J., and Lampert, C. H., editors, Advanced
Structured Prediction, chapter 11. MIT Press. (cited p. 77)

Knorr-Held, L. and Rue, H. (2002). On block updating in Markov random �eld models
for disease mapping. Scandinavian Journal of Statistics, 29(4):597–614. (cited p. 128)

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models. MIT Press. (cited
p. 20, 72, 77)

Kowalczyk, W. and Vlassis, N. A. (2005). Newscast EM. Advances in Neural Information
Processing Systems, 17. (cited p. 55)

Kuleshov, V. and Liang, P. (2015). Calibrated Structured Prediction. In Cortes, C.,
Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in
Neural Information Processing Systems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages
3474–3482. (cited p. 102)

Kuss, M. and Rasmussen, C. E. (2005). Assessing Approximate Inference for Binary
Gaussian Process Classi�cation. JMLR, 6:1679–1704. (cited p. 71)

Kuss, M. and Rasmussen, C. E. (2006). Assessing Approximations for Gaussian Process
Classi�cation. In Advances in Neural Information Processing Systems 2005. (cited
p. 71)

La�erty, J., McCallum, A., and Pereira, F. (2001). Conditional random �elds: Probabil-
istic models for segmenting and labeling sequence data. In International Conference
on Machine Learning 18, pages 282–289. Morgan Kaufmann. (cited p. 18, 65, 71, 73)

La�erty, J., Zhu, X., and Liu, Y. (2004). Kernel conditional random �elds: representa-
tion and clique selection. In ICML ’04: Proceedings of the twenty-�rst international
conference on Machine learning, page 64, Ban�. ACM. (cited p. 65, 74, 75, 76, 77, 82)

BIBLIOGRAPHY 175

Lakshman, A. and Malik, P. (2010). Cassandra: A Decentralized Structured Storage
System. SIGOPS Oper. Syst. Rev., 44(2):35–40. (cited p. 33)

Lampert, C. H. (2009). Kernel Methods in Computer Vision, volume 4. (cited p. 140)

Laptev, I., Marszalek, M., Schmid, C., and Rozenfeld, B. (2008). Learning realistic
human actions from movies. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8. IEEE. (cited p. 88)

Lasserre, J. (2008). Hybrid of Generative and Discriminative Methods for Machine Learn-
ing. PhD thesis, University of Cambridge. (cited p. 63)

Lasserre, J. and Bishop, C. M. (2007). Generative or Discriminative? Getting the Best
of Both Worlds. In Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Hecker-
man, D., Smith, A. F. M., and West, M., editors, Bayesian Statistics, volume 8, pages
3–24. Oxford University Press. (cited p. 63)

Lawrence, N. D. (2005). Probabilistic Non-linear Principal Component Analysis with
Gaussian Process Latent Variable Models. The Journal ofMachine Learning Research,
6:1783–1816. (cited p. 99)

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation. Springer. (cited
p. 61)

Liang, P. and Jordan, M. I. (2008). An asymptotic analysis of generative, discriminative,
and pseudolikelihood estimators. In Proceedings of the 25th international conference
on Machine learning - ICML ’08, pages 584–591, New York, New York, USA. ACM
Press. (cited p. 63)

Lin, J. (2012). MapReduce is Good Enough? If All You Have is a Hammer, Throw Away
Everything That’s Not a Nail! arXiv preprint. (cited p. 50, 51, 157)

Lovell, D., Adams, R. P., and Mansinghka, V. K. (2012). Parallel Markov chain Monte
Carlo for Dirichlet process mixtures. In NIPSWorkshop on Big Learning. (cited p. 57)

Ma, X. and Hovy, E. (2016). End-to-end Sequence Labeling via Bi-directional LSTM-
CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), volume 1, pages 1064–1074, Strouds-
burg, PA, USA. Association for Computational Linguistics. (cited p. 95)

MacKay, D. J. C. (1996). Bayesian Methods for Backpropagation Networks. In E.
Domany, J. L. v. H. and Schulten, &. K., editors, Models of neural networks III,
chapter 6, pages 211–254. Springer, Berlin. (cited p. 139)

BIBLIOGRAPHY 176

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and Cza-
jkowski, G. (2010). Pregel. In Proceedings of the 2010 international conference on
Management of data - SIGMOD ’10, page 135, New York, New York, USA. ACM
Press. (cited p. 53)

Marroquin, J., Mitter, S., and Poggio, T. (1987). Probabilistic solution of ill-posed
problems in computational vision. Journal of the American Statistical Association,
82(397):76–89. (cited p. 106)

Meila, M. (2007). Comparing clusterings – an information based distance. Journal of
Multivariate Analysis, 98(5):873–895. (cited p. 27)

Minka, T. P. (2005). Discriminative models, not discriminative training. Technical
report, Microsoft Research Ltd. (cited p. 62)

Mooij, J. M. (2010). libDAI: A Free and Open Source C++ Library for Discrete Ap-
proximate Inference in Graphical Models. Journal of Machine Learning Research,
11:2169–2173. (cited p. 115)

Moore, D. A. and Russell, S. J. (2015). Gaussian process random �elds. In Proceedings
of the 28th International Conference on Neural Information Processing Systems, pages
3357–3365. MIT Press. (cited p. 99)

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT Press. (cited
p. 20, 67, 69, 77, 101)

Murray, I. and Adams, R. P. (2010). Slice sampling covariance hyperparameters of
latent Gaussian models. In NIPS, pages 1732–1740. (cited p. 125, 126, 127, 128, 129,
134, 153)

Murray, I., Adams, R. P., and Mackay, D. J. C. (2010). Elliptical slice sampling. Arti�cial
Intelligence and Statistics (AISTATS), (2):541–548. (cited p. 21, 85, 156)

Murray, I. and Ghahramani, Z. (2004). Bayesian learning in undirected graphical mod-
els: approximate MCMC algorithms. In Uncertainty in Arti�cial Intelligence. (cited
p. 107)

Murray, I., Ghahramani, Z., and MacKay, D. J. C. (2006). MCMC for doubly-intractable
distributions. In UAI 2006, Proceedings of the 22nd Conference in Uncertainty in Arti-
�cial Intelligence, Cambridge, MA, USA, July 13-16, 2006. AUAI Press. (cited p. 107)

Nallapati, R., Cohen, W., and La�erty, J. (2007). Parallelized Variational EM for Lat-
ent Dirichlet Allocation: An Experimental Evaluation of Speed and Scalability. In
ICDMW’07: Proceedings of the Seventh IEEE International Conference on Data Mining
Workshops, pages 349–354. IEEE Computer Society. (cited p. 35, 55)

BIBLIOGRAPHY 177

Neal, R. M. (2003). Slice sampling. Annals of Statistics, 31(3):705–767. (cited p. 125)

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, pages 113–162. (cited p. 125)

Newman, D., Asuncion, A., Smyth, P., and Welling, M. (2007). Distributed inference
for latent Dirichlet allocation. Advances in Neural Information Processing Systems,
20(1081-1088):17–24. (cited p. 55, 56)

Ng, A. Y. and Jordan, M. I. (2001). On Discriminative vs. Generative Classi�ers: A com-
parison of logistic regression and naive Bayes. In Advances in Neural Information
Processing Systems, pages 841–848. (cited p. 63)

Nguyen, T. V. and Bonilla, E. V. (2014). Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada. In Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 1404–
1412. (cited p. 99)

Nickisch, H. (2008). Approximations for Binary Gaussian Process Classi�cation.
JMLR, 9:2035–2078. (cited p. 71, 84)

Nowozin, S., Gehler, P. V., Jancsary, J., and Lampert, C. H. (2014). Advanced Structured
Prediction. MIT Press. (cited p. 92)

Nowozin, S. and Lampert, C. H. (2010). Structured Learning and Prediction in Com-
puter Vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4):185–
365. (cited p. 19, 92, 108)

Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., and Kohli, P. (2011). Decision
tree �elds. In Metaxas, D. N., Quan, L., Sanfeliu, A., and Gool, L. J. V., editors, IEEE
International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November
6-13, 2011, pages 1668–1675. IEEE Computer Society. (cited p. 110, 112, 121)

Olea, R. A. and Pawlowsky-Glahn, V. (2009). Kolmogorov–Smirnov test for spatially
correlated data. Stochastic Environmental Research and Risk Assessment, 23(6):749–
757. (cited p. 132)

Owen, S., Anil, R., Dunning, T., and Friedman, E. (2011). Mahout in Action. Manning
Publications Co., Greenwich, CT, USA. (cited p. 35)

Panda, B., Herbach, J. S., Basu, S., and Bayardo, R. J. (2009). PLANET: massively
parallel learning of tree ensembles with MapReduce. VLDB, 2(2):1426–1437. (cited
p. 51)

BIBLIOGRAPHY 178

Parise, S. and Welling, M. (2005). Learning in Markov Random Fields: An Empirical
Study. In Joint Statistical Meeting. (cited p. 107)

Pedersen, M. S., Baxter, B., Templeton, B., Rishøj, C., Theobald, D. L., Hoegh-
rasmussen, E., Casteel, G., Gao, J. B., Dedecius, K., Strim, K., Christiansen, L.,
Hansen, L. K., Wilkinson, L., He, L., Bar, M., Winther, O., Sakov, P., and Hattinger, S.
(2008). The Matrix Cookbook. Technical report, Technical University of Denmark.
(cited p. 67, 68)

Pérez, F. and Granger, B. E. (2007). IPython: A system for interactive scienti�c com-
puting. Computing in Science and Engineering, 9(3):21–29. (cited p. 34)

Perez-Cruz, F., Pontil, M., and Ghahramani, Z. (2007). Conditional graphical models.
In Predicting Structured Data, pages 265–282. MIT Press, Cambridge, MA (USA).
(cited p. 74, 75)

Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classi�ers, 10(3):61–74.
(cited p. 102)

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: Convergence Dia-
gnosis and Output Analysis for MCMC. R News, 6(1):7–11. (cited p. 130)

Qi, Y., Szummer, M., and Minka, T. P. (2005). Bayesian Conditional Random Fields. In
Proceedings of the Tenth International Workshop on Arti�cial Intelligence and Statist-
ics. (cited p. 65, 74)

Qiu, Z., Wu, B., Wang, B., Shi, C., and Yu, L. (2014). Collapsed Gibbs Sampling for
Latent Dirichlet Allocation on Spark. JMLR: Workshop and Conference Proceedings,
(2004):17–28. (cited p. 57)

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A Unifying View of Sparse Ap-
proximate Gaussian Process Regression. Journal of Machine Learning Research,
6:1939–1959. (cited p. 117)

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286. (cited p. 24)

Rainforth, T., Naesseth, C. A., Lindsten, F., Paige, B., van de Meent, J.-W., Doucet, A.,
and Wood, F. (2016). Interacting Particle Markov Chain Monte Carlo. In Interna-
tional Conference on Machine Learning, volume 48. (cited p. 57)

Rakitsch, B. and Lippert, C. (2013). It is all in the noise: E�cient multi-task Gaussian
process inference with structured residuals. Advances in Neural . . . , pages 1–9. (cited
p. 100)

BIBLIOGRAPHY 179

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes forMachine Learning.
MIT Press. (cited p. 20, 65, 69, 70, 71, 136, 139)

Rosen, J., Polyzotis, N., Borkar, V., and Bu, Y. (2013). Iterative MapReduce for Large
Scale Machine Learning. arXiv preprint. (cited p. 51, 52)

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. Journal of
the Royal Statistical Society. Series B: Statistical Methodology, 71(2):319–392. (cited
p. 125)

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming in
Python using PyMC3. PeerJ Computer Science, 2:e55. (cited p. 130)

Sandve, G. K., Nekrutenko, A., Taylor, J., Hovig, E., Crocker, J., Cooper, M., Jasny, B.,
Chin, G., Chong, L., Vignieri, S., Peng, R., Mesirov, J., Nekrutenko, A., Taylor, J.,
Ioannidis, J., Allison, D., Ball, C., Coulibaly, I., Cui, X., Steen, R., Prinz, F., Schlange,
T., Asadullah, K., Begley, C., Ellis, L., Reich, M., Liefeld, T., Gould, J., Lerner, J.,
Tamayo, P., Giardine, B., Riemer, C., Hardison, R., Burhans, R., Elnitski, L., Rex, D.,
Ma, J., Toga, A., Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Piwowar, H.,
Day, R., Fridsma, D., Schwab, M., Karrenbach, M., Claerbout, J., Goble, C., Bhagat,
J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Deelman, E., Singh, G., Su, M.-
H., Blythe, J., Gil, Y., Goecks, J., Nekrutenko, A., Taylor, J., Brazma, A., Hingamp,
P., Quackenbush, J., Sherlock, G., Spellman, P., Brazma, A., Parkinson, H., Sarkans,
U., Shojatalab, M., Vilo, J., Edgar, R., Domrachev, M., Lash, A., Sneddon, T., Li, P.,
Edmunds, S., Prlić, A., and Procter, J. (2013). Ten Simple Rules for Reproducible
Computational Research. PLoS Computational Biology, 9(10):e1003285. (cited p. 34)

Schaul, T., Antonoglou, I., and Silver, D. (2013). Unit Tests for Stochastic Optimization.
CoRR, abs/1312.6. (cited p. 130)

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61:85–117. (cited p. 22)

Schmidt, M. (2009). A Note on Structural Extensions of SVMs. (cited p. 76)

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press. (cited p. 20,
65, 69, 75)

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics,
6(2):461–464. (cited p. 25)

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch,
R. E. (2013). Bayes and big data: the consensus Monte Carlo algorithm. In EFaBBayes
250 Conference. (cited p. 56)

BIBLIOGRAPHY 180

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch,
R. E. (2016). Bayes and big data: the consensus Monte Carlo algorithm. International
Journal of Management Science and Engineering Management, 11(2):78–88. (cited
p. 56)

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V.,
Young, M., Crespo, J.-F., and Dennison, D. (2015). Hidden technical debt in Machine
learning systems. In Proceedings of the 28th International Conference on Neural In-
formation Processing Systems, pages 2503–2511. MIT Press. (cited p. 51)

Seeger, M. (2004). Gaussian processes for machine learning. International Journal of
Neural Systems, 14(2):69–106. (cited p. 69)

Sethuraman, J. (1994). A constructive de�nition of Dirichlet priors. Statistica Sinica,
4(2):639–650. (cited p. 32)

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016). Taking
the Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of
the IEEE, 104(1):148–175. (cited p. 123)

Shi, T., Steinhardt, J., and Liang, P. (2015). Learning Where to Sample in Structured
Prediction. In Lebanon, G. and Vishwanathan, S. V. N., editors, Proceedings of the
Eighteenth International Conference on Arti�cial Intelligence and Statistics, AISTATS
2015, San Diego, California, USA, May 9-12, 2015, volume 38 of JMLR Workshop and
Conference Proceedings. JMLR.org. (cited p. 158)

Shotton, J., Fitzgibbon, A. W., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman,
A., and Blake, A. (2011). Real-time human pose recognition in parts from single
depth images. In 24th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011. (cited p. 112)

Snelson, E. and Ghahramani, Z. (2005a). Compact approximations to Bayesian pre-
dictive distributions. In Raedt, L. D. and Wrobel, S., editors, Machine Learning,
Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Ger-
many, August 7-11, 2005, volume 119 of ACM International Conference Proceeding
Series, pages 840–847. ACM. (cited p. 119)

Snelson, E. and Ghahramani, Z. (2005b). Sparse Gaussian Processes using Pseudo-
inputs. In Advances in Neural Information Processing Systems. (cited p. 117)

Sollich, P. (2002). Bayesian Methods for Support Vector Machines: Evidence and Pre-
dictive Class Probabilities. Machine Learning, 46(1/3):21–52. (cited p. 76)

Srijith, P. K., Balamurugan, P., and Shevade, S. (2014a). E�cient Variational Inference
for Gaussian Process Structured Prediction. In Advances in Variational Inference
NIPS 2014 Workshop. (cited p. 119)

BIBLIOGRAPHY 181

Srijith, P. K., Balamurugan, P., and Shevade, S. (2014b). Gaussian Process Pseudo-
Likelihood Models for Sequence Labeling. (cited p. 119)

Srijith, P. K., Balamurugan, P., and Shevade, S. K. (2016). Gaussian Process Pseudo-
Likelihood Models for Sequence Labeling. In Frasconi, P., Landwehr, N., Manco, G.,
and Vreeken, J., editors, Machine Learning and Knowledge Discovery in Databases
- European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23,
2016, Proceedings, Part I, volume 9851 of Lecture Notes in Computer Science, pages
215–231. Springer. (cited p. 119, 120, 152, 157)

Stern, D., Herbrich, R., and Graepel, T. (2009). Matchbox: Large Scale Online Bayesian
Recommendations. In Proceedings of the 18th international conference onWorld wide
web, pages 111–120. ACM, New York, USA. (cited p. 55)

Stoyanov, V. and Eisner, J. (2012). Minimum-risk training of approximate CRF-based
NLP systems. In Human Language Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics, June 3-8, 2012, Montréal,
Canada, pages 120–130. (cited p. 94)

Stoyanov, V., Ropson, A., and Eisner, J. (2011). Empirical risk minimization of graph-
ical model parameters given approximate inference, decoding, and model structure.
In Arti�cial Intelligence and Statistics (AISTATS). (cited p. 94)

Strid, I. (2008). Metropolis-Hastings prefetching algorithms. InWorking Paper Series in
Economics and Finance, Working Paper Series in Economics and Finance. Stockholm
School of Economics, Stockholm School of Economics. (cited p. 56)

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In NIPS, pages 3104–3112. MIT Press. (cited p. 95)

Sutton, C. (2012). An Introduction to Conditional Random Fields. Foundations and
Trends in Machine Learning, 4(4):267–373. (cited p. 65, 87, 92)

Tanner, M. and Wong, W. H. (2010). From EM to Data Augmentation: The Emergence
of MCMC Bayesian Computation in the 1980s. Statistical Science, 25(4):506–516.
(cited p. 22)

Taskar, B. (2004). Learning Structured Prediction Models: A Large Margin Approach.
PhD thesis, Stanford University. (cited p. 101)

Taskar, B., Guestrin, C., and Koller, D. (2004). Max-margin Markov networks. In
Advances in Neural Information Processing Systems. (cited p. 65, 76, 77)

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet
Processes. Journal of the American Statistical Association, 101(476):1566–1581. (cited
p. 30, 31, 37, 162)

BIBLIOGRAPHY 182

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
o�, P., and Murthy, R. (2009). Hive: A Warehousing Solution over a Map-reduce
Framework. Proc. VLDB Endow., 2(2):1626–1629. (cited p. 33)

Titsias, M. K. (2009). Variational Learning of Inducing Variables in Sparse Gaussian
Processes. In Dyk, D. V. and Welling, M., editors, Proceedings of the Twelfth Inter-
national Conference on Arti�cial Intelligence and Statistics (AISTATS-09), volume 5,
pages 567–574. Journal of Machine Learning Research - Proceedings Track. (cited
p. 120)

Tresp, V. (2000). A Bayesian committee machine. Neural Computation, 12:2719–2741.
(cited p. 108)

Tripuraneni, N., Gu, S., Ge, H., and Ghahramani, Z. (2015). Particle Gibbs for In�n-
ite Hidden Markov Models. In Proceedings of the 28th International Conference on
Neural Information Processing Systems, pages 2395–2403. MIT Press. (cited p. 57, 58)

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support vector
machine learning for interdependent and structured output spaces. Proceedings of
the Twenty-�rst International Conference on Machine Learning (ICML 2004), Ban�,
Alberta, Canada, July 4-8, 2004, page 104. (cited p. 76)

Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., and Singer, Y. (2005). Large
margin methods for structured and interdependent output variables. Journal of
Machine Learning Research, 6(2):1453–1484. (cited p. 65, 76, 84)

Tu, L. and Gimpel, K. (2018). Learning approximate inference networks for structured
prediction. In ICLR. (cited p. 95)

Uřičář, M., Franc, V., and Hlaváč, V. (2013). Bundle Methods for Structured Output
Learning—Back to the Roots. Image Analysis, (2). (cited p. 94)

Urtasun, R. and Darrell, T. (2007). Discriminative Gaussian process latent variable
model for classi�cation. In Proceedings of the 24th international conference on Ma-
chine learning - ICML ’07, pages 927–934, New York, New York, USA. ACM Press.
(cited p. 99)

Valiant, L. G. (1990). A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111. (cited p. 53)

Van Gael, J. and Ghahramani, Z. (2010). Nonparametric Hidden Markov Models. In
Bayesian Time-Series Models. Cambridge University Press. (cited p. 161)

Van Gael, J., Saatci, Y., Teh, Y. W., and Ghahramani, Z. (2008). Beam sampling for the
in�nite hidden Markov model. In ICML ’08: Proceedings of the 25th international

BIBLIOGRAPHY 183

conference on Machine learning, pages 1088–1095, Helsinki, Finland. ACM. (cited
p. 43, 57, 155, 161, 163)

Van Gael, J., Vlachos, A., and Ghahramani, Z. (2009). The in�nite HMM for unsuper-
vised PoS tagging. In Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing, volume 2, pages 678–687. Association for Computa-
tional Linguistics. (cited p. 24, 27, 39, 44, 45, 49)

VanDerwerken, D. N. and Schmidler, S. C. (2013). Parallel Markov Chain Monte Carlo.
arXiv preprint. (cited p. 56)

Vlachos, A. (2011). Evaluating unsupervised learning for natural language processing
tasks. In Proceedings of the First workshop on Unsupervised Learning in NLP, pages
35–42, Edinburgh, Scotland. Association for Computational Linguistics. (cited p. 27)

Wainwright, M. J. and Jordan, M. I. (2008). Graphical Models, Exponential Families,
and Variational Inference. Foundations and Trends in Machine Learning, 1(1–2):1–
305. (cited p. 108)

Walker, S. and Hjort, N. L. (2001). On Bayesian Consistency. Journal of the Royal
Statistical Society. Series B (Statistical Methodology), 63(4):811–821. (cited p. 115)

Wang, L., Liu, J., and Li, S. Z. (2000). MRF parameter estimation by MCMC method.
Pattern Recognition, 33(11):1919–1925. (cited p. 107)

Wang, L.-H., Liu, J., Li, Y.-F., and Zhou, H.-B. (2004). Predicting protein secondary
structure by a support vector machine based on a new coding scheme. Genome
informatics. International Conference on Genome Informatics, 15(2):181–90. (cited
p. 18)

Wang, Y., Bai, H., Stanton, M., Chen, W.-Y., and Chang, E. Y. (2009). PLDA: Parallel
Latent Dirichlet Allocation for Large-Scale Applications. In Algorithmic Aspects in
Information and Management, pages 301–314. Springer-Verlag. (cited p. 35, 56)

Weiss, M. S. (1978). Modi�cation of the Kolmogorov-Smirnov Statistic for Use with
Correlated Data. Journal of the American Statistical Association, 73(364):872. (cited
p. 132)

Welling, M., Teh, Y. W., and Kappen, B. (2008). Hybrid variational-MCMC inference
in Bayesian networks. In Uncertainty in Arti�cial Intelligence. (cited p. 117)

Weston, J., Chapelle, O., Vapnik, V., Elissee�, A., and Schölkopf, B. (2002). Kernel
Dependency Estimation. In Thrun, S. and Obermayer, K., editors, Advances in
Neural Information Processing Systems 15, pages 873–880. MIT Press, Cambridge,
MA. (cited p. 99)

BIBLIOGRAPHY 184

Weston, J. and Watkins, C. (1998). Multi-class support vector machines (Technical
Report CSD-TR-98-04). Technical report, Department of Computer Science, Royal
Holloway, University of London. (cited p. 76)

Weston, J. and Watkins, C. (1999). Support vector machines for multi-class pattern
recognition. In Proceedings of the Seventh European Symposium On Arti�cial Neural
Networks, volume 4. (cited p. 65)

White, T. (2009). Hadoop: The De�nitive Guide. O’Reilly & Associates Inc. (cited p. 20,
33, 36)

Williams, C. K. I. and Barber, D. (1998). Bayesian Classi�cation With Gaussian Pro-
cesses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–
1351. (cited p. 65, 70)

Williamson, S., Dubey, A., and Xing, E. P. (2013). Parallel Markov chain Monte Carlo
for nonparametric mixture models. In Proceedings of the 30th International Con-
ference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. (cited
p. 57)

Williamson, S., Wang, C., Heller, K. A., and Blei, D. M. (2015). Nonparametric mixed
membership models using the IBP compound Dirichlet process. In NIPS Workshop
on Bayesian Nonparametrics: The Next Generation. (cited p. 57)

Wilson, A. G., Knowles, D. A., and Ghahramani, Z. (2012). Gaussian Process Regres-
sion Networks. In Proceedings of the 29th International Conference on on Machine
Learning, pages 1139–1146. (cited p. 17, 97)

Wolfe, J., Haghighi, A., and Klein, D. (2008). Fully distributed EM for very large data-
sets. In Proceedings of the 25th international conference on Machine learning, pages
1184–1191, Helsinki, Finland. ACM. (cited p. 35, 55)

Wood, F. and Gri�ths, T. L. (2007). Particle Filtering for Nonparametric Bayesian Mat-
rix Factorization. In Advances in Neural Information Processing Systems, volume 19,
pages 1513–1520. (cited p. 56)

Xue, J.-H. and Titterington, D. M. (2008). Comment on “On Discriminative vs. Gen-
erative Classi�ers: A Comparison of Logistic Regression and Naive Bayes”. Neural
Processing Letters, 28(3):169–187. (cited p. 63)

Xue, J.-H. and Titterington, D. M. (2009). Interpretation of hybrid generat-
ive/discriminative algorithms. Neurocomputing, 72(7-9):1648–1655. (cited p. 63)

Yang, J., van Dalen, R. C., Zhang, S.-X., and Gales, M. J. F. (2014). In�nite structured
support vector machines for speech recognition. In IEEE International Conference

BIBLIOGRAPHY 185

on Acoustics, Speech and Signal Processing, ICASSP 2014, Florence, Italy, May 4-9,
2014, pages 3320–3324. IEEE. (cited p. 99)

Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P. K., and Currey, J.
(2008). DryadLINQ: A System for General-Purpose Distributed Data-Parallel Com-
puting Using a High-Level Language. In USENIX, editor, OSDI’08: Eighth Sym-
posium on Operating System Design and Implementation. (cited p. 35, 54)

Yu, Y. and Meng, X.-L. (2011). To Center or Not to Center: That Is Not the Ques-
tion—An Ancillarity–Su�ciency Interweaving Strategy (ASIS) for Boosting MCMC
E�ciency. Journal of Computational and Graphical Statistics, 20(3):531–570. (cited
p. 125, 126, 128)

Yuille, A. and He, X. (2012). Probabilistic models of vision and max-margin methods.
Frontiers of Electrical and Electronic Engineering in China, 7(1):94–106. (cited p. 94)

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark:
Cluster computing with working sets. In 2nd USENIX Workshop on Hot Topics in
Cloud Computing, HotCloud’10, Boston, MA, USA, June 22, 2010. (cited p. 54)

Zhai, K., Boyd-Graber, J., Asadi, N., and Alkhouja, M. L. (2012). Mr. LDA: a Flexible
Large Scale Topic Modeling Package using Variational Inference in MapReduce.
Proceedings of the 21st international conference on World Wide Web - WWW ’12,
page 879. (cited p. 57)

Zhang, A., Gultekin, S., and Paisley, J. (2016a). Stochastic Variational Inference for
the HDP-HMM. In Proceedings of the 19th International Conference on Arti�cial
Intelligence and Statistics, pages 800–808, Cadiz, Spain. (cited p. 58)

Zhang, A., Zhu, J., and Zhang, B. (2014). Max-Margin In�nite Hidden Markov Models.
In Proceedings of the 31th International Conference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014, pages 315–323. (cited p. 99)

Zhang, Y., Chen, S., Wang, Q., and Yu, G. (2016b). i2MapReduce: Incremental mapre-
duce for mining evolving big data. In 2016 IEEE 32nd International Conference on
Data Engineering (ICDE), pages 1482–1483. IEEE. (cited p. 52)

Zhang, Y., Gao, Q., Gao, L., and Wang, C. (2012). iMapReduce: A Distributed Comput-
ing Framework for Iterative Computation. Journal of Grid Computing, 10(1):47–68.
(cited p. 52)

Zhong, G., Li, W.-J., Yeung, D.-Y., Hou, X., and Liu, C.-L. (2010). Gaussian process lat-
ent random �eld. In Proceedings of the Twenty-Fourth AAAI Conference on Arti�cial
Intelligence, pages 679–684. AAAI Press. (cited p. 99)

BIBLIOGRAPHY 186

Zhu, J., Chen, N., and Xing, E. P. (2011). In�nite SVM: a Dirichlet Process Mixture
of Large-margin Kernel Machines. In Getoor, L. and Sche�er, T., editors, Proceed-
ings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011, pages 617–624. Omnipress. (cited p. 99)

Zhu, J., Chen, N., and Xing, E. P. (2014). Bayesian inference with posterior regulariza-
tion and applications to in�nite latent SVMs. Journal of Machine Learning Research,
15(1):1799–1847. (cited p. 99, 158)

Zhu, J. and Hastie, T. (2005). Kernel Logistic Regression and the Import Vector Ma-
chine. Journal of Computational and Graphical Statistics, 14(1):185–205. (cited p. 75)

	 List of figures
	 List of acronyms
	1 Introduction
	1.1 Motivation
	1.2 Thesis structure
	1.3 Notations and conventions

	2 Map-reduce inference for the infinite HMM
	2.1 Sequence models and the IHMM
	2.1.1 Hidden Markov models, state space cardinality, clustering, and non-parametric Bayesian models
	2.1.2 Part-of-speech tagging
	2.1.3 Defining a non-parametric model for sequence observations
	2.1.4 The HDP-HMM

	2.2 Distributed computing aspects
	2.2.1 Commodity computing infrastructure
	2.2.2 Principle of map-reduce
	2.2.3 Map-reduce architecture for the PoS IHMM
	2.2.3.1 Data storage
	2.2.3.2 Details of MR jobs
	2.2.3.3 Dependency diagram

	2.2.4 MR job latency
	2.2.5 Use of a reference, non-distributed implementation

	2.3 Experiments
	2.3.1 Algorithm and data
	2.3.2 Configurations
	2.3.3 Results

	2.4 Iterative map-reduce
	2.4.1 Understanding of the issue in the community
	2.4.2 Fixing iterative map-reduce: today's perspective
	2.4.2.1 Adapted map-reduce frameworks
	2.4.2.2 Beyond map-reduce

	2.5 Review of the state of the art for distributed probabilistic inference
	2.6 Conclusion

	3 Discriminative models for structured output prediction
	3.1 From generative to discriminative modelling
	3.2 A roadmap
	3.3 Illustrating the roadmap: linear regression
	3.4 Making the model Bayesian
	3.5 Making the model kernelised
	3.6 Making the model structured
	3.7 The CRF model and extensions
	3.7.1 Variants of the CRF
	3.7.2 Maximum margin extensions of the CRF

	3.8 Conclusion

	4 GPstruct for sequence labelling
	4.1 Model formulation
	4.2 Parameterisation for sequence problems
	4.3 Kernel function specification
	4.4 Inference procedures
	4.4.1 Predictive distribution
	4.4.2 Sampling from the posterior distribution

	4.5 Experiments: text processing tasks
	4.5.1 Train vs. test split
	4.5.2 Baselines
	4.5.3 Computing
	4.5.4 Results and interpretation

	4.6 Experiments: video processing task
	4.7 Practical issues
	4.8 Cross-chain MCMC variance
	4.9 Comparisons with existing models
	4.10 MAP variant of GPstruct
	4.10.1 Experiments

	4.11 Further GP models with structure
	4.11.1 Different definitions of ``structure'' for GP structured regression

	4.12 Conclusion

	5 Scaling up GPstruct: pixel grid labelling
	5.1 Grid parameterisation
	5.2 Approximations for scaling
	5.3 Algorithm
	5.3.1 Algorithm complexity

	5.4 Experimental setup
	5.4.1 Runtimes

	5.5 Experimental research questions and results
	5.5.1 What is the predictive performance of GPstruct?
	5.5.2 Are GPstruct's predictions probabilistically calibrated?
	5.5.3 Is GPstruct's performance just due to bagging?
	5.5.4 What is the influence of varying the number of sampled pixels?
	5.5.5 What is the impact of PL and TRW approximations?

	5.6 Scaling further
	5.6.1 Variational inference for GPstruct

	5.7 Conclusion

	6 Hyperparameter inference
	6.1 Motivation
	6.2 Bayesian hyperparameter inference for GPstruct
	6.2.1 Canonical (forward) parameterisation
	6.2.2 Whitening the prior
	6.2.3 Surrogate data method
	6.2.4 Further variants

	6.3 Geweke's ``Getting it right'' tests
	6.3.1 Our variant of the test
	6.3.2 Experiment: testing elliptical slice sampling implementation
	6.3.3 Experiment: testing hyperparameter sampling implementations
	6.3.4 Hyperparameter learning: synthetic data experiment

	6.4 Experiments on NLP tasks
	6.4.1 Hyperparameter update runtime
	6.4.2 Applying ARD kernels to the NLP tasks
	6.4.3 Experimental configuration and results

	6.5 Conclusion

	7 Conclusion
	7.1 Summary of scientific contributions
	7.2 Concluding thoughts

	A IHMM Gibbs sampling steps
	Bibliography

